
On Probabilistic Program Equivalence and
Refinement?

Andrzej S. Murawski and Joël Ouaknine

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We study notions of equivalence and refinement for prob-
abilistic programs formalized in the second-order fragment of Proba-
bilistic Idealized Algol. Probabilistic programs implement randomized
algorithms: a given input yields a probability distribution on the set of
possible outputs. Intuitively, two programs are equivalent if they give
rise to identical distributions for all inputs. We show that equivalence is
decidable by studying the fully abstract game semantics of probabilistic
programs and relating it to probabilistic finite automata. For terms in
β-normal form our decision procedure runs in time exponential in the
syntactic size of programs; it is moreover fully compositional in that it
can handle open programs (probabilistic modules with unspecified com-
ponents).

In contrast, we show that the natural notion of program refinement, in
which the input-output distributions of one program uniformly dominate
those of the other program, is undecidable.

1 Introduction

Ever since Michael Rabin’s seminal paper on probabilistic algorithms [1], it has
been widely recognized that introducing randomization in the design of algo-
rithms can yield substantial improvements in time and space complexity. There
are by now dozens of randomized algorithms solving a wide range of problems
much more efficiently than their ‘deterministic’ counterparts—see [2] for a good
textbook survey of the field.

Unfortunately, these advantages are not without a price. Randomized algo-
rithms can be rather subtle and tricky to understand, let alone prove correct.
Moreover, the very notion of ‘correctness’ slips from the Boolean to the prob-
abilistic. Indeed, whereas traditional deterministic algorithms associate to each
input a given output, randomized algorithms yield for each input a probabilistic
distribution on the set of possible outputs.

The main focus of this paper is the study of probabilistic equivalence. Intu-
itively, two algorithms are equivalent if they give rise to identical distributions
for all inputs. To this end, we introduce (second-order) Probabilistic Idealized

? Work supported by the UK EPSRC (GR/R88861/01) and St John’s College, Oxford.

Algol, a programming language which extends Idealized Algol1 by allowing (fair)
coin-tossing as a valid expression. It can be shown that, in the presence of loop
constructs, this notion of randomization is as powerful as any other ‘reasonable’
one. Any randomized algorithm can therefore be coded in Probabilistic Ideal-
ized Algol. An important consequence of our work is to enable the automated
comparison of different randomized algorithms against each other.

We study program equivalence through fully abstract game models, and ob-
tain Exptime decidability by recasting the problem in terms of probabilistic
automata. We also investigate program refinement, a notion intended to capture
the relationship that an implementation should enjoy with respect to its spec-
ification, and prove undecidability. Our paper continues the algorithmic line of
research in game semantics initiated in [4, 5], which aims to exploit the fully
abstract character of the game models. These provide exact accounts of exten-
sional behaviour and lead to models of programs that are much different from
the traditional approaches to program verification. Their distinctive feature is
the absence of explicit reference to state (state manipulations are hidden) which
leads to precise and compact summaries of observable program behaviour.

Related work. Much previous work in probabilistic program verification
has focussed on probabilistic model checking, whereby a probabilistic program is
checked against a probabilistic temporal logic specification—see, e.g., [6, 7] and
references within. Probabilistic behavioural equivalences have also been studied
in the context of process algebra, both from an operational (e.g., [8]) and a
denotational (e.g., [9]) perspective.

2 Probabilistic Idealized Algol

The subject of this paper is the finitary version PAf of Probabilistic Idealized
Algol. Its types θ are generated by the grammar

β ::= com | exp | var θ ::= β | θ → θ

where β stands for base types: com is the command type, exp is the finite
type of expressions (exp = { 0, · · · ,max } for max > 0), var is the type of
assignable variables in which one can store values of type exp. The order of a type,
written ord(θ) is defined by: ord(β) = 0, ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)).
PAf enables probabilistic functional and imperative programming. Recursion is
allowed only in the strictly restricted form of while-loops. The complete syntax
is shown in Figure 1. We will say that a term-in-context Γ ` M : θ is of order i
provided ord(θ) ≤ i and identifiers from Γ have types of order strictly less than
i. The big-step operational semantics is defined for terms Γ ` M : θ, where Γ =

1 Devised by Reynolds [3], Idealized Algol augments a Pascal-like procedural language
with functional programming constructs. We consider a finitary version in which vari-
ables range over a bounded set of integers, terms are parameterized by the allowable
higher-order types of their free identifiers, and neither recursion nor pointers are
allowed.

