
Static Livelock Analysis in CSP?

Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

Department of Computer Science, Oxford University, UK
{joel,hrip,awr,jbw}@cs.ox.ac.uk

Abstract. In a process algebra with hiding and recursion it is possible to
create processes which compute internally without ever communicating
with their environment. Such processes are said to diverge or livelock. In
this paper we show how it is possible to conservatively classify processes
as livelock-free through a static analysis of their syntax. In particular, we
present a collection of rules, based on the inductive structure of terms,
which guarantee livelock-freedom of the denoted process. This gives rise
to an algorithm which conservatively flags processes that can potentially
livelock. We illustrate our approach by applying both BDD-based and
SAT-based implementations of our algorithm to a range of benchmarks,
and show that our technique in general substantially outperforms the
model checker FDR whilst exhibiting a low rate of inconclusive results.

1 Introduction

It is standard in process algebra to distinguish between the visible and invisible
(or silent) actions of a process. The latter correspond to state changes arising
from internal computation, and their occurrence is not detectable or controllable
by the environment. A process is said to diverge or livelock if it reaches a state
from which it may forever compute internally through an infinite sequence of
invisible actions. This is usually a highly undesirable feature of the process,
described in the literature as “even worse than deadlock” [6, page 156]. Livelock
invalidates certain analysis methodologies, and is often symptomatic of a bug in
the modelling. However the possibility of writing down divergent processes arises
from the presence of two crucial constructs, recursion and hiding. The latter
converts visible actions into invisible ones and is a key device for abstraction.

We distinguish two ways in which a process may livelock. In the first, a
process may be able to communicate an infinite unbroken sequence of some
visible event, and this process then occurs inside the scope of an operator which
hides that event. Alternatively, a process may livelock owing to the presence of
an unguarded recursion. Roughly speaking, the latter means that the process
may recurse without first communicating a visible action.

This paper is concerned with the problem of determining whether a process
may livelock in the context of the process algebra CSP, although the principles
upon which our analysis is based should be transferable to other process algebras

? A full version of this paper, including all proofs, is available as [11].

2 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

as well. While it is straightforward to show that the problem is in general unde-
cidable1, we are still able to provide a conservative (i.e., sound but incomplete)
method of checking for the possibility of livelock: this method either correctly
asserts that a given process is livelock-free, or is inconclusive. The algorithm
is based on a static analysis2 of the given process, principally in terms of the
interaction of hiding, renaming, and recursion. This analysis naturally divides
into two parts according to the two sources of livelock outlined above.

The basic intuitions underlying our approach are fairly straightforward. In
part they mirror the guardedness requirements which ensure that well-behaved
CSP process equations have unique, livelock-free fixed points [13, Chap. 8]. How-
ever, we extend the treatment of [13] by allowing guarded recursions to include
instances of the hiding operator. Incidentally, Milner’s notion of guarded recur-
sions in CCS is similarly restricted by the requirement that variables not occur
inside parallel compositions [9]. Complications arise mainly because we want to
be able to fully incorporate hiding and renaming in our treatment, both of which
can have subtle indirect effects on guardedness.

We note that the idea of guarded recursions is standard in process algebra.
For instance, in Milner’s framework, a variable is ‘strongly guarded’ in a given
term if every free occurrence of the variable in the term occurs within the scope
of a prefixing operator [9]. This notion is introduced in order to justify certain
proof principles, such as that guaranteeing the uniqueness of fixed points up
to bisimilarity. Strong guardedness has also been extended to a calculus with
hiding and action refinement [2]. A key difference between our approach and
these notions is that we seek to guarantee livelock-freedom, rather than merely
the existence of unique fixed points.

In fact, there are few papers which deal with the problem of guaranteeing
livelock-freedom in the setting of concurrent process calculi.3 The existing work
on livelock-freedom has mostly been carried out in the context of mobile calculi.
[15] presents an approach for guaranteeing livelock-freedom for a certain frag-
ment of the π-calculus. Unlike the combinatorial treatment presented here, this
approach makes use of the rich theory of types of the π-calculus, and in partic-
ular the technique of logical relations. Another study of divergence-freedom in
the π-calculus appears in [20], and uses the notions of graph types.

Note that CSP is predicated upon synchronous (i.e., handshake) communi-
cation. In terms of livelock analysis, different issues (and additional difficulties)
arise in an asynchronous context (assuming unbounded communication buffers);
see, e.g., [7, 8].

Of course, one way to check a process for divergence is to search for reach-
able cycles of silent actions in its state space, which is a labelled transition
system built from the operational semantics. Assuming this graph is finite, this

1 For example, CSP can encode counters, and is therefore Turing-powerful.
2 Here static analysis is used to distinguish our approach from the state-space explo-

ration methods that underlie model checking or refinement checking.
3 In contrast, there are numerous works treating termination for the λ-calculus or

combinatory logic [5, 10, 4].

Static Livelock Analysis in CSP 3

can be achieved by calculating its strongly connected components. The latter
can be carried out in time linear in the size of the graph, which may however
be exponential (or worse) in the syntactic size of the term describing the pro-
cess. By circumventing the state-space exploration, we obtain a static analysis
algorithm which in practice tends to substantially outperform state-of-the-art
model-checking tools such as FDR—see Sect. 6 for experimental comparisons.

