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Abstract. Current approaches to monitoring real-time properties suf-
fer either from unbounded space requirements or lack of expressiveness.
In this paper, we adapt a separation technique enabling us to rewrite
arbitrary MTL formulas into LTL formulas over a set of atoms compris-
ing bounded MTL formulas. As a result, we obtain the first trace-length
independent online monitoring procedure for full MTL in a dense-time
setting.

1 Introduction

In recent years, there has been increasing interest in runtime verification as a
complement to traditional model checking techniques (see [21,[29] for surveys).
Runtime monitoring, for example, may be used in situations in which we wish
to evaluate a system that is either too complex to model or whose internal
details are not accessible. Moreover, logics whose model-checking problems are
undecidable may become tractable in this more restricted setting. The latter is
the case in the present paper, which is concerned with runtime monitoring of
Metric Temporal Logic with both forwards and backwards temporal modalities
(MTL[U, S]).

MTL[U, S] was introduced almost 25 years ago by Koymans [19] and has
since become the most widely studied real-time temporal logic. Over the reals,
it has been shown that MTL[U, S] has the same expressiveness as Monadic First-
Order Logic of Order and Metric (FO[<,+Q)]) [17]. In this paper, we study the
monitoring problem for MTL[U, S] over timed words. This so-called pointwise
semantics is more natural and appropriate when we consider systems modelled
as timed automata. Also, monitoring timed words is often conceptually simpler
and more efficient [6].

Given an MTL[U, S] formula ¢ and a finite timed word p, the prefiz problem
asks whether all infinite timed words extending p satisfy (. The monitoring
problem can be seen as an online version of the prefix problem where p is given
incrementally, one event at a time. The monitoring procedure is required to
output an answer when either (i) all infinite extensions of the current trace satisfy
the specification, or (ii) no infinite extension of the current trace can possibly
meet the specification. In this paper, we consider a variant of the monitoring
problem, based on the notion of informative prefizes |20].

* More extensive technical details as well as all proofs can be found in the full version
of this paper [16].



Ideally, for a monitoring procedure to be practical, we require that it be
trace-length independent |7] in the sense that the total space requirement should
not depend on the length of the input trace. With this objective in mind, the
principal difficulty in monitoring MTL[U, S] is that it allows unbounded intervals
and nesting of future and past operators, and hence the truth value of a formula
at some point may depend on the truth values of its subformulas arbitrarily far in
the future or past. For this reason, most real-time monitoring procedures in the
literature impose certain syntactic or semantic restrictions, e.g., only allowing
bounded future modalitieﬂ or assuming integer-time traces. A notable exception
is [4] which handles the full logic MTL[U, S] over dense-time signals, but which
unfortunately fails to be trace-length independent.

The main contribution of this paper is a new online monitoring procedure for
MTL[U, S] over dense-time traces. The procedure we give handles the full logic
MTL[U, S] and is trace-length independentﬂ making it suitable for traces with
potentially unbounded lengths, e.g., network activity logs. For a given formula,
we first adapt a separation theorem of [17] to rewrite an MTL[U,S] formula
into an LTL[U, S] formula over a set of atoms comprising bounded MTL[U, S]
formulas, whose truth values are computed and stored efficiently. The remaining
untimed component is then handled via translation to deterministic finite au-
tomata. The resulting algorithm is free of dynamic memory allocations, linked
lists, etc., and hence can be implemented efficiently.

2 Related Work

The most closely related work to the present paper is that of Finkbeiner and
Kuhtz |13], which concerns monitoring MTL over a discrete-time semantics. They
handle bounded formulas in a similar fashion to us and highlight the problematic
role of unbounded temporal operators. However they do not exploit a syntactic
rewriting of unbounded operators from the scope of bounded operators, and are
forced to apply specialised constructions in this case.

Another highly relevant work is that of Nickovic and Piterman [26], in which a
translation from MTL to deterministic timed automata is proposed. The essence
of the method is the observation that, while the truth values of unbounded sub-
formulas must necessarily be guessed, the truth values of bounded subformulas
can be obtained via bounded look-ahead. In spirit, this is very similar to our
approach. The main differences are that they consider only the future fragment,
and we handle bounded subformulas explicitly rather than encoding them into
clock constraints.

