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Abstract

We show that for a large class of integer linear recurrence sequences
(tn)nen, the first-order theories of (N;<,n +— max{0,u,}) and
(N; +, {up: n € N} N N) are undecidable. Our approach is to show
that (un) e contains, in a specific sense, all finite sequences over N,
an idea that we borrow from the proof of Hieronymi and Schulz
that the first-order theory of (N;+, {2": n € N},{3": n € N}) is
undecidable. In a similar way, we harness a contemporary result
about quasi-randomness in the values of the Ramanujan tau func-
tion to show that the first-order theory of (N;<,n +— |z(n)|) is
undecidable.
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1 Introduction

Decidability of various logical theories connected to arithmetic
has been a central topic in mathematics since the formulation of
Hilbert’s program [1] in the 1920s, arguably leading to the birth
of modern computer science through the works of Turing in the
1930s [2]. Hilbert believed that every true mathematical statement
must be provable in some formal system using “finitary methods”
[3]. His program, however, was proven unattainable with Gédel’s
proofs of the incompleteness theorems [4], which established the fol-
lowing: there does not exist an algorithm (in particular, an algorithm
that operates on axioms using deduction rules) that takes a first-
order statement in the language of (N; <, +, -), and decides whether
it is true. Around forty years after Godel, an even stronger result
was shown by Matiyasevich, Robinson, Davis, and Putnam [5]: it
is not possible to algorithmically determine whether a given mul-
tivariate polynomial p € Z[xy, ..., x4] has a zero in 74, famously
resolving Hilbert’s tenth problem in the negative.

On the decidability front, Presburger showed (in 1929, using
quantifier elimination) that the first-order theory of (N; <, +), now
called Presburger arithmetic, is decidable [6]. This spurred almost
100 years of fruitful research aimed at accurately delineating the
boundaries of decidability for expansions of (N; <, +), uncovering
deep connections to computer science (automata theory [7], lin-
ear programming [8]), symbolic dynamics (numeration systems [9,
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Chapter 2]), number theory (rational points on varieties [10]), etc.!
A central problem in the area, which is also the starting point
of this paper, is the following. Recall that an integer linear re-
currence sequence (LRS) is a sequence (u,)nen over Z such that
Upid = A Unid—1 + - - -+ aquy, forsomed > 0and ay, ..., aq € Z, the
Fibonacci sequence being perhaps the most emblematic example.

Problem 1. For which integer LRS (up)nen is the first-order theory
of (N; +, {un: n € N} NN) decidable?

Note that in any structure that has N as the domain and is
equipped with +, we can define the usual order < as well as any con-
stant ¢ € N; the same does not hold for structures with domain Z.
Let us next recount the main approaches to proving decidability and
undecidability of the first-order theory of an expansion of (N; +),
and what they tell us in terms of Problem 1.

Quantifier elimination. Seménov [12] gave a sufficient (growth-
type) condition for the structures (N; +, P) and (N; +, f(-)), where
P € Nand f: N — N, to admit quantifier elimination, which
implies decidability of the first-order theory. His criterion yields
decidability for (N;+,n +— 27), (N;+,n — n!), (N;+,n — F,)
(where F, is the nth Fibonacci number), and (N; +,n +— |e"]). In
the context of integer LRS, it yields decidability of the first-order
theory of

(N; +, n — max{0, u,})

for irreducible (u,)nen with a single dominant root p (which will
necessarily be real); see Section 2.6 for the exact definitions.? Note
that the structure with the function n — max{0, u, } is strictly more
expressive than the one with the predicate {u,: n € N} N N. Hence
Problem 1 is decidable for the aforementioned class of integer LRS.
Intuitively, the restriction that (u,),en be irreducible ensures that
(4n)nen is “atomic” and does not hide multiple different integer LRS
inside it. The number of dominant roots of an LRS, on the other hand,
is a natural measure of complexity of an LRS. Finally, we mention
that a much faster and practical variant of Seménov’s algorithm for
quantifier elimination was recently given in [13].

Axiomatisation. Point [14] showed that for any (u,),en as above,
the first-order theory of (N; +, {u,,: n € N} NN) admits a countable
and decidable axiomatisation. Therefore, for such structures, an
alternative decision procedure can be given as follows: given a
sentence ¢, enumerate all possible proofs (using the countable
axiomatisation and the standard rules of deduction) until either a
proof of ¢ or a proof of —¢ is found.

Automaticity. For any integer LRS (u,),en as above such that the
dominant root p is a Pisot number, the predicate {u,: n € N} NN

!The first-order theory of (N; -}, known as Skolem arithmetic, is also decidable. How-
ever, decidability of first-order theories of various expansions of (N; - ) has not received
much attention. We mention that < is definable in (N; +) but not in (N; -): in fact,
(N; <, -) defines addition and hence has an undecidable first-order theory [11].
2Seménov’s criterion provably does not apply to reducible LRS, as well as any LRS
with two or more dominant roots.
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and the function + can be implemented using automata over finite
words that operate on greedy representations of x € N in a number
system constructed from p [9]. Well-known examples include the
powers of 2 and the binary representation, as well as the Fibonacci
numbers and the Zeckendorf representation [15]. In these cases,
whether a given formula ¢ is true can be determined using tools
from automata theory [16].

Definability of multiplication. Undecidability, on the other hand,
has almost exclusively been proven by first showing that the struc-
ture in question defines multiplication, and then invoking unde-
cidability of the (existential fragment of the) first-order theory of
(N; +, -). For example, Biichi observed in 1960 that for any non-
linear polynomial p € Z[x] such that p(N) N N is infinite, the
structure

(N;+, {p(n): n € N} N N)

defines multiplication and hence has an undecidable first-order
theory. To link this result to Problem 1, we mention that for any
p € Z[x] of degree at least two, the sequence (p(n)),ew is an integer
LRS with the single repeated dominant root p = 1. Recently, Xiao
[10] showed that (N;0, 1, <, +, {n?: n € N}), in fact, existentially
defines multiplication, and hence the existential fragment of the
first-order theory of the aforementioned structure is undecidable;
this settled a long-standing open problem in arithmetic geometry
([17, Sec. 8], [18]).

There are many more results that show undecidability of an
expansion of Presburger arithmetic via definability of multiplica-
tion: Beés [19] showed in 1997 that, for any multiplicatively inde-
pendent k,I > 2, the structure (N; +, {k": n € N},Vj(-)) (where
Vi(x) returns the largest power of [ dividing x) defines multiplica-
tion. Woods [20] proved that, assuming Dickson’s conjecture, the
structure (N; +, {n: n is prime}) defines multiplication. For more
examples in this vein, see the survey [21].

The Hieronymi-Schulz method. This paper, however, is about
another powerful, yet under-explored technique for proving unde-
cidability of first-order theories, originating in the recent work [22].
There, Hieronymi and Schulz prove that the first-order theory of

M= (N;+,{2": n e N},{3": n € N})

is undecidable, thus resolving a problem that had been open at least
since 1992 [23].> At the same time Schulz [25] has shown that the
structure M does not define multiplication. The approach of [22]
is, therefore, radically different: the idea is to show that we can
extract from M arbitrary finite sequences over N, in a manner that
satisfies some specific conditions that allows directly simulating
Turing machines. For x > 1, define a(x) by 2¢0) < x < 200+
and for x > 1, x not a power of 2, let f(x) = a(x - 2¢(*)) That
is, f calculates the (index of the) second-largest bit in the binary
expansion of x.

THEOREM 1 (LEMMA 3.4 IN [22]). For every finite sequence (),‘l-)f.\:f1
over N there exist a,b € N such that

(BB3™) = BB nZass N 10,537 = BBI] = ()Y,

3More precisely, the 3*V*3* fragment of the first-order theory of (N;0,1, <
,+,{2": n € N}, {3": n € N}) is undecidable, and the existential fragment of the
same theory is decidable [24]. Decidability thus remains open for the 3*V* fragment.
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Here the N operation takes a sequence and an interval, and
returns the sequence obtained by only keeping the elements that
belong to the specified interval. Theorem 1 can be interpreted as
follows: there exists a function with a fixed number of inputs (two
in Theorem 1, namely 3¢,3% € N) that can be implemented (in a
very specific sense, as we will see in Section 3) in M that outputs
all possible finite sequences over N. In this paper, we

e define what it means for a structure M to simulate counter
machines (Section 3), which abstracts the Hieronymi-Schulz
approach to proving undecidability, and

e use number-theoretic tools to show that certain classes of
structures simulate counter machines and hence have unde-
cidable first-order theories.

We focus on non-degenerate integer LRS (up,),en with exactly
two non—repeated dominant roots.* (In a measure-theoretic sense,
almost all integer LRS are non-degenerate and have either one or
two dominant roots: see, e.g., [27].) Such sequences are of the form

-n
n =
u, =aA* +al +o,

where A is non-real, [A| > 1, and |aA" + ai”| grows much faster
than |vy,|. A concrete example is u, = (2+1i)" + (2 —i)" + 2", which
satisfies the recurrence relation u,.3 = 6u,ts — 13upyq + 10u,.

