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Abstract

The Skolem Problem asks to determine whether a given integer linear recur-
rence sequence (LRS) has a zero term. This problem, whose decidability has
been open for many decades, arises across a wide range of topics in computer
science, including loop termination, formal languages, automata theory, and
probabilistic model checking, amongst many others.

In the present paper, we introduce a notion of “large” zeros of (non-
degenerate) linear recurrence sequences, i.e., zeros occurring at an index
larger than a double exponential of the magnitude of the data defining the
given LRS. We establish two main results. First, we define an infinite set of
prime numbers, termed “good”, having density one amongst all prime num-
bers, with the following property: for any large zero of a given LRS, there is
an interval around the large zero together with an upper bound on the num-
ber of good primes possibly present in that interval. The bound in question is
much lower than one would expect if good primes were distributed similarly
as ordinary prime numbers, as per the Cramér model in number theory. We
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therefore conclude, conditionally on a strengthening of the classical Cramér
conjecture, that large zeros do not exist, which would entail decidability of
the Skolem Problem. Second, we show unconditionally that large zeros are
very sparse: the set of positive integers that can possibly arise as large zeros
of some LRS has null density. This in turn immediately yields a Universal
Skolem Set of density one, answering a question left open in the literature.

Keywords: Skolem Problem, linear recurrence sequences, decidability,
Cramér conjecture

1. Introduction

An (integer) linear recurrence sequence (LRS) ⟨un⟩∞n=0 is a sequence of
integers satisfying a recurrence of the form

un+k = a1un+k−1 + · · ·+ akun (1)

where the coefficients a1, . . . , ak are integers. The celebrated theorem of
Skolem, Mahler, and Lech [1, 2, 3] describes the set of zero terms of such a
recurrence:

Theorem 1.1. Given an integer linear recurrence sequence ⟨un⟩∞n=0, the set
{n ∈ N : un = 0} is a union of finitely many arithmetic progressions together
with a finite set.

The statement of Thm. 1.1 can be refined by considering the notion of
non-degeneracy of an LRS. An LRS is non-degenerate if in its minimal re-
currence no quotient of two distinct roots of the characteristic polynomial
is a root of unity.6 A given LRS can be effectively decomposed as the in-
terleaving of finitely many non-degenerate sequences, some of which may be
identically zero. The core of the Skolem-Mahler-Lech theorem is the fact that
a non-zero non-degenerate linear recurrence sequence has finitely many zero
terms. Unfortunately, all known proofs of this last result are ineffective: it is
not known how to compute the finite set of zeros of a given non-degenerate
linear recurrence sequence. It is readily seen that existence of a procedure
to do so is equivalent to the existence of a procedure to determine whether

6For basic definitions, facts, and properties concerning linear recurrence sequences, we
refer the reader to standard texts such as [4, Chaps. 1 and 2], [5, Chap. 4], or [6, Chap. 4].
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an arbitrary given LRS has a zero term; the latter is known as the Skolem
Problem. We refer to [7, Chap. 6] and [8, Chap. X] for expository accounts
of the Skolem-Mahler-Lech theorem and discussion of the ineffectiveness of
known proofs.

In computer science, the Skolem Problem lies at the heart of key decision
problems in formal power series [9, 10], stochastic model checking [11], control
theory [12, 13], and loop termination [14]. The problem is also closely related
to membership problems on commutative matrix groups and semigroups,
as considered in [15, 16]. We note that in several of the above-mentioned
citations, the Skolem Problem is used as a reference benchmark to establish
hardness of other open decision problems.

Decidability of the Skolem Problem is known only for certain special cases,
based on the relative order of the absolute values of the characteristic roots.
Say that a characteristic root λ is dominant if its absolute value is maximal
among all the characteristic roots. Decidability is known in case there are
at most 3 dominant characteristic roots, and also for recurrences of order at
most 4 [17, 18]. However for LRS of order 5 it is not currently known how
to decide the Skolem Problem. For a (highly restricted) subclass of LRS, the
paper [19] obtains nearly matching complexity lower and upper bounds for
the problem.

Some recent lines of research have succeeded in establishing conditional
decidability of the Skolem Problem for simple LRS (i.e., LRS none of whose
characteristic roots are repeated), assuming certain classical number-theoretic
conjectures [20, 21]. Nevertheless, to the best of our knowledge, no putative
algorithm has to date been proposed to solve the Skolem Problem in full
generality.

