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Abstract
Solvency games are a gambling problem on infinite-state MDPs where the investor’s fortune n ∈ N
is the state. In every round, the investor chooses an action from a finite action set, and every action
yields a distribution over integer-valued gains in an interval {−ℓ, . . . , m}. The risk-averse investor
wants to minimise the probability of eventual ruin (reaching a fortune ≤ 0).

It was shown in [2] that memoryless deterministic optimal strategies exist, but they do not have
a pure tail in general. Even in the special case of gains in {−2, . . . , 1}, the optimal strategy may
need to make use of two different actions at arbitrarily high fortunes.

We show that optimal strategies in solvency games need to be aperiodic in general (thus disproving
a 2012 conjecture of Kučera [10, Sec. 3]). Already in the case of gains in {−3, . . . , 1}, it is possible
for the optimal strategy to be unique but aperiodic.

However, in the special case of gains in {−2, . . . , 1} there always exists an optimal strategy that
either has a pure tail or strictly alternates between just two actions.

Finally, we show that the optimal strategy is computable if it is unique. Moreover, (some)
optimal strategy can always be computed in the case of gains in {−ℓ, . . . , 1} for any ℓ ∈ N.
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1 Introduction

Background. Decision making under uncertainty is a fundamental problem studied in
computer science, operations research, and game theory. We study solvency games, a very
simple model in which a single player (aka the investor) wants to maximise the probability
of perpetual solvency, i.e., to minimise the probability of eventual ruin. Even in this very
simple setting, optimal strategies may need to be rather complex.

A solvency game can be described as a gambling problem on an infinite-state MDP.
The states of this MDP are numbers n ∈ N which correspond to the current fortune of the
investor. In every round of the game, the investor chooses an action from a finite action set
A = {A, B, . . . }. Each action yields a distribution over integer-valued gains in a bounded
interval {−ℓ, . . . , m}. The new fortune is then the old fortune plus the gain. The risk-averse
investor wants to minimise the probability of ruin (eventually reaching a fortune ≤ 0).

There always exist optimal deterministic strategies that depend only on the current fortune
(i.e., they are memoryless) [2]. Such strategies can be described by functions σ : N → A.
While having a large fortune can reduce the risk of ruin, maximizing the expected fortune
in the long run does not coincide with minimizing the risk of eventual ruin. This is easy
to see for very small fortunes, e.g., n = 1. Suppose action A yields gains +10 and −1 with
probabilities 1/2 each, while action B yields gains +1 and −1 with probabilities 0.6 and 0.4,
resp. While action A has a higher expected gain, the risk-averse investor still needs to play
action B at fortune n = 1 in order to minimise the probability of ruin.

Still, it seemed plausible that, at least at fortunes n above some finite threshold n0, an
optimal strategy σ could always play an action with maximal expected gain, i.e., σ(n) = A

for all n ≥ n0. Such strategies are also called pure-tail or rich-man’s strategies. It is
easy to see that there always exist ε-optimal pure-tail strategies for every ε > 0. If at least
one action A yields a strictly positive expected gain then some strategy that plays A at all
fortunes n ≥ n0 (where n0 depends on ε) can be ε-optimal everywhere, since the risk of
eventual ruin from fortune n converges to 0 as n → ∞ [2, Fact 3]. Otherwise, if all actions
have an expected gain ≤ 0, then eventual ruin happens almost surely for every strategy
(except in the degenerate case where some action has exactly gain 0 only). For a quantitative
analysis of these approximation properties see [3].

However, optimal strategies do not have the same properties as ε-optimal strategies. In
particular, optimal pure-tail strategies do not always exist [2]. Surprisingly, even in the
special case of two actions and gains in {−2, . . . , 1}, the optimal strategy may need to use
both actions at arbitrarily high fortunes, even though one action has a sub-optimal expected
gain. The counterexample from [2] does not show whether the two actions appear in any
regular pattern for increasing fortunes n in the optimal strategy. It was conjectured in [10,
Sec. 3] that there always exist optimal strategies that are ultimately periodic, i.e., eventually
repeat a finite pattern of actions for increasing fortunes n.

Our contributions. Our main contribution is to disprove this conjecture. Already in the
case of gains in {−3, . . . , 1} and action sets of size two, optimal strategies may need to be
much more complex. In Section 4 we construct an example where the optimal strategy is
unique but aperiodic.

However, in the special case of gains in {−2, . . . , 1} there always exists an optimal strategy
that either has a pure tail or strictly alternates between just two actions (regardless of the
size of the action set). The first type is ultimately periodic and the second type is periodic
(with period 2) everywhere; cf. Section 3.4.
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Finally, we present some results about the computability of optimal strategies, i.e., finding
a computable function σ : N → A that corresponds to a memoryless deterministic optimal
strategy for a given solvency game. In the special case where this optimal strategy σ is
unique, σ(n) is computable. This is due to the fact that, for every n, the value of the solvency
objective at fortune n can be effectively approximated arbitrarily closely [3]. However, this
method does not yield any complexity bounds.

Otherwise, even if the memoryless deterministic optimal strategy is not unique, it is
possible to find some optimal strategy σ : N → A such that σ(n) is computable for every
n ∈ N, provided that the gains are in {−ℓ, . . . , 1} for some ℓ ∈ N. Here σ(n) can be computed
in time polynomial in n.

Computability of an optimal strategy remains an open question in the general case with
gains in {−ℓ, . . . , m} for m > 1.

Related work. Many works in gambling theory also consider the problem of minimizing the
risk of ruin, e.g., [7, 8, 13, 6, 9]. However, their models differ from ours. Instead of choosing
between different actions, their investor chooses which part of his or her fortune to gamble
on a fixed action. Additionally, some other models allow borrowing or pay interest on unused
capital [4].

More closely related to our work are finite-state Markov decision processes with integer
rewards [12, 11]. One can interpret the total reward (the sum of all rewards so far in the
run) as the investor’s fortune. Alternatively, one can consider the fortune as part of the
(now infinite) state space of an MDP. In other words, a state of the MDP is described
by a pair (s, n) where s is one of finitely many control states and n ∈ N is the fortune.
Using terminology from automata theory, this is called a one-counter MDP [3]. This
model is strictly more general than ours, due to the additional control states, i.e., our model
corresponds to the subclass of one-counter MDPs with just one control state.

2 Definition of Solvency Games

▶ Definition 1. Given ℓ, m ∈ N, an (ℓ, m)-solvency game is an infinite-state Markov decision
process (MDP) with state space N and a finite set of actions A such that each action A ∈ A
yields a probability distribution PA over the finite set {−ℓ, . . . , m}.

The current state n ∈ N is called the fortune of the player and the values k ∈ {−ℓ, . . . , m}
are the possible gains in any round of the game (where gains can be negative). PA(k) denotes
the probability of gain k under action A, hence

∑
−ℓ≤k≤m PA(k) = 1 for any A ∈ A.

Since the state space of solvency games is N, a history can be described by a sequence
h ∈ N(AN)∗ where the first element in h corresponds to the initial fortune. A strategy is a
function σ that maps a history h to a mixed action, i.e., a distribution over A. Let h = h′n be a
history ending with fortune n. Then the next fortune n+k is determined by adding the realized
gain k under the chosen mixed action to n, i.e., P(h′nA(n + k) | h′n) = σ(h′n)(A) ∗ PA(k).