When (up)nen satisfying the conditions above is clear from the
context, we write U = {u,: n € N} NN (which will necessarily be
infinite), (pp)nen for the ordering of U, and u(-) for the function
n +— max{0, u, }. Our main results are the following.

THEOREM 2. Let (up)nen be a non-degenerate integer LRS (uy)nen
with exactly two non-repeated dominant roots. Then there exists a
computable { > 1 with the following property. For all ¢ > 1 and
1<y <8 <y2 <8 <+ <y <& <, there exist infinitely
many n such that

Pn+j
— € ( ’5)
» Yj>0j

n

forall1 < j<{t.

That is, we can control the ratios of consecutive elements of U:
this is the “everything that can happen, will happen” result analo-
gous to Theorem 1 that we need. Using the framework of structures
that simulate counter machines, we deduce the following from
Theorem 2.

THEOREM 3. Let (up)nen be a non-degenerate integer LRS (U )nen
with exactly two non-repeated dominant roots. The structure (N; +,U)
simulates counter machines and therefore has an undecidable first-
order theory.

Note that since U is definable in (Z; <, +, {uy, : n € N}), the first-
order theory of the latter is also undecidable. At the time of writing,
decidability of the first-order theory of (Z; +, {u,,: n € N}) remains
open.

The quasi-randomness of the integer LRS that we consider was
already hinted at in the recent paper [28], where the decidability of

4See Section 9 for a discussion on first-order theories of integer LRS with exactly one
dominant root. We also note that the following problem subsumes the Skolem problem
[26] for integer LRS of order 5, which is currently open: given x € N and an integer
LRS (¢ )nen with four (non-repeated) dominant roots, decide whether x € U, where
U = {u,: n € N} N N. That is, integer LRS with four or more dominant roots are, at
the time of writing, considered mathematically intractable.
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the monadic second-order (MSO) theory of (N; <, U) was established
via the following theorem.

THEOREM 4 ([28, THEOREM 4]). Let (up)nen be a non-degenerate
integer LRS (un)nen with exactly two non-repeated dominant roots,
m > 1, and

m ={0<r <m:u, =r(modm) forinfinitely many n}.

Then for any ty, ..., t; € X, we can compute infinitely many n such
that for all0 < i < ¢,

Pn+i = t; (mod m).

Even though our original motivation was to attack Problem 1,
when proving Theorem 3, we discovered some other, very surprising
undecidability results. The first one is about what happens if, instead
of the predicate U, we have the (more expressive) function u(-). It
turns out that, in this case, we do not even need the + operator to
obtain undecidability.

THEOREM 5. Let (uy)nen be a non-degenerate integer LRS (up)nen
with exactly two non-repeated dominant roots. Then the structure
(N; <, u(-)) simulates counter machines and therefore has an unde-
cidable first-order theory.

Theorem 5 is proven via the following quasi-randomness result
analogous to Theorem 2.

THEOREM 6. Let (u,)nen be a non-degenerate integer LRS (up)nen
with exactly two non-repeated dominant roots. Then there exists com-
putable { > 1 with the following property. For every { > 1 and
1 <yj <d; < { with1 < j < ¢, there exist infinitely many n,n such
that, writing (”J‘);c:o for the ordering of {m: n < m < nandu, <
Um < {un}, we have thatu, > 0,k = ¢ and

Un;
. € (vj,65)
forall1<j<¢t.

Motivated by theorems 3 and 5 above, we say that a sequence
(tn)nen is richif (N; +, {up: n € N}NN) or (N; <, n — max{0,u,})
simulates counter machines. It turns out that quasi-randomness
properties of various special sequences in mathematics have already
been extensively studied, and we can deduce richness results for
the corresponding structures relatively easily. In this paper, we
do this for 7: N — Z, the Ramanujan tau function, using a recent
quasi-randomness result of Bilu, Deshouillers, Gun, and Luca [29];
see Section 4 for the details.

THEOREM 7. Assuming Lehmer’s conjecture, (N; <, |7(-)|) sim-
ulates counter machines and hence has an undecidable first-order
theory.

Note that, once again, we do not need the + operator to prove
undecidability.

2 Preliminaries

We denote the cardinality of a set X by #X. For x € Rand y € R\ {0},
let [[x]], be the smallest distance from x to an integer multiple of y.
We denote by i the imaginary number and by Log the principal
branch of the complex logarithm, which satisfies Log(x + yi) =
i0 + log\/x% + y%, 0 € (—nx, ] for all x,y € R. We write T for the
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unit circle in C, and T for {z € T: Re(z) > 0}. For 21,2, € T, we
write A(z;, z2) for the length of the shorter arc of T connecting z;
and z,.

2.1 Structures and their theories

A structure M consists of a domain D, constants cy, . .., cx € D, pred-
icates Py, . .., P; where each P; € DH) for some u(i) = 1, and func-
tions fi, . .., fin Where each f; has the type f;: D) — D for some
4(i) = 1. We denote such M by (D;c1, ..., ¢k, Py oo, Pry fiy o vy fn)-
We do note explicitly mention = as a predicate, but assume that
every structure has it. A theory is simply a set of sentences, i.e.
first-order formulas without free variables. The (first-order) the-
ory of a structure M is the set of all well-formed sentences (i.e.
formulas without free variables) constructed from the symbols
Ct,.- s CkoPr, o PLf1, ..o, fm as well as A, v, =, 3,V that are true
in M. We write M |= ¢ to mean that ¢ holds in M. A formula
is existential if it is of the form Jxy - - - Jxy,: (1, ..., %) for @
quantifier-free. A theory 7 is decidable if there exists an algorithm
that takes a sentence ¢ and decides whether ¢ € 7 and undecidable
otherwise.

2.2 Counter machines

A k-counter machine M consists of counters cy, . . ., ci taking posi-
tive integer values and instructions numbered 1,. .., H for some H.
Without loss of generality, we assume that H > 1. The instructions
are of the form INC ¢;, IF ¢; > 1 THEN DEC ¢;, GOTO [, and HALT,
where ¢; is a counter and [ is an instruction number. That is, the
counters can be incremented and decremented, but they cannot go
below 1. We additionally assume, without loss of generality, that the
machine starts with the instruction numbered 1, and has a single
HALT instruction, numbered H. The initial values of the counters
are all 1. We write Sp: {1,...,H} X N’;O — {1,...,H} x N’;O for
the (partial) transition function of M that describes how a configu-
ration consisting of an instruction number [ # H and the values of
the k counters is updated in one step. By the trace of M we mean
the (finite or infinite) sequence

($)n = 0,10, C1,05 - -+ Chy05 0, 11, €115 - - o5 Chets - - =)

such that s, =0 & n=0(modk +2), 1 =1, cjo =0 forall j, and

(Lja1s C1jats o5 Chjr1) = IM (L €1y - os Ckj)
for all j such that 1; # H. Note that we use 0 as a delimiter between
consecutive configurations of M. The Halting Problem asks to
decide whether the execution of a given machine M ever reaches
the HALT instruction, and is undecidable already for two-counter
machines [30].

2.3 Algebraic numbers

An algebraic number « is a complex number that is a root of a
polynomial p € Q[x]. The unique monic polynomial p of the small-
est degree that has « as a root is called the minimal polynomial a.
The set of algebraic numbers forms a field, written Q. An algebraic
number « can be represented in computer memory, for example,
by its minimal polynomial p as well as sufficiently close rational
approximations to Re(«) and Im(«). In this representation, all usual
arithmetic operations can be effectively performed on algebraic
numbers [31, Chapter 4].
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2.4 Baker’s theorem

Baker’s theorem and its p-adic analogue are among the most im-
portant mathematical tools in the study of linear recurrence se-
quences. Let A = by Log(ay) +- - - + by, Log(am), where b; € Z\ {0},
a € Q\ {0}. Such a A is called a linear form in logarithms.

THEOREM 8. Let B > 3 be such that B > |b;| for alli. There exists
a computable constant C > 0 (that only depends on a, . . ., ;) such
that

|A] > B¢
whenever A # 0.
Lemma 9. Leta,f € T, n € N be such that o™ # . There exists a
computable constant Cy > 0 such that
1

D Gtz

Proor. We have that

A(a”, p) = [[nLog(a) — Log(p)ll2x
m(nLog(a) — Log(p) — k)
n(nLog(a) —Log(f) — kLog(—1))
where —n — 1 < k < n + 1. Applying Baker’s theorem with B =
max {3, n + 1}, there exists a constant C > 0 such that
1
(max{3,n + 1})¢"

A", p) >

Finally, choose any Cy > 0 such that 3¢ > 2% and (n + 1) € >
n=C foralln > 3. ]

2.5 Linear recurrence sequences

A sequence (up)nen over a ring R is a linear recurrence sequence
(LRS) over R if there exist d > 0 and ay, ..., a4 € R such that

Untd = Qiliped—1 ++* + aqlin (1)

for all n € N. The smallest such d is called the order of (uy)pen. In
this paper, we work with LRS over Z, which we also call integer
LRS. For example, the Fibonacci sequence satisfies up12 = Up+1 + up
for all n € N and is an integer LRS of order two. We refer the reader
to the book [32] for a detailed account of LRS.