Γ ` skip : com
i ∈ { 0, · · · ,max }

Γ ` i : exp Γ ` coin : exp

Γ, x : θ ` x : θ
Γ ` M : exp

Γ ` succ(M) : exp
Γ ` M : exp

Γ ` pred(M) : exp

Γ ` M : exp Γ ` N0 : β Γ ` N1 : β
Γ ` ifzeroM N0 N1 : β

Γ ` M : com Γ ` N : β
Γ ` M ; N : β

Γ ` M : exp Γ ` N : com
Γ ` while M do N : com

Γ ` M : var
Γ ` !M : exp

Γ ` M : var Γ ` N : exp
Γ ` M := N : com

Γ, X : var ` M : com, exp
Γ ` new X in M : com, exp

Γ, x : θ ` M : θ′

Γ ` λxθ.M : θ → θ′
Γ ` M : θ → θ′ Γ ` N : θ

Γ ` MN : θ′

Fig. 1. Syntax of PAf .

x1 : var , · · · , xn : var , through judgments of the shape (s,M) ⇓p (s′, V), where
s, s′ are functions from {x1, · · · , xn } to { 0, · · · ,max }. Whenever an evaluation
tree ends in (s,M) ⇓p (s′, V) we can interpret that as “the associated evaluation
of M from state s has probability p”. Because of coin, M may have countably
many evaluations from a given s. We shall write (s,M) ↓p V iff p =

∑
pi and

the sum ranges over all evaluations of the form (s,M) ⇓pi (s′, V) (for some
s′). If there are no such reductions, we simply have (s,M) ↓0 V . The judgment
(s,M) ↓p V thus denotes the fact that the probability of evaluating M in state
s to V is p. When M is closed we write M ↓p V , because s is then trivial. For
instance, we have coin ↓0.5 0 and coin ↓0.5 1.

We can now define the induced notion of contextual equivalence: the terms-
in-context Γ ` M1 : θ and Γ ` M2 : θ are equivalent (written Γ ` M1

∼= M2)
if for all contexts C[−] such that ` C[M1], C[M2] : com we have C[M1] ↓p skip if
and only if C[M2] ↓p skip. Danos and Harmer gave a fully abstract game model
for ∼= in [10], which we review in the following section.

As stated in the Introduction, randomized algorithms can readily be coded
in Probabilistic Idealized Algol. Under mild conditions2, contextual equivalence
then precisely corresponds to the natural notion of equivalence for randomized
algorithms: identical input/output distributions.

3 Probabilistic Game Semantics

The games needed to interpret probabilistic programs are played in arenas as in
the sequential case. An arena A is a triple 〈MA, λA,`A 〉, where MA is the set of
2 Essentially syntactic restrictions aimed at preventing undesirable side-effects.

moves, λA : MA → {O,P }×{Q, A } indicates to which of the two players (O or
P) each move belongs and whether it is a question- or an answer-move, and `A

is the so-called enabling relation between { ? }+ MA and MA. `A is required to
satisfy a number of technical conditions: for instance, moves enabled by ?, called
initial and collected in the set called IA, must be O-questions and whenever
one move enables another they have to belong to different players. Here are the
arenas used to interpret base types:

JcomK JexpK JvarK
?

run

done

?

q

0
{{
. . . max

KKK

?

read

gggggggggg write(0) write(max)

XXXXXXXX

0
zzz
. . . max

KKK
ok . . . ok

The moves run, q, read and write(i) (0 ≤ i ≤ max) are initial O-questions, the
rest are P-answers enabled by the respective O-questions.