A different approach was initiated in [22, 23, 24] via the notion of Univer-
sal Skolem Sets. An infinite, recursive set S ⊆ N is a Universal Skolem Set if
there is some algorithm which, given any LRS, determines whether or not the
LRS has a zero in S. Decidability of the Skolem Problem is then of course
equivalent to the assertion that N is itself a Universal Skolem Set. The au-
thors of [22] succeded in exhibiting a sparse Universal Skolem Set, i.e., a set
having null density, and left open the question of whether Universal Skolem
Sets of strictly positive density, or even density one, could be constructed
(the interest in high-density Universal Skolem Sets being that they approx-
imate N more closely). The question was partially answered in [23], which
presented a positive-density Universal Skolem Set, albeit restricted to simple
LRS, and in [24], which exhibited a Universal Skolem Set of strictly posi-
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tive density, and even established density 1 subject to the Bateman-Horn
conjecture in number theory.

In this paper we propose an explicit bound for the largest zero of a non-
degenerate LRS in terms of the data describing the LRS. We call zeros that
exceed this bound large zeros of the LRS. Evidently, decidability of the
Skolem Problem would follow from a proof that large zeros do not exist. Us-
ing deep upper bounds on the cardinality of the set of zeros of non-degenerate
algebraic LRS due to Amoroso and Viada, we show that the set of positive
integers arising as large zeros of some non-degenerate LRS has null density,
which in turn yields a Universal Skolem Set of unconditional density one.
We present this result in Sec. 5.

While a proof that large zeros do not exist currently seems well out of
reach, we give a heuristic argument as to why this should nevertheless be
expected. This argument is based on an analogue of the well-known Cramér
conjecture on gaps between consecutive primes. This conjecture, originally
formulated by Cramér in 1936 [25] and subsequently refined by various num-
ber theorists into its present form, asserts that, for some constant κ > 1,
for every prime p the distance to the next largest prime is at most κ(log p)2.
The conjecture is based on the heuristic that the sequence of prime num-
bers behaves similarly to a Poisson-like random process in which the prob-
ability of a number x being prime is 1/ log x. The largest observed prime
gap is approximately 0.9206(log p)2 (involving a search over all primes up to
4 ·1018) [26], however the best known upper bound on prime gaps is O(p0.525),
due to Baker, Harman, and Pintz [27], which is far from Cramér’s conjectured
bound. Cramér himself proved that, under the Riemann hypothesis, prime
gaps are bounded above by O(p0.5 log p) [25]. On the other hand, the best
known lower bound on largest prime gaps is Ω

(
log p log log p log log log log p

log log log p

)
, due

to Ford, Green, Konyagin, Maynard, and Tao [28], which is some way from
the conjectured upper bound. We refer to [29] for a discussion of Cramér’s
conjecture and its refinements.

Here we define a subset of so-called good primes based on divisibility
properties of LRS. We show that the set of good primes has density one in
the set of all primes, or in other words that, asymptotically speaking, almost
all primes are good primes. We further show that if the Cramér conjecture
applies also to gaps between consecutive good primes, then large zeros of
LRS cannot exist. The proof of the latter result proceeds by establishing
an upper bound on the number of good primes in the neighbourhood of a
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large zero that violates the conjectured upper bound on gaps between good
primes. In other words, if good primes are distributed according to Cramér’s
heuristic then large zeros cannot exist and the Skolem Problem is decidable.

2. Background

We will need some basic notions concerning algebraic numbers. All mate-
rial can be found in [30]. Recall that a number field K is a subfield of C that
is finite dimensional as a vector space over Q. We assume that K is a Galois
extension of Q, that is, it arises as the splitting field of a polynomial with
integer coefficients. All elements of K are algebraic over Q, that is, they arise
as roots of polynomials with integer coefficients. Those elements that arise
more specifically as roots of monic polynomials with integer coefficients are
called algebraic integers. The algebraic integers in K form a subring, denoted
OK.

For a number field K, we denote by Gal(K/Q) the group of field auto-
morphisms of K. Given α ∈ K, the norm of α is defined by

NK/Q(α) =
∏

σ∈Gal(K/Q)

σ(α) .