In solvency games the player has the objective to maximise the probability of perpetual
solvency, i.e., keep the fortune > 0. Formally, solvency is the set of runs N>0(AN>0)ω (a
closed set in the Cantor topology and thus Borel measurable). Equivalently, the player aims
to minimise the probability of eventual ruin (reaching a fortune ≤ 0). For the solvency
objective there always exist optimal memoryless and deterministic strategies [2], i.e.,
where σ(h′n) depends only on n and σ(h′n) is a Dirac distribution. Thus we restrict our
attention to memoryless deterministic strategies, which can then be described by simple
functions σ : N → A.
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A solvency game, initial fortune n ∈ N, and memoryless deterministic strategy σ induce
an infinite-state Markov chain where the current state corresponds to a random variable Xi,
where X0 = n and Xi+1 = Xi + Yi, where Yi has distribution identical to the action σ(Xi).
The probability of eventual ruin in this Markov chain is

pσ(n) := P(∃i ∈ N · Xi ≤ 0) .

Let pσ
x(n) := P(∃i ∈ N Xi = x ∧ ∀j < i Xj > 0), be the probability under strategy σ that

the fortune changes from n to x (without hitting zero in between).
A strategy σ is optimal if for every other strategy τ we have pσ(n) ≤ pτ (n) for all n ∈ N.

The existence of optimal strategies in solvency games is shown in [2, Proposition 7]. For an
optimal strategy σ we write popt(n) := pσ(n) for the probability of eventual ruin given initial
fortune n.

Assumptions. We assume without loss of generality that no two actions A and B have
identical distributions PA and PB over payoffs. Furthermore, if there exists an action A such
that P is supported on a set of nonnegative integers then solvency would be trivial to achieve
by always playing A. Thus, we henceforth assume that this is not the case. We also assume
that PA(0) = 0 for every action A. This is also without loss of generality, since otherwise
A could be replaced by an ‘equivalent’ action A′ (i.e., without changing the probability of
eventual ruin) with PA′(0) = 0 and PA′(k) = PA(k)/(1 − PA(0)) for all k ̸= 0.

Finally, we assume that there exists at least one action A ∈ A with strictly positive
expected gain, i.e.,

∑
−ℓ≤k≤m kPA(k) > 0. Otherwise, ruin would almost surely happen

from every fortune under every strategy, and hence all strategies would be optimal. This
assumption also implies that limn→∞ Popt(n) = 0 [2, Fact 3].

Following [2, Lemma 1], we define the characteristic polynomial for each action. (Our
version below uses an additional scaling factor of 1/PA(m).)

▶ Definition 2. Let A ∈ A be an action yielding a distribution over gains in {−ℓ, . . . , m}.
Its characteristic polynomial is defined as

χℓ,m
A (x) := 1

PA(m)

(
m∑

k=−ℓ

PA(k)xk+ℓ − xℓ

)

When the context is clear, we may omit to mention ℓ and m and just write χA(x) instead.

By construction, χA has leading coefficient 1. Moreover, since PA is a distribution,
χA(1) = 0.

▶ Proposition 3 ([2, Lemma 1]). For every action A, χA has exactly one root cA ∈ (0, 1),
called its primary root. Moreover, for any complex root r distinct from 1 and cA, |r| < cA.

The roots of the characteristic polynomial χA of action A which are neither the primary
root nor 1 are called secondary roots.

The following theorem showed that an optimal pure-tail strategy exists under a certain
condition on the primary roots of the characteristic polynomials.

▶ Theorem 4 ([2, Theorem 8]). Consider a solvency game with action set A where there
exists an action A ∈ A such that the primary root cA of χA satisfies cA < cB for the primary
root cB of every action B ̸= A.

Then there exists an optimal pure-tail strategy σ : N → A, i.e., there exists an n0 such
that σ(n) = A for all n ≥ n0.
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However, it was also shown in [2] that an optimal pure-tail strategy need not exist in
general, even for solvency games with just two actions and gains in {−2, . . . , 1}.

▶ Theorem 5 ([2, Theorem 9]). There exists a (2, 1)-solvency game with two actions A =
{A, B} such that cA = cB and if a strategy σ : N → A is optimal then for every W ∈ N there
exist n, n′ > W such that σ(n) = A and σ(n′) = B.

This theorem showed that both actions are needed infinitely often, but did not show
whether σ (eventually) strictly alternates between A and B. An example of a (2, 1)-solvency
game where the optimal strategy strictly alternates between actions A and B was described
in [5]. In Section 3 we show that all (2, 1)-solvency games admit optimal strategies that
either strictly alternate or are a pure-tail strategy.

Generally, it was open whether there always exists an optimal strategy that is ultimately
periodic, i.e., eventually repeats a finite pattern of actions indefinitely for fortune n → ∞;
cf. [10, Sec. 3]. We answer this negatively, even for (3, 1)-solvency games, in Section 4.

3 Computability Results

In this section, we focus on the class of (ℓ, 1)-solvency games and provide an efficient way
to compute optimal strategies for such games. We will assume that all action share the
same primary root, c. This is because of Theorem 4: if there were a strategy with a smaller
primary root, an optimal strategy would always choose this action for all sufficiently large
fortunes.

In the later subsections, we investigate some special cases on which we can say even more
about the optimal strategies (namely (2, 1)-games and (3, 1)-games).

3.1 Computing the optimal strategy knowing it is unique

It is shown in [3, Theorem 3.1] that the probability of eventual ruin in a solvency game can be
effectively approximated—there is a procedure that inputs a solvency game A, initial fortune
n ∈ N, and precision ε > 0, and outputs a rational number q such that |popt(n) − q| < ε.
(In fact, this approximation works even for the more general model of one-counter MDPs,
i.e., with control states.) From this it easily follows that the optimal strategy is computable,
provided that it is unique. More precisely, there is a procedure that inputs a solvency game
A and initial fortune n ∈ N and that, under the promise that A has a unique optimal
memoryless deterministic strategy σ : N → A, outputs σ(n). Indeed, it is classical [12,
Section 4.3] that, being the probability of a finite-horizon objective, popt satisfies the so-called
Bellman optimality equation

popt(n) = min
A∈A

∑
k

PA(k) · popt(n + k) .

Then, by uniqueness of σ, the minimum on the right-hand side of the above equation is
achieved for a single action A ∈ A. To determine this action we find the (unique) minimum
summand on the right-hand side. This can be done by computing the values popt(n + k), for
k ∈ {−ℓ, . . . , m}, to sufficient precision using the above-mentioned procedure of [3]. Note
that the running time of the above procedure depends on the precision required to distinguish
the optimal action from given fortune n from the next best action(s), for which we have no a
priori bound.
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3.2 Characteristic polynomials in an (ℓ, 1)-solvency game
In this first subsection, we make explicit the formulas linking the roots of the characteristic
polynomials and the probabilities of the actions. Let A be an (ℓ, 1)-solvency game and A ∈ A
be an action. Recall that all actions of A share the same primary root c ∈ (0, 1). Then A

has characteristic polynomial

χA(x) = (x − 1)(x − c)
ℓ−1∏
i=1

(x − rA,i)

where the rA,is are the remaining complex roots of χA. We denote by rA = (rA,1, . . . , rA,ℓ−1)
the vector of all these roots. Using Vieta’s formulas [1, Chapter 4, Section 4.6] we have:

PA(1) = 1
1 + c + s1(rA)

and

PA(−k) = (−1)k+1 sk+1(rA) − (c + 1)sk(rA) + csk−1(rA)
1 + c + s1(rA) for k ∈ {1, . . . , ℓ}

where the k-th elementary symmetric polynomial sk(rA) is defined by
s0(rA) := 1;
For all k ∈ {1, . . . , ℓ − 1}, sk(rA) :=

∑
1≤i1<···<ik≤ℓ−1

rA,i1 · · · rA,ik
;

For k ≥ ℓ, sk(rA) := 0.

