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Abstract
We show that for a large class of integer linear recurrence sequences

(𝑢𝑛)𝑛∈N, the first-order theories of ⟨N;<, 𝑛 ↦→ max{0, 𝑢𝑛}⟩ and
⟨N;+, {𝑢𝑛 : 𝑛 ∈ N} ∩ N⟩ are undecidable. Our approach is to show

that (𝑢𝑛)𝑛∈N contains, in a specific sense, all finite sequences overN,
an idea that we borrow from the proof of Hieronymi and Schulz

that the first-order theory of ⟨N;+, {2𝑛 : 𝑛 ∈ N}, {3𝑛 : 𝑛 ∈ N}⟩ is
undecidable. In a similar way, we harness a contemporary result

about quasi-randomness in the values of the Ramanujan tau func-

tion to show that the first-order theory of ⟨N;<, 𝑛 ↦→ |𝜏 (𝑛) |⟩ is
undecidable.
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1 Introduction
Decidability of various logical theories connected to arithmetic

has been a central topic in mathematics since the formulation of

Hilbert’s program [1] in the 1920s, arguably leading to the birth

of modern computer science through the works of Turing in the

1930s [2]. Hilbert believed that every true mathematical statement

must be provable in some formal system using “finitary methods”

[3]. His program, however, was proven unattainable with Gödel’s

proofs of the incompleteness theorems [4], which established the fol-

lowing: there does not exist an algorithm (in particular, an algorithm

that operates on axioms using deduction rules) that takes a first-

order statement in the language of ⟨N;<,+, ·⟩, and decides whether
it is true. Around forty years after Gödel, an even stronger result

was shown by Matiyasevich, Robinson, Davis, and Putnam [5]: it

is not possible to algorithmically determine whether a given mul-

tivariate polynomial 𝑝 ∈ Z[𝑥1, . . . , 𝑥𝑑 ] has a zero in Z𝑑 , famously

resolving Hilbert’s tenth problem in the negative.

On the decidability front, Presburger showed (in 1929, using

quantifier elimination) that the first-order theory of ⟨N;<,+⟩, now
called Presburger arithmetic, is decidable [6]. This spurred almost

100 years of fruitful research aimed at accurately delineating the

boundaries of decidability for expansions of ⟨N;<,+⟩, uncovering
deep connections to computer science (automata theory [7], lin-

ear programming [8]), symbolic dynamics (numeration systems [9,
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Chapter 2]), number theory (rational points on varieties [10]), etc.
1

A central problem in the area, which is also the starting point

of this paper, is the following. Recall that an integer linear re-
currence sequence (LRS) is a sequence (𝑢𝑛)𝑛∈N over Z such that

𝑢𝑛+𝑑 = 𝑎1𝑢𝑛+𝑑−1 + · · · +𝑎𝑑𝑢𝑛 for some 𝑑 ≥ 0 and 𝑎1, . . . , 𝑎𝑑 ∈ Z, the
Fibonacci sequence being perhaps the most emblematic example.

Problem 1. For which integer LRS (𝑢𝑛)𝑛∈N is the first-order theory
of ⟨N;+, {𝑢𝑛 : 𝑛 ∈ N} ∩ N⟩ decidable?

Note that in any structure that has N as the domain and is

equipped with +, we can define the usual order < as well as any con-

stant 𝑐 ∈ N; the same does not hold for structures with domain Z.
Let us next recount the main approaches to proving decidability and

undecidability of the first-order theory of an expansion of ⟨N;+⟩,
and what they tell us in terms of Problem 1.

Quantifier elimination. Semënov [12] gave a sufficient (growth-

type) condition for the structures ⟨N;+, 𝑃⟩ and ⟨N;+, 𝑓 (·)⟩, where
𝑃 ⊆ N and 𝑓 : N → N, to admit quantifier elimination, which

implies decidability of the first-order theory. His criterion yields

decidability for ⟨N;+, 𝑛 ↦→ 2
𝑛⟩, ⟨N;+, 𝑛 ↦→ 𝑛!⟩, ⟨N;+, 𝑛 ↦→ 𝐹𝑛⟩

(where 𝐹𝑛 is the 𝑛th Fibonacci number), and ⟨N;+, 𝑛 ↦→ ⌊𝑒𝑛⌋⟩. In
the context of integer LRS, it yields decidability of the first-order

theory of

⟨N;+, 𝑛 ↦→ max{0, 𝑢𝑛}⟩
for irreducible (𝑢𝑛)𝑛∈N with a single dominant root 𝜌 (which will

necessarily be real); see Section 2.6 for the exact definitions.
2
Note

that the structure with the function𝑛 ↦→ max{0, 𝑢𝑛} is strictly more

expressive than the one with the predicate {𝑢𝑛 : 𝑛 ∈ N} ∩N. Hence
Problem 1 is decidable for the aforementioned class of integer LRS.

Intuitively, the restriction that (𝑢𝑛)𝑛∈N be irreducible ensures that

(𝑢𝑛)𝑛∈N is “atomic” and does not hide multiple different integer LRS

inside it. The number of dominant roots of an LRS, on the other hand,
is a natural measure of complexity of an LRS. Finally, we mention

that a much faster and practical variant of Semënov’s algorithm for

quantifier elimination was recently given in [13].

Axiomatisation. Point [14] showed that for any (𝑢𝑛)𝑛∈N as above,

the first-order theory of ⟨N;+, {𝑢𝑛 : 𝑛 ∈ N}∩N⟩ admits a countable

and decidable axiomatisation. Therefore, for such structures, an

alternative decision procedure can be given as follows: given a

sentence 𝜑 , enumerate all possible proofs (using the countable

axiomatisation and the standard rules of deduction) until either a

proof of 𝜑 or a proof of ¬𝜑 is found.

Automaticity. For any integer LRS (𝑢𝑛)𝑛∈N as above such that the

dominant root 𝜌 is a Pisot number, the predicate {𝑢𝑛 : 𝑛 ∈ N} ∩ N

1
The first-order theory of ⟨N; ·⟩, known as Skolem arithmetic, is also decidable. How-

ever, decidability of first-order theories of various expansions of ⟨N; ·⟩ has not received
much attention. We mention that < is definable in ⟨N;+⟩ but not in ⟨N; ·⟩: in fact,

⟨N;<, ·⟩ defines addition and hence has an undecidable first-order theory [11].

2
Semënov’s criterion provably does not apply to reducible LRS, as well as any LRS

with two or more dominant roots.
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and the function + can be implemented using automata over finite

words that operate on greedy representations of 𝑥 ∈ N in a number

system constructed from 𝜌 [9]. Well-known examples include the

powers of 2 and the binary representation, as well as the Fibonacci

numbers and the Zeckendorf representation [15]. In these cases,

whether a given formula 𝜑 is true can be determined using tools

from automata theory [16].

Definability of multiplication. Undecidability, on the other hand,

has almost exclusively been proven by first showing that the struc-

ture in question defines multiplication, and then invoking unde-

cidability of the (existential fragment of the) first-order theory of

⟨N;+, ·⟩. For example, Büchi observed in 1960 that for any non-

linear polynomial 𝑝 ∈ Z[𝑥] such that 𝑝 (N) ∩ N is infinite, the

structure

⟨N;+, {𝑝 (𝑛) : 𝑛 ∈ N} ∩ N⟩

defines multiplication and hence has an undecidable first-order

theory. To link this result to Problem 1, we mention that for any

𝑝 ∈ Z[𝑥] of degree at least two, the sequence (𝑝 (𝑛))𝑛∈N is an integer

LRS with the single repeated dominant root 𝜌 = 1. Recently, Xiao

[10] showed that ⟨N; 0, 1, <,+, {𝑛2 : 𝑛 ∈ N}⟩, in fact, existentially
defines multiplication, and hence the existential fragment of the
first-order theory of the aforementioned structure is undecidable;

this settled a long-standing open problem in arithmetic geometry

([17, Sec. 8], [18]).

There are many more results that show undecidability of an

expansion of Presburger arithmetic via definability of multiplica-

tion: Bès [19] showed in 1997 that, for any multiplicatively inde-
pendent 𝑘, 𝑙 ≥ 2, the structure ⟨N;+, {𝑘𝑛 : 𝑛 ∈ N},𝑉𝑙 (·)⟩ (where
𝑉𝑙 (𝑥) returns the largest power of 𝑙 dividing 𝑥) defines multiplica-

tion. Woods [20] proved that, assuming Dickson’s conjecture, the
structure ⟨N;+, {𝑛 : 𝑛 is prime}⟩ defines multiplication. For more

examples in this vein, see the survey [21].

The Hieronymi-Schulz method. This paper, however, is about
another powerful, yet under-explored technique for proving unde-

cidability of first-order theories, originating in the recent work [22].

There, Hieronymi and Schulz prove that the first-order theory of

M := ⟨N;+, {2𝑛 : 𝑛 ∈ N}, {3𝑛 : 𝑛 ∈ N}⟩

is undecidable, thus resolving a problem that had been open at least

since 1992 [23].
3
At the same time Schulz [25] has shown that the

structure M does not define multiplication. The approach of [22]

is, therefore, radically different: the idea is to show that we can

extract from M arbitrary finite sequences over N, in a manner that

satisfies some specific conditions that allows directly simulating

Turing machines. For 𝑥 ≥ 1, define 𝛼 (𝑥) by 2
𝛼 (𝑥 ) ≤ 𝑥 < 2

𝛼 (𝑥 )+1
,

and for 𝑥 ≥ 1, 𝑥 not a power of 2, let 𝛽 (𝑥) = 𝛼 (𝑥 − 2
𝛼 (𝑥 ) ). That

is, 𝛽 calculates the (index of the) second-largest bit in the binary

expansion of 𝑥 .

Theorem 1 (Lemma 3.4 in [22]). For every finite sequence (𝑡𝑖 )𝑁𝑖=1
over N there exist 𝑎, 𝑏 ∈ N such that

(𝛽 (3𝑛) − 𝛽 (3𝑎))𝑏−1𝑛=𝑎+1 ∩ [0, 𝛽 (3𝑏 ) − 𝛽 (3𝑎)] = (𝑡𝑖 )𝑁𝑖=1 .

3
More precisely, the ∃∗∀∗∃∗

fragment of the first-order theory of ⟨N; 0, 1,<
,+, {2𝑛 : 𝑛 ∈ N}, {3𝑛 : 𝑛 ∈ N}⟩ is undecidable, and the existential fragment of the

same theory is decidable [24]. Decidability thus remains open for the ∃∗∀∗
fragment.

Here the ∩ operation takes a sequence and an interval, and

returns the sequence obtained by only keeping the elements that

belong to the specified interval. Theorem 1 can be interpreted as

follows: there exists a function with a fixed number of inputs (two

in Theorem 1, namely 3
𝑎, 3𝑏 ∈ N) that can be implemented (in a

very specific sense, as we will see in Section 3) inM that outputs

all possible finite sequences over N. In this paper, we

• define what it means for a structureM to simulate counter
machines (Section 3), which abstracts the Hieronymi-Schulz

approach to proving undecidability, and

• use number-theoretic tools to show that certain classes of

structures simulate counter machines and hence have unde-

cidable first-order theories.

We focus on non-degenerate integer LRS (𝑢𝑛)𝑛∈N with exactly

two non-repeated dominant roots.
4
(In a measure-theoretic sense,

almost all integer LRS are non-degenerate and have either one or

two dominant roots: see, e.g., [27].) Such sequences are of the form

𝑢𝑛 = 𝑎𝜆𝑛 + 𝑎 𝜆
𝑛 + 𝑣𝑛

where 𝜆 is non-real, |𝜆 | > 1, and |𝑎𝜆𝑛 + 𝑎 𝜆
𝑛 | grows much faster

than |𝑣𝑛 |. A concrete example is 𝑢𝑛 = (2+ 𝒊)𝑛 + (2− 𝒊)𝑛 + 2
𝑛
, which

satisfies the recurrence relation 𝑢𝑛+3 = 6𝑢𝑛+2 − 13𝑢𝑛+1 + 10𝑢𝑛 .

When (𝑢𝑛)𝑛∈N satisfying the conditions above is clear from the

context, we write𝑈 = {𝑢𝑛 : 𝑛 ∈ N} ∩ N (which will necessarily be

infinite), (𝑝𝑛)𝑛∈N for the ordering of 𝑈 , and 𝑢 (·) for the function
𝑛 ↦→ max{0, 𝑢𝑛}. Our main results are the following.

Theorem 2. Let (𝑢𝑛)𝑛∈N be a non-degenerate integer LRS (𝑢𝑛)𝑛∈N
with exactly two non-repeated dominant roots. Then there exists a
computable 𝜁 > 1 with the following property. For all ℓ ≥ 1 and
1 < 𝛾1 < 𝛿1 ≤ 𝛾2 < 𝛿2 ≤ · · · ≤ 𝛾ℓ < 𝛿ℓ < 𝜁 , there exist infinitely
many 𝑛 such that

𝑝𝑛+𝑗
𝑝𝑛

∈ (𝛾 𝑗 , 𝛿 𝑗 )

for all 1 ≤ 𝑗 ≤ ℓ .

That is, we can control the ratios of consecutive elements of 𝑈 :

this is the “everything that can happen, will happen” result analo-

gous to Theorem 1 that we need. Using the framework of structures

that simulate counter machines, we deduce the following from

Theorem 2.

Theorem 3. Let (𝑢𝑛)𝑛∈N be a non-degenerate integer LRS (𝑢𝑛)𝑛∈N
with exactly two non-repeated dominant roots. The structure ⟨N;+,𝑈 ⟩
simulates counter machines and therefore has an undecidable first-
order theory.

Note that since𝑈 is definable in ⟨Z;<,+, {𝑢𝑛 : 𝑛 ∈ N}⟩, the first-
order theory of the latter is also undecidable. At the time of writing,

decidability of the first-order theory of ⟨Z;+, {𝑢𝑛 : 𝑛 ∈ N}⟩ remains

open.

The quasi-randomness of the integer LRS that we consider was

already hinted at in the recent paper [28], where the decidability of

4
See Section 9 for a discussion on first-order theories of integer LRS with exactly one

dominant root. We also note that the following problem subsumes the Skolem problem
[26] for integer LRS of order 5, which is currently open: given 𝑥 ∈ N and an integer

LRS (𝑢𝑛 )𝑛∈N with four (non-repeated) dominant roots, decide whether 𝑥 ∈ 𝑈 , where

𝑈 = {𝑢𝑛 : 𝑛 ∈ N} ∩ N. That is, integer LRS with four or more dominant roots are, at

the time of writing, considered mathematically intractable.
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themonadic second-order (MSO) theory of ⟨N;<,𝑈 ⟩ was established
via the following theorem.

Theorem 4 ([28, Theorem 4]). Let (𝑢𝑛)𝑛∈N be a non-degenerate
integer LRS (𝑢𝑛)𝑛∈N with exactly two non-repeated dominant roots,
𝑚 ≥ 1, and

Σ𝑚 = {0 ≤ 𝑟 < 𝑚 : 𝑢𝑛 ≡ 𝑟 (mod𝑚) for infinitely many 𝑛}.
Then for any 𝑡0, . . . , 𝑡ℓ ∈ Σ𝑚 we can compute infinitely many 𝑛 such
that for all 0 ≤ 𝑖 ≤ ℓ ,

𝑝𝑛+𝑖 ≡ 𝑡𝑖 (mod𝑚).

Even though our original motivation was to attack Problem 1,

when proving Theorem 3, we discovered some other, very surprising

undecidability results. The first one is aboutwhat happens if, instead

of the predicate𝑈 , we have the (more expressive) function 𝑢 (·). It
turns out that, in this case, we do not even need the + operator to

obtain undecidability.

Theorem 5. Let (𝑢𝑛)𝑛∈N be a non-degenerate integer LRS (𝑢𝑛)𝑛∈N
with exactly two non-repeated dominant roots. Then the structure
⟨N;<, 𝑢 (·)⟩ simulates counter machines and therefore has an unde-
cidable first-order theory.