! Note in passing that, unlike for LTL, past modalities strictly increase the expressive-
ness of MTL [9].

2 As shown in |22], trace-length independence necessarily requires a global bound on
the wariability of time sequences, i.e., the maximum number of events which can
occur in any given unit-duration time interval. This is a standard assumption which
is in practice always met by physical systems. The proof in |22] is carried out in the
continuous semantics, but it goes through in the pointwise setting as well.



Regarding real-time logics with past, it is known that the non-punctual
fragment of MTL[U,S], called MITL[U,S], can be translated into timed au-
tomata [1,2,/11}/18.|23]. The difficulty in using such approaches for monitoring
lies in the fact that timed automata cannot be determinised in general. In prin-
ciple one can carry out determinisation on-the-fly for timed words of bounded
variability; however, it is not clear that this approach can yield an efficient pro-
cedure.

Automata-free monitoring procedures also appear in the literature. For ex-
ample, in a pioneering paper, Thati and Rogu [|30] propose a rewriting-based
monitoring procedure for MTL[U, S]. Their procedure is trace-length indepen-
dent and amenable to efficient implementations. However, the procedure only
works for integer-time traces and hence does not appear applicable to our set-
ting.

Online monitoring of real-time properties is still a very active topic of re-
search. Recently, there have been some attempts to extend temporal logics with
(restricted) first-order quantifiers for monitoring (see, e.g., [54[7L{L0L|{15[28]). The
work in the present paper can be seen as orthogonal to these advances.

3 Background

3.1 Metric Temporal Logic

A time sequence T = TiTo... is a non-empty strictly increasing sequence of
rational numbers such that 71 = 0. We consider both finite and infinite time
sequences, denoting by |7| the length of such a sequence. If 7 is infinite we
require it to be unbounded, i.e., we disallow the so-called Zeno sequences.

A timed word over a finite alphabet X' is a pair p = (0,7), where o =
0109 ... is a non-empty finite or infinite word over X and 7 is a time sequence
of the same length. We equivalently consider a timed word as a sequence of
events (01,71)(02,72) . ... The finite timed words considered in this paper arise
as prefixes of infinite timed words, and so we sometimes use the term prefiz to
denote an arbitrary finite timed word. We write T'X* and T' X for the respective
sets of finite and infinite timed words over Y. For a set of propositions P we
write X¥p = 27,

For a space-bounded online monitoring procedure to be possible, we must
impose a global bound on the variability of time sequences, cf. [22|. Henceforth
we assume that all timed words have variability at most k4, for some (a priori
known) absolute constant k., i.e., there are at most k,q- events in any unit
time interval.

We specify properties of timed words using Metric Temporal Logic with both
the ‘Until’ and ‘Since’ modalities, denoted MTL[U, S]. Given a set of propositions
P, the formulas of MTL[U, S] are given by the following grammar

pu=p|true | g1 Apa | 20 | o1 Urps | p1S1p2

where p € P and I C (0,00) is an interval with endpoints in Q>¢ U {co}. We
sometime omit the subscript I if I = (0,00). Given z € Q, we write © < I to



mean x < sup(/). Additional temporal operators and dual operators are defined
in the standard way, e.g., Prp = trueS;p and H;p = =P ;—y. For an MTL[U, S]
formula ¢, we denote by |¢| the number of subformulas of .

The satisfaction relation p,i = ¢ for an MTL[U,S] formula ¢, an infinite
timed word p = (o, 7) and a position ¢ > 1 is defined as follows:

—piEpiffp€o;

— p,i = 1 Up g iff there exists j > i such that p,j = 2, 7 — 7, € I, and
p k= forall k withi <k <j

— p,i |= @1 S5 o iff there exists j, 1 < j < i such that p,j =9, 7 — 75 €1
and p, k |= ¢1 for all k with j < k<iE|

The semantics of the Boolean connectives is defined in the expected way.