Let R € Q and (uy)nen be an LRS over R of order d. Then
there exist unique ay, ...,aqs € R (with ag # 0) such that (u,)nen
satisfies the recurrence relation (1). The minimal polynomial of
(tp)new is p(x) = x¢ — Zle cix?1. Suppose p has the (distinct)
roots Ay, ..., Am € Q, called the characteristic roots of (tn)nen. Then
there exist unique non-zero polynomials g1, ...,¢m € Q[x] such
that

up = q1(MAL + -+ + gm(n)Ap, 2)
for all n € N. Equation (2) is known as the exponential-polynomial
form of (up)nen. A characteristic root A; is called non-repeated (al-
ternatively, simple) if q; is constant. The sequence (up,)nen is called
diagonalisable (alternatively, simple) if every A; is non-repeated.
A characteristic root A; is called dominant if |A;| > |A;] for all
1 < j < m. We say that (u,)nen is non-degenerate if z := A;/A; is
not a root of unity for all i # j, i.e., 25 # 1 for all k # 0. For any LRS
(Un)nen, there exists L (that is effectively computable for integer
LRS) such that the subsequences (4,r+r)nen are non-degenerate for
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all 0 < r < L. By the Skolem-Mahler-Lech theorem, every non-zero
and non-degenerate LRS over R (in fact, over any ring of charac-
teristic zero) has finitely many zeros. We say that an integer LRS
(un)nen is irreducible if its characteristic polynomial is irreducible
over Q.

Decision problems of linear recurrence sequences, despite being
of central interest in algebraic number theory, largely remain open.
The most famous example is the Skolem Problem, which asks to
decide whether a given integer LRS contains zero. It is known to be
decidable for non-degenerate LRS with at most 3 distinct dominant
roots [33].

2.6 LRS with two dominant roots

In this section, fix a non-degenerate integer LRS (u,)nen With ex-
actly two dominant roots. Because the dominant roots are closed
under complex conjugation, we either have two real dominant roots
A, —A, or two non-real dominant roots A, 1. We will adopt the follow-
ing notation throughout this paper: u, = v, + ry, v, = aA™ + al
wherea € Q\ {0}, p = |A| >0, A = py, p = e¥® € T, a = |a|¢, and
& = e € T We have that

al +al =lalp™(Eu" + ER") = 2|alp" cos(nf + )

and, by the assumption on dominant roots, |r,| = o((p — &)™) for
all sufficiently small ¢ > 0 (where the implied constant is effective).
By non-degeneracy, 6 is not a rational multiple of . Finally, we
mention that both (v,),en and (r,)nen are themselves LRS over
RNQ.

By Kronecker’s theorem in Diophantine approximation [34],
because 6 is not a rational multiple of 7, we have that (cos(né +
©))nen is dense in [—1, 1]; equivalently, (éu")pen is dense in T. We
next argue that p > 1. Suppose p < 1. Then, as p is dominant,
|un| is bounded, and so as u, takes integer values, u,, = cos(né +
@)p"+0((p—¢)") only takes finitely many values for small enough
& > 0. Hence, as (cos(nf + ¢))nen is dense in [—1,1], p < 1 and
thus (up)nen is eventually constantly 0. Combined with the non-
degeneracy assumption and the Skolem-Mahler-Lech theorem, this
implies that u, must be identically zero, which is a contradiction.

We next give a few lemmas for our class of LRS. The following
two results are proven using Baker’s theorem.

Lemma 10 ([35, Lemma 3]). There exist computable constants
N, C > 0 such that for alln > N, |v,| > f:—c.

THEOREM 11 ([33, THEOREM 3]). There exist computable constants
N,C > 0 such that foralln > N and m < n,

ltn = tm| > p p~Clog(n+1))?
In the following lemmas, we show that, for our purposes, we can
work with v, instead of u,, provided that n is sufficiently large.

Lemma 12. There exists computable M with the following property.
For all distinct ny,n; € N with ny > M we have that up, # up,,
Up, # 0,sign(up,) = sign(vy,, ), and sign(up, —un,) = sign(v,, —vy,,).

Proor. Let N, C be as in Theorem 11. Then for all n; # ny
such that at least one n; > N, we have that u,, # up,. Since
[ra] < o((p—¢)") for all sufficiently small ¢ > 0, applying Lemma 10
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we can compute N’ > N such that |v,| > |r,| and hence u, # 0 for
alln > N'.

Consider n; > N” and n; # ny. Exchanging n; and n; if necessary,
we can assume that n; > n,. Then

Uny — Uny =Upy — Up, + (rnz - rnl)- (3)

Since (ry)nen = 0((p — ¢)") for all sufficiently small ¢ > 0, we can
compute N and ¢ > 0 such that

[Pny = 1ol < (p— &)™

for all ny, ny with ny; > N. Applying Theorem 11, for all sufficiently
large n; and (any) ny > ny, we have that

ni nl—c(log(m +1))?

(p—e)m
which implies (together with Equation (3)) that

|un1 - unzl P

[Py = Ty |

> 1

sign(ovp, — vp,) = sign(u,, —up,,) € {— +}. ]

Lemma 13. For every e € Q. there exists computable M, such that
foralln > M,

|un|

1-¢< <l+e.
|on]
Proor. We have
U _ 1+ r_"
Un Un

It remains to observe that by Lemma 10,
I'n

lim — =0
n—oo yy,

effectively. O

2.7 The Hieronymi-Schulz interval stacking
lemma

The following lemma plays a crucial role in the proof of Theorem 1,
as well as our theorems 2 and 6.

Lemma 14 ([22, Lemma 2.1]). LetI C T be an interval and (I)pen
be a sequence of intervals such that Yo |I, NI| < |I| and (I)nen is
dense in 1. That is, for every open ] C I there exist infinitely many n
such that I, intersects J. Then there exist infinitely many k such that
I Clandky NI, =@ foralln < k.

PRroOF. See Appendix A. O

3 How to prove undecidability

We say that a structure M with domain D simulates counter machines
if there exist I, m > 1, maps Seq: D! - N*, Rep: D! - (D™)*, and
formulas rep, cnst; (where k € N and we additionally require
that cnsty be effectively computable given k), succ, inc, eq in the
language of M with [ + m, [+ m, [ +2m, [+ 2m, | + 2m free variables,
respectively, that satisfy the following.

(1) The map Seq is surjective. Intuitively, Seq is a black box
with [ inputs that is “implementable” in M that outputs all
possible finite sequences over N.

(2) Forall x € D!, |Seq(x)| = |[Rep(x)|, and the terms of Rep(x)
are distinct. Intuitively, Rep(x) is a finite sequence of distinct
terms that index the sequence Seq(x).
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3) Forall x € D' andy € D™, M = rep(x,y) if and only
if y = Rep(x); for some i. That is, y appears in Rep(x);
equivalently, y is the index of some term in Seq(x).

4) Forallk € N, x € D! and y € D™, M |= cnsty(x, y) if and
only if there exists i such that y = Rep(x); and Seq(x); = k:
that is, y is the index of a term in Seq(x) that is equal to k.

5) For all x € D! and y,z € D™, M = succ(x, y, z) if and only
if y, z are two consecutive terms appearing in Rep(x): that
is, y, z index two consecutive terms of Seq(x). Note that
succ(x, y, z) implies rep(x, y) and rep(x, z).

6) For all x € D! and y,z € D™, M |= inc(x,y,z) if and only
if there exist i, j such that that y = Rep(x);, z = Rep(x);,
and Seq(x); = Seq(x); + 1: that is, y, z index two terms t;, t,,
respectively, of Seq(x) that satisfy t, = # + 1.

7) For all x € D! and y,z € D™, M |= eq(x,y,2) if and only
if there exist i, j such that y = Rep(x);, z = Rep(x); and
Seq(x); = Seq(x);: that is, y, z index two terms of Seq(x)
that are equal.

Note that “M simulates counter machines” is not the same at
all as “arbitrary finite sequences over N are definable in M” in the
classical sense (of model theory): the latter applies to structures
M with domain D 2 N, and means’ that there exists [ > 1 and
a single formula ¢ with [ + 2 free variables such that when we
plug x € D! into ¢, the resulting formulas (with two free variables)
define all finite sequences over N, where (tl-)f.\i L
{(L&),....(N,tn)}-

is viewed as the set

THEOREM 15. Let M be a structure with domain D that simulates
counter machines. The first-order theory of M is undecidable.

Proor. We will describe a procedure that takes as input a two-
counter machine M, and outputs a formula ® in the language of
M that is true (in M) if and only if M halts. Recall that M has
counters cy, ¢, (initialised to 1) that take positive integer values
and instructions 1, ..., H for H > 1. The execution starts at line
I =1,and [ = H is the unique halting instruction. The trace of M is
(0, 19, €1,0, €2,0, 0, 11, €11, C2.1, - - .) Where 1y, €1, €2, are, respectively,
the (next) instruction to be executed, the value of ¢;, and the value
of ¢, at time n. We will construct a formula ® that states “there
exists x such that Seq(x) is a finite sequence that is the trace of M
ending in the halting state”, which is true if and only if M halts.