Theorem 5 is proven via the following quasi-randomness result

analogous to Theorem 2.

Theorem 6. Let (𝑢𝑛)𝑛∈N be a non-degenerate integer LRS (𝑢𝑛)𝑛∈N
with exactly two non-repeated dominant roots. Then there exists com-
putable 𝜁 > 1 with the following property. For every ℓ ≥ 1 and
1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 with 1 ≤ 𝑗 ≤ ℓ , there exist infinitely many 𝑛, 𝑛 such
that, writing (𝑛 𝑗 )𝑘𝑗=0 for the ordering of {𝑚 : 𝑛 ≤ 𝑚 < 𝑛 and 𝑢𝑛 ≤
𝑢𝑚 < 𝜁𝑢𝑛}, we have that 𝑢𝑛 > 0, 𝑘 = ℓ and

𝑢𝑛 𝑗

𝑢𝑛
∈ (𝛾 𝑗 , 𝛿 𝑗 )

for all 1 ≤ 𝑗 ≤ ℓ .

Motivated by theorems 3 and 5 above, we say that a sequence

(𝑢𝑛)𝑛∈N is rich if ⟨N;+, {𝑢𝑛 : 𝑛 ∈ N}∩N⟩ or ⟨N;<, 𝑛 ↦→ max{0, 𝑢𝑛}⟩
simulates counter machines. It turns out that quasi-randomness

properties of various special sequences in mathematics have already

been extensively studied, and we can deduce richness results for

the corresponding structures relatively easily. In this paper, we

do this for 𝜏 : N → Z, the Ramanujan tau function, using a recent
quasi-randomness result of Bilu, Deshouillers, Gun, and Luca [29];

see Section 4 for the details.

Theorem 7. Assuming Lehmer’s conjecture, ⟨N;<, |𝜏 (·) |⟩ sim-
ulates counter machines and hence has an undecidable first-order
theory.

Note that, once again, we do not need the + operator to prove

undecidability.

2 Preliminaries
We denote the cardinality of a set𝑋 by #𝑋 . For 𝑥 ∈ R and𝑦 ∈ R\{0},
let [[𝑥]]𝑦 be the smallest distance from 𝑥 to an integer multiple of 𝑦.

We denote by 𝒊 the imaginary number and by Log the principal

branch of the complex logarithm, which satisfies Log(𝑥 + 𝑦 𝒊) =

𝒊𝜃 + log

√︁
𝑥2 + 𝑦2, 𝜃 ∈ (−𝜋, 𝜋] for all 𝑥,𝑦 ∈ R. We write T for the

unit circle in C, and T+ for {𝑧 ∈ T : Re(𝑧) > 0}. For 𝑧1, 𝑧2 ∈ T, we
write Δ(𝑧1, 𝑧2) for the length of the shorter arc of T connecting 𝑧1
and 𝑧2.

2.1 Structures and their theories
A structureM consists of a domain𝐷 , constants 𝑐1, . . . , 𝑐𝑘 ∈ 𝐷 , pred-

icates 𝑃1, . . . , 𝑃𝑙 where each 𝑃𝑖 ⊆ 𝐷𝜇 (𝑖 )
for some 𝜇 (𝑖) ≥ 1, and func-

tions 𝑓1, . . . , 𝑓𝑚 where each 𝑓𝑖 has the type 𝑓𝑖 : 𝐷
𝛿 (𝑖 ) → 𝐷 for some

𝛿 (𝑖) ≥ 1. We denote suchM by ⟨𝐷 ; 𝑐1, . . . , 𝑐𝑘 , 𝑃1, . . . , 𝑃𝑙 , 𝑓1, . . . , 𝑓𝑚⟩.
We do note explicitly mention = as a predicate, but assume that

every structure has it. A theory is simply a set of sentences, i.e.

first-order formulas without free variables. The (first-order) the-

ory of a structure M is the set of all well-formed sentences (i.e.

formulas without free variables) constructed from the symbols

𝑐1, . . . , 𝑐𝑘 , 𝑃1, . . . , 𝑃𝑙 , 𝑓1, . . . , 𝑓𝑚 as well as ∧,∨,¬, ∃,∀ that are true

in M. We write M |= 𝜑 to mean that 𝜑 holds in M. A formula

is existential if it is of the form ∃𝑥1 · · · ∃𝑥𝑚 : 𝜑 (𝑥1, . . . , 𝑥𝑚) for 𝜑
quantifier-free. A theory T is decidable if there exists an algorithm

that takes a sentence 𝜑 and decides whether 𝜑 ∈ T and undecidable
otherwise.

2.2 Counter machines
A 𝑘-counter machine M consists of counters 𝑐1, . . . , 𝑐𝑘 taking posi-

tive integer values and instructions numbered 1, . . . , 𝐻 for some 𝐻 .

Without loss of generality, we assume that 𝐻 > 1. The instructions

are of the form INC 𝑐𝑖 , IF 𝑐𝑖 > 1 THEN DEC 𝑐𝑖 , GOTO 𝑙 , and HALT,
where 𝑐𝑖 is a counter and 𝑙 is an instruction number. That is, the

counters can be incremented and decremented, but they cannot go

below 1. We additionally assume, without loss of generality, that the

machine starts with the instruction numbered 1, and has a single

HALT instruction, numbered 𝐻 . The initial values of the counters

are all 1. We write 𝛿𝑀 : {1, . . . , 𝐻 } × N𝑘
>0 → {1, . . . , 𝐻 } × N𝑘

>0 for

the (partial) transition function of M that describes how a configu-

ration consisting of an instruction number 𝑙 ≠ 𝐻 and the values of

the 𝑘 counters is updated in one step. By the trace of M we mean

the (finite or infinite) sequence

(𝑠𝑛)𝑛 = ⟨0, 𝜄0, 𝑐1,0, . . . , 𝑐𝑘,0, 0, 𝜄1, 𝑐1,1, . . . , 𝑐𝑘,1, . . .⟩
such that 𝑠𝑛 = 0 ⇔ 𝑛 ≡ 0 (mod 𝑘 + 2), 𝜄0 = 1, 𝑐 𝑗,0 = 0 for all 𝑗 , and

(𝜄 𝑗+1, 𝑐1, 𝑗+1, . . . , 𝑐𝑘,𝑗+1) = 𝛿M (𝜄 𝑗 , 𝑐1, 𝑗 , . . . , 𝑐𝑘,𝑗 )
for all 𝑗 such that 𝜄 𝑗 ≠ 𝐻 . Note that we use 0 as a delimiter between

consecutive configurations of M. The Halting Problem asks to

decide whether the execution of a given machineM ever reaches

the HALT instruction, and is undecidable already for two-counter

machines [30].

2.3 Algebraic numbers
An algebraic number 𝛼 is a complex number that is a root of a

polynomial 𝑝 ∈ Q[𝑥]. The unique monic polynomial 𝑝 of the small-

est degree that has 𝛼 as a root is called the minimal polynomial 𝛼 .
The set of algebraic numbers forms a field, written Q. An algebraic

number 𝛼 can be represented in computer memory, for example,

by its minimal polynomial 𝑝 as well as sufficiently close rational

approximations to Re(𝛼) and Im(𝛼). In this representation, all usual
arithmetic operations can be effectively performed on algebraic

numbers [31, Chapter 4].
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2.4 Baker’s theorem
Baker’s theorem and its 𝑝-adic analogue are among the most im-

portant mathematical tools in the study of linear recurrence se-

quences. Let Λ = 𝑏1 Log(𝛼1) + · · ·+𝑏𝑚 Log(𝛼𝑚), where 𝑏𝑖 ∈ Z\ {0},
𝛼 ∈ Q \ {0}. Such a Λ is called a linear form in logarithms.

Theorem 8. Let 𝐵 ≥ 3 be such that 𝐵 > |𝑏𝑖 | for all 𝑖 . There exists
a computable constant 𝐶 > 0 (that only depends on 𝛼1, . . . , 𝛼𝑚) such
that

|Λ| > 𝐵−𝐶

whenever Λ ≠ 0.

Lemma 9. Let 𝛼, 𝛽 ∈ T, 𝑛 ∈ N be such that 𝛼𝑛 ≠ 𝛽 . There exists a
computable constant 𝐶0 > 0 such that

Δ(𝛼𝑛, 𝛽) > 1

(max{2, 𝑛})𝐶0

.

Proof. We have that

Δ(𝛼𝑛, 𝛽) = 𝜋 [[𝑛 Log(𝛼) − Log(𝛽)]]2𝜋
= 𝜋 (𝑛 Log(𝛼) − Log(𝛽) − 𝑘𝜋)
= 𝜋 (𝑛 Log(𝛼) − Log(𝛽) − 𝑘 Log(−1))

where −𝑛 − 1 ≤ 𝑘 ≤ 𝑛 + 1. Applying Baker’s theorem with 𝐵 =

max {3, 𝑛 + 1}, there exists a constant 𝐶 > 0 such that

Δ(𝛼𝑛, 𝛽) > 1

(max{3, 𝑛 + 1})𝐶
.

Finally, choose any 𝐶0 > 0 such that 3
−𝐶 > 2

−𝐶0
and (𝑛 + 1)−𝐶 >

𝑛−𝐶0
for all 𝑛 ≥ 3. □

2.5 Linear recurrence sequences
A sequence (𝑢𝑛)𝑛∈N over a ring 𝑅 is a linear recurrence sequence
(LRS) over 𝑅 if there exist 𝑑 ≥ 0 and 𝑎1, . . . , 𝑎𝑑 ∈ 𝑅 such that

𝑢𝑛+𝑑 = 𝑎1𝑢𝑛+𝑑−1 + · · · + 𝑎𝑑𝑢𝑛 (1)

for all 𝑛 ∈ N. The smallest such 𝑑 is called the order of (𝑢𝑛)𝑛∈N. In
this paper, we work with LRS over Z, which we also call integer
LRS. For example, the Fibonacci sequence satisfies 𝑢𝑛+2 = 𝑢𝑛+1 +𝑢𝑛
for all 𝑛 ∈ N and is an integer LRS of order two. We refer the reader

to the book [32] for a detailed account of LRS.

Let 𝑅 ⊆ Q and (𝑢𝑛)𝑛∈N be an LRS over 𝑅 of order 𝑑 . Then

there exist unique 𝑎1, . . . , 𝑎𝑑 ∈ 𝑅 (with 𝑎𝑑 ≠ 0) such that (𝑢𝑛)𝑛∈N
satisfies the recurrence relation (1). The minimal polynomial of
(𝑢𝑛)𝑛∈N is 𝑝 (𝑥) = 𝑥𝑑 − ∑𝑑

𝑖=1 𝑐𝑖𝑥
𝑑−𝑖

. Suppose 𝑝 has the (distinct)

roots 𝜆1, . . . , 𝜆𝑚 ∈ Q, called the characteristic roots of (𝑢𝑛)𝑛∈N. Then
there exist unique non-zero polynomials 𝑞1, . . . , 𝑞𝑚 ∈ Q[𝑥] such
that

𝑢𝑛 = 𝑞1 (𝑛)𝜆𝑛1 + · · · + 𝑞𝑚 (𝑛)𝜆𝑛𝑚 (2)

for all 𝑛 ∈ N. Equation (2) is known as the exponential-polynomial
form of (𝑢𝑛)𝑛∈N. A characteristic root 𝜆𝑖 is called non-repeated (al-

ternatively, simple) if 𝑞𝑖 is constant. The sequence (𝑢𝑛)𝑛∈N is called

diagonalisable (alternatively, simple) if every 𝜆𝑖 is non-repeated.

A characteristic root 𝜆𝑖 is called dominant if |𝜆𝑖 | ≥ |𝜆 𝑗 | for all
1 ≤ 𝑗 ≤ 𝑚. We say that (𝑢𝑛)𝑛∈N is non-degenerate if 𝑧 := 𝜆𝑖/𝜆 𝑗 is
not a root of unity for all 𝑖 ≠ 𝑗 , i.e., 𝑧𝑘 ≠ 1 for all 𝑘 ≠ 0. For any LRS

(𝑢𝑛)𝑛∈N, there exists 𝐿 (that is effectively computable for integer

LRS) such that the subsequences (𝑢𝑛𝐿+𝑟 )𝑛∈N are non-degenerate for

all 0 ≤ 𝑟 < 𝐿. By the Skolem-Mahler-Lech theorem, every non-zero

and non-degenerate LRS over 𝑅 (in fact, over any ring of charac-

teristic zero) has finitely many zeros. We say that an integer LRS

(𝑢𝑛)𝑛∈N is irreducible if its characteristic polynomial is irreducible

over Q.
Decision problems of linear recurrence sequences, despite being

of central interest in algebraic number theory, largely remain open.

The most famous example is the Skolem Problem, which asks to

decide whether a given integer LRS contains zero. It is known to be

decidable for non-degenerate LRS with at most 3 distinct dominant

roots [33].

2.6 LRS with two dominant roots
In this section, fix a non-degenerate integer LRS (𝑢𝑛)𝑛∈N with ex-

actly two dominant roots. Because the dominant roots are closed

under complex conjugation, we either have two real dominant roots

𝜆,−𝜆, or two non-real dominant roots 𝜆, 𝜆. We will adopt the follow-

ing notation throughout this paper: 𝑢𝑛 = 𝑣𝑛 + 𝑟𝑛 , 𝑣𝑛 = 𝑎𝜆𝑛 + 𝑎 𝜆
𝑛

where 𝑎 ∈ Q \ {0}, 𝜌 = |𝜆 | > 0, 𝜆 = 𝜌𝜇, 𝜇 = 𝑒 𝒊𝜃 ∈ T, 𝑎 = |𝑎 |𝜉 , and
𝜉 = 𝑒 𝒊𝜑 ∈ TWe have that

𝑎𝜆𝑛 + 𝑎 𝜆
𝑛
= |𝑎 |𝜌𝑛 (𝜉𝜇𝑛 + 𝜉 𝜇𝑛) = 2|𝑎 |𝜌𝑛 cos(𝑛𝜃 + 𝜑)

and, by the assumption on dominant roots, |𝑟𝑛 | = 𝑜 ((𝜌 − 𝜀)𝑛) for
all sufficiently small 𝜀 > 0 (where the implied constant is effective).

By non-degeneracy, 𝜃 is not a rational multiple of 𝜋 . Finally, we

mention that both (𝑣𝑛)𝑛∈N and (𝑟𝑛)𝑛∈N are themselves LRS over

R ∩ Q.
By Kronecker’s theorem in Diophantine approximation [34],

because 𝜃 is not a rational multiple of 𝜋 , we have that (cos(𝑛𝜃 +
𝜑))𝑛∈N is dense in [−1, 1]; equivalently, (𝜉𝜇𝑛)𝑛∈N is dense in T. We

next argue that 𝜌 > 1. Suppose 𝜌 ≤ 1. Then, as 𝜌 is dominant,

|𝑢𝑛 | is bounded, and so as 𝑢𝑛 takes integer values, 𝑢𝑛 = cos(𝑛𝜃 +
𝜑)𝜌𝑛 +𝑜 ((𝜌 −𝜀)𝑛) only takes finitely many values for small enough

𝜀 > 0. Hence, as (cos(𝑛𝜃 + 𝜑))𝑛∈N is dense in [−1, 1], 𝜌 < 1 and

thus (𝑢𝑛)𝑛∈N is eventually constantly 0. Combined with the non-

degeneracy assumption and the Skolem-Mahler-Lech theorem, this

implies that 𝑢𝑛 must be identically zero, which is a contradiction.

We next give a few lemmas for our class of LRS. The following

two results are proven using Baker’s theorem.

Lemma 10 ([35, Lemma 3]). There exist computable constants
𝑁,𝐶 > 0 such that for all 𝑛 ≥ 𝑁 , |𝑣𝑛 | > 𝜌𝑛

𝑛𝐶
.