We say that p satisfies ¢, denoted p = ¢, if p, 1 = . We write L(p) for the
set of infinite timed words that satisfy ¢. Abusing notation, we also write £(v)
for the set of infinite (untimed) words that satisfy the LTL[U, S] formula v, and
L(A) for the set of infinite words accepted by automaton .A.

3.2 Truncated Semantics and Informative Prefixes

Since in online monitoring one naturally deals with truncated paths, it is useful
to define a satisfaction relation of formulas over finite timed words. To this end
we adopt a timed version of the truncated semantics |12] which incorporates
strong and weak views on satisfaction over truncated paths. These views indi-
cate whether the evaluation of the formula ‘has completed’ on the finite path,
i.e., whether the truth value of the formula on the whole path is already deter-
mined. For example, the formula F (g 5)p is weakly satisfied by any finite timed
word whose time points are all strictly less than 5 since there is an extension
that satisfies the formula. We also consider the neutral view, which extends to
MTL[U, S] the traditional LTL semantics over finite words [24].

The respective strong, neutral and weak satisfaction relations will be denoted
by |:j[, [ and |5 respectively. The definitions below closely follow |12].

Definition 1. The satisfaction relation p,i |:;{ ¢ for an MTL[U, S| formula ¢,
a finite timed word p = (o,7) and a position i, 1 < i < |p| is defined as follows:

—piEpiffpeo

- p7i|:j{ true

— i L Ao iff pi B ey and p,i o

— pi e iff (pi) B ¢

— p,i)z}raplchpg iff there exists j, i < j < |p|, such that p,j|:}“<p2, T, —1 €1,
and p,j’ )z}r w1 for all j withi < j' < j

- p,i ):}' 01 St 9 iff there exists j, 1 < j < i, such that p, ] )z}' w2, i —T; €1
and p,j' )z}r w1 for all j with j < j' < i.

3 Note that we adopt strict interpretations to U; and S;. It is easy to see that, e.g.,
weak-future until operators can be defined in strict-future ones.



Definition 2. The satisfaction relation p,i|= ¢ for an MTL[U, S] formula ¢,
a finite timed word p = (o,7) and a position i, 1 <i < |p| is defined as follows:

—piEpiffreo;
— p,i 5 true
= pilE g1 N2 iff pi | 1 and pilE @1
— pi o iff (p,9) e
— p,i |:; w1 Uy o iff either of the following holds:
o there exists j, i < j < |p|, such that p, j |5 @2, Tj—7; € I, and p, j' |5 ¢1
for all 3" withi < j <j
o 7, —Ti <1 andp,j 5 ¢1 for all " with i <j <|p|
— p,i ):J? w1 St @2 iff there exists j, 1 < j < i, such that p,j ):; w2, i —Tj €1
and p,j' 5 @1 for all j" with j < j' <i.

The following proposition which helps explain the terms strong, neutral and
weak, can be proved by a simple induction on the structure of ¢.

Proposition 1. For a finite timed word p, a position i in p and an MTL[U, S]
formula @,

pilE o= pils e and il o = pils @,

A closely related notion, informative prefizes [20], has been adopted in several
works on online monitoring of untimed properties, e.g., [3,[14]. Intuitively, an
informative prefix for a formula ¢ is a prefix that ‘tells the whole story’ about the
fulfilment or violation of <pE| We give two examples before the formal definition.

Ezample 1. Consider the following formula over {p; }:

0 =FG(-p1) AG(pr — F(o3)p1).

The finite timed word p = ({p1},0)({p1},2)(0,5.5) is an informative bad prefix
for ¢, since no extension satisfies the second conjunct. On the other hand, while
P ={p},0)({p1},2)({p1},4) is a bad prefix for ¢, it has (different) extensions
that satisfy, respectively, the left and right conjuncts. Thus we do not consider
it an informative bad prefix.

Ezample 2. Consider the following formula over {p; }:

/

¢' = G(=p1) A G(p1 — Fo3)p1) -

This formula is equivalent to the formula ¢ in the previous example. However,
all bad prefixes for ¢ are informative.

4 Our usage of the term informative slightly deviates from [20] as in that paper the
term refers exclusively to bad prefixes.