Arenas can be combined to form product and arrow arenas as follows3.

MA×B = MA + MB

λA×B = [λA, λB]
`A×B = `A + `B

MA⇒B = MA + MB

λA⇒B = [λA, λB]
`A⇒B = (`A ∩ (MA ×MA)) + (IB × IA) + `B

The allowable exchanges of moves in an arena A are justified sequences, which
are sequences of moves of A such that each occurrence of a non-initial move n is
equipped with a pointer to an earlier move m such that m `A n. In order for a
justified sequence to become a play, the moves must alternate between the two
players (O necessarily begins then) and the standard conditions of visibility and
bracketing must be satisfied [11, 12]. The set of plays over A will be denoted by
LA, that of odd- and even-length ones by Lodd

A and Leven
A respectively.

The notion of a probabilistic strategy makes a departure from sequential
game semantics. A strategy σ is a function σ : Leven

A → [0, 1] such that σ(ε) = 1
and for any s ∈ Leven

A , sa ∈ Lodd
A we have σ(s) ≥

∑
{ sab∈Leven

A } σ(sab). Let Tσ be
the set of all even-length plays s such that σ(s) > 0. In the following they will
be called the traces of σ. To interpret coin one takes the strategy σ : JexpK such
that σ(qi1 · · · qin) = (1/2)n where i1, · · · , in ∈ { 0, 1 } and σ(s) = 0 otherwise.

The above definition of a strategy describes the global probabilistic be-
haviour. Providing s ∈ Tσ and sa ∈ Lodd

A the conditional (local) probability
of sab given sa can be calculated by taking σ(sab)/σ(s).

Probabilistic strategies are composed by considering interaction sequences
between them. Suppose u is a sequence of moves from arenas A,B,C together
with unique pointers from all moves except those initial in C. We define u � B,C

3 λA works like λA except that it reverses the ownership of moves.

by deleting from u all moves from A together with associated pointers. u � A,B is
defined in a similar way. u � A,C works analogously except that whenever there
was a pointer from an A-move mA to a B-move mB and a pointer from mB to a
C-move mC , we introduce a pointer from mA to mC . u is called an interaction
sequence of A,B,C provided u � A,B ∈ LA⇒B and u � B,C ∈ LB⇒C . The set of
interaction sequences is then denoted by I(A,B,C). If s ∈ Leven

A⇒C , the set of B-
witnesses of s, written witB(s), is defined to be {u ∈ I(A,B,C) |u � A,C = s }.
Finally, given σ : A ⇒ B and τ : B ⇒ C, one defines σ; τ : A ⇒ C by

(σ; τ)(s) =
∑

u∈witB(s)

σ(u � A,B) · τ(u � B,C).

4 Inside the Game Model

In general, plays may contain several occurrences of initial moves. Such occur-
rences define threads within the play in the following way: two moves are in the
same thread if they are connected via chains of pointers to the same occurrence
of an initial move. Plays that contain just one occurrence of an initial move (and
consequently consist of one thread only) are called well-opened (we write Lwo

A

for the set containing them)4.
Because plays satisfy the visibility condition, responses by P are always in the

same thread as the preceding O-move, a condition known as well-threadedness.
A stricter class of single-threaded strategies arises when one requires that P-
responses depend on the thread of play of the preceding O-move. This behaviour
is formally captured by the notion of a comonoid homomorphism in [10] and
can be summed up in two points. Firstly, the threads occurring in a trace are
also traces, so we can regard traces as interleavings of well-opened ones (such
that only O can switch between threads). Secondly, whenever a trace s is an
interleaving of well-opened s1, · · · , sn, we have σ(s) = σ(s1) · . . . · σ(sn). As
shown in [10], arenas and single-threaded strategies, quotiented by the intrinsic
preorder, constitute a fully abstract model for ∼=. Next we give a more direct
full abstraction result based on comparing probabilities in special kinds of plays
rather than quotienting them.