Naturally, there is a trade-off between the speed and accuracy of livelock
checking. It is not hard to write down processes which are livelock-free but which
our analysis indicates as potentially divergent. However, when modelling systems
in practice, it makes sense to try to check for livelock-freedom using a simple
and highly economical static analysis before invoking computationally expensive
state-space exploration algorithms. Indeed, as Roscoe [13, page 208] points out,
the calculations required to determine if a process diverges are significantly more
costly than those for deciding other aspects of refinement, and it is advantageous
to avoid these calculations if at all possible.

Recent works in which CSP livelock-freedom plays a key role include [3] as
well as [17, 16]; see also references within.

2 CSP: Syntax and Conventions

Let Σ be a finite set of events, with X /∈ Σ. We write ΣX to denote Σ ∪ {X}
and Σ∗X to denote the set of finite sequences of elements from Σ which may end
with X. In the notation below, we have a ∈ Σ and A ⊆ Σ. R denotes a binary
(renaming) relation on Σ. Its lifting to ΣX is understood to relate X to itself.
The variable X is drawn from a fixed infinite set of process variables.

CSP terms are constructed according to the following grammar:

P ::= STOP | a −→ P | SKIP | P1 u P2 | P1 2 P2 | P1 ‖
A
P2 |

P1 # P2 | P \ A | P [R] | X | µX � P | DIV .

STOP is the deadlocked process. The prefixed process a −→ P initially offers
to engage in the event a, and subsequently behaves like P . SKIP represents
successful termination, and is willing to communicate X at any time. P 2 Q
denotes the external choice of P and Q, whereas P u Q denotes the internal
(or nondeterministic) alternative. The distinction is orthogonal to our concerns,
and indeed both choice operators behave identically over our denotational model.
The parallel composition P1 ‖

A
P2 requires P1 and P2 to synchronise on all events

in A, and to behave independently of each other with respect to all other events.
P # Q is the sequential composition of P and Q: it denotes a process which
behaves like P until P chooses to terminate (silently), at which point the process
seamlessly starts to behave like Q. P \ A is a process which behaves like P but
with all communications in the set A hidden. The renamed process P [R] derives
its behaviours from those of P in that, whenever P can perform an event a,
P [R] can engage in any event b such that a R b. To understand the meaning of
µX � P , consider the equation X = P , in terms of the unknown X. While this

4 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

equation may have several solutions, it always has a unique least4 such, written
µX � P . Moreover, as it turns out, if µX � P is livelock-free then the equation
X = P has no other solutions. Lastly, the process DIV represents livelock, i.e.,
a process caught in an infinite loop of silent events.

A CSP term is closed if every occurrence of a variable X in it occurs within
the scope of a µX operator; we refer to such terms as processes.

Let us state a few conventions. When hiding a single event a, we write P \ a
rather than P \ {a}. The binding scope of the µX operator extends as far to the
right as possible. We also often express recursions by means of the equational
notation X = P , rather than the functional µX � P .

Let us also remark that CSP processes are often defined via vectors of mutu-
ally recursive equations. These can always be converted to our present syntax,
thanks to Bekič’s theorem [19, Chap. 10]. Accordingly, we shall freely make use
of the vectorised notation in this paper.

3 Operational and Denotational Semantics

We present congruent (equivalent) operational and denotational semantics for
CSP. For reasons of space, many details and clauses are omitted; a full account
can be found in [11]. An extensive treatment of a variety of different CSP models
can also be found in [13, 14]. The semantics presented below only distill those
ideas from [13, 14] which are relevant in our setting.

The operational semantics is presented as a list of inference rules in SOS form;
we only give below rules for prefixing, recursion, parallel composition, and hiding.
In what follows, a stands for a visible event, i.e., belongs to ΣX. A ⊆ Σ and
AX = A∪{X}. γ can be a visible event or a silent one (γ ∈ ΣX∪{τ}). P γ−→ P ′

means that P can perform an immediate and instantaneous γ-transition, and
subsequently become P ′ (communicating γ in the process if γ is a visible event).
If P is a term with a single free variable X and Q is a process, [Q/X]P represents
the process P with Q substituted for every free occurrence of X.

(a −→ P) a−→ P µX � P
τ−→ [(µX � P)/X]P

P1
γ−→ P ′1

P1 ‖
A
P2

γ−→ P ′1 ‖
A
P2

[γ /∈ AX]
P2

γ−→ P ′2

P1 ‖
A
P2

γ−→ P1 ‖
A
P ′2

[γ /∈ AX]

P1
a−→ P ′1 P2

a−→ P ′2

P1 ‖
A
P2

a−→ P ′1 ‖
A
P ′2

[a ∈ AX]

P
a−→ P ′

P \ A τ−→ P ′ \ A
[a ∈ A]

P
γ−→ P ′

P \ A γ−→ P ′ \ A
[γ /∈ A] .

4 The relevant partial order is defined in Sect. 3.

Static Livelock Analysis in CSP 5

These rules allow us to associate to any CSP process a labelled transition
system representing its possible executions. We say that a process diverges if it
has an infinite path whose actions are exclusively τ ’s. A process is livelock-free
if it never reaches a point from which it diverges.