If a prefix p strongly satisfies ¢ then we say that it is an informative good
prefix for ¢. Similarly we say p is an informative bad prefiz for ¢ when it fails to
weakly satisfy ¢. Finally p is an informative prefiz if it is either an informative
good prefix or an informative bad prefix. Here we have adopted the seman-
tic characterisation of informative prefixes in terms of the truncated semantics
from [12], rather than the original syntactic definition [20].

The following proposition follows immediately from the definition of infor-
mative prefixes.

Proposition 2. p is informative for ¢ iff p is informative for —p.

Since p ’:f p&p }%f -, negating a formula essentially exchanges its set of in-
formative good prefixes and informative bad prefixes. The following proposition
says ‘something good remains good’ and ‘something bad remains bad’.

Proposition 3. For a finite timed word p, a position i in p and an MTL[U, S]
formula @, if p is a prefiz of the finite timed word p’, then

Pt o= ilE g andpil ¢ =il ¢,

4 LTL[U,S] over Bounded Atoms

In this section we present a series of logical equivalences that can be used to
rewrite a given MTL[U, S] formula into an equivalent formula in which no un-
bounded temporal operator occurs within the scope of a bounded operator. Only
the rules for future modalities and open intervals are given, as the rules for past
modalities are symmetric and the rules for other types of intervals are straight-
forward variants. Since we work in the pointwise semantics, the techniques in [17]
(developed for the continuous semantics) must be carefully adapted.

4.1 Normal Form
We say an MTL[U, S] formula is in normal form if it satisfies the following.

(i) All occurrences of unbounded temporal operators are of the form U g o),
S(0,00): G(0,00)s H(0,00)-

(ii) All other occurrences of temporal operators are of the form Uy, S; with
bounded I.

(iii) Negation is only applied to propositions or bounded temporal operators
(except that we allow G (g,o0), H(0,00))-

(iv) In any subformula of the form 1 U; @a, ©1 Sy w2, Frpa, Pros where I
is bounded, ¢ is a disjunction of temporal subformulas and propositions
and 9 is a conjunction thereof.

We describe how to rewrite a given formula into normal form. To satisfy (i) and
(ii), apply the usual rules (e.g., Gry > =Fr—y) and the rule:

©1 Ula,o0) P2 <+ 91 U oz A (Fg gptrue — G (01 A o1 U 3)) .



To satisfy (iii), use the usual rules and the rule:

(1 U pa) < Gpa V (mp2 U (mp2 A —p1))

For (iv), use the usual rules of Boolean algebra and the rules below:

dU;p (01 V) < (0 Urp1) V(o U o)
(P1 Ap2) Ur ¢ (01 Ur ¢) A (02 Up 9).

4.2 Extracting Unbounded Operators from Bounded Operators

We now provide a set of rewriting rules that extract unbounded operators from
the scopes of bounded operators. In what follows, let ¢, = false U g ) true,
oy = false S(g 5y true and

Pugb = ((%zb — Gp26)01) A (Tpys — (91 A G(O,b}‘Pl)))

U ((901 A (1 U, ap) <P2)) \4 (ﬁwylb A (902 \ (501 A (1 U @2))))) ;
Pggb = G((@mlb = Gp20)01) A (Tyn — (91 A G(o,b]%))) .
Proposition 4. The following equivalences hold over infinite timed words.

0 U(un (01 Uga) Ax) 5 0 U (01 Uggap) 2) AX)
Vv ((9 Uap) (Go2n)p1 A X)) A sDugb)

0 Uap) (Go AX) ¢ (0 Uap) (G209 A X)) A Pggd
0 Uy (1S wa) Ax) < 0 Ugapy ((91 S(0,) ¥2) A X)
V((9 Uap) Hopw1 AX)) Apr S wz)
0 Uap) (Hp AX) ¢ (0 Up) (Hopp Ax)) AHp
(L1 U2) VX) Uy 0 < ((91 Ugo,2n) 92) V X) Uy 0

V((((% Uo,20) ¢2) V X) Ugop) (G(O,Qb)‘pl))
A
F(a,b)e A @ugb)

(Ge) VX) Ugapy 0 <> X Ugap) 0
V(X Ugu) (Go,20)01) AF(a,0)0 A 0ggp)



(1S @2) VX) Ugap) 0 > (01 S(0,0) 92) V X) Ugap 0

V(((H(o,b)sﬁl V (1800 ¢2) V X) Uap) 9)
A

1S <P2>

(He) V X) Ugap) 0 <> x Ugay) 0V (((H(O,b)SO V x) Ugap) 0) A H<P) :

Proof. We sketch the proof for the first rule as the proofs for the other rules
are similar. In the following, let the current position be i and the position of an
(arbitrary) event in (7; + a,7; + b) be j.