Our analysis will also capture a notion of probabilistic refinement defined as
follows: Γ ` M1 : θ refines Γ ` M2 : θ, written Γ ` M1

@∼ M2, iff for all contexts
C[−] such that ` C[M1], C[M2] : com if C[M1] ↓p1 skip then C[M2] ↓p2 skip and
p1 ≤ p2. Note that M1

∼= M2 iff M1
@∼ M2 and M2

@∼ M1. We are going to show
that, like in the sequential second-order case [4], ∼= is decidable. However, in
contrast, @∼ will turn out undecidable.

4 Equivalently, one can present the model in the style of [12], where terms induce
well-opened sequences only and the interpretation of function spaces adheres to
the decomposition A ⇒ B = !A (B. In this paper we stick to the presentation
of [10], where the induced plays do not have to be well-opened, but the strategies
are restricted to be single-threaded.

Definition 1. A play s ∈ Leven
A is complete iff all questions in s are answered.

The set of complete plays of A is denoted by Lcomp
A . Suppose σ1, σ2 : A are

single-threaded strategies. We then define:

σ1 ≤π σ2
def⇐⇒ σ1(s) ≤ σ2(s) for all s ∈ Lwo

A ∩ Lcomp
A .

Lemma 1. Let ` M1,M2 : θ and σi = J` MiK (i = 1, 2). Then ` M1
@∼ M2 if

and only if σ1 ≤π σ2.

Proof. Suppose ` M1
@∼ M2. Let s ∈ Lwo

JθK ∩ L
comp
JθK and σ1(s) = p1. By the de-

finability result for (sequential) Idealized Algol in [12] there exists a determin-
istic context x : θ ` C[x] : com such that the only well-opened complete play in
Jx : θ ` C[x] : comKIA is run s done. Then in the probabilistic game model we have
Jx : θ ` C[x] : comK(run s done) = 1 and Jx : θ ` C[x] : comK(run s′ done) = 0
whenever s 6= s′. So:

J` C[M1] : comK(run done) = (σ1; Jx : θ ` C[x] : comK)(run done) = p1.

By adequacy (Theorem 3.2 in [10]) C[M1] ↓p1 skip. Because ` M1
@∼ M2 we

have C[M2] ↓p2 skip and p1 ≤ p2. By soundness for evaluation (Theorem 3.2
in [10]) σ2(run done) = p2. Because J` C[M2]K = σ2; Jx : θ ` C[x] : comK and C
is deterministic, we have σ2(s) = p2. Hence, σ1 ≤π σ2.

Now we prove the contrapositive of the converse. Suppose we do not have `
M1

@∼ M2, i.e. there exists a context C[−] such that ` C[Mi] : com, C[Mi] ↓pi skip
for i = 1, 2 and p1 > p2. By soundness, compositionality and the composition
formula we have

pi = J` C[Mi]K(run done) = (σi; Jx : θ ` C[x] : comK)(run done) =

=
∑

u∈witJθK(run done)

σi(u � 1, JθK) · Jx : θ ` C[x] : comK(u � JθK, JcomK).

Since p1 > p2, there must exist u ∈ witJθK(run done) such that σ1(u � 1, JθK) >
σ2(u � 1, JθK). Let s = u � 1, JθK. Because run done is complete, so is s. In general
s might be an interleaving of several well-opened complete plays, let us call them
s1, · · · , sk. Because σi is single-threaded, we then have σi(s) =

∏k
j=1 σi(sj)

and, further, because σ1(s) > σ2(s), we must have σ1(sj) > σ2(sj) for some j.
Consequently, σ1 6≤π σ2. ut

The Lemma generalizes to open terms (by observing that Γ ` M1
@∼ M2 is

equivalent to ` λΓ.M1
@∼ λΓ.M2) and implies the following result for program

equivalence. Given single-threaded strategies σ1, σ2 : A we write σ1 =π σ2 iff
σ1(s) = σ2(s) for all s ∈ Lwo

A ∩ Lcomp
A .