The denotational semantics ascribes to any CSP process a pair (T,D), where
T ⊆ Σ∗X is the set of visible event traces that the process may perform, and
D ⊆ T is the set of traces after which it may diverge.5 Following [14], we write
T ⇓ for the set of pairs (T,D) satisfying the following axioms (where _ denotes
trace concatenation):

1. D ⊆ T .
2. s_〈X〉 ∈ D implies s ∈ D.
3. T ⊆ Σ∗X is non-empty and prefix-closed.
4. s ∈ D ∩Σ∗ and t ∈ Σ∗X implies s_t ∈ D.

Axiom 4 says that the set of divergences is postfix-closed. Indeed, since we
are only interested in detecting divergence, we treat it as catastrophic and do
not attempt to record any meaningful information past a point from which a
process may diverge; accordingly, our semantic model takes the view that a
process may perform any sequence of events after divergence. Thus the only
reliable behaviours of a process are those in T −D.

Given a process P , its denotation JP K = (traces(P), divergences(P)) ∈ T ⇓ is
calculated by induction on the structure of P ; in other words, the model T ⇓ is
compositional. The complete list of clauses can be found in [13, Chap. 8], and
moreover the traces and divergences of a process may also be extracted from the
operational semantics in straightforward fashion.

Hiding a set of events A ⊆ Σ from a process P introduces divergence if P is
capable of performing an infinite unbroken sequence of events from A. Although
our model only records the finite traces of a process, the finite-branching nature
of our operators entails (via König’s lemma) that a process may perform an
infinite trace u ∈ Σω if and only if it can perform all finite prefixes of u.

We interpret recursive processes in the standard way by introducing a partial
order v on T ⇓. We write (T1, D1) v (T2, D2) if T2 ⊆ T1 and D2 ⊆ D1. In other
words, the order on T ⇓ is reverse inclusion on both the trace and the divergence
components. The bottom element of (T ⇓,v) is (Σ∗X, Σ∗X), i.e., the denotation
of the immediately divergent process DIV . The least upper bound of a family
{(Ti, Di) | i ∈ I} is given by

⊔
i∈I(Ti, Di) = (

⋂
i∈I Ti,

⋂
i∈I Di).

It is readily verified that each n-ary CSP operator other than recursion can be
interpreted as a Scott-continuous function (T ⇓)n → T ⇓. By induction we have
that any CSP expression P in variables X1, . . . , Xn is interpreted as a Scott-
continuous map (T ⇓)n → T ⇓. Recursion is then interpreted using the least fixed
point operator fix : [T ⇓ → T ⇓] → T ⇓. For instance JµX �XK is the least fixed

5 Standard models of CSP also take account of the liveness properties of a process by
modelling its refusals, i.e., the sets of events it cannot perform after a given trace.
However, this information is orthogonal to our concerns: the divergences of a process
are independent of its refusals—see [13, Sect. 8.4].

6 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

point of the identity function on T ⇓, i.e., the immediately divergent process.
Our analysis of livelock-freedom is based around an alternative treatment of
fixed points in terms of metric spaces.

Definition 1. A process P is livelock-free if divergences(P) = ∅.

In what follows, we make repeated use of standard definitions and facts con-
cerning metric spaces. We refer the reader who might be unfamiliar with this
subject matter to the accessible text [18].

Let F (X) be a CSP term with a free variable X. F can be seen as a selfmap
of T ⇓. Assume that there exists some metric on T ⇓ which is complete and under
which F is a contraction6. Then it follows from the Banach fixed point theorem
that F has a unique (possibly divergent) fixed point µX � F (X) in T ⇓.

There may be several such metrics, or none at all. Fortunately, a class of suit-
able metrics can be systematically elicited from the sets of guards of a particular
recursion. Roughly speaking, the metrics that we consider are all variants of the
well-known ‘longest common prefix’ metric on traces7, which were first studied
by Roscoe in his doctoral dissertation [12], and independently by de Bakker and
Zucker [1]. The reason we need to consider such variants is that hiding fails to be
nonexpansive in the ‘longest common prefix’ metric. For instance, the distance
between the traces 〈a, a, b〉 and 〈a, a, c〉 is 1

4 . However, after the event a is hidden,
the distance becomes 1. The solution, in this particular case, is to change the
definition of the length of a trace by only counting non-a events. To formalise
these ideas let us introduce a few auxiliary definitions. These are all parametric
in a given set of events U ⊆ Σ.

Given a trace s ∈ Σ∗X, the U -length of s, denoted lengthU (s), is defined to
be the number of occurrences of events from U occurring in s. Given a set of
traces T ⊆ Σ∗X and n ∈ N the restriction of T to U -length n is defined by
T �U n =̂ {s ∈ T | lengthU (s) 6 n}. We extend this restriction operator to act
on our semantic domain T ⇓ by defining (T,D) �U n =̂ (T ′, D′), where

1. D′ = D ∪ {s_t | s ∈ T ∩Σ∗ and lengthU (s) = n}.
2. T ′ = D′ ∪ {s ∈ T | lengthU (s) 6 n}.

Thus P �U n denotes a process which behaves like P until n events from the
set U have occurred, after which it diverges. It is the least process which agrees
with P on traces with U -length no greater than n.