SThere is some room for interpretation of what definability of arbitrary finite sequences
in M should mean in the setting of model theory.
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Define @ := 3x € D': (Pinit (x) A Phinai(x) A Ps(x)) where

3
Dinit (x) = Ty1, Y2, y3,y4 € D™ (/\ succ(x, Yi, Yir1)

i=1

4
A cnsto(x,y1) A Acnstl(x, yi))
i=2
3
Ofin(x) = Jy1, Y2, Y3,y € D™: (/\ succ(x, yi, Yi+1)

i=1
AmmmmAmmmm)

O5(x) =VYy1,...,ys € D™:

7
(mm@%)AAwam%wm

i=1
= cnsto(x,y5) A V(x, Y2, Y3, Ya, Yo, Y7, ys))

and V¥ is a positive Boolean combination of the formulas imple-
menting the transition function of M, i.e. a positive Boolean combi-
nation of formulas inc(x, y;, y;), cnstk(x, y;), and —~cnstg (x, y;) for
i,j € {2,3,4,6,7,8} and 1 < k < H. The formula ®;,;;(x) states
that the sequence Seq(x) starts with four consecutive terms that
are 0,1, 1,1, respectively. The formula &g, (x) states that Seq(x)
contains four consecutive terms si,...,s4 such that s; = 0 and
sa = H. Together, the two formulas imply that Seq(x) must con-
tain at least eight terms: in particular, two blocks of four consec-
utive terms that start with the delimiter 0. Finally, ®s(x) states

that whenever sy, . . ., sg are consecutive terms of Seq(x) such that
s; = 0, then ss = 0 and the transition function of M satisfies
S (52,3, 84) = (36,7, S8)- o

4 The first-order theory of (N; <, |z(-)|)

We start with Theorem 7, as it is the easiest one among our unde-
cidability results, in the sense that the hard mathematical work has
already been done in [29]. Let

H ={zeC: Im(z) > 0}.

A modular form of weight k is an analytic function f: H — C
satisfying the following conditions.

e For any
a b
I'= [C d] € SLZ(Z)

and z € H,

d“*ﬂ=@wﬂﬁﬂn

cz+d

The Mobius transformations z — ?::3 for a, b, ¢, d as above

are precisely the automorphisms of #; thus the condition
above states that f behaves well with respect to the symme-
tries of H.

e We can write

)

f@) =" anq"

n=0

Toghrul Karimov, Joris Nieuwveld, and Joél Ouaknine

where a, € C for all n and g = e?"?, That is, the Fourier
expansion of f in terms of g does not have any negative pow-
ers. In the most interesting cases, a, are often real numbers,
and sometimes even integers.

We say that f is a cusp modular form if additionally ay = 0. Modular
forms (as well as their Fourier coefficients) play a fundamental role
in contemporary mathematics, e.g. in the theory of elliptic curves
and studying the solutions of Diophantine equations, Wiles’ proof
of Fermat’s Last Theorem [36] being a prominent example of both.
In this section, we focus on the modular form called the quadratic
discriminant, denoted A, and its Fourier coefficients, which are
the values of the famous Ramanujan tau function; however, our
undecidability result can be easily generalised to (coefficients of) a
large class of modular forms called primitive forms.

The quadratic discriminant is a cusp modular form of weight 12
(no such forms of weight 2, ..., 11 exist) defined by

A=) =q[ [(1-g*

where g = /2%, The Ramanujan tau function returns the value of
the nth Fourier coefficient of A, i.e.,

Az) = Z t(n)q", 7(0)=0, :N—Z
n=0

The tau function makes fascinating appearances in a diverse range
of fields of mathematics; see, e.g., [37] for an exposition. It is
known to be non-zero infinitely often and multiplicative: r(mn) =
(m)t(n) for any coprime m,n. Lehmer’s conjecture states that
7(n) # 0 for all n > 1; this has been empirically verified [38]
at least for all n < 10%°. Given n in binary, 7(n) can be computed
in polynomial time, thanks to deep connections between the
function and the number of rational points on elliptic curves [39,
Chapter 15]. The only technical lemma about the tau function that
we will need is the following, which is a specialisation of the main
result of [29] concerning coefficients of primitive modular forms.
For the remainder of this section, we write f(n) = |z(n)|.

THEOREM 16. Let o: {1,...,k} — {1,...,k} be a permutation.
Assuming Lehmer’s conjecture, there exist infinitely manyc € N such
that

fle+ o) < < fle+a(k),

ie forallc < ny,ny <c+k,
f(m) < f(n2) © o(ny —c) <a(ny—c).

Phrased differently, from 7 we can extract, in a very simple
manner, arbitrary finite permutations.® It remains to show how to
simulate finite sequences over N using finite permutations.

Proor oF THEOREM 7. For ¢, d, e € N we define
Rep(c,d,e) =(d+1,d+2,...,¢e)

and Seq(c, d, e) to be the finite sequence (; f;ld over {0,...,d —c}
where

t=#{c<n<d: f(n) < f(d+i))}

6By slightly modifying the arguments of [29], we can show that one can, in fact, extract
arbitrary permutations from (|7(n)|),en even if the tau function were to have zeros.
That is, with more work we can prove undecidability without assuming Lehmer’s
conjecture.
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Thus d + i indexes the ith term of Seq(c, d, €), in the sense of Sec-
tion 3. We claim that, assuming Lehmer’s conjecture, Seq: N* — N*
is onto. To see this, consider a non-empty sequence (ti)fil over
{0,...,R}; note that for the empty sequence, we can take, e.g.,
¢ = d = e. Let o be a permutation of {1,..., N + R} such that
o(1) <--- < o(R) and

#{1<j<R:0(j)<oR+i}=1t

forall 1 <i < N. Applying Theorem 16, there exist infinitely many
¢ € Nsuchthatforallc < ny,ny < N+R,

f(m) < f(n2) ® o(ny —c) <o(nz—c).
We can choose any such ¢, and setd =c+ R, e =c + R+ N. Then
forall1 <i<N,
{c<n<d: f(n)<f(d+i)}={c<n<d:o(n-c) <o(b+i)}
={1<j<b:0(j)<o(b+i)}
Therefore, Seq(c,d, e) = (t,»)f.\il. Next, we define
rep(c,d,e,n) =d+1<n<e
cnsto(c, d, e, n) :=rep(c,d,e,n) A
=3m € (¢,d]: f(m) < f(n)
cnsti(c,d, e,n) =rep(c,d,e,n) A
A{my,...,mi} C (¢, d]: f(my),..., f(mg) < f(n)
succ(c, d, e,ny, nz) =rep(c,d,e,n1) A rep(c,d,e ny) A
Vm € (ny,ny): —rep(c,d, e,m)
inc(c,d, e, ny,nz) =rep(c,d,e,n1) A rep(c,d,e nz) A
Alm e (¢, d]: f(m) € [f(m), f(n2))

eq(c, d, e,ny, ny) =rep(c,d,e,n1) A rep(c,d, e nz) A
—3m € (¢, d]: f(m) € [f(m), f(n2)) U [f(n2), f (1))

where k € Ny; and 3!'{my,...,m;} C (c,d] means “there exists
a unique set {my,...,my} of k numbers from (c,d]”. (Similarly,
A'm € (c,d] means “there exists unique m € (¢, d]|”.) Observe
that for valid representatives ny, n, (i.e., whend + 1 < ny,n; <e),
eq(c, d, e, ny, ny) should evaluate to false if and only if there exists
m € (c,d] such that either

* f(m) < f(ny) but f(m) £ f(n1), or

e f(m) < f(n1) but f(m) £ f(nz).
That is, f(m) € [f(ny), f(n2)) U [f(nz), f(n1)). Similarly, for valid
representatives ny, ny, inc(c, d, e, n, nz) should evaluate to true if
and only if f(ny) > f(ny) and there exists unique ¢ < m < d such
that f(m) < f(ny) but f(m) £ f(n;). The conditions (2-7) in the
definition of simulating counter machines are thus satisfied, and
we can apply Theorem 15. O

5 The first-order theory of (N; <, u(-))

Let (4, )nen be an integer LRS with exactly two non-repeated dom-

inant roots as in the Introduction. We prove Theorem 5 in the re-

mainder of this section by explicitly giving the maps Seq: N* — N*,

Rep: N® — N* and the formulas rep, cnsty, succ, inc, eq. Our main

tool for proving surjectivity of Seq is Theorem 6, which will be

proved in Section 7. Let { > 1 be as in the statement of Theorem 6.
Let c,d, e € N, and suppose that ¢ < d < e and

0 <u(c) <u(d) <u(e).
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(For ¢, d, e that do not satisfy these conditions, we define Seq(c, d, e)
and Rep(c, d, e) to be the empty sequence.) Let
X={c<n<d:u(c) <u(n) <u(e)}
and n; < --- < ng be the ordering of all d < n < e such that
u(c) < u(n) < u(e). We extract from (c,d, e) a finite sequence
Seq(c, d, e) of length k by defining
Rep(c,d,e) == (ny,ny ..., ng)
and
Seq(c,d, e); =#{x € X: u(x) <u(n;)} €A{0,...,#X}
for 1 < i < k. Note that this construction is slightly different from
the one we used in Section 4.
Example 1. Consider the sequence defined by up+3 = —up+2 + up,
up =0, u; = 1, and uy = 2. We have that
up =al" +aL + yr’

where A ~ —0.88+0.74i,r ~ 0.75,a ~ —0.68—0.6liand y ~ 1.17. Let
us compute Seq(c,d, e) and Rep(c, d, e) for (c,d, e) = (81,92,100).
(We mention that ug;, ugy, ujgo > 0.) First, determine all n € (81, 100)
such that ug; < u, < 9. This leaves us with n = 82, 84, 87, 89, 92
, 94,95, 99. Since d = 92, X = {82, 84,87, 89,92}. Next, we observe
that

Ugl < Ugy < Ugq < Ugy < Ugg < Ugg < Ugy < Ujo0

Ugr < Ugy < Ugs < Ugq < Ugy < Ugy < Ugy < Uig0

Ugr < Ugy < Ugg < Ugy < Ugg < Ugg < Ugy < Uy0-
For each red term, we count the number of black terms that are
smaller. (The blue terms are just delimiters, and are not counted.)
Hence the triple (c, d, e) defines the sequence Seq(81,92,100) =

(4,1, 3) with the corresponding representatives Rep(81, 92, 100) =
(94,95, 99).