Lemma 2. Let ` M1,M2 : θ and σi = J` MiK (i = 1, 2). Then ` M1
∼= M2 if

and only if σ1 =π σ2.

5 Probabilistic Automata

Probabilistic automata (PA) generalize finite automata in that probability dis-
tributions are imposed on transitions. Their first definition goes back to Rabin’s
work in the 1960s [13] (see Paz [14] for a textbook treatment). Various modi-
fications of the automata have recently reappeared in research on probabilistic
systems (see e.g. [15, 16]).

Let X be a finite set. A subprobability over X is a function ω : X → [0, 1]
such that

∑
x∈X ω(x) ≤ 1. A probabilistic distribution over X is a subprobability

such that
∑

x∈X ω(x) = 1. We write S(X),P(X) respectively for the sets of all
subprobabilities and probabilistic distributions over X.

Definition 2. A probabilistic automaton is a tuple A = 〈Q,Σ, i, F, δ 〉,
where Q is a finite set of states, Σ is the alphabet, i ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ is the transition function, which can take
one of the following two shapes: either δ : Q×Σ → P(Q) or δ : Q → P(Σ×Q).
In the former case A is called reactive, in the latter generative.

The different shapes of the transition function reflect the typical scenarios which
the two kinds of automata are used to model. Reactive automata describe proba-
bilistic reactions to given symbols, while for generative ones the symbol is viewed
as part of the probabilistic response. The automata we are going to use to model
probabilistic programs will turn out to combine the features of the two. O-moves
will adhere to a restricted form of the reactive framework, whereas P-moves will
be generative.

We refer to transitions by writing q
x,p−−→ q′ whenever δ(q, x)(q′) = p (the

reactive case) or δ(q)(x, q′) = p (the generative case). A run r of a probabilistic
automaton is a sequence of transitions

i
x1,p1−−−→ q1

x2,p2−−−→ . . .
xk,pk−−−→ qk.

Let us write PA(r) for the probability of the run r, i.e. PA(r) =
∏k

i=1 pi. The
word associated with the run r will be denoted by WA(r), i.e. WA(r) = x1 · · ·xk.
A run is accepting if qk ∈ F . Let AccA(w) be the set of accepting runs r such
that WA(r) = w. For a given automaton A we define a function A : Σ? → [0, 1]
as follows

A(w) =
∑

r∈AccA(w)

PA(r).

A(w) denotes the probability that the automaton reaches a final state and reads
the string w.

From now on we restrict our attention to automata in which the probabilities
associated with transitions are rational numbers. We shall also often consider
automata where the requisite distributions are in fact only subprobabilities on
the understanding that they can be extended to probability distributions by
adding a dummy “sink” state and dummy transitions. In this sense generative
automata can be considered special cases of reactive ones. Note also that a

reactive automaton A can be converted to a generative one, which we denote
A/|Σ|, by dividing all probabilities occurring in transitions by the size of the
alphabet. We introduce the following two decision problems.

Definition 3. Suppose A1,A2 are probabilistic automata of the same kind.

– Equivalence: A1(w) = A2(w) for all w ∈ Σ∗.
– Refinement: A1(w) ≤ A2(w) for all w ∈ Σ∗.

Equivalence for reactive automata was already considered by Paz in [14] (in a
slightly different setting) and shown decidable. His proof relies on the observation
that in order to prove two automata equivalent it suffices to verify equivalence
for strings of length n1 + n2 − 1, where n1, n2 are the respective numbers of
states. This leads to an NP algorithm. Paz’s result was subsequently refined by
Tzeng [17], who presented a Ptime algorithm based on a search for a basis in a
vector space. Note that the decidability of Equivalence for reactive automata
implies decidability for generative automata as well.

In contrast, we next show that Refinement is undecidable by reducing the
following problem to it:

Nonemptiness with threshold: Given a reactive automaton A and
a rational 0 ≤ λ ≤ 1, there exists w ∈ Σ∗ such that A(w) > λ.