We now define a metric dU on T ⇓ by

dU (P,Q) =̂ inf{2−n | P �U n = Q �U n} ,

where the infimum is taken in the interval [0, 1].
Notice that the function U 7→ dU is antitone: if U ⊆ V then dU > dV . In

particular, the greatest of all the dU is d∅; this is the discrete metric on T ⇓.
6 A selfmap F on a metric space (T ⇓, d) is a contraction if there exists a non-negative

constant c < 1 such that, for any P,Q ∈ T ⇓, d(F (P), F (Q)) 6 c · d(P,Q).
7 In this metric the distance between two traces s and t is the infimum in [0, 1] of the

set {2−k | s and t possess a common prefix of length k}.

Static Livelock Analysis in CSP 7

Furthermore, the least of all the dU is dΣ ; this is the standard metric on T ⇓ as
defined in [13, Chap. 8].

Proposition 2. Let U ⊆ Σ. Then T ⇓ equipped with the metric dU is a complete
ultrametric space and the set of livelock-free processes is a closed subset of T ⇓.
Furthermore if F : T ⇓ → T ⇓ is contractive with respect to dU then F has a
unique fixed point given by limn→∞ Fn(STOP). (Note that this fixed point may
be divergent.)

In the rest of this paper, the only metrics we are concerned with are those
associated with some subset of Σ; accordingly, we freely identify metrics and
sets when the context is unambiguous.

4 Static Livelock Analysis

We present an algorithm based on a static analysis which conservatively flags
processes that may livelock. In other words, any process classified as livelock-free
really is livelock-free, although the converse may not hold.

Divergent behaviours originate in three different ways, two of which are non-
trivial. The first is through direct use of the process DIV ; the second comes from
unguarded recursions; and the third is through hiding an event, or set of events,
which the process can perform infinitely often to the exclusion of all others.

Roscoe [13, Chap. 8] addresses the second and third points by requiring that
all recursions be guarded, i.e., always perform some event prior to recursing, and
by banning use of the hiding operator. Our idea is to extend Roscoe’s requirement
that recursions should be guarded by stipulating that one may never hide all the
guards. In addition, one may not hide a set of events which a process is able to
perform infinitely often to the exclusion of all others. This will therefore involve
a certain amount of book-keeping.

We first treat the issue of guardedness of the recursions. Our task is compli-
cated by the renaming operator, in that a purported guard may become hidden
only after several unwindings of a recursion. The following example illustrates
some of the ways in which a recursion may fail to be guarded, and thus diverge.

Example 3. Let Σ = {a, b, a0, a1, . . . , an} and let R = {(ai, ai+1)|0 6 i < n} and
S = {(a, b), (b, a)} be renaming relations on Σ. Consider the following processes.

1. µX �X.
2. µX � a −→ (X \ a).
3. µX � (a −→ (X \ b)) u (b −→ (X \ a)).
4. µX � (a0 −→ (X \ an)) u (a0 −→ X[R]).
5. µX � SKIP u a −→ (X # (X[S] \ b)).

The first recursion is trivially unguarded. In the second recursion the guard
a is hidden after the first recursive call. In the third process the guard in each
summand is hidden in the other summand; this process will also diverge once it
has performed a single event. In the fourth example we cannot choose a set of

8 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

guards which is both stable under the renaming operator and does not contain
an. This process, call it P , makes the following sequence of visible transitions:

P
a0−→ P \ an

a0−→ P [R] \ an
a1−→ P [R][R] \ an

a2−→ . . .
an−1−→ P [R][R] . . . [R] \ an.

But the last process diverges, since P can make an infinite sequence of a0-
transitions which get renamed to an by successive applications of R and are
then hidden at the outermost level.

A cursory glance at the last process might suggest that it is guarded in
{a}. However, similarly to the previous example, hiding and renaming conspire
to produce divergent behaviour. In fact the process, call it P , can make an a-
transition to P # (P [S] \ b), and thence to (P [S] \ b)[S] \ b via two τ -transitions.
But this last process can diverge.

Given a variable X and a CSP term P = P (X), we aim to define inductively a
collection CX(P) of metrics for which P is contractive as a function of X (bearing
in mind that processes may have several free variables). It turns out that it is
first necessary to identify those metrics in which P is merely nonexpansive as a
function of X, the collection of which we denote NX(P). Intuitively, the role of
NX(P) is to keep track of all hiding and renaming in P . A set U ⊆ Σ then induces
a metric dU under which P is contractive in X provided P is nonexpansive in U
and µX � P always communicates an event from U prior to recursing.

The collections of metrics that we produce are conservative, i.e., sound, but
not necessarily complete. As the examples above suggest, their calculation is
made somewhat complicated by the possibility of recursing under renaming. For
reasons that will soon become apparent, NX(P) and CX(P) consist of sets of
pairs of metrics, or in other words are identified with subsets of P(Σ)× P(Σ).
The key property of the function NX is given by the following:

Proposition 4. Let P (X,Y1, . . . , Yn) = P (X,Y) be a term whose free variables
are contained within the set {X,Y1, . . . , Yn}. If (U, V) ∈ NX(P), then for all
T1, T2, θ1, . . . , θn ∈ T ⇓, dU (T1, T2) ≥ dV (P (T1, θ), P (T2, θ)).