Theorem 11 ([33, Theorem 3]). There exist computable constants
𝑁,𝐶 > 0 such that for all 𝑛 ≥ 𝑁 and𝑚 < 𝑛,

|𝑢𝑛 − 𝑢𝑚 | > 𝜌𝑛𝑛−𝐶 (log(𝑛+1) )2 .

In the following lemmas, we show that, for our purposes, we can

work with 𝑣𝑛 instead of 𝑢𝑛 , provided that 𝑛 is sufficiently large.

Lemma 12. There exists computable𝑀 with the following property.
For all distinct 𝑛1, 𝑛2 ∈ N with 𝑛1 ≥ 𝑀 we have that 𝑢𝑛1 ≠ 𝑢𝑛2 ,
𝑢𝑛1 ≠ 0, sign(𝑢𝑛1 ) = sign(𝑣𝑛1 ), and sign(𝑢𝑛1−𝑢𝑛2 ) = sign(𝑣𝑛1−𝑣𝑛2 ).

Proof. Let 𝑁,𝐶 be as in Theorem 11. Then for all 𝑛1 ≠ 𝑛2
such that at least one 𝑛𝑖 ≥ 𝑁 , we have that 𝑢𝑛1 ≠ 𝑢𝑛2 . Since

|𝑟𝑛 | < 𝑜 ((𝜌−𝜀)𝑛) for all sufficiently small 𝜀 > 0, applying Lemma 10
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we can compute 𝑁 ′ ≥ 𝑁 such that |𝑣𝑛 | > |𝑟𝑛 | and hence 𝑢𝑛 ≠ 0 for

all 𝑛 ≥ 𝑁 ′
.

Consider𝑛1 ≥ 𝑁 ′
and𝑛1 ≠ 𝑛2. Exchanging𝑛1 and𝑛2 if necessary,

we can assume that 𝑛1 > 𝑛2. Then

𝑣𝑛1 − 𝑣𝑛2 = 𝑢𝑛1 − 𝑢𝑛2 + (𝑟𝑛2 − 𝑟𝑛1 ). (3)

Since (𝑟𝑛)𝑛∈N = 𝑜 ((𝜌 − 𝜀)𝑛) for all sufficiently small 𝜀 ≥ 0, we can

compute 𝑁 and 𝜀 > 0 such that

|𝑟𝑛2 − 𝑟𝑛1 | < (𝜌 − 𝜀)𝑛1

for all 𝑛1, 𝑛2 with 𝑛1 ≥ 𝑁 . Applying Theorem 11, for all sufficiently

large 𝑛1 and (any) 𝑛1 > 𝑛2, we have that

|𝑢𝑛1 − 𝑢𝑛2 |
|𝑟𝑛2 − 𝑟𝑛1 |

>
𝜌𝑛1𝑛

−𝐶 (log(𝑛1+1) )2
1

(𝜌 − 𝜀)𝑛1 > 1

which implies (together with Equation (3)) that

sign(𝑣𝑛1 − 𝑣𝑛2 ) = sign(𝑢𝑛1 − 𝑢𝑛2 ) ∈ {−,+}. □

Lemma 13. For every 𝜀 ∈ Q>0 there exists computable𝑀𝜀 such that
for all 𝑛 ≥ 𝑀𝜀

1 − 𝜀 <
|𝑢𝑛 |
|𝑣𝑛 |

< 1 + 𝜀.

Proof. We have

𝑢𝑛

𝑣𝑛
= 1 + 𝑟𝑛

𝑣𝑛
.

It remains to observe that by Lemma 10,

lim

𝑛→∞
𝑟𝑛

𝑣𝑛
= 0

effectively. □

2.7 The Hieronymi-Schulz interval stacking
lemma

The following lemma plays a crucial role in the proof of Theorem 1,

as well as our theorems 2 and 6.

Lemma 14 ([22, Lemma 2.1]). Let 𝐼 ⊆ T be an interval and (𝐼𝑛)𝑛∈N
be a sequence of intervals such that

∑∞
𝑛=0 |𝐼𝑛 ∩ 𝐼 | < |𝐼 | and (𝐼𝑛)𝑛∈N is

dense in 𝐼 . That is, for every open 𝐽 ⊆ 𝐼 there exist infinitely many 𝑛
such that 𝐼𝑛 intersects 𝐽 . Then there exist infinitely many 𝑘 such that
𝐼𝑘 ⊆ 𝐼 and 𝐼𝑘 ∩ 𝐼𝑛 = ∅ for all 𝑛 < 𝑘 .

Proof. See Appendix A. □

3 How to prove undecidability
We say that a structureMwith domain𝐷 simulates counter machines
if there exist 𝑙,𝑚 ≥ 1, maps Seq : 𝐷𝑙 → N∗

, Rep : 𝐷𝑙 → (𝐷𝑚)∗, and
formulas rep, cnst𝑘 (where 𝑘 ∈ N and we additionally require

that cnst𝑘 be effectively computable given 𝑘), succ, inc, eq in the

language ofM with 𝑙 +𝑚, 𝑙 +𝑚, 𝑙 + 2𝑚, 𝑙 + 2𝑚, 𝑙 + 2𝑚 free variables,

respectively, that satisfy the following.

(1) The map Seq is surjective. Intuitively, Seq is a black box

with 𝑙 inputs that is “implementable” inM that outputs all

possible finite sequences over N.
(2) For all 𝑥 ∈ 𝐷𝑙

, |Seq(𝑥) | = |Rep(𝑥) |, and the terms of Rep(𝑥)
are distinct. Intuitively, Rep(𝑥) is a finite sequence of distinct
terms that index the sequence Seq(𝑥).

3) For all 𝑥 ∈ 𝐷𝑙
and 𝑦 ∈ 𝐷𝑚

, M |= rep(𝑥,𝑦) if and only

if 𝑦 = Rep(𝑥)𝑖 for some 𝑖 . That is, 𝑦 appears in Rep(𝑥);
equivalently, 𝑦 is the index of some term in Seq(𝑥).

4) For all 𝑘 ∈ N, 𝑥 ∈ 𝐷𝑙
and 𝑦 ∈ 𝐷𝑚

, M |= cnst𝑘 (𝑥,𝑦) if and
only if there exists 𝑖 such that 𝑦 = Rep(𝑥)𝑖 and Seq(𝑥)𝑖 = 𝑘 :

that is, 𝑦 is the index of a term in Seq(𝑥) that is equal to 𝑘 .
5) For all 𝑥 ∈ 𝐷𝑙

and 𝑦, 𝑧 ∈ 𝐷𝑚
, M |= succ(𝑥,𝑦, 𝑧) if and only

if 𝑦, 𝑧 are two consecutive terms appearing in Rep(𝑥): that
is, 𝑦, 𝑧 index two consecutive terms of Seq(𝑥). Note that

succ(𝑥,𝑦, 𝑧) implies rep(𝑥,𝑦) and rep(𝑥, 𝑧).
6) For all 𝑥 ∈ 𝐷𝑙

and 𝑦, 𝑧 ∈ 𝐷𝑚
, M |= inc(𝑥,𝑦, 𝑧) if and only

if there exist 𝑖, 𝑗 such that that 𝑦 = Rep(𝑥)𝑖 , 𝑧 = Rep(𝑥) 𝑗 ,
and Seq(𝑥) 𝑗 = Seq(𝑥)𝑖 + 1: that is, 𝑦, 𝑧 index two terms 𝑡1, 𝑡2,

respectively, of Seq(𝑥) that satisfy 𝑡2 = 𝑡1 + 1.

7) For all 𝑥 ∈ 𝐷𝑙
and 𝑦, 𝑧 ∈ 𝐷𝑚

, M |= eq(𝑥,𝑦, 𝑧) if and only

if there exist 𝑖, 𝑗 such that 𝑦 = Rep(𝑥)𝑖 , 𝑧 = Rep(𝑥) 𝑗 and
Seq(𝑥) 𝑗 = Seq(𝑥)𝑖 : that is, 𝑦, 𝑧 index two terms of Seq(𝑥)
that are equal.

Note that “M simulates counter machines” is not the same at

all as “arbitrary finite sequences over N are definable in M” in the

classical sense (of model theory): the latter applies to structures

M with domain 𝐷 ⊇ N, and means
5
that there exists 𝑙 ≥ 1 and

a single formula 𝜑 with 𝑙 + 2 free variables such that when we

plug 𝑥 ∈ 𝐷𝑙
into 𝜑 , the resulting formulas (with two free variables)

define all finite sequences over N, where (𝑡𝑖 )𝑁𝑖=1 is viewed as the set
{(1, 𝑡1), . . . , (𝑁, 𝑡𝑁 )}.

Theorem 15. Let M be a structure with domain 𝐷 that simulates
counter machines. The first-order theory ofM is undecidable.

Proof. We will describe a procedure that takes as input a two-

counter machine M, and outputs a formula Φ in the language of

M that is true (in M) if and only if M halts. Recall that M has

counters 𝑐1, 𝑐2 (initialised to 1) that take positive integer values

and instructions 1, . . . , 𝐻 for 𝐻 > 1. The execution starts at line

𝑙 = 1, and 𝑙 = 𝐻 is the unique halting instruction. The trace ofM is

⟨0, 𝜄0, 𝑐1,0, 𝑐2,0, 0, 𝜄1, 𝑐1,1, 𝑐2,1, . . .⟩ where 𝜄𝑛, 𝑐1,𝑛, 𝑐2,𝑛 are, respectively,

the (next) instruction to be executed, the value of 𝑐1, and the value

of 𝑐2 at time 𝑛. We will construct a formula Φ that states “there

exists 𝑥 such that Seq(𝑥) is a finite sequence that is the trace ofM
ending in the halting state”, which is true if and only ifM halts.

5
There is some room for interpretation of what definability of arbitrary finite sequences

inM should mean in the setting of model theory.
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Define Φ := ∃𝑥 ∈ 𝐷𝑙
:

(
Φinit (𝑥) ∧ Φfinal (𝑥) ∧ Φ𝛿 (𝑥)

)
where

Φinit (𝑥) := ∃𝑦1, 𝑦2, 𝑦3, 𝑦4 ∈ 𝐷𝑚
:

(
3∧

𝑖=1

succ(𝑥,𝑦𝑖 , 𝑦𝑖+1)

∧ cnst0 (𝑥,𝑦1) ∧
4∧

𝑖=2

cnst1 (𝑥,𝑦𝑖 )
)

Φfin (𝑥) := ∃𝑦1, 𝑦2, 𝑦3, 𝑦4 ∈ 𝐷𝑚
:

(
3∧

𝑖=1

succ(𝑥,𝑦𝑖 , 𝑦𝑖+1)

∧ cnst0 (𝑥,𝑦1) ∧ cnst𝐻 (𝑥,𝑦2)
)

Φ𝛿 (𝑥) := ∀𝑦1, . . . , 𝑦8 ∈ 𝐷𝑚
:(

cnst0 (𝑥,𝑦1) ∧
7∧

𝑖=1

succ(𝑥,𝑦𝑖 , 𝑦𝑖+1)

⇒ cnst0 (𝑥,𝑦5) ∧ Ψ(𝑥,𝑦2, 𝑦3, 𝑦4, 𝑦6, 𝑦7, 𝑦8)
)

and Ψ is a positive Boolean combination of the formulas imple-

menting the transition function ofM, i.e. a positive Boolean combi-

nation of formulas inc(𝑥,𝑦𝑖 , 𝑦 𝑗 ), cnst𝑘 (𝑥,𝑦𝑖 ), and ¬cnst𝑘 (𝑥,𝑦𝑖 ) for
𝑖, 𝑗 ∈ {2, 3, 4, 6, 7, 8} and 1 ≤ 𝑘 ≤ 𝐻 . The formula Φinit (𝑥) states
that the sequence Seq(𝑥) starts with four consecutive terms that

are 0, 1, 1, 1, respectively. The formula Φfin (𝑥) states that Seq(𝑥)
contains four consecutive terms 𝑠1, . . . , 𝑠4 such that 𝑠1 = 0 and

𝑠2 = 𝐻 . Together, the two formulas imply that Seq(𝑥) must con-

tain at least eight terms: in particular, two blocks of four consec-

utive terms that start with the delimiter 0. Finally, Φ𝛿 (𝑥) states
that whenever 𝑠1, . . . , 𝑠8 are consecutive terms of Seq(𝑥) such that

𝑠1 = 0, then 𝑠5 = 0 and the transition function of M satisfies

𝛿M (𝑠2, 𝑠3, 𝑠4) = (𝑠6, 𝑠7, 𝑠8). □

4 The first-order theory of ⟨N;<, |𝜏 (·) |⟩
We start with Theorem 7, as it is the easiest one among our unde-

cidability results, in the sense that the hard mathematical work has

already been done in [29]. Let

H = {𝑧 ∈ C : Im(𝑧) > 0}.

A modular form of weight 𝑘 is an analytic function 𝑓 : H → C
satisfying the following conditions.

• For any

Γ =

[
𝑎 𝑏

𝑐 𝑑

]
∈ SL2 (Z)

and 𝑧 ∈ H ,

𝑓

(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
= (𝑐𝑧 + 𝑑)𝑘 𝑓 (𝑧).

The Möbius transformations 𝑧 ↦→ 𝑎𝑧+𝑏
𝑐𝑧+𝑑 for 𝑎, 𝑏, 𝑐, 𝑑 as above

are precisely the automorphisms of H ; thus the condition

above states that 𝑓 behaves well with respect to the symme-

tries ofH .

• We can write

𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑞
𝑛

where 𝑎𝑛 ∈ C for all 𝑛 and 𝑞 = 𝑒 𝒊2𝜋𝑧 . That is, the Fourier

expansion of 𝑓 in terms of 𝑞 does not have any negative pow-

ers. In the most interesting cases, 𝑎𝑛 are often real numbers,

and sometimes even integers.

We say that 𝑓 is a cusp modular form if additionally 𝑎0 = 0. Modular

forms (as well as their Fourier coefficients) play a fundamental role

in contemporary mathematics, e.g. in the theory of elliptic curves

and studying the solutions of Diophantine equations, Wiles’ proof

of Fermat’s Last Theorem [36] being a prominent example of both.

In this section, we focus on the modular form called the quadratic
discriminant, denoted Δ, and its Fourier coefficients, which are

the values of the famous Ramanujan tau function; however, our
undecidability result can be easily generalised to (coefficients of) a

large class of modular forms called primitive forms.
The quadratic discriminant is a cusp modular form of weight 12

(no such forms of weight 2, . . . , 11 exist) defined by

Δ(𝑧) = 𝑞

∞∏
𝑛=1

(1 − 𝑞𝑛)24

where 𝑞 = 𝑒 𝒊2𝜋𝑧 . The Ramanujan tau function returns the value of

the 𝑛th Fourier coefficient of Δ, i.e.,

Δ(𝑧) =
∞∑︁
𝑛=0

𝜏 (𝑛)𝑞𝑛, 𝜏 (0) = 0, 𝜏 : N → Z.

The tau function makes fascinating appearances in a diverse range

of fields of mathematics; see, e.g., [37] for an exposition. It is

known to be non-zero infinitely often and multiplicative: 𝜏 (𝑚𝑛) =
𝜏 (𝑚)𝜏 (𝑛) for any coprime 𝑚,𝑛. Lehmer’s conjecture states that

𝜏 (𝑛) ≠ 0 for all 𝑛 ≥ 1; this has been empirically verified [38]

at least for all 𝑛 ≤ 10
20
. Given 𝑛 in binary, 𝜏 (𝑛) can be computed

in polynomial time, thanks to deep connections between the 𝜏

function and the number of rational points on elliptic curves [39,

Chapter 15]. The only technical lemma about the tau function that

we will need is the following, which is a specialisation of the main

result of [29] concerning coefficients of primitive modular forms.

