The Semialgebraic Orbit Problem

Shaull Almagor, Joël Ouaknine, and James Worrell

The Semialgebraic Orbit Problem is a fundamental reachability question that arises in the analysis of discrete-time linear dynamical systems such as automata, Markov chains, recurrence sequences, and linear while loops. An instance of the problem comprises a dimension dN, a square matrix AQdxd, and semialgebraic source and target sets S, TRd. The question is whether there exists xS and nN such that AnxT.

The main result of this paper is that the Semialgebraic Orbit Problem is decidable for dimension d ≤ 3. Our decision procedure relies on separation bounds for algebraic numbers as well as a classical result of transcendental number theory -- Baker's theorem on linear forms in logarithms of algebraic numbers. We moreover argue that our main result represents a natural limit to what can be decided (with respect to reachability) about the orbit of a single matrix. On the one hand, semialgebraic sets are arguably the largest general class of subsets of Rd for which membership is decidable. On the other hand, previous work has shown that in dimension d = 4, giving a decision procedure for the special case of the Orbit Problem with singleton source set S and polytope target set T would entail major breakthroughs in Diophantine approximation.

Proceedings of STACS 19, LIPIcs 126, 2019. 20 pages.

PDF © 2019 Shaull Almagor, Joël Ouaknine, and James Worrell.



Imprint / Data Protection