For R a renaming relation on Σ and U ⊆ Σ, let R(U) = {y | ∃x ∈ U �x R y}.
NX(P) ⊆ P(Σ)×P(Σ) is then computed through the following inductive clauses:

NX(P) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

NX(a −→ P) =̂ NX(P)
NX(P1 ⊕ P2) =̂ NX(P1) ∩ NX(P2) if ⊕ ∈ {u,2, #, ‖

A
}

NX(P \ A) =̂ {(U, V ∪ V ′) | (U, V) ∈ NX(P) ∧ V ∩A = ∅}
NX(P [R]) =̂ {(U,R(V) ∪ V ′) | (U, V) ∈ NX(P)}

NX(X) =̂ {(U, V) | U ⊆ V }
NX(µY � P) =̂ {(U ∩ U ′, V ∪ V ′) | (U, V) ∈ NX(P) ∧ (V, V) ∈ NY (P)}

if Y 6= X .

Static Livelock Analysis in CSP 9

The proof of Prop. 4 proceeds by structural induction on P and can be found
in the full version of the paper [11].

Before defining CX(P), we need an auxiliary construct denoted G(P). Intu-
itively, G(P) ⊆ P(Σ) lists the ‘guards’ of X for P . Formally:

Proposition 5. Let P (X,Y1, . . . , Yn) = P (X,Y) be a term whose free vari-
ables are contained within the set {X,Y1, . . . , Yn}. If U ∈ G(P), then, with any
processes—and in particular DIV —substituted for the free variables of P , P
must communicate an event from U before it can do a X.

The inductive clauses for G are given below. Note that these make use of the
collection of fair sets F(Pi) of Pi, which is presented later on. The definition is
nonetheless well-founded since F is here only applied to subterms. The salient
feature of F(Pi) 6= ∅ is that the process Pi is guaranteed to be livelock-free.

G(STOP) =̂ P(Σ)
G(a −→ P) =̂ G(P) ∪ {V | a ∈ V }

G(SKIP) =̂ ∅
G(P1 ⊕ P2) =̂ G(P1) ∩ G(P2) if ⊕ ∈ {2,u}

G(P1 # P2) =̂
{

G(P1) ∪ G(P2) if P1 is closed and F(P1) 6= ∅
G(P1) otherwise

G(P1 ‖
A
P2) =̂

{
G(P1) ∪ G(P2) if, for i = 1, 2, Pi is closed and F(Pi) 6= ∅
G(P1S) ∩ G(P2) otherwise

G(P \ A) =̂

{V ∪ V
′ | V ∈ G(P) ∧ V ∩A = ∅} if P is closed and

(∅, Σ −A) ∈ F(P)
∅ otherwise

G(P [R]) =̂ {R(V) ∪ V ′ | V ∈ G(P)}
G(X) =̂ ∅

G(µX � P) =̂ G(P) .

We are now ready to define CX(P) ⊆ P(Σ)×P(Σ), whose central property
is given by the following proposition.

Proposition 6. Let P (X,Y1, . . . , Yn) = P (X,Y) be a term whose free variables
are contained within the set {X,Y1, . . . , Yn}. If (U, V) ∈ CX(P), then for all
T1, T2, θ1, . . . , θn ∈ T ⇓, 1

2dU (T1, T2) ≥ dV (P (T1, θ), P (T2, θ)).

CX(P) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

CX(a −→ P) =̂ CX(P) ∪ {(U, V) ∈ NX(P) | a ∈ V }
CX(P1 ⊕ P2) =̂ CX(P1) ∩ CX(P2) if ⊕ ∈ {2,u, ‖

A
}

CX(P1 # P2) =̂ CX(P1) ∩ (CX(P2) ∪ {(U, V) ∈ NX(P2) | V ∈ G(P1)})
CX(P \ A) =̂ {(U, V ∪ V ′) | (U, V) ∈ CX(P) ∧ V ∩A = ∅}

10 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

CX(P [R]) =̂ {(U,R(V) ∪ V ′) | (U, V) ∈ CX(P)}
CX(X) =̂ ∅

CX(µY � P) =̂ {(U ∩ U ′, V ∪ V ′) | (U, V) ∈ CX(P) ∧ (V, V) ∈ NY (P)}
if Y 6= X .

Note that contraction guarantees a unique fixed point, albeit not necessarily
a livelock-free one. For instance, P (X) = (a −→ X \ b) 2 (µY � b −→ Y) has a
unique fixed point which can diverge after a single event.

In order to prevent livelock, we must ensure that, whenever a process can
perform an infinite8 unbroken sequence of events from a particular set A, then
we never hide the whole of A. To this end, we now associate to each CSP term P
a collection of (pairs of) fair sets F(P) ⊆ P(Σ)×P(Σ): intuitively, this allows us
to keep track of the events which the process is guaranteed to perform infinitely
often in any infinite execution of P .

Given a set W ⊆ Σ, we say that a process is W -fair if any of its infinite
traces contains infinitely many events from W . We now have:

Proposition 7. Let P (X1, . . . , Xn) = P (X) be a CSP term whose free variables
are contained within the set {X1, . . . , Xn}. If (U, V) ∈ F(P), then, for any collec-
tion of livelock-free, U -fair processes θ1, . . . , θn ∈ T ⇓, the process P (θ1, . . . , θn)
is livelock-free and V -fair.