Among all these sums, we give a special name to the sum of all roots sA := s1(rA) and
the product of all roots pA := sℓ−1(rA).

3.3 Computing optimal strategies for (ℓ, 1)-games
We first give a simple but useful characterisation of optimal strategies in (ℓ, 1)-solvency
games. Recall that pσ

x(n) denotes the probability under σ that the fortune changes from n

to x, while pσ(n) denotes the probability of ruin from fortune n. Finally, popt(n) denotes the
minimal probability of ruin from n. The following lemma is shown in Section A.1.

▶ Lemma 6. Let A be an (ℓ, 1)-solvency game. A memoryless deterministic strategy σ is
optimal if and only if it maximises pσ

w+1(n) for all n < w + 1.

Lemma 6 does not hold for (ℓ, m)-solvency games with m > 1, because the investor might
skip over certain fortunes x on the way up. In this case, it matters by how much x is skipped,
e.g., (x − 1) → (x + 3) vs. (x − 1) → (x + 7), and it does not suffice to just maximise the
probability of eventually surpassing x.

We have

∀w ∈ {1, . . . , x − 1} pσ
x(w) =

1∑
k=−ℓ

Pσ(w)(k)pσ
x(w + k)

Now for a word W ∈ A∗ we say that a strategy σ agrees with W if for all k ∈ {1, . . . , |W |},
σ(k) = Wk. Note that for any strategies σ, τ that agree with W we have

∀w ∈ {1, . . . , |W |} pσ
|W |+1(w) = pτ

|W |+1(w)

Therefore, for w ∈ {1, . . . , |W | + 1}, we simply denote pW (w) = pσ
|W |+1(w) where σ is any

strategy that agrees with W . Note also that pW (w) ̸= 0 since we assume that the action
have positive drift hence non-zero probability of going up by 1.
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▶ Notation. For W ∈ A∗ and k ≤ |W |, we denote by W [1 : k] the prefix of length k of W .
In particular, the zero-length prefix W [1 : 0] is the empty word ε. To handle “negative-length”
prefixes we define, for k < 0, W [1 : k] := ⊥ for some symbol ⊥ ̸∈ A∗.

▶ Proposition 7. (cf. Section A.2) For all word W ∈ A+ and i ∈ {1, . . . , |W |}, pW (i) =
QW [1:i−1]

QW
where QW is defined as follows:

Q⊥ := 0 and Qε := 1.
For A ∈ A, QA := 1

PA(1) .

For A ∈ A and W ∈ A+,

QW A = 1
PA(1)

(
QW −

−1∑
k=−ℓ

PA(k)QW [1:|W |+k]

)
This proposition shows that the probability of reaching |W | + 1 playing the word W

and starting from i is a quotient of polynomials (in the probabilities of the actions) whose
numerator has a regular form and whose denominator does not depend on i.
▶ Lemma 8. For all W ∈ A∗, QW is positive.
Proof. This can be proven by induction. Qε = 1 > 0. Since, for W ∈ A∗ and A ∈ A, pW A(i)
is a probability, by induction, QW [1:i] being positive, it forces QW to be positive too. ◀

▶ Proposition 9. Let A be an (ℓ, 1)-solvency game. Then there is a computable optimal
strategy σ for A and for all n ∈ N∗, σ(n) is computable in time linear with n in terms of
operations over Q.
Proof. Assume we have computed σ for 1, . . . , n − 1 and that it agrees with the word
W = W1 . . . Wn−1. Using Lemma 6, to compute σ(n), we just have to choose an action
A ∈ A that maximises the probability pW A(n). Using Proposition 7, we have

pW A(n) = QW

QW A

Having already computed QW , · · · , QW [1:|W |−ℓ] we just need to compute all the QW A for
A ∈ A, which is possible by the definition of QW A and just pick the action corresponding to
the lowest QW A. This leads to the computation of |A|n quantities to compute σ(n). ◀

This computation method leads to the introduction of the following quantity:
▶ Notation. ∆A,B

W := QW A − QW B

The point of ∆A,B
W is to say that assuming we play a strategy that agrees with W , at wealth

|W | + 1 we should play A instead of B if and only if ∆A,B
W < 0. If ∆A,B

W > 0 then we should
prefer B over A. Unfolding the probabilities in the quantities QW , the shared primary root
c appear in their expressions. It is actually possible to consider a modified version of it to
get rid of all the c’s.
▶ Notation. For W ∈ A∗, we denote RW = QW − (c + 1)QW [1:|W |−1] + cQW [1:|W |−2] where
c is the primary root shared by all the actions of A.

An immediate consequence is that RW A − RW B = QW A − QW B = ∆A,B
W . Also we can

note that Rε = 1 and R⊥ = 0.
▶ Lemma 10. (cf. Section A.3) For all W ∈ A∗ and for all action X ∈ A,

RW X =
ℓ−1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1]
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3.4 (2, 1)-solvency games
Let us consider a (2, 1)-solvency game A. For any A ∈ A, χA has degree 3. Since, by
Proposition 3, it has two roots in (0, 1], all its roots must be real. Moreover, the last root
must be negative. We know by Theorem 4 that if one action A has a smaller primary root
than all the other actions, there is an optimal pure-tail strategy with an infinite tail that
selects action A. In this section, we consider the complementary case where all the actions of
A share the same primary root: c. We will show that in this situation, the optimal strategy
is exactly an alternation between two actions.

Note that in this case, the vector of remaining roots, rA, consists in a single entry,
rA,1. Let Amin, Amax ∈ A be such that rAmin,1 := min {rA,1 | A ∈ A} and rAmax,1 :=
max {rA,1 | A ∈ A} respectively. We show the following:

▶ Theorem 11. The strategy σ(n) :=
{

Amin n ∈ 2N + 1
Amax n ∈ 2N is the unique optimal strategy for

the solvency game A.

Proof. Using Lemma 10, we have

RW X =
1∑

k=1
(−1)k+1sk(rX)RW [1:|W |−k+1] = s1(rX)RW

This means that
∆A,B

W = (s1(rA) − s1(rB))RW = (rA − rB)RW

We now prove by induction that the announced strategy is the unique optimal strategy.
At n = 1, we need to take the action A that minimises QA = 1 + c + rA. This action
must be Amin. Therefore, σ(1) = Amin.
Assume that we have shown that an optimal strategy σ agrees with the word W =
AminAmaxAmin . . . of length n − 1. By Proposition 9, σ(n) must be the action that
minimises QW σ(n). Let A, B ∈ A any two distinct actions such that rA < rB < 0. Using
the equation satisfied by RW , we have

RW = r
⌈ n−1

2 ⌉
Amin

r
⌊ n−1

2 ⌋
Amin

which is negative if n ∈ 2N and positive if n ∈ 2N + 1. In particular if n ∈ 2N, for all
actions A distinct from Amax, ∆A,Amax

W > 0 meaning that QW Amax < QW A and thus we
must have σ(n) = Amax. Similarly, if n ∈ 2N + 1, for all actions A distinct from Amin,
∆Amin,A

W < 0 meaning that QW Amin < QW A and thus we must have σ(n) = Amin. ◀

3.5 (3, 1)-solvency games
Let us consider a (3, 1)-solvency game A. Using Lemma 10, we have for all W ∈ A∗ and
X ∈ A,

RW X =
2∑

k=1
(−1)k+1sk(rX)RW [1:|W |−k+1] = s1(rX)RW − s2(rX)RW [1:|W |−1] (R3)

This means that

∆A,B
W = (s1(rA) − s1(rB))RW − (s2(rA) − s2(rB))RW [1:|W |−1]
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This in particular shows that RW can be computed by iterating a 2 × 2 matrix and thus
∆A,B

W by iterating 3 × 3 matrix. In this section we will show that we can actually bring
this down to a 2 × 2 matrix. In a later section, we will actually use this to find example of
optimal strategies that must be aperiodic.