For the remainder of this section, we write 𝑓 (𝑛) = |𝜏 (𝑛) |.

Theorem 16. Let 𝜎 : {1, . . . , 𝑘} → {1, . . . , 𝑘} be a permutation.
Assuming Lehmer’s conjecture, there exist infinitely many 𝑐 ∈ N such
that

𝑓 (𝑐 + 𝜎 (1)) < · · · < 𝑓 (𝑐 + 𝜎 (𝑘)),
i.e. for all 𝑐 < 𝑛1, 𝑛2 ≤ 𝑐 + 𝑘 ,

𝑓 (𝑛1) < 𝑓 (𝑛2) ⇔ 𝜎 (𝑛1 − 𝑐) < 𝜎 (𝑛2 − 𝑐) .

Phrased differently, from 𝜏 we can extract, in a very simple

manner, arbitrary finite permutations.
6
It remains to show how to

simulate finite sequences over N using finite permutations.

Proof of Theorem 7. For 𝑐, 𝑑, 𝑒 ∈ N we define

Rep(𝑐, 𝑑, 𝑒) = (𝑑 + 1, 𝑑 + 2, . . . , 𝑒)
and Seq(𝑐, 𝑑, 𝑒) to be the finite sequence (𝑡𝑖 )𝑒−𝑑𝑖=1 over {0, . . . , 𝑑 − 𝑐}
where

𝑡𝑖 = #{𝑐 < 𝑛 ≤ 𝑑 : 𝑓 (𝑛) < 𝑓 (𝑑 + 𝑖)}.
6
By slightly modifying the arguments of [29], we can show that one can, in fact, extract

arbitrary permutations from ( |𝜏 (𝑛) | )𝑛∈N even if the tau function were to have zeros.

That is, with more work we can prove undecidability without assuming Lehmer’s

conjecture.
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Thus 𝑑 + 𝑖 indexes the 𝑖th term of Seq(𝑐, 𝑑, 𝑒), in the sense of Sec-

tion 3.We claim that, assuming Lehmer’s conjecture, Seq : N3 → N∗

is onto. To see this, consider a non-empty sequence (𝑡𝑖 )𝑁𝑖=1 over
{0, . . . , 𝑅}; note that for the empty sequence, we can take, e.g.,

𝑐 = 𝑑 = 𝑒 . Let 𝜎 be a permutation of {1, . . . , 𝑁 + 𝑅} such that

𝜎 (1) < · · · < 𝜎 (𝑅) and
#{1 ≤ 𝑗 ≤ 𝑅 : 𝜎 ( 𝑗) < 𝜎 (𝑅 + 𝑖)} = 𝑡𝑖

for all 1 ≤ 𝑖 ≤ 𝑁 . Applying Theorem 16, there exist infinitely many

𝑐 ∈ N such that for all 𝑐 < 𝑛1, 𝑛2 ≤ 𝑁 + 𝑅,

𝑓 (𝑛1) < 𝑓 (𝑛2) ⇔ 𝜎 (𝑛1 − 𝑐) < 𝜎 (𝑛2 − 𝑐).
We can choose any such 𝑐 , and set 𝑑 = 𝑐 + 𝑅, 𝑒 = 𝑐 + 𝑅 + 𝑁 . Then

for all 1 ≤ 𝑖 ≤ 𝑁 ,

{𝑐 < 𝑛 ≤ 𝑑 : 𝑓 (𝑛) < 𝑓 (𝑑 + 𝑖)} = {𝑐 < 𝑛 ≤ 𝑑 : 𝜎 (𝑛 − 𝑐) < 𝜎 (𝑏 + 𝑖)}
= {1 ≤ 𝑗 ≤ 𝑏 : 𝜎 ( 𝑗) < 𝜎 (𝑏 + 𝑖)}.

Therefore, Seq(𝑐, 𝑑, 𝑒) = (𝑡𝑖 )𝑁𝑖=1. Next, we define
rep(𝑐, 𝑑, 𝑒, 𝑛) := 𝑑 + 1 ≤ 𝑛 ≤ 𝑒

cnst0 (𝑐, 𝑑, 𝑒, 𝑛) := rep(𝑐, 𝑑, 𝑒, 𝑛) ∧
¬∃𝑚 ∈ (𝑐, 𝑑] : 𝑓 (𝑚) < 𝑓 (𝑛)

cnst𝑘 (𝑐, 𝑑, 𝑒, 𝑛) := rep(𝑐, 𝑑, 𝑒, 𝑛) ∧
∃!{𝑚1, . . . ,𝑚𝑘 } ⊂ (𝑐, 𝑑] : 𝑓 (𝑚1), . . . , 𝑓 (𝑚𝑘 ) < 𝑓 (𝑛)

succ(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
∀𝑚 ∈ (𝑛1, 𝑛2) : ¬rep(𝑐, 𝑑, 𝑒,𝑚)

inc(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
∃!𝑚 ∈ (𝑐, 𝑑] : 𝑓 (𝑚) ∈ [𝑓 (𝑛1), 𝑓 (𝑛2))

eq(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
¬∃𝑚 ∈ (𝑐, 𝑑] : 𝑓 (𝑚) ∈ [𝑓 (𝑛1), 𝑓 (𝑛2)) ∪ [𝑓 (𝑛2), 𝑓 (𝑛1))

where 𝑘 ∈ N≥1 and ∃!{𝑚1, . . . ,𝑚𝑙 } ⊂ (𝑐, 𝑑] means “there exists

a unique set {𝑚1, . . . ,𝑚𝑘 } of 𝑘 numbers from (𝑐, 𝑑]”. (Similarly,

∃!𝑚 ∈ (𝑐, 𝑑] means “there exists unique 𝑚 ∈ (𝑐, 𝑑]”.) Observe
that for valid representatives 𝑛1, 𝑛2 (i.e., when 𝑑 + 1 ≤ 𝑛1, 𝑛2 ≤ 𝑒),

eq(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) should evaluate to false if and only if there exists

𝑚 ∈ (𝑐, 𝑑] such that either

• 𝑓 (𝑚) < 𝑓 (𝑛2) but 𝑓 (𝑚) ≮ 𝑓 (𝑛1), or
• 𝑓 (𝑚) < 𝑓 (𝑛1) but 𝑓 (𝑚) ≮ 𝑓 (𝑛2).

That is, 𝑓 (𝑚) ∈ [𝑓 (𝑛1), 𝑓 (𝑛2)) ∪ [𝑓 (𝑛2), 𝑓 (𝑛1)). Similarly, for valid

representatives 𝑛1, 𝑛2, inc(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) should evaluate to true if

and only if 𝑓 (𝑛2) > 𝑓 (𝑛1) and there exists unique 𝑐 < 𝑚 ≤ 𝑑 such

that 𝑓 (𝑚) < 𝑓 (𝑛2) but 𝑓 (𝑚) ≮ 𝑓 (𝑛1). The conditions (2-7) in the

definition of simulating counter machines are thus satisfied, and

we can apply Theorem 15. □

5 The first-order theory of ⟨N;<, 𝑢 (·)⟩
Let (𝑢𝑛)𝑛∈N be an integer LRS with exactly two non-repeated dom-

inant roots as in the Introduction. We prove Theorem 5 in the re-

mainder of this section by explicitly giving the maps Seq : N3 → N∗
,

Rep : N3 → N∗
and the formulas rep, cnst𝑘 , succ, inc, eq. Our main

tool for proving surjectivity of Seq is Theorem 6, which will be

proved in Section 7. Let 𝜁 > 1 be as in the statement of Theorem 6.

Let 𝑐, 𝑑, 𝑒 ∈ N, and suppose that 𝑐 < 𝑑 < 𝑒 and

0 < 𝑢 (𝑐) < 𝑢 (𝑑) < 𝑢 (𝑒).

(For 𝑐, 𝑑, 𝑒 that do not satisfy these conditions, we define Seq(𝑐, 𝑑, 𝑒)
and Rep(𝑐, 𝑑, 𝑒) to be the empty sequence.) Let

𝑋 = {𝑐 < 𝑛 ≤ 𝑑 : 𝑢 (𝑐) < 𝑢 (𝑛) < 𝑢 (𝑒)}
and 𝑛1 < · · · < 𝑛𝑘 be the ordering of all 𝑑 < 𝑛 < 𝑒 such that

𝑢 (𝑐) < 𝑢 (𝑛) < 𝑢 (𝑒). We extract from (𝑐, 𝑑, 𝑒) a finite sequence

Seq(𝑐, 𝑑, 𝑒) of length 𝑘 by defining

Rep(𝑐, 𝑑, 𝑒) := ⟨𝑛1, 𝑛2, . . . , 𝑛𝑘 ⟩
and

Seq(𝑐, 𝑑, 𝑒)𝑖 := #{𝑥 ∈ 𝑋 : 𝑢 (𝑥) < 𝑢 (𝑛𝑖 )} ∈ {0, . . . , #𝑋 }
for 1 ≤ 𝑖 ≤ 𝑘 . Note that this construction is slightly different from

the one we used in Section 4.

Example 1. Consider the sequence defined by 𝑢𝑛+3 = −𝑢𝑛+2 + 𝑢𝑛 ,

𝑢0 = 0, 𝑢1 = 1, and 𝑢2 = 2. We have that

𝑢𝑛 = 𝑎𝜆𝑛 + 𝑎 𝜆
𝑛 + 𝑦𝑟𝑛

where 𝜆 ≈ −0.88+0.74𝒊, 𝑟 ≈ 0.75, 𝑎 ≈ −0.68−0.61𝒊 and𝑦 ≈ 1.17. Let

us compute Seq(𝑐, 𝑑, 𝑒) and Rep(𝑐, 𝑑, 𝑒) for (𝑐, 𝑑, 𝑒) = (81, 92, 100).
(Wemention that𝑢81, 𝑢92, 𝑢100 > 0.) First, determine all𝑛 ∈ (81, 100)
such that 𝑢81 < 𝑢𝑛 < 𝑢100. This leaves us with 𝑛 = 82, 84, 87, 89, 92

, 94, 95, 99. Since 𝑑 = 92, 𝑋 = {82, 84, 87, 89, 92}. Next, we observe
that

𝑢81 < 𝑢82 < 𝑢84 < 𝑢87 < 𝑢89 < 𝑢94 < 𝑢92 < 𝑢100

𝑢81 < 𝑢82 < 𝑢95 < 𝑢84 < 𝑢87 < 𝑢89 < 𝑢92 < 𝑢100

𝑢81 < 𝑢82 < 𝑢84 < 𝑢87 < 𝑢99 < 𝑢89 < 𝑢92 < 𝑢100 .

For each red term, we count the number of black terms that are

smaller. (The blue terms are just delimiters, and are not counted.)

Hence the triple (𝑐, 𝑑, 𝑒) defines the sequence Seq(81, 92, 100) =

⟨4, 1, 3⟩ with the corresponding representatives Rep(81, 92, 100) =
⟨94, 95, 99⟩.

We next show how the maps Seq and Rep can be implemented

using first-order formulas.We proceed similarly to Section 4, mostly

just replacing 𝑓 (·) with 𝑢 (·). Define

rep(𝑐, 𝑑, 𝑒, 𝑛) := 𝑐 < 𝑑 < 𝑛 < 𝑒 ∧
0 < 𝑢 (𝑐) < 𝑢 (𝑑) < 𝑢 (𝑒) ∧ 𝑢 (𝑐) < 𝑢 (𝑛) < 𝑢 (𝑒)

cnst0 (𝑐, 𝑑, 𝑒, 𝑛) := rep(𝑐, 𝑑, 𝑒, 𝑛) ∧
¬∃𝑚 ∈ (𝑐, 𝑑] : 𝑢 (𝑚) ∈ (𝑢 (𝑐), 𝑢 (𝑛))

cnst𝑘 (𝑐, 𝑑, 𝑒, 𝑛) := rep(𝑐, 𝑑, 𝑒, 𝑛) ∧
∃!{𝑚1, . . . ,𝑚𝑘 } ⊂ (𝑐, 𝑑] : 𝑢 (𝑚1), . . . , 𝑢 (𝑚𝑘 ) ∈ (𝑢 (𝑐), 𝑢 (𝑛))
succ(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
∀𝑚 ∈ (𝑛1, 𝑛2) : ¬rep(𝑐, 𝑑, 𝑒,𝑚)

inc(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
∃!𝑚 ∈ (𝑐, 𝑑] : 𝑢 (𝑚) ∈ [𝑢 (𝑛1), 𝑢 (𝑛2))

eq(𝑐, 𝑑, 𝑒, 𝑛1, 𝑛2) := rep(𝑐, 𝑑, 𝑒, 𝑛1) ∧ rep(𝑐, 𝑑, 𝑒, 𝑛2) ∧
¬∃𝑚 ∈ (𝑐, 𝑑] : 𝑢 (𝑚) ∈ [𝑢 (𝑛1), 𝑢 (𝑛2)) ∪ [𝑢 (𝑛2), 𝑢 (𝑛1)).

where 𝑘 ∈ N≥1, and ∃!{𝑚1, . . . ,𝑚𝑘 } and ∃! are interpreted as in

the proof of Theorem 7. Note that the definitions of succ, inc, and
eq are identical (up to replacing 𝑢 (·) with 𝑓 (·)) with those given

in Section 4. Items (2-7) in the definition of simulating counter
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machines are satisfied by construction. To prove Theorem 5 (by

applying Theorem 15) it remains to show the following.

Lemma 17. The map Seq : N3 → N∗ above is surjective.

Proof. To define the empty sequence, we can choose, for exam-

ple, (𝑐, 𝑑, 𝑒) = (0, 0, 0). Now consider a non-empty finite sequence

(𝑡𝑖 )𝑁𝑖=1 over {0, . . . , 𝑅}. We will construct, using Theorem 6,

𝑐 = 𝑛0 < 𝑛1 < · · · < 𝑛𝑅 = 𝑑 < 𝑛𝑅+1 < · · · < 𝑛𝑅+𝑁+1 = 𝑒

such that

1) 0 < 𝑢 (𝑐) < 𝑢 (𝑛 + 𝑖) < 𝑢 (𝑒) for all 1 ≤ 𝑖 ≤ 𝑅 + 𝑁 ,

2) 𝑢 (𝑛) ∉ (𝑢 (𝑐), 𝑢 (𝑒)) for any 𝑛 ∈ (𝑐, 𝑒) \ {𝑛1, . . . , 𝑛𝑅+𝑁 }, and
3) writing 𝑋 = {𝑛1, . . . , 𝑛𝑅},

#{𝑥 ∈ 𝑋 : 𝑢 (𝑥) < 𝑢 (𝑛𝑅+𝑖 )} = 𝑡𝑖

for all 1 ≤ 𝑖 ≤ 𝑁 .

Then Seq(𝑐, 𝑑, 𝑒) = (𝑡𝑖 )𝑁𝑖=1.

Example 2. Figure 1 illustrates our construction for the finite se-

quence ⟨1, 3, 0, 1⟩. In this case 𝑁 = 4 and 𝑅 = 3. We partition (1, 𝜁 )
into 10 intervals of equal length 𝜂. The intervals (1, 1 + 𝜂) and
(𝜁 −𝜂, 𝜁 ) are just buffers: they are needed because in the statement

of Theorem 6, 𝛾 𝑗 and 𝛿 𝑗 must be strictly between 1 and 𝜁 for all 𝑘 .