F(STOP) =̂ P(Σ)× P(Σ)
F(a −→ P) =̂ F(P)

F(SKIP) =̂ P(Σ)× P(Σ)
F(P1 ⊕ P2) =̂ F(P1) ∩ F(P2) if ⊕ ∈ {u,2, #}
F(P1 ‖

A
P2) =̂ (F(P1) ∩ F(P2)) ∪

{(U1 ∩ U2, V1) | (U1, V1) ∈ F(P1) ∧ (U2, A) ∈ F(P2)} ∪
{(U1 ∩ U2, V2) | (U2, V2) ∈ F(P2) ∧ (U1, A) ∈ F(P1)}

F(P \ A) =̂ {(U, V ∪ V ′) | (U, V) ∈ F(P) ∧ V ∩A = ∅}
F(P [R]) =̂ {(U,R(V) ∪ V ′) | (U, V) ∈ F(P)}

F(X) =̂ {(U, V) | U ⊆ V }

F(µX � P) =̂
{
{(U ∩ U ′, U ∪ V ′) | (U,U) ∈ CX(P) ∩ F(P)} if µX � P is open
P(Σ)× {U ∪ V ′ | (U,U) ∈ CX(P) ∩ F(P)} otherwise .

We now obtain one of our main results as an immediate corollary:

Theorem 8. Let P be a CSP process (i.e., closed term) not containing DIV in
its syntax. If F(P) 6= ∅, then P is livelock-free.

8 Recall our understanding that a process can ‘perform’ an infinite trace iff it can
perform all its finite prefixes.

Static Livelock Analysis in CSP 11

5 Structurally Finite-State Processes

The techniques developed in Sections 3 and 4 allow us to handle the widest
range of CSP processes; among others, they enable one to establish livelock-
freedom of numerous infinite-state processes including examples making use of
infinite buffers or unbounded counters—see [11] for examples. Such processes
are of course beyond the reach of explicit-state model checkers such as FDR.
In order to create them in CSP, it is necessary to use devices such as recursing
under the parallel operator. In practice, however, the vast majority of processes
tend to be finite state.

Let us therefore define a CSP process to be structurally finite state if it never
syntactically recurses under any of parallel, the left-hand side of a sequential
composition, hiding, or renaming.

More precisely, we first define a notion of sequential CSP terms: STOP ,
SKIP , and X are sequential; if P and Q are sequential, then so are a −→ P ,
P u Q, P 2 Q, and µX � P ; and if in addition P is closed, then P # Q, P \ A,
and P [R] are sequential. Observe that sequential processes give rise to labelled
transition systems of size linear in the length of their syntax.

Now any closed sequential process is deemed to be structurally finite state;
and if P and Q are structurally finite state, then so are a −→ P , P u Q, P 2 Q,
P ‖

A
Q, P # Q, P \ A, and P [R]. Note that structurally finite-state CSP terms

are always closed, i.e., are processes.
Whether a given process is structurally finite state can easily be established

by syntactic inspection. For such processes, it turns out that we can substantially
both simplify and sharpen our livelock analysis. More precisely, the computation
of nonexpansive and contractive data is circumvented by instead directly exam-
ining closed sequential components in isolation. Furthermore, the absence of free
variables in compound processes makes some of the earlier fairness calculations
unnecessary, thereby allowing more elaborate and finer data to be computed
efficiently, as we now explain.

Let u be an infinite trace over Σ, and let F,C ⊆ Σ be two sets of events. We
say that u is fair in F if, for each a ∈ F , u contains infinitely many occurrences
of a,9 and we say that u is co-fair in C if, for each b ∈ C, u contains only finitely
many occurrences of b.

Given a structurally finite-state process P , we compute a collection of fair/co-
fair pairs of disjoint sets Φ(P) ⊆ P(Σ)×P(Σ), together with a Boolean-valued
livelock flag δ(P) ∈ {true, false}, giving rise to our second main result:

Theorem 9. Let P be a structurally finite-state process. Write Φ(P) =
{(F1, C1), . . . , (Fk, Ck)}. If δ(P) = false, then P is livelock-free, and moreover,
for every infinite trace u of P , there exists 1 ≤ i ≤ k such that u is both fair in
Fi and co-fair in Ci.

The calculation of Φ(P) proceeds inductively as follows. For P a closed se-
quential process, Φ(P) is computed directly from the labelled transition system
9 Note that this notion of ‘fairness’ differs from that used in the previous section.

12 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

associated with P .10 Otherwise:

Φ(a −→ P) =̂ Φ(P)
Φ(P1 ⊕ P2) =̂ Φ(P1) ∪ Φ(P2) if ⊕ ∈ {u,2, #}
Φ(P1 ‖

A
P2) =̂ {(F,C) | F ∩ C = ∅ ∧ (Fi, Ci) ∈ Φ(Pi) for i = 1, 2 ∧

F = F1 ∪ F2 ∧
C = (C1 ∩A) ∪ (C2 ∩A) ∪ ((C1 −A) ∩ (C2 −A))} ∪

{(F,C) | (F,C) ∈ Φ(P1) ∧ F ∩A = ∅} ∪
{(F,C) | (F,C) ∈ Φ(P2) ∧ F ∩A = ∅}

Φ(P \ A) =̂ {(F −A,C ∪A) | (F,C) ∈ Φ(P)}
Φ(P [R]) =̂ {(F,C) | (F ′, C ′) ∈ Φ(P) ∧ F ′ ⊆ R−1(F) ∧ F ⊆ R(F ′) ∧

C = {b ∈ Σ |R−1(b) ⊆ C ′}} .