The norm NK/Q(α) is rational for all α ∈ K; moreover NK/Q(α) = 0 iff α = 0,
and NK/Q(α) is an integer if α ∈ OK. Clearly we have |NK/Q(α)| ≤ MdK ,
where dK is the degree of K and

M := max
σ∈Gal(K/Q)

|σ(α)|

is the house of α.
We recall that every ideal in OK can be written uniquely up to the order

of its factors as the product of prime ideals. Given a rational prime P ∈ Z,
we say that a prime ideal p lies above P if p is a factor of POK. In this case
we have that P | NK/Q(α) for all α ∈ p.

Let p be a prime ideal of OK lying above P ∈ Z. Recall that the Frobenius
automorphism σ ∈ Gal(K/Q) corresponding to p is such that σ(α) ≡ αP mod
p for all α ∈ OK; in fact it is the unique Galois automorphism with this
property. Note however that for the Frobenius automorphism to be well-
defined on K, it is necessary for P to be unramified, for which it suffices to
check that P does not divide the discriminant of K.
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3. Large Zeros and Good Primes

For an LRS u = ⟨un⟩∞n=0 as in (1), define its height7 to be

Hu := max{k, |a1|, . . . , |ak|, |u0|, . . . , |uk−1|} .

Note that there are only finitely many different LRS of any specified
height bound. In the rest of the paper, we shall focus exclusively on LRS
“of sufficient height”; by this we implicitly postulate the existence of some
absolute constant C and further assume that all LRS under consideration
have height in excess of C. In our subsequent development, it would be
straightforward to provide explicit suitable numerical values for each of the
lower bounds that we require,8 however an explicit numerical value for C
would still depend on the precise formulation of the strengthening of the
Cramér-Granville conjecture that we introduce in Sec. 4 (see Conjecture 4.2).

We say that n is a zero of u if un = 0, and we say that it is a large zero
if the inequality

n < exp exp(10Hu logHu) (2)

fails. As we argue later on, there are good reasons to expect that (2) holds
for all zeros of all sufficiently high non-degenerate LRS, which in turn would
establish decidability of the Skolem Problem.9

3.1. Bad Primes and Good Primes
In this section, let u be a fixed sufficiently high non-degenerate LRS satis-

fying (1), and let us write H := Hu (that is, we omit the explicit dependence
on u).

7Note that we consider here the magnitude of the numbers defining a given LRS (rather
than their bit size as is more common in complexity theory). An alternative definition in
terms of bit size would of course be possible, only requiring adjusting (2) appropriately.

8In fact, in all of the height-related asymptotic inequalities that we derive, positing a
lower bound of 12 on the height would suffice.

9The expression in (2) has of course been chosen in order for our mathematical argument
to go through. In actual fact, it is plausible to expect that an expression involving a single
exponential would suffice: as far as we are aware, there is currently no known construction
of a family of non-degenerate LRS having zeros at indices of magnitude merely singly
exponential in the height of the LRS, as defined above.
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We can express the general term ut of u in exponential-polynomial form,
i.e.,

ut =
s∑

i=1

Qi(t)α
t
i , (3)

where s ≤ H and α1, . . . , αs are the roots of the characteristic polynomial

xk − a1x
k−1 − · · · − ak

of u and Q1, . . . , Qs are univariate polynomials. Note that all characteristic
roots are algebraic integers since the characteristic polynomial is monic and
comprises exclusively coefficients in Z. Recall that if αi has multiplicity
µi as a characteristic root then Qi has degree at most µi − 1. Let K :=
Q(α1, . . . , αs). The coefficients of each Qi are in K and can straightforwardly
be computed from the initial values u0, . . . , uk−1 of the sequence by solving a
system of k linear equations, thanks to (3). By Cramer’s determinant rule,10

each of the coefficients of Qi is the quotient of an algebraic integer by the
determinant ∆ := det(M) of the matrix M below:11

1 . . . 0 1 . . . 0 1 · · ·
α1 . . . α1 α2 . . . αs−1 αs . . .
... . . . ...

... . . . ...
... . . .

αk−1
1 . . . (k − 1)µ1−1αk−1

1 αk−1
2 . . . (k − 1)µs−1αk−1

s−1 αk−1
s . . .

 .

By the Cauchy root bound we have |αi| ≤ 1+H for i ∈ {1, . . . , s}. It follows
that the squared Euclidean norm of each column vector above is at most

k(k − 1)2(k−1)(1 +H)2k < k2k(1 +H)2k .