We define

• (𝛾1, 𝛿1) = (1+2𝜂, 1+3𝜂), (𝛾2, 𝛿2) = (1+4𝜂, 1+5𝜂), (𝛾3, 𝛿3) =
(1 + 6𝜂, 1 + 7𝜂),

• (𝛾4, 𝛿4) = (1+3𝜂, 1+4𝜂), (𝛾5, 𝛿5) = (1+7𝜂, 1+8𝜂), (𝛾6, 𝛿6) =
(1 + 𝜂, 1 + 2𝜂), (𝛾7, 𝛿7) = (1 + 3𝜂, 1 + 4𝜂), and

• (𝛾8, 𝛿8) = (𝜁 − 2𝜂, 𝜁 − 𝜂).
Then 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for all 𝑗 . By Theorem 6 there exist infinitely

many 𝑛0 < 𝑛1 < · · · < 𝑛8 such that 𝑢𝑛 𝑗
> 0 and,

𝑢 (𝑛 𝑗 )
𝑢 (𝑛0)

∈ (𝛾 𝑗 , 𝛿 𝑗 )

for all 𝑗 , and for all integers 𝑛 ∈ [𝑛0, 𝑛8] \{𝑛0, . . . , 𝑛8}, either𝑢 (𝑛) <
𝑢 (𝑛 𝑗 ) for all 𝑗 , or 𝑢 (𝑛) > 𝑢 (𝑛 𝑗 ) for all 𝑗 . Note that because 𝛾8 ≥ 𝛿 𝑗
for 1 ≤ 𝑗 ≤ 7, we have that 𝑢 (𝑛0) < 𝑢 (𝑛 𝑗 ) < 𝑢 (𝑛8) for all 1 ≤ 𝑗 ≤ 7.

From our construction of (𝛾 𝑗 , 𝛿 𝑗 ), 1 ≤ 𝑗 ≤ ℓ it then follows that

Seq(𝑛0, 𝑛3, 𝑛8) = ⟨1, 3, 0, 1⟩.

We now proceed with the proof. Let ℓ = 𝑅 + 𝑁 + 1 and 𝜂 =

(𝜁 − 1)/(2𝑅 + 4). We define

(𝛾𝑘 , 𝛿𝑘 ) = (1 + 2𝑘𝜂, 1 + (2𝑘 + 1)𝜂)

for 1 ≤ 𝑘 ≤ 𝑅. For 𝑘 = 1, . . . , 𝑁 , we define

(𝛾𝑅+𝑘 , 𝛿𝑅+𝑘 ) = (1 + (2𝑡𝑘 + 1)𝜂, 1 + (2𝑡𝑘 + 2)𝜂)

Finally, we set (𝛾ℓ , 𝛿ℓ ) = (1 + (2𝑅 + 2)𝜂, 1 + (2𝑅 + 3)𝜂). Note that
1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for all 𝑗 . Applying Theorem 6 we obtain infinitely

many 𝑛0 < · · · < 𝑛ℓ such that

• 𝑢 (𝑛 𝑗 ) > 0 for all 𝑗 ,

• 𝑢 (𝑛 𝑗 )
𝑢 (𝑛0 ) ∈ (𝛾 𝑗 , 𝛿 𝑗 ) for all 𝑗 , which implies that 𝑢 (𝑛0) < 𝑢 (𝑛 𝑗 ) <
𝑢 (𝑛ℓ ) for all 0 ≤ 𝑗 < ℓ , and

• 𝑢 (𝑛) ∉ (𝑢 (𝑛0), 𝑢 (𝑛ℓ )) for all integers 𝑛0 < 𝑛 < 𝑛ℓ not equal

to {𝑛1, . . . , 𝑛ℓ−1}.

Figure 1: The construction of the proof of Lemma 17 for the
finite sequence ⟨1, 3, 0, 1⟩. The horizontal line is R, and the
vertical ticks are the points 𝑢 (𝑛0) + 𝜂𝑘 for 0 ≤ 𝑘 ≤ 10 and
𝜂 = 𝑢 (𝑛0) (𝜁 − 1)/10. The dashed lines indicate the locations
of 𝑢 (𝑛0), . . . , 𝑢 (𝑛8), 𝜁𝑢 (𝑛0).

Thus𝑛0, . . . , 𝑛ℓ satisfy conditions (1-2) above. It remains to verify (3).

For all 1 ≤ 𝑖 ≤ 𝑁 we have that

{𝑥 ∈ 𝑋 : 𝑢 (𝑥) < 𝑢 (𝑛𝑅+𝑖 )} =
{
1 ≤ 𝑘 ≤ 𝑅 :

𝑢 (𝑛𝑘 )
𝑢 (𝑛0)

<
𝑢 (𝑛𝑅+𝑖 )
𝑢 (𝑛0)

}
.

Moreover,

𝑢 (𝑛𝑅+𝑖 )
𝑢 (𝑛0)

∈ (1 + (2𝑡𝑖 + 1)𝜂, 1 + 2(𝑡𝑖 + 1)𝜂)

and

𝑢 (𝑛𝑘 )
𝑢 (𝑛0)

∈ (1 + 2𝑘𝜂, 1 + (2𝑘 + 1)𝜂)

for all 1 ≤ 𝑘 ≤ 𝑅. Therefore,{
1 ≤ 𝑘 ≤ 𝑅 :

𝑢 (𝑛𝑘 )
𝑢 (𝑛0)

<
𝑢 (𝑛𝑅+𝑖 )
𝑢 (𝑛0)

}
= {1, . . . , 𝑡𝑖 }

and hence #{𝑥 ∈ 𝑋 : 𝑢 (𝑥) < 𝑢 (𝑛𝑅+𝑖 )} = 𝑡𝑖 . □

6 The first-order theory of ⟨N;+,𝑈 ⟩
We prove Theorem 3 in this section. We first define the maps

Seq : N3 → N∗
and Rep : N3 → (N2)∗. Recall that < can be de-

fined in ⟨N;+,𝑈 ⟩ by 𝑥 < 𝑦 ⇔ 𝑥 ≠ 𝑦 ∧ ∃𝑧 : 𝑥 + 𝑧 = 𝑦. Consider

(𝑝𝑐 , 𝑝𝑑 , 𝑝𝑒 ) ∈ 𝑈 3
with 𝑐 < 𝑑 < 𝑒 (where (𝑝𝑛)𝑛∈N enumerates 𝑈 as

in the Introduction); for all other triples, both Seq and Rep return

the empty sequence. Let 𝑅 = 𝑑 − 𝑐 − 1 and 𝑁 = 𝑒 −𝑑 . For 1 ≤ 𝑖 ≤ 𝑁 ,

we define

Rep(𝑝𝑐 , 𝑝𝑑 , 𝑝𝑒 )𝑖 = (𝑝𝑑+𝑖−1, 𝑝𝑑+𝑖 )
and Seq(𝑝𝑐 , 𝑝𝑑 , 𝑝𝑒 )𝑖 as

#{𝑐 < 𝑛 < 𝑑 : 𝑝𝑛 < 𝑝𝑐 + 𝑝𝑑+𝑖 − 𝑝𝑑+𝑖−1} ∈ {0, . . . , 𝑅}.
We next show how to implement Seq and Rep using first-order

formulas; these are modifications of the formulas given in Section 5.

We write r for the pair of variables 𝑟1, 𝑟2, and r̃ for the pair 𝑟1, 𝑟2.
Define

rep(𝑦1, 𝑦2, 𝑦3, r) := 𝑦1, 𝑦2, 𝑦3 ∈ 𝑈 ∧
𝑦1 < 𝑦2 ≤ 𝑟1 < 𝑟2 ≤ 𝑦3 ∧ ∀𝑟 ∈ (𝑟1, 𝑟2) : 𝑟 ∉ 𝑈

const0 (𝑦1, 𝑦2, 𝑦3, r) := rep(𝑦1, 𝑦2, 𝑦3, r) ∧
¬∃𝑥 ∈ (𝑦1, 𝑦2) ∩𝑈 : 𝑥 < 𝑦1 + 𝑟2 − 𝑟1

const𝑘 (𝑦1, 𝑦2, 𝑦3, r) := rep(𝑦1, 𝑦2, 𝑦3, r) ∧
∃!{𝑥1, . . . , 𝑥𝑘 } ⊂ (𝑦1, 𝑦2) ∩𝑈 : 𝑥1, . . . , 𝑥𝑘 < 𝑦1 + 𝑟2 − 𝑟1

succ(𝑦1, 𝑦2, 𝑦3, r, r̃) := rep(𝑦1, 𝑦2, 𝑦3, r) ∧
rep(𝑦1, 𝑦2, 𝑦3, r̃) ∧ 𝑟2 = 𝑟1

where 𝑘 ∈ N≥1 and ∃!{𝑚1, . . . ,𝑚𝑘 } (as well as ∃! used below) are

interpreted as in the proof of Theorem 7. It remains to define eq
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and inc. Write 𝑡 and 𝑡 for 𝑦1 + 𝑟2 − 𝑟1 and 𝑦2 + 𝑟2 − 𝑟1, respectively.

Then we can define

eq(𝑦1, 𝑦2, 𝑦3, r, r̃) := rep(𝑦1, 𝑦2, 𝑦3, r) ∧ rep(𝑦1, 𝑦2, 𝑦3, r̃) ∧
∀𝑥 ∈ (𝑦1, 𝑦2) ∩𝑈 : 𝑥 ∉ [𝑡, 𝑡 ) ∪ [𝑡, 𝑡)

inc(𝑦1, 𝑦2, 𝑦3, r, r̃) := rep(𝑦1, 𝑦2, 𝑦3, r) ∧ rep(𝑦1, 𝑦2, 𝑦3, r̃) ∧
∃!𝑥 ∈ (𝑦1, 𝑦2) ∩𝑈 : 𝑥 ∈ [𝑡, 𝑡 ).

Items (2-6) in the definition of simulating counter machines are

satisfied by construction. It remains to prove the following.

Lemma 18. The map Seq : N3 → N∗ above is surjective.

Proof. Take a non-empty finite sequence (𝑡𝑖 )𝑁𝑖=1 over {0, . . . , 𝑅}.
We will construct 𝑐 < 𝑑 < 𝑒 such that Seq(𝑝𝑐 , 𝑝𝑑 , 𝑝𝑒 ) = (𝑡𝑖 )𝑁𝑖=1. (For
the empty sequence, we can take any 𝑐 = 𝑑 = 𝑒 .) It suffices to find

𝑛 such that

#{𝑛 < 𝑚 ≤ 𝑛 + 𝑅 : 𝑝𝑚 < 𝑝𝑛 + 𝑝𝑛+𝑅+𝑖+1 − 𝑝𝑛+𝑅+𝑖 } = 𝑡𝑖 (4)

for all 1 ≤ 𝑖 ≤ 𝑁 . We can then choose 𝑐 = 𝑛, 𝑑 = 𝑛 + 𝑅 + 1 and

𝑒 = 𝑛 + 𝑅 + 𝑁 + 1. For 1 ≤ 𝑘 ≤ 𝑅, we define

(𝛾𝑘 , 𝛿𝑘 ) = (1 + (2𝑘 − 1)𝜂, 1 + 2𝑘𝜂)
where 𝜂 > 0 is to be determined. Further define (𝛾𝑅+1, 𝛿𝑅+1) =

(1 + (2𝑅 + 1 − 1/8)𝜂, 1 + (2𝑅 + 1 + 1/8)𝜂). So far we have that

𝛾1 < 𝛿1 = 𝛾2 < 𝛿2 = · · · = 𝛾𝑅 < 𝛿𝑅 < 𝛾𝑅+1 < 𝛿𝑅+1 .

For 1 ≤ 𝑖 ≤ 𝑁 , we write 𝑘 = 𝑅 + 𝑖 + 1 and define

𝛾𝑘 = 1 +
(
− 1

8

+ 2𝑅 + 1 +
𝑖∑︁
𝑗=1

(
2𝑡 𝑗 +

1

2

) )
𝜂

𝛿𝑘 = 1 +
(
1

8

+ 2𝑅 + 1 +
𝑖∑︁
𝑗=1

(
2𝑡 𝑗 +

1

2

) )
𝜂.

Observe that 𝛾𝑅+1 < 𝛿𝑅+1 < · · · < 𝛾𝑅+1+𝑁 < 𝛿𝑅+1+𝑁 , and for any
𝑧 ∈ (𝛾𝑅+𝑖+1, 𝛿𝑅+𝑖+1) and 𝑥 ∈ (𝛾𝑅+𝑖 , 𝛿𝑅+𝑖 ) we have that

𝑧 − 𝑥

𝜂
∈

(
2𝑡𝑖 +

1

2

− 1

4

, 2𝑡𝑖 +
1

2

+ 1

4

)
,

i.e., 𝑧 − 𝑥 ≈ (2𝑡𝑖 + 1/2)𝜂. Since

1 < 𝛾 𝑗 , 𝛿 𝑗 < 1 + 2

(
𝑅 + 𝑁 +

𝑁∑︁
𝑖=1

𝑡𝑖

)
𝜂,

for all 𝑗 , we choose

𝜂 =
𝜁 − 1

2

(
𝑅 + 𝑁 + ∑𝑁

𝑗=1 𝑡 𝑗
) .

Then 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for all 𝑗 .

Applying Theorem 2, construct 𝑛 such that

𝑝𝑛+𝑗
𝑝𝑛

∈ (𝛾 𝑗 , 𝛿 𝑗 )

for all 𝑗 . It remains to show that (4) holds for all 1 ≤ 𝑖 ≤ 𝑁 . Observe

that

{𝑛 < 𝑚 ≤ 𝑛 + 𝑅 : 𝑝𝑚 < 𝑝𝑛 + 𝑝𝑛+𝑅+𝑖+1 − 𝑝𝑛+𝑅+𝑖 }

=

{
1 < 𝑘 ≤ 𝑅 :

𝑝𝑛+𝑘
𝑝𝑛

− 1 <
𝑝𝑛+𝑅+𝑖+1 − 𝑝𝑛+𝑅+𝑖

𝑝𝑛

}
.

Then it follows that we have that 𝑝𝑛+𝑅+𝑖+1/𝑝𝑛 ∈ (𝛾𝑅+𝑖+1, 𝛿𝑅+𝑖+1)
and 𝑝𝑛+𝑅+𝑖/𝑝𝑛 ∈ (𝛾𝑅+𝑖 , 𝛿𝑅+𝑖 ). Therefore, as discussed earlier,

𝑝𝑛+𝑅+𝑖+1 − 𝑝𝑛+𝑅+𝑖
𝑝𝑛

∈
( (
2𝑡𝑖 +

1

4

)
𝜂,

(
2𝑡𝑖 +

3

4

)
𝜂

)
.

On the other hand,

𝑝𝑛+𝑘
𝑝𝑛

− 1 ∈ (1 + (2𝑘 − 1)𝜂, 1 + 2𝑘𝜂)

for all 1 ≤ 𝑘 ≤ 𝑅. Therefore,{
1 < 𝑘 ≤ 𝑅 :

𝑝𝑛+𝑘
𝑝𝑛

−1 <
𝑝𝑛+𝑅+𝑖+1 − 𝑝𝑛+𝑅+𝑖

𝑝𝑛

}
= {1, . . . , 𝑡𝑖 }. □

7 Proof of Theorem 6
Assume the notation of Section 2.6. Recall that we have

𝑢𝑛 = 𝑣𝑛 + 𝑟𝑛 = 𝑎𝜆𝑛 + 𝑎 𝜆
𝑛 + 𝑟𝑛

𝑟𝑛 = 𝑜 ((𝜌 − 𝜀)𝑛) for all sufficiently small 𝜀 > 0

𝑣𝑛 = |𝑎 |𝜌𝑛 (𝜉𝜇𝑛 + 𝜉 𝜇𝑛) = 2|𝑎 |𝜌𝑛 cos(𝑛𝜃 + 𝜑).
Define

I =

{
𝑧 ∈ T : Re(𝑧) > 1

𝜌

}
.

Then, by elementary geometry,

2 ·
√︄
1 − 1

𝜌2
< |I | < 𝜋. (5)

The significance of I is as follows.

Lemma 19. For all 𝑛, if 𝜉𝜇𝑛 ∈ I then 𝑣𝑛 > 0, 𝑣0, . . . , 𝑣𝑛−1.