For brevity we denote for any action X, sX = s1(rX) the sum of its secondary roots
and pX = s2(rX) their product. Note that for any two distinct actions A, B we must have
sA ̸= sB or pA ≠ pB. If both were equal, the payoff distributions PA and PB would be
identical, which is assumed not to be the case. We now consider two distinct actions A and
B.

Case sA ̸= sB.
▶ Lemma 12. For all actions A, B, X ∈ A and for all word W ∈ A∗,

∆A,B
W X =

(
sX − pA − pB

sA − sB

)
∆A,B

W −

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

) |W |∑
k=1

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k]

See Section A.4 for the proof.

▶ Corollary 13. Denoting EA,B
W =

|W |∑
k=1

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k], we can efficiently com-

pute ∆A,B
W for all W ∈ A∗ iterating the following linear expression:(

∆A,B
W X

EA,B
W X

)
=

sX − pA − pB

sA − sB
−
(

pA − pB

sA − sB

)2
+ sX

pA − pB

sA − sB
− pX

1 pA − pB

sA − sB


(

∆A,B
W

EA,B
W

)

with
(

∆A,B
ε

EA,B
ε

)
=
(

sA − sB

0

)
.

A particular example of the case sA ̸= sB is when pA = pB . If so, Corollary 13 becomes:(
∆A,B

W X

∆A,B
W

)
=
(

sX −pX

1 0

)(
∆A,B

W

∆A,B
W [1:|W |]

)
This is especially the case when there is some r > 0 such that for all action X ∈ A,

rX,1 = r exp(iθX) and rX,2 = r exp(−iθX)

for some θX ∈ R. Note that, if so, for all action X, s2(rX) = r2 and s1(rX) = 2r cos(θX). In
particular the relation on ∆A,B simplifies to

∆A,B
W X = 2r cos(θX)∆A,B

W − r2∆A,B
W [1:|W |−1]

We can consider the new quantity

∆′A,B
W = ∆A,B

W

2 (cos(θA) − cos(θB)) r|W |+1

This is well defined because PA(1) > PB(1) forces s1(rA) < s1(r2) hence cos(θA)−cos(θB) < 0.
One can check that the newly defined quantity satisfies for all W ∈ {A, B}∗ and X ∈ {A, B}

∆′A,B
W X = 2 cos(θX)∆′A,B

W − ∆′A,B
W [1:|W |−1] (∆3r)

and also ∆′A,B
ε = 1. This is the situation we will consider in Section 4 to exhibit a solvency

game that has only aperiodic optimal strategies. Note that this relation depends neither on
A nor B.
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Case sA = sB. In this case, we must have pA ̸= pB and

∆A,B
W = (pB − pA)RW [1:|W |−1]

Using (R3), this leads to the relation standing for W ∈ A∗ and X, Y ∈ A:(
∆A,B

W XY

∆A,B
W X

)
=
(

sX −pX

1 0

)(
∆A,B

W X

∆A,B
W

)
with

(
∆A,B

X

∆A,B
ε

)
=
(

pB − pA

0

)

4 A Necessarily Aperiodic Optimal Strategy

In this section we show that there are games that need the optimal strategies to be aperiodic.
We provide an explicit example of a (3, 1)-solvency game with exactly two actions A and B

sharing the same primary root c > 0, and with the secondary roots being complex conjugate
to each other with modulus shared by both actions. To make things clearer A and B have
the following characteristic polynomials:

χA(x) = (x − 1)(x − c) (x − r exp(iθA)) (x − r exp(−iθA))

and
χB(x) = (x − 1)(x − c) (x − r exp(iθB)) (x − r exp(−iθB))

We denote, for short, xA := cos(θA) and xB := cos(θB). This places us in the case sA ̸= sB

of Section 3.5. Without loss of generality, we assume that xA < xB, which means that
PA(1) > PB(1).

▶ Lemma 14. For any action A associated with a polynomial of the above form we have

− r2 + c

r(c + 1) ≤ 2xA ≤ −r
c + 1

c
< 0

Conversely, any r < c ∈ (0, 1) and xA ∈ [−1, 0) satisfying these conditions give a valid action.

See Section B.2 for the proof.
Note that xA can be chosen freely in [−1, 0) when choosing r to be sufficiently small.
As explained in the proof of Proposition 9, we have:

▶ Fact 15. Having computed an optimal strategy up to n − 1 agreeing with the word W , A

is optimal at n if and only if ∆A,B
W > 0. If instead ∆A,B

W < 0 then B is optimal. Finally, if
∆A,B

W = 0 then they are equally as good.

The quantity ∆′A,B
W is actually simpler to use. Since xA < xB, it as the opposite sign to

∆A,B
W . Also since PA(1) > PB(1), we have

∆′A,B
ϵ = 1 and ∆′A,B

A = 2xA

Finally, using Equation ∆3r, we get

▶ Fact 16. Let σ an optimal strategy and Wn = σ(1) . . . σ(n) ∈ An the word of length n on
which it agrees. Then

∆′A,B
Wn+2

= 2xXn
∆′A,B

Wn+1
− ∆′A,B

Wn
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where Xn = A if ∆′A,B
Wn+1

> 0, Xn = B if ∆′A,B
Wn+1

< 0 and either A or B if ∆′A,B
Wn+1

= 0. In
all cases, defining the sequence

u0 = 1
u1 = 2xA

un+2 = (xA + xB)un+1 − un − (xA − xB)|un+1|

we have for all n ∈ N, ∆′A,B
Wn

= un. Also, optimal strategies have forced value wherever
un ≠ 0 and are free when un ≠ 0. In particular, the optimal strategy is unique if and only if,
the sequence (un)n∈N never hits 0.

We are now ready to give an explicit example of a solvency game that has a single optimal
strategy which is aperiodic. We take the (3, 1)-solvency game A = {A, B} with A, B as just
explained and satisfying xA = −3

2 and xB = −11
10 . Hence, u0 = 1, u1 = −3/2 and

un+2 = csign(un+1)un+1 − un, where c+ = −3/2, c− = −11/10.

Thus,(
un+1
un+2

)
= Lcsign(un+1)

(
un

un+1

)
with Lc+ =

(
0 1

−1 c+

)
, Lc− =

(
0 1

−1 c−

)
.

It suffices to prove (cf. Section B.1):

▶ Theorem 17. For all n ∈ N, un ̸= 0 and the sequence (sign(un))n∈N is not eventually
periodic.

5 Outlook and Related Problems

(2, 1)-solvency games allow relatively simple optimal strategies: either a pure-tail strategy or
strictly alternating between just two actions. In contrast, already in (3, 1)-solvency games
the optimal strategy may have to be aperiodic. However, this aperiodic strategy σ : N → A
is still computable, and our computability result even holds for all (ℓ, 1)-solvency games for
every ℓ ∈ N.

For general (ℓ, m)-solvency games with m > 1 our characterization of optimal strategies
in Lemma 6 does not hold, and computability of optimal strategies remains open.