Thus, by the Hadamard inequality,

|∆|2 < (k2k(1 +H)2k)k = (k(1 +H))2k
2

.

10This rule is named after the 18th-century Genevan mathematician Gabriel Cramer,
who is presumably unrelated to the 20th-century Swedish mathematician Harald Cramér,
whose work plays an important role in motivating the present article.

11The matrix M has s blocks, one for each characteristic root. For ℓ ∈ {1, . . . , s} the ℓ-th
block has dimension k × µℓ and has (i, j)-th element (i − 1)(j−1)α

(i−1)
ℓ for i ∈ {1, . . . , k}

and j ∈ {1, . . . , µℓ}.

7



The determinant ∆ is in general, of course, a complex number. Note
however that any Galois automorphism σ ∈ Gal(K/Q) will permute the
characteristic roots, and thus when applied to M will have the effect of
permuting its columns. As a result, for any such σ, σ(∆) = ±∆, and therefore
the quantity ∆2 is stable under Galois automorphisms. We conclude that ∆2

must be a rational number, and since it is also by construction an algebraic
integer,12 we must have ∆2 ∈ Z.

Let us now consider the LRS v := ∆2u, noting that u and v share the
same zeros. Writing

vt =
s∑

i=1

Pi(t)α
t
i ,

we observe that all the coefficients of each of the Pi are algebraic integers.
We therefore have, for each 1 ≤ i ≤ s,

Pi(t) = ∆2Qi(t) =

µi−1∑
j=0

ci,jt
j .

We wish to estimate the size of each ci,j ∈ OK. From our earlier calculation
via Cramer’s determinant rule, noting that |u0|, . . . , |uk−1| are all bounded
above by H ≤ 1 +H, and invoking the Hadamard inequality once more, we
conclude that the house of each ci,j is bounded above by

|∆|(kk(1 +H)k)k < (k(1 +H))2k
2

< (1 +H)4H
2

< HH3

. (4)

Let σ ∈ Σs be any permutation of the first s integers and let

βi := ασ(i) for i = 1, . . . , s .

For some nonnegative integer m consider the algebraic integer

vm,σ =
s∑

i=1

Pi(m)βiα
m
i . (5)

We need one last technical ingredient in order to define what it means for
a prime number to be bad. Let X > exp exp e be a power of 2. We say that
u is small at level X provided that

H <
log logX

10 log log logX
.

12Note that every entry of M is an algebraic integer.
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Definition 3.1. We say that a prime P > exp exp e is bad, if there exist X
a power of 2 with X/2 < P < X, together with an LRS u which is small at
level X, a permutation σ ∈ Σs, and an integer m ∈ [0, X1/4], such that

• The algebraic integer vm,σ defined in (5) above is non-zero, and

• P is a prime factor of NK/Q(vm,σ).

Let Pbad(X) be the set of bad primes in [X/2, X], and Pbad :=
⋃

Pbad(2
k),

where the union is taken over all positive integers k such that 2k > exp exp e.

Proposition 3.2. We have

#Pbad(X) < X2/3

for all X > X0, where X0 is some effective absolute constant.

Proof. In order to estimate the size of Pbad(X), we first need to find out:

1. How many such expressions (5) are there?
2. How large are they?

For (1), let us count the number of distinct possible LRS of size at most
H. Such LRS have coefficients a1, . . . , ak and initial values u0, . . . , uk−1 all in
[−H,H], an interval containing at most 2H + 1 < 3H integers. Altogether
for fixed k there are at most (3H)2k ≤ (3H)2H 2k-tuples, and summing up
over k we derive an upper bound of H(3H)2H < H3H distinct possible LRS
of size at most H.

This in turn is an upper bound on the number of s-tuples ((Qi, αi))
s
i=1. We

must then multiply this quantity with the number of possible permutations
of the characteristic roots, which is at most H! < HH . There are therefore
at most H4H linear recurrence sequences w = ⟨wm⟩∞m=0 whose m-th term is
given by

wm =
s∑

i=1

Pi(m)βiα
m
i for all m ≥ 0 .