Proof. Suppose 𝜉𝜇𝑛 ∈ I. Then 𝜉𝜇𝑛 ∈ T+ and hence 𝑣𝑛 > 0.

Next, take 0 ≤𝑚 < 𝑛 such that 𝑣𝑚 > 0; otherwise it is immediate

that 𝑣𝑛 > 𝑣𝑚 . We have that

𝑣𝑛

𝑣𝑚
=

𝜌𝑛 Re(𝜉𝜇𝑛)
𝜌𝑚 Re(𝜉𝜇𝑚) >

𝜌𝑛−𝑚

Re(𝜉𝜇𝑚) ·
1

𝜌
≥ 𝜌𝑛−𝑚−1 ≥ 1. □

For 𝑧 ∈ T+, let

𝑔𝑑 (𝑧) =
𝑧𝜆𝑑 + 𝑧 𝜆

𝑑

𝑧 + 𝑧
.

Note that

𝑔𝑑 (𝑧) = 𝜂 ⇔ 𝑧2 = −𝜆
𝑑 − 𝜂

𝜆𝑑 − 𝜂
. (6)

For 𝛾, 𝛿 ∈ R and 𝑑 ≥ 1, we define

J𝑑 (𝛾, 𝛿) = {𝑧 ∈ T+ : 𝑔𝑑 (𝑧) ∈ (𝛾, 𝛿)}.
We next argue that each J𝑑 (𝛾, 𝛿) is an interval.

Lemma 20. For all 𝑑 ≥ 1, 𝑔𝑑 : T+ → R is a homeomorphism.

Proof. Define 𝑓𝑑 : (−𝜋/2, 𝜋/2) → R by 𝑓𝑑 (𝑥) = 𝑔𝑑 (𝑒 𝒊𝑥 ). We

have that

𝑓𝑑 (𝑥) =
𝜌𝑑 cos(𝑥 + 𝑑𝜃 )

cos(𝑥) = 𝜌𝑑
(
cos(𝑑𝜃 ) − tan(𝑥) sin(𝑑𝜃 )

)
where the last equality follows from the usual trigonometric re-

lations. As 𝜇 = 𝑒 𝒊𝜃 is not a root of unity, sin(𝑑𝜃 ) ≠ 0. Because

tan(𝑥) is a homeomorphism from (−𝜋/2, 𝜋/2) to R, so is 𝑓𝑑 . It re-
mains to write 𝑔𝑑 (𝑧) = 𝑓𝑑 (Log(𝑧)), which is a composition of two

homeomorphisms. □
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Corollary 21. For every 𝛾, 𝛿 ∈ R with 𝛾 < 𝛿 and 𝑑 ≥ 1, J𝑑 (𝛾, 𝛿) is
a non-empty and open interval.

Proof. We have that

J𝑑 (𝛾, 𝛿) = {𝑧 ∈ T+ : 𝑓𝑑 (𝑧) ∈ (𝛿,𝛾)} = 𝑓 −1
𝑑

((𝛾, 𝛿)) . □

The intervals J𝑑 (𝛾, 𝛿) play a key role in the proof of Theo-

rem 4 [28]. Their idea behind their definition is that for all 𝑛 ∈ N
and 𝑑 ≥ 1,

𝜉𝜇𝑛 ∈ J𝑑 (𝛾, 𝛿) ⇔ 𝑣𝑛 > 0 ∧ 𝑣𝑛+𝑑
𝑣𝑛

∈ (𝛾, 𝛿). (7)

Recall from Section 2.6 that (𝜉𝜇𝑛)𝑛∈N is dense in T. Hence Corol-
lary 21 tells us that for any 𝑑 ≥ 1 and 𝛾 < 𝛿 , we can find infinitely

many 𝑛 such that 𝑣𝑛 > 0 and

𝑣𝑛+𝑑
𝑣𝑛

∈ (𝛾, 𝛿).

Proving Theorem 6 amounts to proving a version of the preced-

ing statement that involves arbitrarily many terms of (𝑣𝑛)𝑛∈N as

opposed to only 𝑣𝑛 and 𝑣𝑛+𝑑 .
We next estimate the length of J𝑑 (𝛿,𝛾). Lemma 22 is similar to

a result proven in [28], whereas Lemma 23 is much stronger than

the analogous result from [28]. Recall that we denote by Δ the arc

distance function on the unit circle T ⊆ C.

Lemma 22. There exists computable 𝐶1 > 0 with the following
property. For any 0 ≤ 𝛾 < 𝛿 ≤ 𝜌+1

2
and 𝑑 ≥ 1,

|J𝑑 (𝛾, 𝛿) | <
𝐶1 (𝛿 − 𝛾)

𝜌𝑑
.

Proof. See Appendix A. □

For 𝑑 ≥ 1 let 𝛼𝑑 be the unique 𝑧 ∈ T+ such that 𝑔𝑑 (𝑧) = 0. For

any 𝑑 , 𝛾 , and 𝛿 , we refer to 𝛼𝑑 as the anchor point of J𝑑 (𝛾, 𝛿). The
reason for this is that for any fixed 𝛾 < 𝛿 , as 𝑑 → ∞, the intervals

J𝑑 (𝛾, 𝛿) become arbitrarily small while getting arbitrarily close to

the point 𝛼𝑑 . Note that 𝛼𝑑 satisfies 𝛼𝑑𝜆
𝑑 + 𝛼𝑑𝜆

𝑑
= 0 and |𝛼𝑑 | = 1.

Hence 𝛼𝑑 ∈ { 𝒊𝜇−𝑑 ,−𝒊𝜇−𝑑 }.

Lemma 23. There exists computable 𝐶2 > 0 with the following
property. Let 0 ≤ 𝛾 < 𝛿 ≤ 𝜌+1

2
, 𝑑 ≥ 1, and suppose J𝑑 (𝛾, 𝛿) ⊆ I.

Then

|J𝑑 (𝛾, 𝛿) | >
𝐶2 (𝛿 − 𝛾)

𝜌𝑑
.

Proof. See Appendix A. □

We will also need the following lemma, which is analogous to

the density of 𝜉𝜇𝑛 ∈ T proven via Kronecker’s theorem.

Lemma 24. For any 0 ≤ 𝛾 < 𝛿 , the intervals (J𝑑 (𝛾, 𝛿))∞𝑑=1 are dense
in T+.

Proof. Recall that 𝛼𝑑 is an endpoint of J𝑑 (0, 𝛿) ⊆ T+, and
that lim𝑑→∞ |J𝑑 (0, 𝛿) | = 0 by Lemma 22. Therefore, it suffices to

prove that (𝛼𝑑 )∞𝑑=1 is dense in T+. Recall that 𝛼𝑑 is either 𝒊𝜇−𝑑 or

−𝒊𝜇−𝑑 , whichever is in T+. (Exactly one of these is always the case,

since by the non-degeneracy assumption, 𝜇 is not a root of unity.)

By Kronecker’s theorem, ( 𝒊𝜇−𝑑 )∞
𝑑=1

is dense in T. Since (𝛼𝑑 )∞𝑑=1
contains all terms of ( 𝒊𝜇−𝑑 )∞

𝑑=1
that lie in T+, it is dense in T+. □

Henceforth fix 𝐶1,𝐶2 > 0 as in the two lemmas above. Choose 𝜁

such that

𝜁 > 1, 𝜁 <
𝜌 + 1

2

,
𝐶1 (𝜁 − 1)
𝜌 (𝜌 − 1) < |I |. (8)

We will only work with subintervals of J𝑑 (1, 𝜁 ) for 𝑑 ≥ 1.

The next lemma tells us that as𝑑1 → ∞, it becomes exponentially

harder for J𝑑2 (1, 𝜁 ) with 𝑑2 > 𝑑1 to intersect J𝑑1 (1, 𝜁 ).

Lemma 25. Suppose 𝑑1 < 𝑑2 and

J𝑑1 (1, 𝜁 ) ∩ J𝑑2 (1, 𝜁 ) ≠ ∅. (9)

Then

𝑑2 − 𝑑1 >

(
𝜌𝑑1

2𝐶1𝜁

)
1/𝐶0

− 1 (10)

where 𝐶0,𝐶1 are the constants of lemmas 9 and 22, respectively.

Proof. See Appendix A. □

Next, we further study when J𝑑1 (1, 𝜁 ) ∩ J𝑑2 (1, 𝜁 ) ≠ ∅.

Definition 26. An interval 𝐼 ⊆ I is protected from time 𝑑 ≥ 0

onwards if

|𝐼 | >
∞∑︁

𝑘=𝑑+1
|𝐼 ∩ J𝑘 (1, 𝜁 ) |.

Lemma 27. The interval I is protected from time 0 onwards.

Proof. By Lemma 22 and the construction of 𝜁 ,

∞∑︁
𝑑=1

|I ∩ J𝑑 (1, 𝜁 ) | ≤
∞∑︁
𝑑=1

|J𝑑 (1, 𝜁 ) | ≤
𝐶1 (𝜁 − 1)
𝜌 (𝜌 − 1) < |I |. □

We are now ready to prove a version of Theorem 6 for (𝑣𝑛)𝑛∈N;
soon thereafter we will move to (𝑢𝑛)𝑛∈N. First, a helpful lemma.

Lemma 28. Let 1 < 𝛾 < 𝛿 < 𝜁 . There exists 𝐷 ≥ 0 such that for
all 𝑑 ≥ 𝐷 , if J𝑑 (𝛾, 𝛿) ⊆ I then J𝑑 (𝛾, 𝛿) is protected from time 𝑑
onwards.

Proof. See Appendix A. □

Lemma 29. Suppose we are given ℓ ≥ 1 and for 1 ≤ 𝑗 ≤ ℓ , 1 <

𝛾 𝑗 < 𝛿 𝑗 < 𝜁 . We can construct 0 < 𝑑1 < · · · < 𝑑ℓ with the following
properties.

(a) I ⊇ J𝑑1 (𝛾1, 𝛿1) ⊇ · · · ⊇ J𝑑ℓ (𝛾ℓ , 𝛿ℓ ).
(b) For all 1 ≤ 𝑑 ≤ 𝑑ℓ , if 𝑑 ∉ {𝑑1, . . . , 𝑑ℓ } then

J𝑑 (1, 𝜁 ) ∩ J𝑑ℓ (𝛾ℓ , 𝛿ℓ ) = ∅.
(c) Every J𝑑 𝑗 (𝛾 𝑗 , 𝛿 𝑗 ) is protected from time 𝑑𝑖 onwards.

Proof. We proceed by induction on ℓ . For ℓ = 1, the conclusion

follows immediately from Lemma 27, Lemma 24, and Lemma 14.

Next, consider ℓ = 𝑚 + 1 ≥ 2. Apply the induction hypoth-

esis with 𝛾1, 𝛿1, . . . , 𝛾𝑚, 𝛿𝑚 to construct 𝑑1, . . . , 𝑑𝑚 . By Lemma 24,

(J𝑑 (1, 𝜁 ))𝑑>𝑑𝑚 are dense in J𝑑𝑚 (𝛾𝑚, 𝛿𝑚). Applying (c) of the induc-
tion hypothesis and Lemma 14, there exist infinitely many 𝑑 > 𝑑𝑚
such that J𝑑 (1, 𝜁 ) ⊆ J𝑑𝑚 (𝛾𝑚, 𝛿𝑚) ⊆ I and for all 1 ≤ 𝑑 ′ < 𝑑 ,

J𝑑 (1, 𝜁 ) ∩ J𝑑′ (1, 𝜁 ) = ∅. Applying Lemma 28, we can construct

infinitely many 𝑑 for which we additionally have that J𝑑 (𝛾ℓ , 𝛿ℓ ) is
protected from time 𝑑 onwards. We can then pick 𝑑ℓ to be equal to

any such 𝑑 . □
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Before finally proving Theorem 6, let us have a look at what

Lemma 29 immediately gives us. Consider 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for

1 ≤ 𝑗 ≤ ℓ . Construct 𝑑1, . . . , 𝑑ℓ > 0 using Lemma 29. By the density

of (𝜉𝜇𝑛)𝑛∈N in T, there exist infinitely many 𝑛 ∈ J𝑑ℓ (𝛾ℓ , 𝛿ℓ ) ⊆ I.
Then 𝑣𝑛 > 0, and by (a), 𝑛 ∈ J𝑑 𝑗 (𝛾 𝑗 , 𝛿 𝑗 ) for all 𝑖 . Write 𝑛 𝑗 = 𝑛 + 𝑑 𝑗
for 1 ≤ 𝑗 ≤ ℓ . By Equation (7),

𝑣𝑛 𝑗

𝑣𝑛
∈ (𝛾 𝑗 , 𝛿 𝑗 ) ⊂ (1, 𝜁 )

for all 1 ≤ 𝑗 ≤ ℓ . On the other hand, from (c) it follows that for all

𝑛 ≤𝑚 ≤ 𝑛ℓ ,

𝑚 ∉ {𝑛1, . . . , 𝑛ℓ } ⇒
𝑣𝑚

𝑣𝑛
∉ (1, 𝜁 ), (11)

Therefore, the pattern 𝑣𝑛, 𝑣𝑛1 , . . . , 𝑣𝑛ℓ appears in the ordering of

(𝑣𝑚)𝑛ℓ𝑚=𝑛 , and has the ratios of consecutive elements controlled by

(𝛾 𝑗 , 𝛿 𝑗 ), 1 ≤ 𝑗 ≤ ℓ for all 𝑗 .

Proof of Theorem 6. Let 𝜁 be as in Equation (8) and 𝑀 be as

in Lemma 12. Suppose we are given 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for 1 ≤ 𝑖 ≤ ℓ .

First construct 𝛾 𝑗 , 𝛿 𝑗 satisfying 𝛾 𝑗 < 𝛾 𝑗 < 𝛿 𝑗 < 𝛿 𝑗 for 1 ≤ 𝑖 ≤ ℓ , and

sufficiently small 𝜀 > 0 such that

(1 + 𝜀) · 𝛿 𝑗 ·
1

1 − 𝜀
< 𝛿 𝑗

(1 − 𝜀) · 𝛾 𝑗 ·
1

1 + 𝜀
> 𝛾 𝑗 .

Apply Lemma 13 with 𝜀 > 0 to construct 𝑀𝜀 . Then let 𝑀 =

max{𝑀,𝑀𝜀 }. Apply Lemma 29 with 𝛾 𝑗 , 𝛿 𝑗 to construct 𝑑1, . . . , 𝑑ℓ .

Let 𝐼 = J𝑑ℓ (𝛿ℓ , 𝛾ℓ ). By the density of 𝜉𝜇𝑛 in T, there exist infinitely
many 𝑛 ≥ 𝑀 such that 𝜉𝜇𝑛 ∈ 𝐼 . Pick such 𝑛, and let 𝑛 = 𝑛 + 𝑑ℓ + 1.

Then for all 𝑛 ≤𝑚 < 𝑛,

• by Lemma 29 (a), if 𝑚 = 𝑛 + 𝑑 𝑗 for some 𝑗 , then 𝑣𝑚/𝑣 𝑗 ∈
(𝛾 𝑗 , 𝛿 𝑗 ), and

• by Lemma 29 (b) and Lemma 13, if𝑚 ≠ 𝑛 + 𝑑 𝑗 for all 𝑗 , then

𝑣𝑚/𝑣 𝑗 ∉ [1, 𝜁 ).
Order {𝑚 : 𝑛 ≤ 𝑚 < 𝑛 and 𝑢𝑛 ≤ 𝑢𝑚 < 𝜁𝑢𝑛} as (𝑛 𝑗 )𝑘𝑗=0. Then 𝑘 = ℓ

and 𝑛 𝑗 = 𝑛 + 𝑑 𝑗 for all 1 ≤ 𝑗 ≤ ℓ . Because 𝜉𝜇𝑛 ∈ 𝐼 ⊆ T+, we
have that 𝑣𝑛 > 0, and by Lemma 12, 𝑢𝑛 > 0. By the application of

Lemma 13,

𝑢𝑛 𝑗

𝑢𝑛
=
𝑢𝑛 𝑗

𝑣𝑛 𝑗

·
𝑣𝑛 𝑗

𝑣𝑛
· 𝑣𝑛
𝑢𝑛

< (1 + 𝜀) · 𝛿 𝑗 ·
1

1 − 𝜀
< 𝛿 𝑗

and similarly

𝑢𝑛𝑗

𝑢𝑛
> (1 − 𝜀) · 𝛾 𝑗 · 1

1+𝜀 > 𝛾 𝑗 for all 𝑗 . □

8 Proof of Theorem 2
We will proceed similarly to the proof of Theorem 6, but we need

much stronger technical machinery. Let 𝐶1,𝐶2 > 0 and 𝜁 > 1 be as

in the previous section, and 𝐶0 be the constant of Lemma 9.