We next show how the maps Seq and Rep can be implemented
using first-order formulas. We proceed similarly to Section 4, mostly
just replacing f(-) with u(-). Define

rep(c,d,e,n) =c<d<n<eA
0<u(c) <u(d) <u(e) A u(c) <u(n) <u(e)
cnsty(c, d, e, n) =rep(c,d,e,n) A
=3dm € (¢, d]: u(m) € (u(c),u(n))
cnsti(c,d, e,n) ==rep(c,d,e,n) A
Amy,...,mi} C (¢, d]: u(my),...,u(mg) € (u(c), u(n))
succ(c, d, e,ny, ny) =rep(c,d,e,n1) A rep(c,d, e, nz) A
Vm € (ny1,ny): —rep(c,d, e,m)
inc(c,d, e,ny,ny) =rep(c,d,e,n1) A rep(c,d,e,ny) A
A'm € (¢, d]: u(m) € [u(ny),u(ny))
eq(c,d, e, ny,ny) =rep(c,d,e,ny) A rep(c,d,e nz) A
—3m € (¢, d]: u(m) € [u(n),u(nz)) U [u(nz), u(ny)).
where k € Ny, and 3!{m;,..., mi} and 3! are interpreted as in
the proof of Theorem 7. Note that the definitions of succ, inc, and
eq are identical (up to replacing u(-) with f(-)) with those given
in Section 4. Items (2-7) in the definition of simulating counter
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machines are satisfied by construction. To prove Theorem 5 (by
applying Theorem 15) it remains to show the following.

Lemma 17. The map Seq: N®* — N* above is surjective.

Proor. To define the empty sequence, we can choose, for exam-
ple, (c,d,e) = (0,0,0). Now consider a non-empty finite sequence

(ti)fil over {0,...,R}. We will construct, using Theorem 6,
c=nyg<ny<---<ng=d<npy; <---<NpsN+1 =€

such that
1) 0<u(c) <u(n+i)<u(e)forall1 <i <R+ N,

2) u(n) € (u(c),u(e)) forany n € (c,e) \ {ny,...,nr+n}, and
3) writing X = {ny,...,ng},

#{x € X:u(x) <u(ngs))} =t
forall1 <i<N.
Then Seq(c,d, e) = (ti)il\:[y

Example 2. Figure 1 illustrates our construction for the finite se-
quence (1,3,0,1). In this case N = 4 and R = 3. We partition (1, {)
into 10 intervals of equal length 7. The intervals (1,1 + ) and
(¢ —n,{) are just buffers: they are needed because in the statement
of Theorem 6, y; and §; must be strictly between 1 and { for all k.
We define

e (y1,61) = (1+2n,1+43n), (y2,82) = (1+4n,1+5n), (y3,03) =
(1+6n,1+7n),
® (ys,04) = (1+3n,1+4n), (y5,65) = (1+7n,1+8n), (v ) =
(1+n,1+2n), (y7,67) = (1 +3n,1+4n), and
* (rs:05) = (=200 —n).
Then 1 < y; < §; < { for all j. By Theorem 6 there exist infinitely
many ny < ny < --- < ng such that u,; > 0 and,
u(n;)
a0 © (v;,65)
for all j, and for all integers n € [ng, ng] \{no, ..., ns}, either u(n) <
u(n;) for all j, or u(n) > u(n;) for all j. Note that because yz > §;
for 1 < j <7, we have that u(ng) < u(n;) < u(ng)forall1<j<7.
From our construction of (y;,d;), 1 < j < ¢ it then follows that
Seq(ng, n3, ng) = (1,3,0,1).

We now proceed with the proof. Let f = R+ N+ 1and n =
({ = 1)/(2R + 4). We define

(Vs Ok) = (1 + 2kn, 1 + (2k + 1)n)
for1 <k <R.Fork=1,...,N, we define

(YR+k» Orek) = (1 + (2t + 1), 1+ (2t + 2)7)

Finally, we set (y,,87) = (1 + (2R + 2)n,1 + (2R + 3)n). Note that
1 <y; <dj < {forall j. Applying Theorem 6 we obtain infinitely
many ny < - -- < np such that
e u(n;) > 0forall j,
. % € (yj,6;) for all j, which implies that u(ng) < u(n;) <
u(n;) forall0 < j < ¢, and
o u(n) ¢ (u(ng), u(ny)) for all integers ny < n < n; not equal

to{ny,...,n—1}.
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Figure 1: The construction of the proof of Lemma 17 for the
finite sequence (1,3,0, 1). The horizontal line is R, and the
vertical ticks are the points u(ng) + nk for 0 < k < 10 and
n =u(ng)({ —1)/10. The dashed lines indicate the locations
of u(nyg),...,u(ng), {u(ng).

Thus ny, . . ., ng satisfy conditions (1-2) above. It remains to verify (3).
For all 1 <i < N we have that

{x € X:u(x) <u(ngs)} = {1 <k<R: L ”("R”)},
u(ng) u(no)
Moreover,
u(nR+i) € (l + (2ti + 1)77, 1+ 2(!’,’ + 1)77)
u(ng)
and

u(ng)
u(no)
for all 1 < k < R. Therefore,
u(ng) u(mm)}
< =11,...,8
uno) < ulng) | = Bt
and hence #{x € X: u(x) < u(ng+;)} = ;. O

€ (1+ 2kn, 1+ (2k + 1)n)

{ISkSR:

6 The first-order theory of (N; +,U)

We prove Theorem 3 in this section. We first define the maps
Seq: N> — N* and Rep: N* — (N?)*. Recall that < can be de-
fined in (N;+,U) by x < y © x # y A Jz: x + z = y. Consider
(Pes pas pe) € U* with ¢ < d < e (where (pp)nen enumerates U as
in the Introduction); for all other triples, both Seq and Rep return
the empty sequence. Let R=d—-c—1and N =e—d.For1 <i <N,
we define
Rep(pe, pa> pe)i = (Pari-1: Pa-+i)

and Seq(pe, Pds Pe)i as

#{c <n<d: py < pc+pa+i — pa+i-1} € {0,...,R}.
We next show how to implement Seq and Rep using first-order
formulas; these are modifications of the formulas given in Section 5.
We write r for the pair of variables ry, r;, and T for the pair 7y, 7,.
Define
rep(y1, Y2, Y3, 1) = yn.y2,y3s €U A
Y1 <yY2<r<rp<ys AVre(r,r):re¢u
consto (Y1, Y2, Y3, T) = rep(ys, Yo, ys, 1) A
—dx € (Yyr,y2) NU:x <y +rp—n
consty (Y1, Y2, y3. 1) = rep(y1, Y2, Y3, 1) A
Axr, .. xk} € (WL y2) NU X, X, <y +12— 11
succ(y1, Y2, Y3, 1, ) = rep(y1, Y2, Y3, 1) A
rep(y1, Y2, ys,¥) A rz =Fy

where k € N5; and 3{my, ..., mi} (as well as 3! used below) are
interpreted as in the proof of Theorem 7. It remains to define eq
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and inc. Write ¢ and £ for y; + r, — r; and y, + 7 — 71, respectively.
Then we can define
€q(y1, Y2, Y3, I, T) = rep(ys, Y, Y3, 1) A rep(ys, Yz, ys, F) A
Vx € (y,y) NU: x & [t,E) U [E1)
inc(y1, y2, Y3, . T) = rep(y1, ¥z, y3,1) A rep(y1, vz, 3, T) A
Ix € (y,yo) NU: x € [L,1).

Items (2-6) in the definition of simulating counter machines are
satisfied by construction. It remains to prove the following.

Lemma 18. The map Seq: N* — N* above is surjective.