This answers (1). As for (2), recall that the coefficients of Pi are of abso-
lute value at most HH3 , as per (4). Pi(m) comprises at most H monomials,
the largest of which is at most mH < XH , and the largest root has magnitude
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at most 1 +H < 2H. Thus each individual term wm is of absolute value at
most

HH3+1(2H)XH(2H)X
1/4

=

exp
(
(H3 + 1) logH + log(2H) +H logX +X1/4 log(2H)

)
< exp(X0.26)

for X > X0, since H is tiny in comparison to X. Hence the norm of the
number shown in (5) is of size at most

exp(H!X0.26) < exp(X0.27) for X > X0 ,

since the degree of K is at most H! (as K is the splitting field of a polynomial
of degree at most H). Moreover, as noted earlier, there are at most H4H

such expressions. Thus a bad prime P divides an integer which is a product
of such numbers and is of size at most

exp(H4HX0.27) < exp(X0.28) for X > X0 .

Therefore the number of possible choices for P is at most X0.28. Since
the number of choices for m is at most X0.25, we conclude that, for X > X0,
the cardinality of Pbad(X) is at most

X0.25+0.28 < X2/3 ,

as required.

Finally, let us write P = {p1, p2, . . .} to denote the set of prime numbers,
enumerated in increasing order, and let Pgood := P \ Pbad = {g1, g2, . . .}
denote the subset of good primes, again enumerated in increasing order. Note
that, by Prop. 3.2 along with the prime number theorem, the set of bad
primes has null density amongst the prime numbers. This in turn entails
that good primes have density one amongst all prime numbers.

4. The Cramér Argument

In this section we present a heuristic argument supporting the assertion
that large zeros of sufficiently high LRS do not exist. The strategy is as
follows. Assuming that good primes are distributed similarly as ordinary
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primes, then according to the Cramér model in number theory, one would
expect that Cramér’s conjecture on gaps between primes applies also to good
primes. More precisely, this conjecture postulates the existence of precise
upper bounds on the largest possible gap between consecutive primes, and
is predicated on the heuristic that the primes behave as a set of randomly
distributed integers with asymptotic density conforming to the prime number
theorem. However we show that around any large zero of an LRS there is an
interval and an upper bound on the number of good primes in the interval
that together contradict the above Cramér-type conjecture on gaps between
good primes. We therefore surmise that large zeros do not exist.

Recall that P = {p1, p2, . . .} denotes the set of prime numbers enumerated
in increasing order.

Conjecture 4.1 (Cramér-Granville). For some κ > 1,

lim sup
j→∞

pj+1 − pj
(log pj)2

= κ .

Cramér initially suggested that the constant κ in Conjecture 4.1 might
be 1 [25], but several decades later, building on substantial developments in
the field, Granville produced evidence that κ ≥ 2e−γ ≈ 1.1229 . . ., where γ
is the Euler–Mascheroni constant [29]. There is in any event considerable
computational evidence in support of the Cramér-Granville conjecture [31,
32].

As noted earlier, thanks to Prop. 3.2 and the prime number theorem,
good primes have density one amongst all prime numbers:

lim
X→∞

#(Pgood ∩ [0, X])

# (P ∩ [0, X])
= 1 .

In other words, asymptotically speaking, almost all primes are good
primes. Accordingly, it seems reasonable to suppose that good primes should
behave similarly to ordinary primes, or at least should exhibit similar “statis-
tical” properties. We therefore formulate the following strengthening of the
Cramér-Granville conjecture:

Conjecture 4.2. For some η > 1,

lim sup
j→∞

gj+1 − gj
(log gj)2

= η .
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We now have the following result.

Theorem 4.3. Conjecture 4.2 implies that large zeros of sufficiently high
LRS do not exist. More precisely, assuming Conjecture 4.2, there exists an
absolute constant C > 0 such that, for all non-degenerate LRS u of height
Hu at least C, whenever un = 0 then n < exp exp(10Hu logHu).

Proof. Conjecture 4.2 can be reformulated as follows: there exist η > 1 and
n0 ∈ N such that, for all n ≥ n0, the interval

[n− η(log n)2, n]

always contains some good prime. In turn, this implies that the interval
[n − 0.5n1/4, n] must contain at least n1/4/(2η(log n)2) distinct good primes
for n sufficiently large.