Lemma 30. There exists computable 𝐶3 > 0 such that for all 1 ≤
𝛾 < 𝛿 ≤ 𝜁 and 𝑑, 𝑛 ≥ 1, if 𝜉𝜇𝑛 ∈ J𝑑 (𝛾, 𝛿) then

𝑑 < 𝐶3 log(𝑛 + 1).

Proof. See Appendix A. □

Next, we use Baker’s theorem to prove a bound on how long it

takes for (𝜇𝑛)𝑛∈N to fall into a given sub-interval of T.

Lemma 31. There exists computable 𝐶4 > 0 such that for any
sub-interval 𝐽 ⊆ T, the following holds. For any 𝑁 ∈ N, there exists

𝑁 ≤ 𝑛 < 𝑁 +
(
4𝜋

|𝐽 |

)𝐶4

such that 𝜇𝑛 ∈ 𝐽 .

Proof. See Appendix A. □

Recall that our interval theory applies to (𝑣𝑛)𝑛∈N, and we trans-

late results to (𝑢𝑛)𝑛∈N using lemmas 12 and 13. We next prove a

modification of Theorem 2wherewe replace𝑢𝑛 with 𝑣𝑛 . Let (𝑝′𝑛)𝑛∈N
be the ordering of {𝑣𝑛 ≥ 0 : 𝑛 ∈ N}.

Lemma 32. Let ℓ ≥ 1 and 1 < 𝛾1 < 𝛿1 < · · · < 𝛾ℓ < 𝛿ℓ < 𝜁 . There
exist infinitely many 𝑛 such that for all 1 ≤ 𝑗 ≤ ℓ ,

𝑝′𝑛+𝑗
𝑝′𝑛

∈ (𝛾 𝑗 , 𝛿 𝑗 ) .

Proof. From all 𝛾 𝑗 and 𝛿 𝑗 construct 𝑑1, . . . , 𝑑ℓ as in Lemma 29.

Let 𝐼 = J𝑑ℓ (𝛾ℓ , 𝛿ℓ ) and D = {0, 𝑑1, . . . , 𝑑ℓ }. Suppose 𝑛 ∈ N is such

that 𝜉𝜇𝑛 ∈ 𝐼 . Then we have the following.

• Because 𝐼 ⊆ I, 𝑣𝑛 > 0 and 𝑣𝑛 > 𝑣𝑘 for all 𝑘 < 𝑛.

• For all 1 ≤ 𝑗 ≤ ℓ , because 𝐼 ⊆ J𝑑 𝑗 (𝛾 𝑗 , 𝛿 𝑗 ), we have that
𝑣𝑛+𝑑 𝑗
𝑣𝑛

∈ (𝛾 𝑗 , 𝛿 𝑗 ) .

• Consider 1 ≤ 𝑘 ≤ 𝑑ℓ with 𝑘 ∉ D. Because 𝐼 ∩ J𝑘 (1, 𝜁 ) is
empty (by Lemma 29 (b)) and 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for all 𝑗 , we

have that either 𝑣𝑛+𝑘 < 𝑣𝑛+𝑑 for all 𝑑 ∈ D, or 𝑣𝑛+𝑘 > 𝑣𝑛+𝑑
for all 𝑑 ∈ D.

• Therefore, if additionally 𝜉𝜇𝑛 ∉ J𝑘 (1, 𝜁 ) for all 𝑘 > 𝑑ℓ , then

the pattern (𝑣𝑛, 𝑣𝑛+𝑑1 , . . . , 𝑣𝑛+𝑑ℓ ) appears in (𝑝′𝑚)𝑚∈N. In par-

ticular, if 𝑣𝑛 = 𝑝′𝑚 , then 𝛾 𝑗 < 𝑝′𝑚+𝑗/𝑝′𝑚 < 𝛿 𝑗 for all 1 ≤ 𝑗 ≤ ℓ .

Hence it suffices to construct infinitely many 𝑛 ∈ N such that

𝜉𝜇𝑛 ∈ 𝐼 , but 𝜉𝜇𝑛 ∉ J𝑘 (1, 𝜁 ) for all 𝑘 > 𝑑ℓ . Let

𝑌𝑚 = 𝐼 \
𝑚⋃

𝑘=𝑑ℓ+1
J𝑘 (1, 𝜁 ) .

Then by Lemma 30 it suffices to construct infinitely many 𝑛 such

that 𝜉𝜇𝑛 ∈ 𝑌⌊𝐶3 log(𝑛+1) ⌋ .
Let 𝑁 ∈ N. We will construct 𝑛 ≥ 𝑁 with the desired property.

By construction of 𝐼 (Lemma 29 (c)), there exists 𝜏 > 0 such that

|𝑌𝑚 | < |𝐼 |−𝜏 for all𝑚. By the pigeonhole principle, each𝑌𝑚 contains

an open interval of size

𝜏

1 +𝐶3 log(𝑛 + 1) .

With 𝐶4 as in Lemma 31, pick𝑀 ∈ N such that

𝑀 − 𝑁 ≥
(
4𝜋 (1 +𝐶3 log(𝑀))

𝜏

)𝐶4

.

Consider 𝑌𝑁 , . . . , 𝑌𝑀−1. We have that

𝑌𝑁 ⊇ 𝑌𝑁+1 ⊇ · · · ⊇ 𝑌𝑀−1

Therefore, there exists an open interval 𝑍 ⊆ 𝐼 of size

𝜏

1 +𝐶3 log(𝑀)
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such that 𝑍 ⊆ 𝑌𝑁 , . . . , 𝑌𝑀−1. Applying Lemma 31, there exists 𝑛

such that

𝑁 ≤ 𝑛 < 𝑁 +
(
4𝜋 (1 +𝐶3 log(𝑀))

𝜏

)𝐶4

≤ 𝑀

and 𝜇𝜉𝑛 ∈ 𝑍 . That is, 𝜇𝜉𝑛 ∈ 𝑌𝑛 for some 𝑁 ≤ 𝑛 < 𝑀 . □

Proof of Theorem 2. Let 𝑀 be as in Lemma 12. Suppose we

are given 1 < 𝛾 𝑗 < 𝛿 𝑗 < 𝜁 for 1 ≤ 𝑗 ≤ ℓ . First construct 𝛾 𝑗 , 𝛿 𝑗

satisfying 𝛾 𝑗 < 𝛾 𝑗 < 𝛿 𝑗 < 𝛿 𝑗 for 1 ≤ 𝑗 ≤ ℓ , and sufficiently small

𝜀 > 0 such that

(1 + 𝜀) · 𝛿 𝑗 ·
1

1 − 𝜀
< 𝛿 𝑗

(1 − 𝜀) · 𝛾 𝑗 ·
1

1 + 𝜀
> 𝛾 𝑗 .

Apply Lemma 13 with 𝜀 > 0 to construct 𝑀𝜀 . Then let 𝑀 =

max{𝑀,𝑀𝜀 }. By Lemma 32, there exist infinitely many 𝑛 such that

for all 𝑗
𝑝′𝑛+𝑗
𝑝′𝑛

∈ (𝛾 𝑗 , 𝛿 𝑗 ).

Therefore, there exist infinitely many 𝑛0, . . . , 𝑛ℓ ≥ 𝑀 such that

(𝑣𝑛0 , . . . , 𝑣𝑛ℓ ) appears in (𝑞′𝑛)𝑛∈N and 𝑣𝑛 𝑗
> 0 for all 𝑗 . By the appli-

cation of Lemma 12, we have that (𝑢𝑛0 , . . . , 𝑢𝑛ℓ ) appears in (𝑝𝑛)𝑛∈N,
and 𝑢𝑛 𝑗

> 0 for all 𝑗 . Consider such 𝑛0, . . . , 𝑛ℓ .

By the application of Lemma 13, for all 0 ≤ 𝑗 ≤ ℓ we have that

1 − 𝜀 < 𝑢𝑛 𝑗
/𝑣𝑛 𝑗

< 1 + 𝜀. Therefore,

𝑢𝑛 𝑗

𝑢𝑛0
=
𝑢𝑛 𝑗

𝑣𝑛 𝑗

·
𝑣𝑛 𝑗

𝑣𝑛0
·
𝑣𝑛0

𝑢𝑛0
∈

(
(1 − 𝜀)𝛾 𝑗
1 + 𝜀

,
(1 + 𝜀)𝛿 𝑗
1 − 𝜀

)
.

The latter interval is contained in (𝛾 𝑗 , 𝛿 𝑗 ) by the construction of 𝜀,

𝛾 𝑗 , and 𝛿 𝑗 . □

9 Discussion
Let us briefly discuss the broader implications of our results for

the study of decidability of logical theories. Firstly, we believe that

our approach for proving undecidability of the first-order theory

of ⟨N;<, |𝜏 (·) |⟩, with some modifications, should work for many

special functions, e.g. Euler’s totient function and the Möbius func-

tion [40]. As mentioned earlier, the expansion of ⟨N;+⟩ with powers
of 2 and powers of 3 does not define multiplication, and hence the

Hieronymi-Schulz approach is necessary in this case. This leads us

to the following.

Problem 2. Is addition (resp. multiplication) first-order definable
in ⟨N;<, |𝜏 (·) |⟩? What about expansions of ⟨N;<⟩ with other special
functions?

Given that we now have undecidability results for expansions of

⟨N;<⟩ with “natural” functions (see for an example of a predicate 𝑃 ,

that includes information about Turingmachines, such that the first-

order theory of ⟨N;<, 𝑃⟩ is undecidable), we also ask the following.

Problem 3. Is the first-order theory of ⟨N;<, 𝑛 ↦→ 2
𝑛, 𝑛 ↦→ 3

𝑛⟩ is
decidable?

We move on to our results about integer LRS. We studied non-
degenerate (but possibly reducible) LRS of the form 𝑢𝑛 = 𝑎𝜆𝑛 +
𝑎 𝜆

𝑛 + 𝑟𝑛 , where 𝑟𝑛 is the non-dominant part. This restriction can

be weakened to only the dominant part 𝑣𝑛 = 𝑎𝜆𝑛 + 𝑎 𝜆
𝑛
being

non-degenerate, but not further. To see this, let (𝑤𝑛)𝑛∈N be any

integer LRS,𝑊 = {𝑤𝑛 : 𝑛 ∈ N} ∩ N, and 𝑧𝑛 = ⟨0,𝑤1, 0,𝑤2, . . .⟩,
which itself is an integer LRS. We have that 𝑧2𝑛+1 = 𝑤𝑛 for all 𝑛.

Next, take sufficiently large 𝑎 ∈ N such that 𝑎 ≡ 1 (mod 3) and
|𝑧𝑛 | =𝑂 (𝑎𝑛), and consider 𝑢𝑛 = (𝑎 𝒊)𝑛 + (−𝑎 𝒊)𝑛 +3𝑧𝑛 . The sequence

(𝑢𝑛)𝑛∈N has exactly two non-repeated, non-real dominant roots,

but is degenerate: (𝑎 𝒊)/(−𝑎 𝒊) = −1 is a root of unity. In particu-

lar, for all 𝑛 ∈ N we have that 𝑢4𝑛 = 2𝑎𝑛 + 3𝑧4𝑛 , 𝑢4𝑛+1 = 3𝑧4𝑛+1,
𝑢4𝑛+2 = −2𝑎𝑛 + 𝑧4𝑛+2, and 𝑢4𝑛+3 = 𝑧4𝑛+3. Therefore, we can define

𝑊 in ⟨N;+,𝑈 ∩ N⟩, where 𝑈 = {𝑢𝑛 : 𝑛 ∈ N}: we have that for

all sufficiently large 𝑥 (where the implied threshold is effective),

𝑥 ∈𝑊 ⇔ 3𝑥 ∈ 𝑈 . Since (𝑤𝑛)𝑛∈N can be any integer LRS, we see

that lifting the non-degeneracy assumption has the effect of voiding

any restriction on the number of dominant roots of (𝑢𝑛)𝑛∈N. We

believe that, nevertheless, our techniques can be extended to at

least integer LRS whose dominant part is non-degenerate and of

the form

∑𝑚
𝑖=1 𝑎𝑖𝜆

𝑛
𝑖 + 𝑎𝑖 𝜆𝑖

𝑛
, where 𝑎1, 𝜆1, . . . , 𝑎𝑚, 𝜆𝑚 are non-zero

algebraic numbers and |𝜆1 | = · · · = |𝜆𝑚 | > 1.

Let us now revisit Problem 1 for integer LRS (𝑢𝑛)𝑛∈N with exactly

one non-repeated dominant root. As discussed in the Introduction,

if the characteristic polynomial 𝑝 of (𝑢𝑛)𝑛∈N is irreducible (over Z),
then the first-order theory of ⟨N;+,𝑈 ⟩ is decidable, as shown by

Semënov [12] and Point [14]. What happens if (𝑢𝑛)𝑛∈N is reducible?

We give an example.

Let𝑢𝑛 = (2+ 𝒊)𝑛+(2− 𝒊)𝑛 , which satisfies the recurrence relation
𝑢𝑛+2 = 4𝑢𝑛+1−5𝑢𝑛 . Consider 𝑣𝑛 = 5

𝑛+𝑢𝑛 , which satisfies 𝑣𝑛 > 0 for

all𝑛 and has the characteristic polynomial 𝑝 (𝑥) = (𝑥−5) (𝑥2−4𝑥+5)
with the single, non-repeated dominant root 𝜆 = 5. What can we

say about decidability of the first-order theory of ⟨N;+,𝑉 ⟩, where
𝑉 = {𝑣𝑛 : 𝑛 ∈ N}? Define, in ⟨N;+,𝑉 ⟩, the predicate𝑊 ⊆ N by

𝑥 ∈𝑊 ⇔ 𝑥 ≥ 0 ∧ ∃𝑦1, 𝑦2 ∈ 𝑉 : 𝑦1 < 𝑦2 ∧
𝑥 = 𝑦2 − 5𝑦1 ∧ ∀𝑦3 ∈ (𝑦1, 𝑦2) : 𝑦3 ∉ 𝑉 .