In the more general model of MDPs with multiple control states, it would be easy to
reduce the (ℓ, m) case to the (ℓ, 1) case, by dividing the fortune by m and encoding the
bounded remainder in the control state. However, the introduction of control states in the
model makes it more complex. Given a control state s, fortune n and constant c ∈ (0, 1),
deciding whether the minimal ruin probability from (s, n) is < c is at least as hard as
the Positivity problem [11, Corollary 4.5] (which in turn is at least as hard as the Skolem
problem). In particular, this implies that checking whether two different actions A, B are
equally good at a given configuration (s, n) is also Positivity-hard. On the other hand, if
the optimal strategy is unique, then it can still be computed in this general model, via the
approximation technique described in Section 3.1.
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A Proofs of Section 3

A.1 Proof of Lemma 6
▶ Lemma 6. Let A be an (ℓ, 1)-solvency game. A memoryless deterministic strategy σ is
optimal if and only if it maximises pσ

w+1(n) for all n < w + 1.

Proof. First we show that a sub-optimal strategy σ cannot maximise pσ
w+1(n) for all n < w+1.

Consider a sub-optimal memoryless deterministic strategy σ and an optimal memoryless
deterministic strategy σ′. Then there exists a fortune n ∈ N and actions A, B ∈ A such
that σ(n) = A and σ′(n) = B such that δ :=

∑
ℓ≤k≤m PA(k)popt(n + k) − popt(n) > 0.

Since limw→∞ Popt(w) = 0, we can pick a sufficiently large fortune w + 1 > n such that
popt(w + 1) ≤ δ/2. Since almost all runs from n that forever stay below fortune w + 1
end in ruin and σ′ is optimal, we obtain pσ′

w+1(n) ≥ 1 − popt(n). Towards a contradiction,
suppose that σ maximises pσ

w+1(n) for all n < w + 1. Then pσ
w+1(n) ≥ pσ′

w+1(n) ≥ 1 − popt(n).
Let σ′′ be the strategy that first plays like σ from n, but upon the first visit to w + 1 it
switches to the optimal strategy σ′. (Here we use the property of (ℓ, 1)-solvency games
that the fortune can increase by only +1, and hence fortune w + 1 is not skipped.) Then
1 − pσ′′(n) ≥ pσ

w+1(n) · (1 − popt(w + 1)) ≥ (1 − popt(n)) · (1 − δ/2). However, since
σ′′(n) = A we have 1 − pσ′′(n) ≤ 1 −

∑
ℓ≤k≤m PA(k)popt(n + k) = 1 − (popt(n) + δ) and thus

(1 − popt(n)) · (1 − δ/2) ≤ 1 − (popt(n) + δ) and therefore (1 − popt(n))/2 ≥ 1, a contradiction.
For the other direction we show that a strategy σ that does not maximise pσ

w+1(n) for
all n < w + 1 cannot be optimal for solvency. Consider such a σ and fortunes n < w + 1
such that pσ

w+1(n) is not maximal. Then there exists a different strategy σ′ such that
pσ′

w+1(n) > pσ
w+1(n). Let σ′′ be the strategy that first plays like σ′ from n, but upon the first

visit to w + 1 it switches to some optimal strategy σ∗. (Here again we use the property of
(ℓ, 1)-solvency games that the fortune can increase by only +1 and w + 1 is not skipped.)
Then 1 − pσ′′(n) ≥ pσ′

w+1(n)(1 − popt(w + 1)) > pσ
w+1(n)(1 − popt(w + 1)) ≥ 1 − pσ(n), since

almost all runs that forever stay below fortune w + 1 end in ruin. Therefore σ is not optimal
from n. ◀

A.2 Proof of Proposition 7
▶ Proposition 7. (cf. Section A.2) For all word W ∈ A+ and i ∈ {1, . . . , |W |}, pW (i) =
QW [1:i−1]

QW
where QW is defined as follows:

Q⊥ := 0 and Qε := 1.
For A ∈ A, QA := 1

PA(1) .

For A ∈ A and W ∈ A+,

QW A = 1
PA(1)

(
QW −

−1∑
k=−ℓ

PA(k)QW [1:|W |+k]

)

Proof. By definition, for A ∈ A, pA(1) = PA(1) = Qε

QA
=

QA[1:0]

QA
.

Assume the property for some W ∈ A+. Let A ∈ A. Let i ≤ |W | + 1. Since we have to
first reach wealth |W | + 1 before reaching wealth |WA| + 1, we have

pW A(i) = pW (i)pW A(|W | + 1)
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Let QW A := QW

pW A(|W | + 1) . Recall that this is well defined. By induction, this is also

not zero. Using the induction hypothesis we then get

∀i ∈ {1, . . . , |W | + 1} pW A(i) =
QW A[1:i−1]

QW A

It remains to prove that QW A satisfies the announced relation. Note that the probability
of going back to wealth |W | + 1 starting at |W | + 1 and without ever reaching |W | + 2 is

ℓ∑
k=1

PA(−k)pW (|W | + 1 − k)

Therefore to reach |W | + 2 we may lose some wealth and come back to |W | + 1 n times
then finally getting to |W | + 2. Therefore

pW A(|W |+1) =
∞∑

n=0
PA(1)

(
ℓ∑

k=1
PA(−k)pW (|W | + 1 − k)

)n

= PA(1)

1 −
ℓ∑

k=1
PA(−k)pW (|W | + 1 − k)

Using the induction hypothesis,

QW

QW A
= pW A(|W | + 1)

= PA(1)

1 −
ℓ∑

k=1
PA(−k)

QW [1:|W |−k]

QW

1
QW A

= PA(1)

QW −
ℓ∑

k=1
PA(−k)QW [1:|W |−k]

QW A = 1
PA(1)

(
QW −

−1∑
k=−ℓ

PA(k)QW [1:|W |+k]

)

◀

A.3 Proof of Lemma 10

We show that for all p ∈ {1, . . . , ℓ − 1}, the following property P(p) holds: for W ∈ A∗ and
X ∈ A,

RW X =
p∑

k=1
(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)p

(
sp+1(rX)QW [1:|W |−p] + csp(rX)QW [1:|W |−p−1]

)
+

ℓ∑
k=p+1

(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

Recall that RW X = QW X − (c + 1)QW + cQW [1:|W |−1]. Using the definitions of QW X
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and the formulas in Section 3.2,

RW X = (1 + c + s1(rX))QW −
ℓ∑

k=1
(−1)k+1 (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

− (c + 1)QW + cQW [1:|W |−1]

= s1(rX)RW + (c + s1(rX)(c + 1)) QW [1:|W |−1] − s1(rX)cQW [1:|W |−2]

+
ℓ∑

k=1
(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

= s1(rX)RW − s2(rX)QW [1:|W |−1] − s1(rX)cQW [1:|W |−2]

+
ℓ∑

k=2
(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

which is exactly P(1).

Assume that we have shown P(p) for some p ∈ {1, . . . , ℓ − 2}. Then,

RW X =
p∑

k=1
(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)p

(
sp+1(rX)QW [1:|W |−p] + csp(rX)QW [1:|W |−p−1]

)
+

ℓ−1∑
k=p+1

(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

=
p+1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)pcsp(rX)QW [1:|W |−p−1]

+ (−1)p+2sp+1(rX)
(
(c + 1)QW [1:|W |−p−1] − cQW [1:|W |−p−2]

)
+

ℓ−1∑
k=p+1

(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

=
p+1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)pcsp(rX)QW [1:|W |−p−1]

+ (−1)p+2sp+1(rX)
(
(c + 1)QW [1:|W |−p−1] − cQW [1:|W |−p−2]

)
+

ℓ−1∑
k=p+2

(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

+ (−1)p+1 (sp+2(rX) + (c + 1)sp+1(rX) + csp(rX)) QW [1:|W |−p−1]

=
p+1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1]

− (−1)p+2sp+1(rX)cQW [1:|W |−p−2] + (−1)p+1sp+2(rX)QW [1:|W |−p−1]

+
ℓ−1∑

k=p+2
(−1)k (sk+1(rX) + (c + 1)sk(rX) + csk−1(rX)) QW [1:|W |−k]

which is exactly P(p + 1).
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In the end we get that P(ℓ − 1) holds hence

RW X =
ℓ−1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)ℓ−1 (sℓ(rX)QW [1:|W |−ℓ+1] + csℓ−1(rX)QW [1:|W |−ℓ]
)

+ (−1)ℓ (sℓ+1(rX) + (c + 1)sℓ(rX) + csℓ−1(rX)) QW [1:|W |−ℓ]

Using that sℓ(rX) = sℓ+1(rX) = 0 this simplifies to

RW X =
ℓ−1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1] + (−1)ℓ−1csℓ−1(rX)QW [1:|W |−ℓ]

+ (−1)ℓcsℓ−1(rX)QW [1:|W |−ℓ]

=
ℓ−1∑
k=1

(−1)k+1sk(rX)RW [1:|W |−k+1]

This concludes the proof of the lemma.