Note that by construction, all fair/co-fair pairs of sets thus generated remain
disjoint; this is key in the rule for parallel composition, where the fair/co-fair
data of individual sub-components enables one to rule out certain pairs for the
resulting parallel process.

The calculation of δ(P) similarly proceeds inductively, making use of the
fair/co-fair data, as follows. If P is a closed sequential process, then δ(P) is
determined directly from the labelled transition system associated with P , ac-
cording to whether the latter contains a τ -cycle or not (using, e.g., Tarjan’s
algorithm). Otherwise:

δ(a −→ P) =̂ δ(P)
δ(P1 ⊕ P2) =̂ δ(P1) ∨ δ(P2) if ⊕ ∈ {u,2, ‖

A
, #}

δ(P \ A) =̂
{

false if δ(P) = false and, for each (F,C) ∈ Φ(P), F −A 6= ∅
true otherwise11

δ(P [R]) =̂ δ(P) .

10 It is worth pointing out how this can be achieved efficiently. Given a set L ⊆ Σ of
events, delete all (Σ−L)-labelled transitions from P ’s labelled transition system. If
the resulting graph contains a (not necessarily reachable) strongly connected com-
ponent which comprises every single event in L, include (L,Σ − L) as a fair/co-fair
pair for P .

Of course, in actual implementations, it is not necessary to iterate explicitly over
all possible subsets of Σ. The computation we described can be carried out sym-
bolically using a Boolean circuit of size polynomial in |Σ|, using well-known circuit
algorithms for computing the transitive closure of relations. Consequently, Φ(P) can
be represented symbolically and compactly either as a BDD or a propositional for-
mula. Further implementation details are provided in Sect. 6.

11 Let us remark that the clause for the hiding operator is phrased here so as to make
the rule as intuitively clear as possible. In practice, one however need not iterate

Static Livelock Analysis in CSP 13

Theorems 8 and 9 yield a conservative algorithm for livelock-freedom: given
a CSP process P (which we will assume does not contain DIV in its syntax),
determine first whether P is structurally finite state. If so, assert that P is
livelock-free if δ(P) = false, and otherwise report an inconclusive result. If P
is not structurally finite state, assert that P is livelock-free if F(P) 6= ∅, and
otherwise report an inconclusive result.

It is perhaps useful to illustrate how the inherent incompleteness of our pro-
cedure can manifest itself in very simple ways. For example, let P = a −→ Q
and Q = (a −→ P) 2 (b −→ Q), and let R = (P ‖

{a,b}
Q) \ b. Using Bekič’s pro-

cedure, R is readily seen to be (equivalent to) a structurally finite-state process.
Moreover, R is clearly livelock-free, yet δ(R) = true and F(R) = ∅. Intuitively,
establishing livelock-freedom here requires some form of state-space exploration,
to see that the ‘divergent’ state (Q ‖

{a,b}
Q) \ b of R is in fact unreachable, but

that is precisely the sort of reasoning that our static analysis algorithm is not
geared to do.

Nonetheless, we have found in practice that our approach succeeded in es-
tablishing livelock-freedom for a wide range of existing benchmarks; we report
on some of our experiments in Sect. 6.

Finally, it is worth noting that, for structurally finite-state processes, The-
orem 9 is stronger than Theorem 8—it correctly classifies a larger class of pro-
cesses as being livelock-free—and empirically has also been found to yield faster
algorithms.

6 Implementation and Experimental Results

Computationally, the crux of our algorithm revolves around the manipulation
of sets. We have built both BDD-based and propositional-formula-based imple-
mentations, using respectively CUDD 2.4.2 and MiniSat 2.0 for computations.
Our resulting tool was christened SLAP, for Static Livelock Analyser of
Processes.

We experimented with a wide range of benchmarks, including parameterised,
parallelised, and piped versions of Milner’s Scheduler, the Alternating Bit Pro-
tocol, the Sliding Window Protocol, the Dining Philosophers, Yantchev’s Mad
Postman Algorithm, as well as a Distributed Database algorithm.12 In all our
examples, internal communications were hidden, so that livelock-freedom can be
viewed as a progress or liveness property. All benchmarks were livelock-free, al-
though the reader familiar with the above examples will be aware that manually
establishing livelock-freedom for several of these can be a subtle exercise.

over all possible pairs (F,C) ∈ Φ(P): it is simpler instead to evaluate the negation,
an existential calculation which is easily integrated within either a SAT or BDD
implementation.

12 Scripts and descriptions for all benchmarks are available from the website associated
with [14]; the reader may also wish to consult [11] for further details on our case
studies.

14 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

In all cases apart from the Distributed Database algorithm, SLAP was in-
deed correctly able to assert livelock-freedom (save for rare instances of timing
out). (Livelock-freedom for the Distributed Database algorithm turns out to be
remarkably complex; see [13] for details.) In almost all instances, both BDD-
based and SAT-based implementations of SLAP substantially outperformed the
state-of-the-art CSP model checker FDR, often completing orders of magnitude
faster. On the whole, BDD-based and SAT-based implementations performed
comparably, with occasional discrepancies. All experiments were carried out on
a 3.07GHz Intel Xeon processor running under Ubuntu with 8 GB of RAM.
Times in seconds are given in Table 1, with * indicating a 30-minute timeout.
Further details of the experiments are provided in [11].