Proor. Take a non-empty finite sequence (t,-)f.\i Lover {0,...,R}.
We will construct ¢ < d < e such that Seq(pc, pa, pe) = (£)Y,. (For
the empty sequence, we can take any ¢ = d = e.) It suffices to find
n such that

#H{n<m<n+R:py < Pp+PriReitt — PriRei} = L 4

forall 1 <i < N. We can then choosec =n,d =n+R+ 1 and
e=n+R+ N+ 1.For1 <k <R, we define

(yks 5]() = (1 + (Zk - 1)’7> 1+ an)

where n > 0 is to be determined. Further define (yr+1,0r+1) =
(1+(2R+1-1/8)n,1+ (2R + 1+ 1/8)n). So far we have that

Y1 <81 =y2 <8 =-=yr <OR < YR+1 < OR+1-
For1<i< N, wewrite k =R+ i+ 1 and define

1 : 1
yk:1+(_§+2R+1+Z(2tf+§))'7

=

1 d 1
§k:1+(§+2R+1+Z(2tj+§))r;.

j=1
Observe that yry1 < 0r+1 < -+ < YR+1+N < Or+1+N, and for any
Z € (YR+i+1> Or+i+1) and x € (Yr+i, Or+i) we have that

1 1 1 1
ef2t;+=—=,2t;4 -+ —|,
2 4 2 4

ie, z—x =~ (2t; + 1/2)n. Since

zZ—X

N
1<yj,5j<1+2(R+N+Zti)n,

i=1
for all j, we choose
_ {-1
"= 2R+N+ZN 1)
Then1 <y; < §; < {forall j.
Applying Theorem 2, construct n such that

Pn+j

€ (v, 65)

n

for all j. It remains to show that (4) holds for all 1 < i < N. Observe
that

{n<m<n+R:pm < Pp+ PniReit1 — Pn+R+i}

- {1 <k<R: Pn+k 1< Pn+R+i+1 —Pn+R+i}.
Pn Pn
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Then it follows that we have that ppiryi+1/Pn € (YR+i+1> OR+i+1)
and ppir+i/Pn € (Yr+i» Or+i). Therefore, as discussed earlier,

oy — : 1 3
f%np"”“’ € ((Zti + ) (2t + 1)77)-

On the other hand,

1%—16(1+(2k—1)r7,1+2k17)

n

for all 1 < k < R. Therefore,

R Rl I

7 Proof of Theorem 6

Assume the notation of Section 2.6. Recall that we have
Up =0y + 1y —a\"+al +7rn
rn =0((p — ¢)") for all sufficiently small ¢ > 0
vn = lalp™ (Ep" + EF") = 2|alp” cos(nb + ¢).

Define

I = {ZGT: Re(z) > l}
p

Then, by elementary geometry,

1
2 \1-5 </I|<m (5)
\} p

The significance of 7T is as follows.
Lemma 19. Foralln, if éu" € I thenv, > 0,09, ...,0p-1.

Proor. Suppose éu” € I.Then &u" € T, and hence v, > 0.
Next, take 0 < m < n such that v,, > 0; otherwise it is immediate
that v,, > v,,,. We have that

O _ p"Re(£p") S prm 1 > s g O
om  p™Re(&u™)  Re(éu™) p
Forz € Ty, let
—d
(2) = 24 +7Z2
9a\2) = =37
Note that J
-y
2
Z)=n& z-=— . 6
ga(z) =1 - ©)

Fory,6 e Rand d > 1, we define

Ja(y.0) ={z € T+: ga(2) € (v, 6)}.
We next argue that each J;(y, ) is an interval.

Lemma 20. Foralld > 1, g;: T+ — R is a homeomorphism.

ProorF. Define fy: (-7/2,7/2) — R by fi(x) = ga(e’™). We
have that

fa(x) =

where the last equality follows from the usual trigonometric re-
lations. As p = ¢'? is not a root of unity, sin(df) # 0. Because
tan(x) is a homeomorphism from (-7x/2, 7/2) to R, so is f. It re-
mains to write g4(z) = fz(Log(z)), which is a composition of two
homeomorphisms. O

d
%’E}SM = p?(cos(d6) - tan(x) sin(d6))
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Corollary 21. Foreveryy,d € R withy < andd > 1, J;(y,9) is
a non-empty and open interval.

Proor. We have that
Ja(y,8) ={z € Ty: fa(z) € (6, 0)} = f7'((1,6)). m

The intervals J;(y, ) play a key role in the proof of Theo-
rem 4 [28]. Their idea behind their definition is that for all n € N
andd > 1,

v
G € Ja(r.8) @ 00> 0 A = € (1,9). ™)
n
Recall from Section 2.6 that (¢u™)nen is dense in T. Hence Corol-
lary 21 tells us that for any d > 1 and y < §, we can find infinitely
many n such that v, > 0 and

“Z—:d € (1,9).
Proving Theorem 6 amounts to proving a version of the preced-
ing statement that involves arbitrarily many terms of (vy,)nen as
opposed to only v, and vp44.

We next estimate the length of J;(3, y). Lemma 22 is similar to
a result proven in [28], whereas Lemma 23 is much stronger than
the analogous result from [28]. Recall that we denote by A the arc
distance function on the unit circle T € C.

Lemma 22. There exists computable C; > 0 with the following
property. Forany0 <y <6 < pTH andd > 1,

Tatr.0)] < SO0
p

ProoF. See Appendix A. o

For d > 1 let a4 be the unique z € T such that g4(z) = 0. For
any d, y, and 8, we refer to oy as the anchor point of Jy(y, 6). The
reason for this is that for any fixed y < §, as d — oo, the intervals
Ja(y, 8) become arbitrarily small while getting arbitrarily close to
the point ay. Note that ay satisfies agA? + a_dzd =0and |ag| = 1.
Hence ag € {ip~¢, —ip?}.

Lemma 23. There exists computable C, > 0 with the following
property. Let0 <y < § < /%l d > 1, and suppose Jy(y,8) C I.

Then ool
Taty, o) > D

PRrROOF. See Appendix A. O

We will also need the following lemma, which is analogous to
the density of £u” € T proven via Kronecker’s theorem.

Lemma 24. Forany0 <y <4, the intervals (Ju(y, 8));., are dense
inT,.

Proor. Recall that o, is an endpoint of J3(0,8) € Ty, and
that limy_, | J5(0, )| = 0 by Lemma 22. Therefore, it suffices to
prove that (ag)7, is dense in T,. Recall that ay is either i or
—ip~?, whichever is in T,. (Exactly one of these is always the case,
since by the non-degeneracy assumption, y is not a root of unity.)
By Kronecker’s theorem, (iy’d);f:l is dense in T. Since (aq);,
contains all terms of (iy‘d);":l that lie in T, it is dense in T,. O
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Henceforth fix C;, C; > 0 as in the two lemmas above. Choose ¢
such that
+1 Ci(¢—-1
év 51 gv < P ) 1(5 )
2 plp—1)
We will only work with subintervals of J5(1,{) ford > 1.

The next lemma tells us that as d; — oo, it becomes exponentially
harder for Jg, (1, {) with d; > d; to intersect Jg, (1, ().

<l ®)

Lemma 25. Supposed; < d, and

Ja, (1,0 N Ja, (1,0) # . )
Then
pdl 1/CO
dg—dl > (chg) -1 (10)

where Cy, Cy are the constants of lemmas 9 and 22, respectively.
PRrROOF. See Appendix A. O
Next, we further study when Jz, (1,{) N Jg,(1,{) # @.

Definition 26. An interval I C I is protected from timed > 0
onwards if

> 31051,

k=d+1

Lemma 27. The interval I is protected from time 0 onwards.

Proor. By Lemma 22 and the construction of ¢,

S S -1
dz 170 Ja(1,0)] < dz (L0l < ——- <17l o

We are now ready to prove a version of Theorem 6 for (v,)nen;
soon thereafter we will move to (uy),en. First, a helpful lemma.

Lemma 28. Let1 < y < § < {. There exists D > 0 such that for
alld > D, if J4(y,6) C I then Jy(y,0) is protected from time d
onwards.

PRroOF. See Appendix A. O

Lemma 29. Suppose we are given £ > 1 and for1 < j < £,1 <
Yj < 68; <{. Wecan construct 0 < d; < --- < d; with the following
properties.

(@) I 24 (y1,61) 2 -+ 2 Ja, (ye» 8e)-

(b) Foralll <d <dp, ifd ¢ {dy,...,ds} then

Ja(1,6) 0 Ja, (e, 8e) = .
(c) Every Ju;(y;, 6;) is protected from time d; onwards.

Proor. We proceed by induction on ¢. For ¢ = 1, the conclusion
follows immediately from Lemma 27, Lemma 24, and Lemma 14.

Next, consider £ = m + 1 > 2. Apply the induction hypoth-
esis with yy, 81, ..., Ym, Om to construct dy, ..., d,,. By Lemma 24,
(Ja(1,0))d>d,, are dense in g, (Ym, Sm). Applying (c) of the induc-
tion hypothesis and Lemma 14, there exist infinitely many d > d,
such that 93(1,{) € Ja,,(¥m6m) € I and forall1 < d’ < d,
Ja(1, ) N Jz(1,{) = @. Applying Lemma 28, we can construct
infinitely many d for which we additionally have that 5 (y;, 5;) is
protected from time d onwards. We can then pick d; to be equal to
any such d. O
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Before finally proving Theorem 6, let us have a look at what
Lemma 29 immediately gives us. Consider 1 < y; < §; < { for
1< j < ¢. Constructdy,...,d, > 0 using Lemma 29. By the density
of ({4 )new in T, there exist infinitely many n € Jy,(y,, 8,) € 1.
Then v, > 0, and by (a), n € Ju; (y;, §;) for all i. Write n; = n + d;
for 1 < j < ¢. By Equation (7),

? € (y5,0;) (L0

for all 1 < j < ¢. On the other hand, from (c) it follows that for all
n<m<ny,

m¢{n1,...,ng}=>z;—m¢(l,§), (11)

Therefore, the pattern v,,0,,,...,0,, appears in the ordering of
(vm)min, and has the ratios of consecutive elements controlled by
(yj,0;),1<j < tforallj.