A.4 Proof of Lemma 12

We show that for all p ∈ {0, . . . , |W |}, the following property P(p) holds: for W ∈ A∗ and
X ∈ A,

∆A,B
W X =

(
sX − pA − pB

sA − sB

)
∆A,B

W

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)
p∑

k=1

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k−1]

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)(
pA − pB

sA − sB

)p

(sA − sB)RW [1:|W |−p−1]

By definition,

∆A,B
W X = (sA − sB)RW X − (pA − pB)RW

= (sA − sB)
(

sX − pA − pB

sA − sB

)
RW + pX(sA − sB)RW [1:|W |−1]

=
(

sX − pA − pB

sA − sB

)
∆A,B

W +
((

sX − pA − pB

sA − sB

)
(pA − pB) − pX(sA − sB)

)
RW [1:|W |−1]

=
(

sX − pA − pB

sA − sB

)
∆A,B

W −

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)
(sA − sB)RW [1:|W |−1]

which is exactly P(0).

Assume we have shown P(p) for some p ∈ {0, . . . , |W | − 1}. Recall that

(sA − sB)RW [1:|W |−p−1] = ∆W [1:|W |−p−1] + (pA − pB)RW [1:|W |−p−2]
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Hence

∆A,B
W X =

(
sX − pA − pB

sA − sB

)
∆A,B

W

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)
p∑

k=1

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k−1]

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)(
pA − pB

sA − sB

)p

(sA − sB)RW [1:|W |−p−1]

=
(

sX − pA − pB

sA − sB

)
∆A,B

W

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)
p+1∑
k=1

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k−1]

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)(
pA − pB

sA − sB

)p

(pA − pB)RW [1:|W |−p−2]

=
(

sX − pA − pB

sA − sB

)
∆A,B

W

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)
p+1∑
k=0

(
pA − pB

sA − sB

)k−1
∆A,B

W [1:|W |−k−1]

−

((
pA − pB

sA − sB

)2
− sX

pA − pB

sA − sB
+ pX

)(
pA − pB

sA − sB

)p+1
(sA − sB)RW [1:|W |−p−2]

which is exactly P(p + 1).
We then get that P(|W |) holds. Now using that RW [1:−1] = R⊥ = 0, P(|W |) simplifies to
the announced statement.

B Proofs of Section 4

B.1 Proof of Theorem 17
▶ Theorem 17. For all n ∈ N, un ̸= 0 and the sequence (sign(un))n∈N is not eventually
periodic.

Going in this way from 0 to infinity we create an infinite word on an alphabet with two
letters {Lc+ , Lc−}. Here is the beginning of the word:

Lc− , Lc+ , Lc+ , Lc− , Lc+ , Lc− , Lc− , Lc+ , Lc− , Lc− , . . .

▶ Lemma 18. For all natural number n ∈ N, there are pn ∈ N coprime with 2 and 5 and
qn ∈ N such that

un = pn

2n5qn

Proof. By induction. We verify it immediately for n = 0, 1. Assume now that we have found
pn, pn+1, qn and qn+1 for some n ≥ 0. Then

un+2 = c±un+1 − un = αpn+15qn − 4pn5qn+1+β

2n+25qn+qn+1+β
, (α, β) = (−3, 0), (−11, 1),

according to whether un+1 < 0 or un+1 > 0, respectively. ◀
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▶ Corollary 19. For all natural number n, un ̸= 0 and all the values of the sequence are
distinct from each other.

▶ Lemma 20. Writing un = pn

2n5qn
as above, for all n ∈ N, gcd(pn, pn+1) = 1.

Proof. By induction. We verify it immediately for n = 0, 1. Assume now that we have
shown this for some n, then for some (α, β) ∈ {(−3, 1), (−11, 5)},

un+2 = c±un+1 − un = αpn+15qn − 4pn5qn+1+β

2n+25qn+qn+1+β

Let d a common divisor of pn+1 and pn+2. In particular, d is divisible by neither 2 nor 5. pn+2
is αpn+15qn −4pn5qn+1+β divided by some power of 5. Then d divides αpn+15qn −4pn5qn+1+β

hence it also divides 4pn5qn+1+β . Therefore d must divide pn. By induction hypothesis
d = 1. ◀

Next we record the indices i where ui > 0, ui+1 > 0. Let (bk)k∈N the increasing sequence
of all such indices. Let also B = {qK | k ∈ N}. Here are the first elements of this set:

B = {3, 14, 17, 25, 28, 39, 50, 53, 61, 64, . . .}. (B)

It seems that for all k ∈ N, bk+1 − qK ∈ {3, 8, 11}. This is the objective of our next lemma.

▶ Lemma 21. Assume that i ∈ B and let ui = a, ui+1 = b. Then the next j > i such that
j ∈ B is one of
1. If b

a
>

26
21 ≈ 1.2381 then j = i + 3 and

ui+3 = 11
10a + 13

20b and ui+4 = −13
20a + 21

40b.

2. If b

a
<

21942
65107 ≈ 0.3370 then j = i + 8 and

ui+8 = 10971
40000a − 65107

80000b and ui+9
65107
80000a + 196981

160000b.

3. Otherwise j = i + 11 and

ui+11 = 7216067
8000000a − 4905339

16000000b and ui+12 = 4905339
16000000a + 32141837

32000000b

This follows from a routine calculation. Note that the “cut-off” values 26/13, 21942/65107
are never achieved with b/a = un+1/un because by Lemma 18: un+1/un is a rational number
with an even denominator, whereas the three numbers above have even numerators. Let now

M3 = Lc+Lc−Lc+ =
(

11/10 13/20
−13/20 21/40

)
,

M8 = Lc+Lc−Lc+Lc−Lc−Lc+Lc−Lc+ =
( 10971

40000 − 65107
80000

65107
80000

196981
160000

)
,

M11 = Lc+Lc−Lc+Lc−Lc−Lc+Lc−Lc−Lc+Lc−Lc+ =
( 7216067

8000000 − 4905339
16000000

4905339
16000000

32141837
32000000

)
.

This suggests that we have an automaton such at each instance (ui, ui+1) = (a, b) with
a > 0, b > 0, the next time that both xj , xj+1 are positive is obtained by applying one of
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M3, M8, M11 to (a, b)T . So, we study this automaton. We let u, v ∈ {3, 8, 11} and write
Mu → Mv to indicate if after having applied Mu to (a, b)T , the next possible move is Mv.
Just to get a feeling of what we might expect we calculated the first few terms of the sequence
bj+1 − bj listed in (B) getting

C = {11, 3, 8, 3, 11, 11, 3, 8, 3, 11, 3, 8, 3, 8, 3, 11, . . .}.