Benchmark FDR SLAP SLAP
(BDD) (SAT)

Milner-15 0 0.19 0.16
Milner-20 409 0.63 0.34
Milner-21 948 0.73 0.22
Milner-22 * 0.89 0.25
Milner-25 * 1.63 0.55
Milner-30 * 7.34 1.14

ABP-0 0 0.03 0.03
ABP-0-inter-2 0 0.03 0.04
ABP-0-inter-3 23 0.03 0.06
ABP-0-inter-4 * 0.03 0.07
ABP-0-inter-5 * 0.03 0.08
ABP-0-pipe-2 0 0.03 0.08
ABP-0-pipe-3 2 0.04 0.12
ABP-0-pipe-4 175 0.04 0.23
ABP-0-pipe-5 * 0.05 0.34

ABP-4 0 0.11 0.92
ABP-4-inter-2 39 0.12 1.49
ABP-4-inter-3 * 0.13 1.71
ABP-4-inter-7 * 0.15 3.68
ABP-4-pipe-2 12 0.13 2.96
ABP-4-pipe-3 * 0.15 6.34
ABP-4-pipe-7 * 0.25 31.5

Benchmark FDR SLAP SLAP
(BDD) (SAT)

SWP-1 0 0.03 0.08
SWP-2 0 0.34 *
SWP-3 0 40.94 *

SWP-1-inter-2 0 0.04 0.12
SWP-1-inter-3 31 0.04 0.16
SWP-1-inter-4 * 0.05 0.19
SWP-1-inter-7 * 0.06 0.33
SWP-2-inter-2 170 0.47 *
SWP-2-inter-3 * 0.64 *
SWP-1-pipe-3 0 0.04 0.47
SWP-1-pipe-4 3 0.05 0.73
SWP-1-pipe-5 246 0.05 1.10
SWP-1-pipe-7 * 0.06 2.89

Philosophers-7 2 1.64 0.20
Philosophers-8 20 2.46 0.31
Philosophers-9 140 3.99 0.46

Philosophers-10 960 7.39 0.61

Mad Postman-2 0 0.06 0.04
Mad Postman-3 6 * 0.23
Mad Postman-4 * * 1.11
Mad Postman-5 * * 5.67
Mad Postman-6 * * 27.3

Table 1. Times reported are in seconds, with * denoting a 30-minute timeout.

7 Future Work

A interesting property of our approach is the possibility for our algorithm to
produce a certificate of livelock-freedom, consisting among others in the various

Static Livelock Analysis in CSP 15

sets supporting the final judgement. Such a certificate could then be checked in
polynomial time by an independent tool.

Other directions for future work include improving the efficiency of SLAP
by incorporating various abstractions (such as collapsing all events on a given
channel, or placing a priori bounds on the size of sets), or conversely increasing
accuracy at modest computational cost, for example by making use of algebraic
laws at the syntactic level, such as bounded unfoldings of parallel compositions.

References

[1] J. W. De Bakker and J. I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54:70–120, 1982.

[2] M. Bravetti and R. Gorrieri. Deciding and axiomatizing weak ST bisimulation
for a process algebra with recursion and action refinement. ACM Transactions on
Computational Logic, 3(4):465–520, 2002.

[3] A. Dimovski. A compositional method for deciding program termination. In ICT
Innovations, volume 83, pages 71–80. Springer CCIS, 2010.

[4] R. O. Gandy. An early proof of normalization by A.M. Turing. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, volume
267, pages 453–455. Academic Press, 1980.

[5] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Science 7. Cambridge University Press, 1988.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
London, 1985.

[7] S. Leue, A. Ştefănescu, and W. Wei. A livelock freedom analysis for infinite state
asynchronous reactive systems. In Proceedings of CONCUR, volume 4137, pages
79–94. Springer LNCS, 2006.

[8] S. Leue, A. Ştefănescu, and W. Wei. Dependency analysis for control flow cycles in
reactive communicating processes. In Proceedings of SPIN, volume 5156. Springer
LNCS, 2008.

[9] R. Milner. Communication and Concurrency. Prentice-Hall International, Lon-
don, 1989.

[10] J. C. Mitchell. Foundations for Programming Languages. MIT Press, Cambridge,
MA, 1996.

[11] J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell. A static analysis
framework for livelock freedom in CSP. Logical Methods in Computer Science,
???(???), 2013.

[12] A. W. Roscoe. A Mathematical Theory of Communicating Processes. PhD thesis,
Oxford University, 1982.

[13] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional, London, 1997.

[14] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2011.
www.cs.ox.ac.uk/ucs/.

[15] D. Sangiorgi. Types, or: Where’s the difference between CCS and π? In Proceed-
ings of CONCUR 02, volume 2421, pages 76–97. Springer LNCS, 2002.

[16] S. Schneider, H. Treharne, and H. Wehrheim. A CSP approach to control in
Event-B. In Proceedings of IFM, volume 6396. Springer CCIS, 2010.

[17] S. Schneider, H. Treharne, and H. Wehrheim. A CSP account of Event-B refine-
ment. Unpublished, 2011.

16 Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell

[18] W. A. Sutherland. Introduction to Metric and Topological Spaces. Oxford Uni-
versity Press, 1975.

[19] G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993.

[20] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the π-Calculus.
In Proceedings of LICS 01, pages 311–322. IEEE Computer Society Press, 2001.