For the forward direction, let the witness position where s holds be w. If
Tw < Tj + 2b, the subformula @1 U o) 2 clearly holds at j and we are done.
Otherwise, G (g,25)%1 holds at j and it follows that (0uip — Gp,26)91) and @y
(and vacuously =@y, — (91 A Go,p¢1)) hold at all positions j', 7 < j' < j. Let
I > j be the first position such that 7, € (7, + b, 7; + 2b). Consider the following
cases:

— There is such [: It is clear that (Lpl/\(apl Up,20) <p2)) holds at [. Since G (,25) 1
holds at all positions j”, j < j” < [ by the minimality of [, (0zi — Gi(p,20) 1)
also holds at these positions. For the other conjunct, note that ¢, holds at
j and @1 A Gg 1 holds at all positions 5”7, j < j"" < 1.

— There is no such [: Consider the following cases:

o 1y and —Py, jtrue hold at w: There is no event in (Tw — 2b, 7). The
proof is similar to the case where [ exists.

e i, and Py, true hold at w: Let " be the position such that 7, =
T — b. There must be no event in (77 — b, 7). It follows that -y, and
(¢1 A (01 Ugp) 2)) hold at I’. The proof is similar.

® @, holds at w: By assumption, there is no event in (7, —2b, 7, —b). It is
easy to see that there is a position such that —¢y;; A (<p1 A1 Uy @2))
holds. The proof is again similar.

We prove the other direction by contraposition. Consider the interesting case
where Gg2p)p1 holds at j yet ¢1 U a2 does not hold at j. If ¢ never holds
in [1; + 2b,00) then we are done. Otherwise, let | > j be the first position such
that both ¢; and ¢ do not hold at [ (note that 7, > 7; + 2b). It is clear that

<(<P1 A (1 U p20) 92)) V <_‘<Pylb A (902 V (1A (01 Uoy <P2))))> does not hold
at all positions j', ¢ < j' <. Consider the following cases:

— @y does not hold at I: p1 A Ggpyp1 does not hold at /, and hence g fails
to hold at 1.
— @y holds at {: Consider the following cases:

e There is an event in (7, — 2b, 7y — b): Let this event be at position j”. We
have j” +1 < I, 7ju41 — 7jv > b and 71 — 7j»41 < b. However, it follows
that ¢, does not hold at j” 41 and @1 A G g p)1 holds at j” 41, which
is a contradiction.



e There is no event in (7, — 2b,7; — b): Let the first event in [r; — b, 7;) be
at position j”. It is clear that oy, does not hold at j” and ¢1 A Go,5¢1
must hold at j”, which is a contradiction.

O

Proposition 5. For an MTL[U,S] formula ¢, we can use the rules above to
obtain an equivalent formula ¢ in which no unbounded temporal operator appears
in the scope of a bounded temporal operator.

Proof. Define the unbounding depth ud(p) of a formula ¢ to be the modal depth
of ¢ counting only unbounded operators. We demonstrate a rewriting process
on ¢ which terminates in an equivalent formula ¢ such that any subformula 1[)
of ¢ with outermost operator bounded has ud(¢)) = 0.