▶ Lemma 22.
1. There are no two consecutive 3’s;
2. There may be two consecutive 11’s in C but not three of them;
3. An 8 is never followed by an 8 or 11;
4. An 11 is never followed by an 8.
5. Any group 11, 3 is followed by an 8.

See Section B.3 for the proof. Now we prove the following lemma:

▶ Lemma 23. Each of the states 3, 8, 11 is being visited infinitely often.

Proof. Since 8’s are only followed by 3’s and 11’s are followed by 3 or 11, 3, it follows that
3 is being visited infinitely often. Since there is no group 11, 3, 11, it follows that if 11 is
visited infinitely often, so is 8. So, we only have to rule out the case when there are only
finitely many 11’s. In this case our sequence after a while looks like

M3M8M3M8, . . . .

Let L := M3M8. One checks that

L1000 =
(

−, −
+, +

)
,

showing that with (
a′

b′

)
= L1000

(
a

b

)
,

we have b′ < 0, which is wrong. This shows that in fact M3M8 cannot repeat itself more
than 1000 times without an M11 appearing. This finishes the proof of this lemma. ◀

Now we study the growth of (un)n∈N. Although it is likely to be bounded, we could not
prove it. Nonetheless we can show the following:

▶ Proposition 24. We have un = O
n→+∞

(1.06n).

See Section B.4 for the proof.
We now give a bound on the quantity qn seen in Lemma 18.

▶ Lemma 25. We have qn < 0.32n for all large enough n.

See Section B.5 for the proof. We are now ready to conclude.

▶ Theorem 17. For all n ∈ N, un ̸= 0 and the sequence (sign(un))n∈N is not eventually
periodic.
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Proof. Assume it is. In particular, the part B namely of those n such that un > 0 and
un+1 > 0 is also periodic. Assume it is of period k. It then follows that for some t0 and k

and some matrix M we have that(
ukt+r

ukt+r+1

)
= M

(
uk(t−1)+r

uk(t−1)+r+1

)
for all r ∈ {0, 1, . . . , k − 1} and all t ≥ t0. In particular,(

ukt+r

ukt+r+1

)
= M t−t0

(
un0

un0+1

)
,

with n0 := k(t − t0) + r. This shows that (ukt+r)t≥t0 is binary recurrent. The characteristic
equation is given by Mk, a matrix of determinant 1. So, there are various scenarios.

1. The matrix M has complex conjugate eigenvalues of absolute value 1. It then follows that

ukt+r = cr cos(θr + tϕ),

where Mk has eigenvalues e±iϕ. If ϕ is a rational multiple of π then such sequence has
a finite range as t varies which contradicts Corollary 19. If ϕ is an irrational multiple
of π then cr cos(θr + tϕ) will change signs infinitely often which is false since ukt+r are
positive. Thus, this case is not possible.

2. The matrix M has roots in {±1}. Then (ukt+r)t≥t0 either has a finite range or is an
arithmetic progression. The former contradicts Corollary 19 and the latter contradicts
Lemma 18 which states that the denominators of ukt+r are divisible by arbitrarily large
powers of 2 while the denominators of numbers in an arithmetic progression remain
bounded.

3. M has real eigenvalues whose product is 1. Assume that these eigenvalues are irrational
and let them be ζ and η, with |ζ| > 1 > |η|. In particular, the pairs (un, un+1) over these
n such that un, un+1 are both positive range over finitely many pairs binary recurrent
sequences all with the same characteristic roots namely ζ and η. Namely, each one of
these sequences has a Binet formula of the form

crζ⌊n/k⌋ + drη⌊n/k⌋,

where the pairs (cr, dr) are drawn from a finite collection of pairs of conjugated numbers
in K = Q(ζ). Note that since un is rational, none of cr, dr is zero. Thus, un/un+1 as n

goes to infinity approach finitely many numbers in K = Q(ζ). Let us show that none of
them is rational. Assume that un/un+1 has a rational limit. Writing

un = crζ⌊n/k⌋ + drη⌊n/k⌋, un+1 = c′
rζ⌊n/k⌋ + drη⌊n/k⌋,

we get that cr/c′
r = λ, where λ ∈ Q. By Galois conjugation dr/d′

r = λ which implies
un/un+1 = λ. Writing

un = pn

2n5qn
, un+1 = pn+1

2n+15qn+1
,

where gcd(pn, 5) = gcd(pn+1, 5) = 1. By Lemma 20, gcd(pn, pn+1) = 1. Since λ is
rational, this shows that the numerator of un (and un+1 as well) is a bounded integer
times a power of 5. By the Binet formula for un and linear forms in 5-adic logarithms, the
power of 5 in the numerator of un, if present at all, is of size nO(1). In particular un should
tend to zero which is inconsistent with the Binet formula (the numbers cr, dr are nonzero).
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Since each of the three moves 3, 8, 11 is executed infinitely often, it follows that un/un+1
has at least three cluster points, namely one in the region un+1/un = b/a > 26/21, another
in un+1/un < 0, 33704 and finally one in the intermediary region 0.33704 < b/a < 26/21.
The matrix

M =
(

m11 m12
m21 m22

)
,

maps the finitely many cluster points of {un+1/un}n∈B let them be {y1, . . . , yk} to the
points {

m21 + m22y1

m11 + m12y1
, . . . ,

m21 + m22yk

m11 + m12yk

}
.

So, M induces a function from {y1, . . . , yk} into itself via Möbius transformations. Note
that ∞ and 0 do not participate since y1, . . . , yk are in K and are irrational and k ≥ 3
so the tops or bottom of the above fractions are not close to zero. Since M is a Möbius
transformation, it it injective on this finite set, so also surjective. Letting g be the order
of M as permutation on this set of k elements, we get that Mg invaries all y1, . . . , yk.
Since k ≥ 3, Mg must be the identity (the identity is the only Möbius transformation
with three fixed points), so the characteristic roots of M are roots of unity, a case already
treated.

4. M has real rational eigenvalues ζ, η. We show that this cannot be the case using a size
argument. Assume that M is replaced by a suitable power of itself so it is a concatenation
of matrices of the form Di1 · · · Di10 , where i1, . . . , i10 ∈ {1, 2, 3}, where these matrices
have the same meaning as in Lemma 25. Letting K be the total number of matrices in
M , we have that

M =
(

a(K)
2K−2

b(K)
2K−1

c(K)
2K−1

d(K)
2K

)
.

Further
Tr(M) = 4a(K) + d(K)

2K
= u(K)

2K5qK
,

where by Lemma 25 we have that qK < 0.32K. We want that

λ2 − Tr(M)λ + 1 = (λ − ζ)(λ − η),

where ζ, η are rational. Then,

ζ, η = u(K)/(2K5qK ) ±
√

(u(K)2/(22K52qK ) − 4
2 .

The expression under the square root must be rational so we write it as x(K)/(2K5b(K))
where x(K) is a positive integer and we get

u(K)2 − 22K+252qK = x(K)2.

This gives
(|u(K)| + x(K))(|u(K)| − x(K)) = 22k+252q(K).

Here, qK ≥ 0, u(K) is odd and coprime to 5 if qK > 0. We see that the only suitable
decompositions are

|u(K)| + x(K) = 22K+1, |u(K)| − x(K) = 2 · 52qK ;

or
|u(K)| + x(K) = 22K+15qK , |u(K)| − x(K) = 2.
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These give

(|u(K)|, x(K)) = (22K + 52qK , 22K − 52qK ), or (22K52qK + 1, 22K52qK − 1),

leading to

(η, λ) = ±
(

2K

5qK
,

5qK

2K

)
, ±

(
2K5qK ,

1
2K5qK

)
.