Nonemptiness with threshold was introduced by Rabin [13] and proved
undecidable by Paz [14]. More recently, Blondel and Canterini [18] gave a more
elementary proof based on Post’s Correspondence Problem. Observe that the
complement of Nonemptiness with threshold reduces to Refinement (for
reactive automata) by considering the automaton A = 〈 { i, f }, Σ, i, { f }, δ 〉
below which accepts every non-empty word with probability λ.

i
Σ,λ // f Σ,1ee

Then we have A(w) = λ for any w ∈ Σ+, which implies undecidability of
Refinement in the reactive case.

The undecidability carries over to the generative case, because the refinement
of A1 by A2, where both are reactive, is equivalent to the refinement of A1/|Σ|
by A2/|Σ| (both generative). Furthermore, refinement remains undecidable for
pairs of generative automata in which all probabilities in A1 and A2 are of the
form m/2n. To see this, observe that refinement of A1 by A2 is equivalent to
that of vA1 by vA2, where v ∈ (0, 1] and vA is obtained from A by multiplying
all probabilities on transitions by v. Now given A1 and A2, choose v = d/2n,
where d is the least common denominator of all the probabilities appearing in
both A1 and A2, and 2n is the smallest power of two that exceeds d. Every
weight in vA1 and vA2 is now of the form m/2n for some integer m. We are
interested in restricting the probabilities to this form, because later on we are
going to simulate generative automata in PAf . Although it was shown in [10] that
the strategy representing coin is universal, the proof relied on infinitary features
such as infinite datatypes and recursion. By contrast, distributions based on

probabilities of the shape m/2n can be simulated in a small fragment of PAf

that does not even require while.
Another problem from the theory of probabilistic automata that will be useful

in our work concerns ε-transitions. Note that the definitions of probabilistic
automata (as well as those of PA(r),WA(r) and A(w)) can easily be extended to
encompass ε-transitions. Then it is natural to ask whether and how ε-transitions
can be removed in such a way as to yield an equivalent automaton. This problem
was investigated by Mohri in the general setting of weighted automata, where
the weights come from a variety of semirings [19, 20]. The probabilistic case then
falls into the case of closed semirings, which require a special approach based
on a decomposition into strongly-connected components and a generalization
of the Floyd-Warshall all-pairs shortest-path algorithm. This decomposition is
designed to handle the problematic ε-cycles, as it is easier to deal with them in a
strongly-connected component. A consequence of the algorithm is the fact that
rationality of weights is preserved after ε-removal, which should be contrasted
with the general failure of compositionality for rational strategies pointed out
in [10].

6 Second-order Program Equivalence is Decidable

Recall that a PAf term Γ ` M : θ is a second-order term if ord(θ) ≤ 2 and
the type of each identifier from Γ is either a base type or a first-order type.
We show that program equivalence for second-order PAf terms is decidable. The
argument will be based on a reduction to Equivalence for reactive automata
via Lemma 2. More precisely, we show that for any second-order PAf term there
exists a reactive automaton which accepts (the sequences of moves that occur
in) well-opened complete plays with the same probabilities as those assigned to
them by the corresponding probabilistic strategy. As we are interested in the
second-order terms only, it is not necessary to represent pointers, because they
can be uniquely reconstructed [4]. Consequently, we ignore them completely in
what follows.

The automata corresponding to programs will be special instances of reactive
automata. Their sets of states will be partitioned into O-states and P-states:
only transitions on O-moves (respectively P-moves) will be available from O-
states (respectively P-states). Moreover, at O-states, there can only be at most
one transition for a given input letter (its probability is then 1). For P-states,
however, the probabilities of all outgoing transitions will have to add up to
at most 1, which is consistent with the generative framework. This pattern of
behaviour is captured by the definition below (MO

A and MP
A stand for the sets

of O-moves and P-moves respectively).