ProoF oF THEOREM 6. Let { be as in Equation (8) and M be as
in Lemma 12. Suppose we are given 1 < y; <§; < {for1 <i<¢.
First construct E,gj satisfying y; < y; < gj <djfor1<i<¢ and
sufficiently small ¢ > 0 such that
1

(l+€)'5j'1_g

<(Sj

(l—é‘)'% >Yj-

'1+£

Apply Lemma 13 with ¢ > 0 to construct M,. Then let M =
max{M, M,}. Apply Lemma 29 with ¥;, 5] to construct dy, ..., d;.
LetI = 9, (gg,?{). By the density of £u" in T, there exist infinitely
many n > M such that éu" € I. Pick such n, and let 7 = n + d + 1.
Thenforalln <m <n,
e by Lemma 29 (a), if m = n + d; for some j, then v, /v; €
(v)>9)), and
e by Lemma 29 (b) and Lemma 13, if m # n + d; for all j, then
om/v; ¢ [1,0).
Order {m: n < m <nandu, < uy < {u,} as (nj)j?zo. Thenk =¢
andn; = n+djforall1 < j < ¢ Because &y € I € Ty, we
have that v, > 0, and by Lemma 12, u, > 0. By the application of
Lemma 13,
mzﬂ.ﬁ.v_"<(l+5).5~j.L<5j
7 Up; Un Un 1-¢

and similarly 1%’ >(1-¢)-yj- 1—; > yj forall j. O

8 Proof of Theorem 2

We will proceed similarly to the proof of Theorem 6, but we need
much stronger technical machinery. Let C;,C; > 0 and { > 1 be as
in the previous section, and C, be the constant of Lemma 9.

Lemma 30. There exists computable C3 > 0 such that for all 1 <
y<dé<{andd,n>1,iféy" € Jy(y,S) then

d < Cslog(n+1).
PRrOOF. See Appendix A. O

Next, we use Baker’s theorem to prove a bound on how long it
takes for (u")nen to fall into a given sub-interval of T.
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Lemma 31. There exists computable C4 > 0 such that for any
sub-interval ] C T, the following holds. For any N € N, there exists

Cy
4
N5n<N+(—”)
|71

such that yu" € J.
ProoF. See Appendix A. O

Recall that our interval theory applies to (v,)nen, and we trans-
late results to (upn)nen using lemmas 12 and 13. We next prove a
modification of Theorem 2 where we replace u, with v,,. Let (p;,)nen
be the ordering of {v, > 0: n € N}.

Lemma 32. Let{ >1and1<y; <& <--- <y, <& <{. There
exist infinitely many n such that forall1 < j <¢,
Phej
T e (y8)).
P j>9j
Proor. From all y; and §; construct dy, .. ., d, as in Lemma 29.
Let I = Jy4,(ye, 0¢) and D = {0,ds, ..., ds}. Suppose n € N is such
that £u" € 1. Then we have the following.
e Because I C 7,0, > 0and v, > v forall k < n.
e Forall 1< j < ¢, because I C Jy; (v, 0;), we have that

vn+dj

€ (), 65)-

n
e Consider 1 < k < dy with k ¢ D. Because I N Ji(1,{) is
empty (by Lemma 29 (b)) and 1 < y; < §; < { for all j, we
have that either v, < v,4q foralld € D, or v,k > Uiy

foralld € D.
o Therefore, if additionally £u" ¢ Ji(1, {) for all k > d, then
the pattern (v, Uprd,» - - - Un+d,) appears in (p;,)men. In par-

ticular, if o, = pj,, theny; < p;, ../p}, < §jforall1<j<¢.

Hence it suffices to construct infinitely many n € N such that
& e ILbut & ¢ Ji(1, ) for all k > dy. Let

m
Yo=1\ | ) %10
k=dy+1
Then by Lemma 30 it suffices to construct infinitely many n such
that £u" € Y| ¢, 10g(nt1) -

Let N € N. We will construct n > N with the desired property.
By construction of I (Lemma 29 (c)), there exists 7 > 0 such that
|Y,,| < |I|-7 for all m. By the pigeonhole principle, each Y, contains
an open interval of size

T
1+Cslog(n+1)°

With Cy4 as in Lemma 31, pick M € N such that
47(1+ C3log(M)) \“*
. .

Consider Yy, ..., Yp—1. We have that

M-N >

YN2YNi1 22 Yy

Therefore, there exists an open interval Z C I of size
T
1+ Cs IOg(M)
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such that Z C Yy,...,Yy_1. Applying Lemma 31, there exists n
such that
47(1 + Cs log(M)) \“* B

N<n<N+ M

T
and pé" € Z. That is, ué" € Y, for some N <n < M. o

Proor oF THEOREM 2. Let M be as in Lemma 12. Suppose we
are given 1 < y; < §; < { for 1 < j < ¢. First construct fjgj
satisfying y; <7y; < g] < §j for 1 < j < ¢, and sufficiently small
& > 0 such that

(l+€)-§j' !

< 6;
1-¢ J

(l—é‘)'% >Yj-

'1+£

Apply Lemma 13 with ¢ > 0 to construct M,. Then let M =
max{M, M, }. By Lemma 32, there exist infinitely many n such that
for all j

p’+' —_ =
;/1 € (Yj’gj)'

n

Therefore, there exist infinitely many ny,...,n, > M such that
(Ongs - - -»Un,) appears in (qy)nen and v,; > 0 for all j. By the appli-
cation of Lemma 12, we have that (up, . .., un,) appears in (p,)nen,
and Un; >0 for all j. Consider such ny, ..., n,.

By the application of Lemma 13, for all 0 < j < £ we have that
1—-e< unj/v,,j < 1+ & Therefore,

Uy Oy omy (=07 (1+6)5
14 > 1-¢ |’

The latter interval is contained in (y;, §;) by the construction of ¢,
Yj, and §;. |

9 Discussion

Let us briefly discuss the broader implications of our results for
the study of decidability of logical theories. Firstly, we believe that
our approach for proving undecidability of the first-order theory
of (N; <, |z(-)|), with some modifications, should work for many
special functions, e.g. Euler’s totient function and the Mébius func-
tion [40]. As mentioned earlier, the expansion of (N; +) with powers
of 2 and powers of 3 does not define multiplication, and hence the
Hieronymi-Schulz approach is necessary in this case. This leads us
to the following.

Problem 2. Is addition (resp. multiplication) first-order definable
in (N; <, |z(-)|) ? What about expansions of (N; <) with other special
functions?

Given that we now have undecidability results for expansions of
(N; <) with “natural” functions (see for an example of a predicate P,
that includes information about Turing machines, such that the first-
order theory of (N; <, P) is undecidable), we also ask the following.

Problem 3. Is the first-order theory of (N; <,n > 2", n > 3") is
decidable?

We move on to our results about integer LRS. We studied non-
degenerate (but possibly reducible) LRS of the form u, = aA™ +
al+ rn, where r, is the non-dominant part. This restriction can
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be weakened to only the dominant part v, = aA” + ar being
non-degenerate, but not further. To see this, let (w,)nen be any
integer LRS, W = {w,: n € N} NN, and z, = (0, wy,0,wy,...),
which itself is an integer LRS. We have that z3,4+1 = w, for all n.
Next, take sufficiently large a € N such that a = 1 (mod 3) and
|zn| = O(a™), and consider u,, = (ai)" + (—ai)" + 3z,. The sequence
(un)nen has exactly two non-repeated, non-real dominant roots,

but is degenerate: (ai)/(—ai) = —1 is a root of unity. In particu-
lar, for all n € N we have that uy, = 2a"™ + 324, U4n+1 = 3Z4ns1,
Ugns2 = —2a" + Zanto, and Ugpy3 = Zgnes. Therefore, we can define

W in (N;+,U N N), where U = {u,: n € N}: we have that for
all sufficiently large x (where the implied threshold is effective),
x € W & 3x € U. Since (wp)nen can be any integer LRS, we see
that lifting the non-degeneracy assumption has the effect of voiding
any restriction on the number of dominant roots of (u,)nen. We
believe that, nevertheless, our techniques can be extended to at
least integer LRS whose dominant part is non-degenerate and of
the form Y72, a;A? + a_il_in, where ay, Ay, ..., am, Ay, are non-zero
algebraic numbers and [A1| =+ = |A,| > 1.

Let us now revisit Problem 1 for integer LRS (uy,)nen with exactly
one non-repeated dominant root. As discussed in the Introduction,
if the characteristic polynomial p of (uy)nen is irreducible (over Z),
then the first-order theory of (N; +, U) is decidable, as shown by
Seménov [12] and Point [14]. What happens if (uy,), e is reducible?
We give an example.