Now

un = crζm + drηm, n ≡ r (mod K), r ∈ {0, . . . , K − 1}, m = ⌊n/K⌋.

Thus, in the first case if cr ̸= 0, then

|un| ≫ |ζ|n/K ≫ 2n

5nqK /K
.

Since qK < 0.32K, it follows that an ≫ (2/50.32)n for large n, which contradicts
Proposition 24 since 2/50.32 > 1.19 > 1.06. The case when ζ = 2K5qK is even worse since
in this case we get an ≫ 2n, which is again false. This is assuming cr ̸= 0. Of course if

un = crζm + drηm, un+1 = c′
rζm + d′

rηm,

where cr = 0, c′
r = 0, then un+1/un when un > 0, un+1 > 0 is a rational number from a

finite list. This number is not one of the numbers 26/21, 21942/65107, 2·7216067/4905339
by the argument about un+1/un having even denominator. Now the argument with Mg

for some fixed g having three fixed points as a Möbius transformation applies and we are
done.

◀

B.2 Proof of Lemma 14
Assume we have an action A for a (3, 1)-solvency game with characteristic polynomial

χA(x) = (x − 1)(x − c) (x − r exp(iθA)) (x − r exp(−iθA))

This implies that

PA(1) = 1
2rxA + c + 1

PA(−1) = 2(c + 1)rxA + r2 + c

2rxA + c + 1

PA(−2) = −2crxA + (c + 1)r2

2rxA + c + 1

PA(−3) = cr2

2rxA + c + 1

The above requirement imply the following:

1. 2rxA + c + 1 > 1
2. 2(c + 1)rxA + r2 + c ≥ 0

3. 2crxA + (c + 1)r2 ≤ 0
4. cr2 ≥ 0.

Inequality 4 is actually always satisfied. Rewriting the others we have

5. 2xA > − c

r 6. 2xA ≥ − r2 + c

r(c + 1)
7. 2xA ≤ −r

c + 1
c
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Since c is the primary root, we have c > r > 0 hence − r2 + c

r(c + 1) > − c2 + c

r(c + 1) = − c

r
meaning

that Inequality 5 is actually pointless. The two remaining ones form the announced statement.

B.3 Proof of Lemma 22
1. Let us start with 3. We got there because b/a > 26/13. After arriving there with(

a′

b′

)
= M3

(
a

b

)
we have

b′

a′ = (−13/20)a + (21/40)b
(11/10)a + (13/20)b <

21/40
13/20 = 21

26 <
26
21 ,

which shows that 3 can only be followed by 8 or 11.
2. Let us turn now to the 11’s. In order for (a, b) to end up in M11 it is necessary that

0.33704 <
b

a
< 1.2381.

Writing (
a′

b′

)
= M11

(
a

b

)
,

We get
0.306 + 1.004(b/a)
0.903 − 0.305(b/a) < 1.239,

giving b/a < 0.59. Iterating this, we get

0.306 + 1.004(b/a)
0.903 − 0.305(b/a) < 0.59,

which gives b/a < 0.2, but this is false since we must have b/a > 0.33.
3. To see that after 8 we cannot have another 8 or 11, note that with(

a′

b′

)
= M8

(
a

b

)
,

we have

b′

a′ = 65107/80000 + (196981/160000)(b/a)
10971/40000 − (65107/80000)(b/a) >

65107/80000
10971/40000 > 2.96,

so it cannot be followed by either 8 or 11.
4. Assuming (a, b)T ends up being in M11, we then get that with(

a′

b′

)
= M11

(
a

b

)
,

we must have
b′

a′ >
1.004(b/a) + 0.306
0.903 − 0.307(b/a) .

Imposing b′/a′ < 0.338, and solving for b/a we get b/a < 0, a contradiction.
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5. We have to rule out a sequence of the form 11, 3, 11. Assume that we have M11 followed
by M3. We then must have with (

a′

b′

)
= M11

(
a

b

)
that b′/a′ > 1.238. This gives

0.306 + 1.004(b/a)
0.902 − 0.306(b/a) > 1.238,

which gives b/a > 0.58. But in case M3M11(a, b)T ends up in M11, we must also have
with (

a′′

b′′

)
= M3M11

(
a

b

)
,

that b′′/a′′ < 1.239. This gives

−0.2 + 0.52(b/a)
1 − 0.19(b/a) < 1.239,

which gives b/a < 0.48, which is incompatible with the previous conclusion b/a > 0.58.

B.4 Proof of Proposition 24
We compute the 2-norms of M3, M8, M11, which is the operator norm associated to the
usual Euclidean norm ∥·∥2. It is defined for a real square matrix M by |||M |||2 =

√
ρ (MMT )

where ρ is the spectral radius. For M3, we have that

M3MT
3 =

( 653
400

299
800

− 299
800

1117
1600

)
is of characteristic equation λ2 − 1.70231 . . . λ + 1 = 0. Since |1.70| < 2, this equation
has complex roots of modulus 1. Thus, |||M3|||2 = 1. For M8 we have that M8MT

8 is of
characteristic equation

λ2 − 2.91577 . . . λ + 1 = 0,

so |||M8|||2 ≤ 1.59 < 1.068. Finally, for M11 we have that M11MT
11 has characteristic equation

λ2 − 2.01049 . . . λ + 1 = 0,

so |||M11|||2 ≤ 1.08 < 1.0111. For all n, we can write(
un

un+1

)
= L′M ′

(
u0
u1

)
where M ′ finite product of the matrices M3, M8, M11 whose sum of indices is at most n, L′

is the product of at most 10 matrices equal to either Lc+ or Lc− . In particular, |||L′|||2 is
bounded independently of n and |||M ′|||2 ≤ 1.06n. Putting together all the above we get that∥∥∥∥( un

un+1

)∥∥∥∥
2

≤ |||M ′|||2|||L′|||2

∥∥∥∥(u0
u1

)∥∥∥∥
2

≤ |||L′|||2

∥∥∥∥(u0
u1

)∥∥∥∥
2

1.06n

hence un = O
n→+∞

(1.06n).
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B.5 Proof of Lemma 25
Let us consider

D1 = M3M8, D2 = M3M11, D3 = M3M11M11M3M8.

By Lemma 22, any acceptable path in the automaton is a concatenation of Di for i ∈ {1, 2, 3}.
We generated by computer all matrices of the form

D = Di1 . . . Di10 , i1, . . . , i10 ∈ {1, 2, 3},

a totality of 310 of them. For each of them we wrote

D =
(

d11 d12
d21 d22

)
,

and we calculated the maximum power of 5 that divides the the denominator of one of the
di,j ’s. This we scaled by the weight of the matrix D (namely how many Lc∗ ’s are in each D)
which is given by

w(Di1) + · · · + w(Di12),

where w(D1) = 11, w(D2) = 14 and w(D3) = 36. Denoting µ the maximal value the
computer shows that µ ≈ 0.311111 < 0.32. Now any, like in the proof of Proposition 24,(

un

un+1

)
= L′D′

(
u0
u1

)
where D′ is the product of a multiple of 10 of the matrices D1, D2, D3 and L′ is the product
of at most 360 matrices equal to either Lc+ or Lc− . Hence D′ is of the form 1

2n5νn
D′′ where

D′′ is an integer matrix and ν ≤ µ ≤ 0.32n. Similarly, L′ is of the for form 1
K

L′′ with L′′

and integer matrix and K ∈ N being at most divisible by 5360. Hence L′D′ has denominators
divisible by at most 5µn+360 hence qn ≤ µn + 360 which is less than 0.32n for large enough
n.
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