Assume that the input formula ¢ is in normal form. Let k be the largest un-
bounding depth among all subformulas of ¢ with bounded outermost operators.
We pick all minimal (wrt. subformula order) such subformulas ¢ with ud(vy)) = k.
By applying the rules in Section we can rewrite 1 into ¢’ where all subfor-
mulas of ¢’ with bounded outermost operators have unbounded depths strictly
less than k. We then substitute these 1’ back into ¢ to obtain ¢’. We repeat
this step until there remain no bounded operators with unbounding depth k.
Rules that rewrite a formula into normal form are used whenever necessary on
relevant subformulas—this will never affect their unbounding depths. It is easy
to see that we will eventually obtain such a formula ¢*. Now rewrite ¢* into
normal form and start over again. This is to be repeated until we reach ¢. O

Given the input formula ¢ over propositions P = {p1,...,p,}, we can apply
the rewriting process above to obtain a formula . Since each rewriting rule is a
logical equivalence, we have the following theorem.

Theorem 1. L(p) = L(p).

The syntactic separation of the original formula could potentially induce a
non-elementary blow-up. However, such behaviour does not seem to be realised
in practice. In our experience, the syntactically separated formula is often of
comparable size to the original formula, which itself is typically small. For ex-
ample, consider the following formula:

G (ChangeGear — F (g 30)(InjectFuel A PInjectLubricant)).
The syntactically separated version of the formula is

G [ChangeGear — F(0,30)(InjectFuel A P (g 30)InjectLubricant)
\/(F(Oygo)(lnjectFuel) A PInjectLubricant)] )

In any case, Proposition [5| and Theorem [1| imply that we may even require the
input formula to be in ‘separated form’ without sacrificing any expressiveness.



5 Online Monitoring Procedure

Having obtained ¢ = ®(¢1,...,%y) where ¢y,..., 1, are bounded formulas
over P and @ is an LTL[U,S] formula, we now introduce new propositions

= {q1,...,qm} that correspond to bounded subformulas. In this way, we
can monitor ¢ as an untimed property over @), only that now we obtain the
truth values of ¢1, ..., ¢, by simple dynamic programming procedures. As these
propositions correspond to bounded formulas, we only need to store a ‘sliding
window’ on the input timed word.

5.1 Untimed LTL[U, S| Part

We describe briefly the standard way to construct automata that detect informa-
tive prefixes [20]. For a given LTL formula O, first use a standard construction [31]
to obtain a language-equivalent alternating Biichi automaton Ag. Then redefine
its set of accepting states to be the empty set and treat it as an automaton
over finite words. The resulting automaton A%"“¢ accepts exactly all informa-
tive good prefixes for ©. For online monitoring, one can then determinise AZ"*¢
with the usual subset construction. The same can be done for —@ to obtain a
deterministic automaton detecting informative bad prefixes for 6.

In our case, we first translate the LTL[U, S] formulas ¢ and —& into a pair
of two-way alternating Biichi automata. It is easy to see that, with the same
‘tweaks’, we can obtain two automata that accept informative good prefixes
and informative bad prefixes for ¢ (by Proposition . We then apply existing
procedures that translate two-way alternating automata over finite words into
deterministic automata, e.g., [8]. We call the resulting automata Dgooqd and Dyeq
and execute them in parallel.

5.2 Bounded Metric Part

We define fr(y) and pr(y) (future-reach and past-reach) for an MTL[U, S] for-
mula ¢ as follows (the cases for boolean connectives are defined as expected):

— fr(true) = pr(true) = fr(p) =pr(p) =0forallpe P
= fr(p1 Ug p2) = sup(I) + max(fr(e1), fr(e2))

— pr(p1 S1 p2) = sup(l) + max(pr(e1), pr(e2))

— fr(e1 81 p2) = max(fr(e1), fr(ez) —inf(I))

— prip1 Ur ¢2) = max(pr(e1), pripz) — inf(I)).

Intuitively, these indicate the lengths of the time horizons needed to determine
the truth value of ¢. We also define l¢(v) = kyqor - [fr(¥)] and 1,(¢)) = kyar -
[pr(v)] (recall that we assume that timed words are of bounded variability k,q; ).