Letu, = (2+1i)"+(2—1i)", which satisfies the recurrence relation
Upto = 4Uyi1 —5u,. Consider v, = 5" +u,, which satisfies v,, > 0 for
all n and has the characteristic polynomial p(x) = (x—5)(x2—4x+5)
with the single, non-repeated dominant root A = 5. What can we
say about decidability of the first-order theory of (N;+, V'), where
V = {v,: n € N}? Define, in (N; +, V), the predicate W C N by

xeEWex20ATJy,y €Viyi <y A
Xx=y2—5y1 A Vys € (yr,y2): y3 € V.
Then, using that (v,)nen is increasing, W = {w,: n € N} N N for
Wp =Ups1 —Sup = (i —=3)(2+ )"+ (-i—-3)(2-1i)"

which is a non-degenerate integer LRS with exactly two dominant
roots. Therefore, by Theorem 3, the first-order theory of (N; +, W) is
undecidable, which implies the same for (N; +, V). More generally,
the trick above can be used more to construct, given a reducible LRS
with characteristic roots Ay, .. ., A, new LRS whose characteristic
roots form a subset of {11, ..., A, }. We conjecture that, at least for
irreducible LRS, by combining our approach and Seménov’s result
it should be possible to completely classify (up),en such that the
first-order theory of (N; +, {u,: n € N} N N) is decidable.
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A Omitted proofs

Proor oF LEMMA 14. Let N € N. We will construct k > N with
the required property. Let J be a maximal interval component of
I\UN, I such that |J| > Ymn+1 Mn N J1; such J must exist by the
assumption that }7° |I, N I| < |I|, and must satisfy |J| > 0. Let
21, z2 be two distinct points in J outside | J,_, I,. Further let J* C J
be an arc spanned by z; and z;. We choose k to be the smallest n
such that I, N J’ # @, which must exist by the density assumption.
Such Iy must also satisfy I C J', as z1,2; ¢ I, for all n, and the
conclusion follows. O

PROOF OF LEMMA 22. Let zy, z; € T, be such that g4(z1) = y and
ga(zz) = 0. Then |Jy(y,6)| = Az, z2). By (6),

—d
2 _ A -y
2 =-

M —y
, A=s
="

P

By the geometry of the unit circle, we have that
T
|z1 = 22| < A(z1,22) < Elzl - za|. (12)

Hence it suffices to estimate

2_ 2
zi—z
oy = za] = 12 (13)
|z1 + 22
We first argue that A(zq, z2) < /2, which implies that
V2 < |z + 25| < 2. (14)

Suppose that A(zy,z2) = /2. Then, by the continuity of gg4,
there exists y < f# < § and z3 € T, such that g4(z) = f and

A(z1,z3) = m/2. Then either z3 = iz; or z3 = —iz, and hence
z3 = —z%. Applying Equation (6), we obtain that

—d —d

A -y A =P

M-y  2-B

which simplifies to
—d —
2291 + (B- )2 = 2d) +2yp = 0.

Observe that Adzd = p* B and y are all real. Hence Id - A
is real. In particular, A4 is real and thus /1/1 is a root of unity,
which contradicts the non-degeneracy assumption. We conclude
that A(zy, z3) < /2.

Therefore, to prove an upper bound on A(zy, zz) it suffices to
consider |zf - zg |. We have

(§-y)p?

— 7). 15
|/1‘1_)/“%‘,,_5“# | (15)

2 _
Z21-% =
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Consider |A? — y|. By assumption, |A9| = p¢ > y. Moreover, A? is
non-real. Hence [A¢ —y| > p% -y > p% - pTH =p?(1- %j) >pc

where ¢ = 1 — pz—;l > 0. Similarly, [\ — 8] > p? - c. Therefore,

we only need to bound |y?? — 1| from above by a constant. Since
|24 - 1| < 2, we obtain

26-y)
2_ .2
-z5| < .
|2y — 23| 2pd
and hence Gy
T 20—y 1
A(z1,20) < = ——— - —. O
1,22 > ol 3

Proor oF LEMMA 23. Define z; and z, as was done in the proof
of Lemma 22; then | J;(y, 8)| > |z1 — z2|. From Equations (12) to (15)
we obtain

(5-y)p?
|z1 = z2| > %| -1l
2|44 —y[|A¢ = 4|
As argued in the proof of Lemma 22, |4 — y|,]A% = §] < p? - ¢ for
c=1- pz_-;l. Hence it suffices to give a constant lower bound for
|2 — 1|, which we do below.

Let T = {z € Ty: Re(z) > 1/(2p)} D I and D > 1 be such that
|Ja(0, 224)] < 35 foralld > D. Then for alld > D, if J3(y.6) € T
then (0, pTH) C 7 and, as a4 is an endpoint of 5 (0, pTH), ag € 1.
We define

: 2d
a = min -1
1<d<D z |

which is positive by the assumption that p is not a root of unity.
We will show that

124 = 1] > min{a, (2/p)?}.
If d < D, this is immediate. Now suppose d > D. Recall that y? =
i where +ay is one of ag and —ay. Then, as ay € I, we have
that Re(ay) > 2/p and hence

W2 =11 = | =1 1l = T ag =il - | £ ag +i] 2 (2/p)%. O
Proor oF LEMMA 25. By the triangle inequality,

Aag,, aq,) < Aag,, z) + Az, ag,) (16)

forz € Jy,(1,{)NJa, (1, {). Recall that oy is an endpoint of (0, {).

Hence we have

ey @) < 193, (0.0 + 19, (0.0)] < 2

Cil
p

17)

where the last inequality is deduced from Lemma 22. Write a4, =
xip~% for i = 1,2 where y; € {i, —i}. Then

A(adl’ adz) = A(Xl)(z_l» Il_d2+d1)'

Note that ag, # ag, as otherwise we would have y~% = ;=% or
= = =% contradicting the assumption that y is not a root of
unity. Applying Baker’s theorem on the left-hand side (note that
max {2, dz - dl} <1+ dz - dl),
1
A ag,, ag,) > ———————=.
(@ 00,) > g —ane

Therefore,
1 2C1¢

—_— < .
(1+dy—d)S — ph
Rearranging gives the desired conclusion. O
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ProoF oF LEMMa 28. Applying Lemma 25, we have that for all
d>0,

D 1T N FAOI< D 1%L
k=d+1 k=g(d)
Ci({-1)
S p @ (p-1)
where
pd 1/Co
qD(d) :’Vd-l-(ﬁ) —1“.

Because ¢(d) grows much faster than d, we can compute D such
that foralld > D,

GE-1__GB-p
D)
Therefore, for all d > D, if J;(y, ) € I then by Lemma 23,

5_ (o8]
gent> L S e n a0l e

k=d+1

Proor or LEMMa 30. It suffices to prove the statement fory =1
and § = {. By Lemma 22, whenever £ € J5(1,{) we have that

C
0 < A", ag) < i
pd

Since || = 1 and ey is one of +iy~,

A(En", aa) = A", 2)
where z is one of +i/£. Applying Lemma 9 to the right-hand side
gives

Gl 1
S AE - -
o (&u", aq) > i do
for all d,n > 1 such that & € (1, {). Hence
(1+¢)¢
(G

where ¢ = pl/c0 —1>0.Let D > 1 and ¢ € (0,¢) be such that for
alld > D,
(1+¢)
(CrVCG
Then for all n > 1 and d > D such that &4 € J3(1,),

n+1>n>(1+9%

-d> 1+

which implies that

1
— 1 1) >d.
Tog(157) og(n+1) >
Finally, note that for d < D and n > 1, regardless of whether &u" €
Ja(1,) we have thatd < log% log(n+1) aslog(n+1)/log(2) > 1.
We can therefore take

Cs = b ! [m]
37 M8\ 1og(2) log(1+9) |

Proor oF LEmMMa 31. It suffices to prove the claim in case ] is
open. Let [ = |_|2]—”|J and consider the intervals {J, ..., y'J} on T. As
(I+1)|J| > 27, there exist 0 < m < s < I such that p™] intersects
1) Letk =s —mand @ = | Log(u)|. We have that 0 < k < [ and

0 < |J|. Since p is not a root of unity, ™ # p* and hence 6 > 0.
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We next compute a lower bound on . Observe that 6 > ¥ — 1].

Applying Lemma 9,
0> |pF - 1| > (max{2,k})~P

for a (computable) constant B > 0. Since k < I < 4x/|]J| and
2 < 47/|]J|, we have that

0> (4n/1J)7".

Let L = [27/0]. By the lower bound on 0 above, L < (47/|]J])€ for
a constant C > 0.

Conference’17, July 2017, Washington, DC, USA

Consider the sequence (zj,)nen of points on T that is defined by
Zn = yN+k". We have that z,,; = ykzn and hence |z,+1 — zn| < |J]
for all n. Moreover, the finite sequence (z, . . ., z;) winds around T
at least once. Hence there exists

0<r<L

such that z, € J. Thatis, y* € J for n = N + kr. It remains to
observe that N < N + kr < N + kL, and recall the bounds on k
and L. ]
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