Suppose now that there is some sufficiently high LRS u having large zero
un = 0. By definition, this means that

n ≥ exp exp(10Hu logHu) . (6)

Let X be the power of 2 such that X/2 ≤ n < X. We first claim that u is
small at level Y := X/2, i.e., that the inequality

Hu <
log log Y

10 log log log Y
(7)

holds.
Suppose for a contradiction that Eq. (7) fails. Then

logHu ≥ log log log Y − log(10 log log log Y ) ≥ 3

4
log log log Y ,

where the second inequality follows from the assumption that Y is sufficiently
large (since u is assumed to be sufficienctly high). Combining with the
negation of (7), we get

10Hu logHu ≥ 10

(
log log Y

10 log log log Y

)
3

4
log log log Y =

3

2
log log Y ,

i.e., exp exp(10Hu logHu) ≥ Y (log Y )0.5 , whence (from (6)) we conclude that
n ≥ Y (log Y )0.5 , contradicting (for sufficiently large Y ) the fact that n < X =
2Y and thereby establishing the claim.
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We note that the smallness of u at level X/2 immediately also entails its
smallness at level X.

Next, write n = P +m, where P ∈ [n − 0.5n1/4, n] is a good prime and
0 ≤ m < n1/4. As in the previous section, let α1, . . . , αs be the characteristic
roots of u, put K := Q(α1, . . . , αs), and let ∆2 be the smallest positive integer
such that, writing v := ∆2u, every term of vt of v has a representation as an
exponential polynomial

vt =
s∑

i=1

Pi(t)α
t
i

in which all polynomials Pi have algebraic-integer coefficients. We let k stand
for the order of u and abbreviate Hu as H for the remainder of the proof.

Since un = vn = 0, we get

0 =
s∑

i=1

Pi(P +m)αP+m
i .

We now reduce the above equation modulo p, where p is some prime ideal of
OK dividing P , from which we deduce that P divides

NK/Q

(
s∑

i=1

Pi(m)βiα
m
i

)
, (8)

where each βi = σ(αi) is obtained from applying the Frobenius automorphism
induced by p in K to αi. Recall that it is necessary for this automorphism
to be well defined that P not divide the discriminant of K. Note however
that the discriminant of K is a positive integer bounded above by the abso-
lute value of the discriminant of the characteristic polynomial of u, namely∏

i̸=j |αi − αj|, and this last quantity is itself at most (2 + H)s(s−1) ≤ HH3

thanks to the Cauchy root bound |αi| ≤ 1+H. Since u is small at level X/2
and X/2 ≤ n, we have H < (log log n)/(10 log log log n), and hence

HH3

< exp

((
log log n

10 log log log n

)3

log log log n

)
< exp((log log n)3) < n/2 .

Since P is larger than n/2 for n sufficiently large, we conclude that P cannot
divide the discriminant of K, as required.

Observe that P must lie in one of two intervals, namely [X/4, X/2] or
[X/2, X]. Since we know that u is small at both levels X/2 and X, it follows
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that expression (8) cannot be non-zero, otherwise P , by definition, would be
a bad prime. Expression (8) is therefore equal to zero.

Let us count how many expressions of the form (8) can vanish. More
precisely, consider the (complex-valued) LRS w = ⟨wj⟩∞j=0 whose j-th term
is given by

wj =
s∑

i=1

Pi(j)βiα
j
i for all j ≥ 0 ,

and whose order is at most k. Amoroso and Viada [33] prove that the number
of distinct positive integers m such that wm = 0 is at most

(8kk)8(k
k)6 = exp(8k6k log(8kk)) ≤ exp(8H6H+1 log(8H)) <

exp(16H6H+1 logH) < exp(H7H) = exp exp(7H logH) .

Of course, given u, the s-tuple (β1, . . . , βs) can be chosen in at most
s! < HH ways. Thus the total number of possible zeros for expressions of
the form (8) is at most

HH exp exp(7H logH) < exp exp(7H logH + logH + log logH)

< exp exp(8H logH) .

Since distinct choices of P give rise to distinct such zeros,13 and (as noted
earlier) there are at least n1/4/(2η(log n)2) possible choices for P , we conclude
that

n1/4

2η(log n)2
< exp exp(8H logH) ,

or equivalently
n1/4

(log n1/4)2
< 32η exp exp(8H logH) .

Observe that, for any fixed D > 0, the inequality x/(log x)2 < y implies
that x < y2/D, provided that x is sufficiently large. Applying this to the
above inequality with x = n1/4 and D = 32η, we derive the upper bound

n1/4 < exp(2 exp(8H logH)) ,

13Recall that n = P +m, and thus distinct choices of P entail distinct values of m.
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whence
n < exp(8 exp(8H logH)) < exp exp(9H logH) ,

contradicting Eq. (6) to the effect that n is a large zero of u. We conclude
that large zeros do not exist, as required.