Then, using that (𝑣𝑛)𝑛∈N is increasing,𝑊 = {𝑤𝑛 : 𝑛 ∈ N} ∩ N for

𝑤𝑛 = 𝑢𝑛+1 − 5𝑢𝑛 = ( 𝒊 − 3) (2 + 𝒊)𝑛 + (−𝒊 − 3) (2 − 𝒊)𝑛

which is a non-degenerate integer LRS with exactly two dominant

roots. Therefore, by Theorem 3, the first-order theory of ⟨N;+,𝑊 ⟩ is
undecidable, which implies the same for ⟨N;+,𝑉 ⟩. More generally,

the trick above can be used more to construct, given a reducible LRS

with characteristic roots 𝜆1, . . . , 𝜆𝑚 , new LRS whose characteristic

roots form a subset of {𝜆1, . . . , 𝜆𝑚}. We conjecture that, at least for

irreducible LRS, by combining our approach and Semënov’s result

it should be possible to completely classify (𝑢𝑛)𝑛∈N such that the

first-order theory of ⟨N;+, {𝑢𝑛 : 𝑛 ∈ N} ∩ N⟩ is decidable.
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A Omitted proofs
Proof of Lemma 14. Let 𝑁 ∈ N. We will construct 𝑘 > 𝑁 with

the required property. Let 𝐽 be a maximal interval component of

𝐼 \⋃𝑁
𝑛=0 𝐼𝑛 such that |𝐽 | > ∑∞

𝑛=𝑁+1 |𝐼𝑛 ∩ 𝐽 |; such 𝐽 must exist by the

assumption that

∑∞
𝑛=0 |𝐼𝑛 ∩ 𝐼 | < |𝐼 |, and must satisfy |𝐽 | > 0. Let

𝑧1, 𝑧2 be two distinct points in 𝐽 outside
⋃∞

𝑛=0 𝐼𝑛 . Further let 𝐽
′ ⊆ 𝐽

be an arc spanned by 𝑧1 and 𝑧2. We choose 𝑘 to be the smallest 𝑛

such that 𝐼𝑛 ∩ 𝐽 ′ ≠ ∅, which must exist by the density assumption.

Such 𝐼𝑘 must also satisfy 𝐼𝑘 ⊂ 𝐽 ′, as 𝑧1, 𝑧2 ∉ 𝐼𝑛 for all 𝑛, and the

conclusion follows. □

Proof of Lemma 22. Let 𝑧1, 𝑧2 ∈ T+ be such that𝑔𝑑 (𝑧1) = 𝛾 and

𝑔𝑑 (𝑧2) = 𝛿 . Then |J𝑑 (𝛾, 𝛿) | = Δ(𝑧1, 𝑧2). By (6),

𝑧2
1
= −𝜆

𝑑 − 𝛾

𝜆𝑑 − 𝛾

𝑧2
2
= −𝜆

𝑑 − 𝛿

𝜆𝑑 − 𝛿
.

By the geometry of the unit circle, we have that

|𝑧1 − 𝑧2 | < Δ(𝑧1, 𝑧2) <
𝜋

2

|𝑧1 − 𝑧2 |. (12)

Hence it suffices to estimate

|𝑧1 − 𝑧2 | =
|𝑧2
1
− 𝑧2

2
|

|𝑧1 + 𝑧2 |
. (13)

We first argue that Δ(𝑧1, 𝑧2) < 𝜋/2, which implies that

√
2 < |𝑧1 + 𝑧2 | < 2. (14)

Suppose that Δ(𝑧1, 𝑧2) ≥ 𝜋/2. Then, by the continuity of 𝑔𝑑 ,

there exists 𝛾 < 𝛽 ≤ 𝛿 and 𝑧3 ∈ T+ such that 𝑔𝑑 (𝑧) = 𝛽 and

Δ(𝑧1, 𝑧3) = 𝜋/2. Then either 𝑧3 = 𝒊𝑧1 or 𝑧3 = −𝒊𝑧1, and hence

𝑧2
1
= −𝑧2

3
. Applying Equation (6), we obtain that

𝜆
𝑑 − 𝛾

𝜆𝑑 − 𝛾
= −𝜆

𝑑 − 𝛽

𝜆𝑑 − 𝛽

which simplifies to

2𝜆𝑑𝜆
𝑑 + (𝛽 − 𝛾) (𝜆𝑑 − 𝜆𝑑 ) + 2𝛾𝛽 = 0.

Observe that 𝜆𝑑𝜆
𝑑

= 𝜌2𝑑 , 𝛽 and 𝛾 are all real. Hence 𝜆
𝑑 − 𝜆𝑑

is real. In particular, 𝜆𝑑 is real and thus 𝜆/𝜆 is a root of unity,

which contradicts the non-degeneracy assumption. We conclude

that Δ(𝑧1, 𝑧2) < 𝜋/2.
Therefore, to prove an upper bound on Δ(𝑧1, 𝑧2) it suffices to

consider |𝑧2
1
− 𝑧2

2
|. We have

𝑧2
1
− 𝑧2

2
=

(𝛿 − 𝛾)𝜌𝑑

|𝜆𝑑 − 𝛾 | |𝜆𝑑 − 𝛿 |
|𝜇2𝑑 − 1| . (15)

https://arxiv.org/abs/2409.03428


Conference’17, July 2017, Washington, DC, USA Toghrul Karimov, Joris Nieuwveld, and Joël Ouaknine

Consider |𝜆𝑑 − 𝛾 |. By assumption, |𝜆𝑑 | = 𝜌𝑑 > 𝛾 . Moreover, 𝜆𝑑 is

non-real. Hence |𝜆𝑑 −𝛾 | > 𝜌𝑑 −𝛾 ≥ 𝜌𝑑 − 𝜌+1
2

= 𝜌𝑑 (1− 𝜌+1
2𝜌𝑑

) ≥ 𝜌𝑑 ·𝑐
where 𝑐 = 1 − 𝜌+1

2𝜌
> 0. Similarly, |𝜆𝑑 − 𝛿 | > 𝜌𝑑 · 𝑐 . Therefore,

we only need to bound |𝜇2𝑑 − 1| from above by a constant. Since

|𝜇2𝑑 − 1| ≤ 2, we obtain

|𝑧2
1
− 𝑧2

2
| < 2(𝛿 − 𝛾)

𝑐2𝜌𝑑
.

and hence

Δ(𝑧1, 𝑧2) <
𝜋

2

· 2(𝛿 − 𝛾)
𝑐2𝜌𝑑

· 1

√
2

. □

Proof of Lemma 23. Define 𝑧1 and 𝑧2 as was done in the proof

of Lemma 22; then |J𝑑 (𝛾, 𝛿) | > |𝑧1−𝑧2 |. From Equations (12) to (15)

we obtain

|𝑧1 − 𝑧2 | >
(𝛿 − 𝛾)𝜌𝑑

2|𝜆𝑑 − 𝛾 | |𝜆𝑑 − 𝛿 |
|𝜇2𝑑 − 1|.

As argued in the proof of Lemma 22, |𝜆𝑑 − 𝛾 |, |𝜆𝑑 − 𝛿 | < 𝜌𝑑 · 𝑐 for
𝑐 = 1 − 𝜌+1

2𝜌
. Hence it suffices to give a constant lower bound for

|𝜇2𝑑 − 1|, which we do below.

Let Ĩ = {𝑧 ∈ T+ : Re(𝑧) > 1/(2𝜌)} ⊃ I and 𝐷 ≥ 1 be such that

|J𝑑 (0, 𝜌+1
2
) | < 1

2𝜌
for all 𝑑 ≥ 𝐷 . Then for all 𝑑 ≥ 𝐷 , if J𝑑 (𝛾, 𝛿) ⊆ I

thenJ𝑑 (0, 𝜌+1
2
) ⊆ Ĩ and, as𝛼𝑑 is an endpoint ofJ𝑑 (0, 𝜌+1

2
),𝛼𝑑 ∈ Ĩ.

We define

𝑎 = min

1≤𝑑≤𝐷
|𝜇2𝑑 − 1|

which is positive by the assumption that 𝜇 is not a root of unity.

We will show that

|𝜇2𝑑 − 1| ≥ min{𝑎, (2/𝜌)2}.
If 𝑑 ≤ 𝐷 , this is immediate. Now suppose 𝑑 ≥ 𝐷 . Recall that 𝜇𝑑 =
𝒊

±𝛼𝑑 where ±𝛼𝑑 is one of 𝛼𝑑 and −𝛼𝑑 . Then, as 𝛼𝑑 ∈ Ĩ, we have
that Re(𝛼𝑑 ) > 2/𝜌 and hence

|𝜇2𝑑 − 1| = |𝜇𝑑 − 1| · |𝜇𝑑 + 1| = | ± 𝛼𝑑 − 𝒊 | · | ± 𝛼𝑑 + 𝒊 | ≥ (2/𝜌)2 . □

Proof of Lemma 25. By the triangle inequality,

Δ(𝛼𝑑1 , 𝛼𝑑2 ) ≤ Δ(𝛼𝑑1 , 𝑧) + Δ(𝑧, 𝛼𝑑2 ) (16)

for 𝑧 ∈ J𝑑1 (1, 𝜁 )∩J𝑑2 (1, 𝜁 ). Recall that𝛼𝑑 is an endpoint ofJ𝑑 (0, 𝜁 ).
Hence we have

Δ(𝛼𝑑1 , 𝛼𝑑2 ) ≤ |J𝑑1 (0, 𝜁 ) | + |J𝑑2 (0, 𝜁 ) | <
2𝐶1𝜁

𝜌𝑑1
(17)

where the last inequality is deduced from Lemma 22. Write 𝛼𝑑𝑖 =

𝜒𝑖𝜇
−𝑑𝑖

for 𝑖 = 1, 2 where 𝜒𝑖 ∈ { 𝒊,−𝒊}. Then
Δ(𝛼𝑑1 , 𝛼𝑑2 ) = Δ(𝜒1𝜒−12

, 𝜇−𝑑2+𝑑1 ).

Note that 𝛼𝑑1 ≠ 𝛼𝑑2 as otherwise we would have 𝜇−𝑑1 = 𝜇−𝑑2 or
𝜇−𝑑1 = −𝜇−𝑑2 , contradicting the assumption that 𝜇 is not a root of

unity. Applying Baker’s theorem on the left-hand side (note that

max {2, 𝑑2 − 𝑑1} ≤ 1 + 𝑑2 − 𝑑1),

Δ(𝛼𝑑1 , 𝛼𝑑2 ) >
1

(1 + 𝑑2 − 𝑑1)𝐶0

.

Therefore,

1

(1 + 𝑑2 − 𝑑1)𝐶0

<
2𝐶1𝜁

𝜌𝑑1
.

Rearranging gives the desired conclusion. □

Proof of Lemma 28. Applying Lemma 25, we have that for all

𝑑 > 0,

∞∑︁
𝑘=𝑑+1

|J𝑑 (𝛾, 𝛿) ∩ J𝑘 (1, 𝜁 ) | ≤
∞∑︁

𝑘=𝜑 (𝑑 )
|J𝑘 (1, 𝜁 ) |

≤ 𝐶1 (𝜁 − 1)
𝜌𝜑 (𝑑 ) · (𝜌 − 1)

where

𝜑 (𝑑) =
⌈
𝑑 +

(
𝜌𝑑

2𝐶1𝜁

)
1/𝐶0

− 1

⌉
.

Because 𝜑 (𝑑) grows much faster than 𝑑 , we can compute 𝐷 such

that for all 𝑑 ≥ 𝐷 ,

𝐶1 (𝜁 − 1)
𝜌𝜑 (𝑑 ) · (𝜌 − 1)

<
𝐶2 (𝛿 − 𝛾)

𝜌𝑑
.

Therefore, for all 𝑑 ≥ 𝐷 , if J𝑑 (𝛾, 𝛿) ⊆ I then by Lemma 23,

|J𝑑 (𝛿,𝛾) | >
𝐶2 (𝛿 − 𝛾)

𝜌𝑑
>

∞∑︁
𝑘=𝑑+1

|J𝑑 (𝛾, 𝛿) ∩ J𝑘 (1, 𝜁 ) |. □

Proof of Lemma 30. It suffices to prove the statement for 𝛾 = 1

and 𝛿 = 𝜁 . By Lemma 22, whenever 𝜉𝜇𝑛 ∈ J𝑑 (1, 𝜁 ) we have that

0 < Δ(𝜉𝜇𝑛, 𝛼𝑑 ) <
𝐶1𝜁

𝜌𝑑
.

Since |𝜇 | = 1 and 𝛼𝑑 is one of ±𝒊𝜇−𝑑 ,
Δ(𝜉𝜇𝑛, 𝛼𝑑 ) = Δ(𝜇𝑛+𝑑 , 𝑧)

where 𝑧 is one of ±𝒊/𝜉 . Applying Lemma 9 to the right-hand side

gives

𝐶1𝜁

𝜌𝑑
> Δ(𝜉𝜇𝑛, 𝛼𝑑 ) >

1

(𝑛 + 𝑑)𝐶0

for all 𝑑, 𝑛 ≥ 1 such that 𝜉𝜇𝑛 ∈ J𝑑 (1, 𝜁 ). Hence

𝑛 >
(1 + 𝜀)𝑑

(𝐶1𝜁 )1/𝐶0

− 𝑑

where 𝜀 := 𝜌1/𝐶0 − 1 > 0. Let 𝐷 ≥ 1 and 𝜀̃ ∈ (0, 𝜀) be such that for

all 𝑑 ≥ 𝐷 ,

(1 + 𝜀)𝑑

(𝐶1𝜁 )1/𝐶0

− 𝑑 > (1 + 𝜀̃)𝑑 .

Then for all 𝑛 ≥ 1 and 𝑑 ≥ 𝐷 such that 𝜉𝜇𝑛 ∈ J𝑑 (1, 𝜁 ),
𝑛 + 1 > 𝑛 > (1 + 𝜀̃)𝑑

which implies that

1

log(1 + 𝜀̃) · log(𝑛 + 1) > 𝑑.

Finally, note that for 𝑑 < 𝐷 and 𝑛 ≥ 1, regardless of whether 𝜉𝜇𝑛 ∈
J𝑑 (1, 𝜁 ) we have that 𝑑 < 𝐷

log(2) log(𝑛+1) as log(𝑛+1)/log(2) ≥ 1.

We can therefore take

𝐶3 =max

{
𝐷

log(2) ,
1

log(1 + 𝜀̃)

}
. □

Proof of Lemma 31. It suffices to prove the claim in case 𝐽 is

open. Let 𝑙 =
⌊
2𝜋
| 𝐽 |

⌋
and consider the intervals {𝐽 , . . . , 𝜇𝑙 𝐽 } on T. As

(𝑙 + 1) |𝐽 | > 2𝜋 , there exist 0 ≤𝑚 < 𝑠 ≤ 𝑙 such that 𝜇𝑚 𝐽 intersects

𝜇𝑠 𝐽 . Let 𝑘 = 𝑠 −𝑚 and 𝜃 = | Log(𝜇𝑘 ) |. We have that 0 ≤ 𝑘 ≤ 𝑙 and

𝜃 < |𝐽 |. Since 𝜇 is not a root of unity, 𝜇𝑚 ≠ 𝜇𝑠 and hence 𝜃 > 0.
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We next compute a lower bound on 𝜃 . Observe that 𝜃 > |𝜇𝑘 − 1|.
Applying Lemma 9,

𝜃 > |𝜇𝑘 − 1| > (max{2, 𝑘})−𝐵

for a (computable) constant 𝐵 > 0. Since 𝑘 ≤ 𝑙 < 4𝜋/|𝐽 | and
2 ≤ 4𝜋/|𝐽 |, we have that

𝜃 > (4𝜋/|𝐽 |)−𝐵 .
Let 𝐿 = ⌈2𝜋/𝜃⌉. By the lower bound on 𝜃 above, 𝐿 < (4𝜋/|𝐽 |)𝐶 for

a constant 𝐶 > 0.

Consider the sequence (𝑧𝑛)𝑛∈N of points on T that is defined by

𝑧𝑛 = 𝜇𝑁+𝑘𝑛
. We have that 𝑧𝑛+1 = 𝜇𝑘𝑧𝑛 and hence |𝑧𝑛+1 − 𝑧𝑛 | < |𝐽 |

for all 𝑛. Moreover, the finite sequence ⟨𝑧0, . . . , 𝑧𝐿⟩ winds around T
at least once. Hence there exists

0 ≤ 𝑟 < 𝐿

such that 𝑧𝑟 ∈ 𝐽 . That is, 𝜇𝑛 ∈ 𝐽 for 𝑛 = 𝑁 + 𝑘𝑟 . It remains to

observe that 𝑁 ≤ 𝑁 + 𝑘𝑟 < 𝑁 + 𝑘𝐿, and recall the bounds on 𝑘

and 𝐿. □
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