Naive Method Suppose that we would like to obtain the truth value of g;
at position j in the input (infinite) timed word p = (o,7). Observe that only
events occurring between 7; — pr(v;) and 7; + fr(1;) can affect the truth value
of ¢; at j. This implies that p,j |= i <> p',j 5 ¢, given that p’ is a prefix
of p that contains all events between 7; — pr(+;) and 7; + fr(¢;). Since p is
of bounded variability k4., there will be at most 1,(1;) + 1 + I;(¢;) events
between 7; — pr(1;) and 7; + fr(vy;). It follows that we can simply record all
events in this interval. Events outside of this interval are irrelevant as they do
not affect whether p’, j |:f ;. In particular, we maintain a two-dimensional array
of l,(¢;) + 14 1¢(¢);) + 1 rows and 1 + |t)| columns. The first column is used to
store timestamps of the corresponding eventsﬂ The last |¢| columns are used
to store the truth values of subformulas. We then use dynamic programming
procedures (cf. [25]) to evaluate whether p’, j |:f ;. These procedures fill up the
array in a bottom-up manner, starting from minimal subformulas. The columns
for boolean combinations can be filled in the natural way.

Now consider all propositions in Q. We can obtain the truth values of them
at all positions in the ‘sliding window’ by using an array of lf;? + 1+ l? +1
rows and 1+ [¢1| + -+ + [y | columns, where I$ = max;e[1 m) lp(¥;) and l? =
max;c(1,m| l¢(1;). Each column can be filled in time linear in its length. Overall,
we need an array of size O(kyar - Csum - |@]) where cgyp, is the sum of the constants
in ¢, and for each position j we need time O(kyar * Csum - |#]) to obtain the truth
values of all propositions in (). This method is not very efficient as for each j
we need to fill all columns for temporal subformulas from scratch. Previously
computed entries cannot always be reused as certain entries are ‘wrong’—they
were computed without the knowledge of events outside of the interval.

Incremental Evaluation We describe an optimisation which allows effective
reuse of computed entries stored in the table. The idea is to treat entries that
depend on future events as ‘unknown’ and not to fill them. By construction,
these unknown entries will not be needed for the result of the evaluation.

For a past subformula, e.g, ¢1 S(, 1) 2, we can simply suspend the column-
filling procedure when we filled all entries using the truth values of ¢ and o
(at various positions) that are currently known. We may continue when the
truth values of ;1 and o (at some other positions) that are previously unknown
become available. The case for future subformulas is more involved. Suppose
that we are filling a column for p; U4 ) p2 with the naive method. Denote the
corresponding timestamp of an index 4 in the column by ¢(¢) and the timestamp
of the last acquired event by t,,.x. Observe that not all of the truth values at
indices 7, t(j) + b > tmax can be reused later, as they might depend on future
events. However, if we know that ¢, does not hold at some 5/, t(5') + b > timax,
then all the truth values at indices < j’ can be reused in the following iterations
as they cannot depend on future events. Now consider the general case of filling

5 We assume the timestamps can be finitely represented, e.g., with a built-in data
type, and additions and subtractions on them can be done in constant time.



the column for ¢ = ¢1 U, p) p2. We keep an index j, that points to the first
unknown entry in the column, and we now let ¢max = min(t(jy, — 1), t(jo, — 1)).
In each iteration, if j,, and j,, are updated to some new values, tmax also
changes accordingly. If this happens, we first check if #(jy) + b > tmax. If this
is the case, we do nothing (observe the fact that ¢; must hold at all indices I,
t(jy) < t(l) < tmax, thus the truth value at j, must remain unknown). Otherwise
we find the least index I’ > j,, such that ¢(I') + b > tyax. Additionally, we check
if all truth values of ¢; between t,,,x and tﬁfgx are true, starting from t,,,x. If ©1
is not satisfied at some (maximal) position j' then start filling at max(l’, j) — 1.
Otherwise we start filling from I’ — 1.

Observe that we can use a variable to keep track of the least index I > jy,
such that ¢(I') + b > tmax instead of finding it each time since it increases
monotonically. Also we can keep track of the greatest index where o holds.
With these variables, we can easily make the extra ‘sweeping’ happen only twice
(once for ¢ and once for ¢3) over newly acquired truth values. Also observe
that the truth value of a subformula at a certain position will be filled only once.
These observations imply that each entry in the array can be filled in amortised
constant time. Assuming that each step of an deterministic automaton takes
constant time, we can state the following theorem.