5. Large Zeros Are Unconditionally Sparse

In this section, we prove unconditionally that large zeros are sparse, i.e.,
have null density amongst the positive integers.

To this end, let

L := {n ∈ N : there exists a non-degenerate LRS u such that
un = 0 and n ≥ exp exp(10Hu logHu)} .

Thus L is the set of large zeros of some non-degenerate LRS, without any
height restrictions.

Theorem 5.1. The set L has null density. In fact, writing L(X) = L∩[1, X],
the inequality

#L(X) = O

(
X

(logX)B

)
holds with any constant B > 0.

Proof. We let X be large, and aim to count the n in L that lie in [X/2, X].
Jia [34] proved that the set of n ∈ [X/2, X] such that the interval In :=
[n−n1/19, n] contains fewer than X1/19/(logX)2 primes is of counting function
O(X/(logX)B) with any B > 0. Let us therefore consider n ∈ [X/2, X] such
that In contains at least X1/19/(logX)2 primes. Write n = P + m, where
P ∈ In and m < X1/19. Let u be an LRS having n as a large zero and whose
recurrence is given by (1). Using the same notation and reasoning as in the
proof of Thm. 4.3, we have, for sufficiently large X, that P must divide

NK/Q

(
s∑

i=1

Pi(m)βiα
m
i

)
. (9)

If the above expression is non-zero, then P is a bad prime, which in turn
means that n is within O(X1/19) of a bad prime. However, as shown in
Prop. 3.2, the number of bad primes below X is O(X2/3). Hence the total
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number of such n ∈ [X/2, X] is O(X2/3+1/19) = O(X/(logX)B) with any
B > 0.

Finally, assume that expression (9) is zero, in which case

s∑
i=1

Pi(m)βiα
m
i = 0 .

Once again, as detailed in the proof of Thm. 4.3, the Amoroso-Viada bounds
imply that the corresponding number of possible zeros for expressions of
the form above is at most exp exp(8Hu logHu). Since distinct choices of P
give rise to distinct such zeros, and since In contains at least X1/19/(logX)2

primes, we deduce that

X1/19

(logX)2
< exp exp(8Hu logHu) .

Noting that n ≤ X, we have, for sufficiently large n, the following string of
inequalities:

n <

(
n1/19

(log n)2

)20

≤
(

X1/19

(logX)2

)20

< (exp exp(8Hu logHu))
20

< exp exp(9Hu logHu) ,

or in other words that n /∈ L.
Putting everything together, we conclude that, for any B > 0, if X is

sufficiently large then the number of large zeros in [X/2, X] is O(X/(logX)B),
from which one immediately deduces the statement of the theorem.

Corollary 5.2. The set S := N\L is a Universal Skolem Set of density one.

Proof. It is clear that the set L is recursive, and hence that S is recursive as
well.

Density one follows from Thm. 5.1, and universality follows from the fact
that S, by definition, doesn’t contain any large zeros. Thus given any non-
degenerate LRS u of size Hu, its only possible zeros in S can only lie in the
interval [0, exp exp(10Hu logHu)], which can readily be checked.
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6. Concluding Remarks

Thanks to Thm. 4.3, Conjecture 4.2 implies the existence of an algorithm
to solve the Skolem Problem, as follows. Recall that Thm. 4.3 asserts the
existence of an absolute constant C such that any non-degenerate LRS u
of height Hu ≥ C has no zeros at index larger than exp exp(10Hu logHu).
On the other hand, there are only finitely many LRS of height at most
C; therefore there exists some algorithm (call it an oracle) that correctly
determines, for each such C-bounded LRS, whether or not it has a zero.

Now given an LRS u, first decompose u into finitely many non-degenerate
LRS, and check that none of these is identically zero. Next, if any of
these LRS has height below C, invoke the aforementioned oracle to deter-
mine whether it has a zero. Finally, assuming that no zeros have yet been
found, for each remaining LRS v, check whether v has a zero in the interval
[0, exp exp(10Hv logHv)].

Of course, even if Conjecture 4.2 were to be established and C explicitly
known, and setting aside the question of how to obtain the oracle, the above
algorithm unfortunately remains impractical, since the magnitudes involved
are much too large to envisage any reasonable implementation.
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