Theorem 2. For an MTL[U, S] formula ¢, the automata Dyooq and Dpaq have

size 22°'"" where & is the LTL[U, S] formula described above. Moreover, for an
infinite timed word of bounded variability kyq,, our procedure uses space O(kyqy -
Csum - |P]) and amortised time O(||) per event, where ¢ is the syntactically
separated equivalent formula of ¢ and csym is the sum of the constants in §.

5.3 Correctness

One may think of the monitoring process on an infinite timed word p € TX3 as
continuously extending a corresponding finite timed word p’ € TX7. Suppose
that, instead of Dyooq and Dpeq, We now execute a deterministic w-automaton
Dg such that £(Dg) = L(P). Since we are implicitly ensuring that the truth
values of propositions in @) are valid along the way, it is easy to see that the
corresponding run on Dg will be accepting iff p = ¢. However, for the purpose
of online monitoring, we will be more interested in deciding whether p = ¢ given
only a finite prefix of p. In this subsection we show that our approach is both
sound and complete for detecting informative prefixes.

The following proposition is immediate since three views of the truncated
semantics coincide in this case.

Proposition 6. For a bounded MTL[U,S] formula v, a finite timed word p =
(o,7) and a position 1 <i < |p| such that 7; + fr(y) < 7, and 7; — pr(¢) >0,
we have

The following lemma implies that the rewriting process outlined in Section [
preserves the ‘informativeness’ of prefixes.



Lemma 1. For an MTL[U,S] formula ¢, let ¢’ be the formula obtained after
applying one of the rewriting rules in Section [4] on some of its subformula. We
have

pE e pE ¢ adplE oo p ¢

Given the lemma above, we can state the following theorem.

Theorem 3. The set of informative good prefizes of p coincides with the set of
informative good prefizes of ©. The same holds for informative bad prefizes.

Now we state the main result of the paper in the following two theorems.

Theorem 4 (Soundness). In our procedure, if we ever reach an accepting state
0f Dgood (Drad) via a finite word u € X4, then the finite timed word p € T X%
that we have read must be an informative good (bad) prefix for .

Proof. For such u and the corresponding p (note that |u| < |p]),

WEEMKWJ%Q%@H§WAWJﬁQ%mﬁ%M)

where O is a subformula of @ and ¥ = ©(¢1, ... ,%,,). This can easily be proved
by structural induction. If u is accepted by Dgyo0q, We have u|:;fd5 by construction.

By the above we have p |:;f &(1,...,%m), as desired. The case for Dy,q is
symmetric. a

Theorem 5 (Completeness). Whenever we read an informative good (bad)
prefiz p = (0,7) for ©, Dgood (Ppaa) must eventually reach an accepting state.

Proof. For the finite word u’ obtained a bit later with |u’| = |p|,

We@@ﬂwmﬁﬁawjgﬁM@J%ﬁan%@»

where O is a subformula of ¢ and ¢ = O(¢1, . ..,1,). Again, this can be proved
by structural induction (the base step holds by Proposition . The theorem
follows. U

Remark 1. As pointed out in Example[] is possible that some of the bad prefixes
for the input formula ¢ are not informative. Certain syntactic restrictions can be
imposed on ¢ to avoid such a situation. For example, it can be shown that all bad
prefixes of Safety-MTL [27] formulas will inevitably be extended to informative
bad preﬁxesﬁ

5 As noted by Kupferman and Vardi 20|, all Safety-MTL properties are either inten-
tionally safe or accidentally safe.



6 Conclusion

We have proposed a new trace-length independent dense-time online monitoring
procedure for MTL[U, S], based on rewriting the input MTL[U, S] formula into
an LTL[U, S] formula over a set of bounded MTL[U, S] atoms. The former is
converted into a deterministic (untimed) automaton, while the truth values of
the latter are maintained through dynamic programming. We circumvent the
potentially delicate issue of translating MTL[U, S] to a class of deterministic
timed automata.

We are currently investigating whether the procedure can be extended to
support more expressive modalities. Another possible direction for future work
is to improve the monitoring procedure. For example, the dynamic programming
procedures in Section [5.2] can support subformulas with unbounded past. This
can be exploited to use a smaller equivalent formula in place of ¢.
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