Definition 4. An A-automaton is a tuple A = 〈Q,MA, i, f, δ 〉, where:

1. Q = QO + QP is the set of states (elements of QO, QP are called O-states
and P-states respectively);

2. i has no incoming transitions, f has no outgoing transitions;

3. { i, f } ⊆ QO;
4. δ = δO + δP , where δO : QO × MO

A ⇀ QP (δ(q, m) = q′ is taken to mean
δ(q, m)(q′) = 1) and δP : QP ⇀ S(MP

A ×QO);
5. sequences of moves determined by runs of A are plays of A, accepting runs

are complete positions.

Example 1. coin : exp will be interpreted by the automaton i
q,1 // ◦

0, 1
2 //

1, 1
2

// f .

Definition 5. A JΓ ` θK-automaton A represents Γ ` M : θ iff

A(w) =
{

JΓ ` M : θK(w) w ∈ Lwo
JΓ`θK ∩ L

comp
JΓ`θK

0 otherwise

In the rest of this section we set out to prove that any second-order PAf term
is represented by an automaton as specified in the definition above. It suffices
to prove that this is the case for terms in β-normal form, since β-equivalent
terms are also ∼=-equivalent (the fully abstract model [10] is a cartesian-closed
category). The most difficult stage in the construction is the interpretation of
the application rule

Γ ` M : θ → θ′ Γ ` N : θ

Γ ` MN : θ′

which will be split into two simpler rules, multiplicative application and contrac-
tion respectively:

Γ ` M : θ → θ′ ∆ ` N : θ

Γ,∆ ` MN : θ′
Γ, x : θ, y : θ ` M : θ′

Γ, x : θ ` M [x/y] : θ′
.

The former is simply interpreted by composition, because (up to currying)
JΓ,∆ ` MN : θ′K is equal to J∆ ` N : θK ; J ` λxθ.λΓ.Mx : θ → (Γ → θ′)K.
Hence, in order to interpret application we need to be able to handle compo-
sition and contraction. Other term constructs (except λ-abstraction) can also
be interpreted through application by introducing special constants for each of
them [12]. For instance, assignment then corresponds to the constant (:=) :
var → exp → com so that ((:=)M)N corresponds to M :=N . For local vari-
ables one uses newβ : (var → β) → β so that new X in M is equivalent to
newβ(λX.M).

Theorem 1. For any second-order term Γ ` M : θ there exists a JΓ ` θK-
automaton representing Γ ` M : θ.

Proof. We construct the automata by induction on the structure of β-normal
terms. The base cases are ground-type constants (coin, skip, i : exp), free
identifiers (of base type or first-order type) and the constants corresponding
to succ,pred, ifzero, ; ,while, !, := ,new. The automaton for coin was given
in Example 1. The shape of the strategies corresponding to other constants and

free identifiers is already known from work on sequential Algol (see e.g. [21]). Be-
cause the strategies are all deterministic, the probabilistic automata representing
them can be obtained by assigning probability 1 to all transitions of the finite
automata associated with them. Thus it remains to interpret λ-abstraction and
application. The former is trivial in game semantics, because currying amounts
to the identity operation (up to associativity of the disjoint sum), so we only
need to concentrate on application, i.e. composition and contraction.

Let σ = J∆ ` N : θK and τ = Jx : θ ` λΓ.Mx : Γ → θ′K. Suppose A1 =
〈Q1,MJ∆K + MJθK, i1, f1, δ1 〉 and A2 = 〈Q2,MJθK + MJΓ K + MJθ′K, i2, f2, δ2 〉
represent ∆ ` N and x ` λΓ.Mx respectively. Because we consider β-normal
terms of second order only, well-opened complete traces of σ; τ can arise only
from interaction sequences which involve well-opened complete traces from τ and
iterated well-opened complete traces from σ. Thus, as a first step, we have to
construct a probabilistic automaton that accepts iterated well-complete traces
from σ with the same probabilities as those assigned to them by σ. Since σ is
well-threaded, we would like the probability of accepting a complete trace which
is not well-opened to be equal to the product of probabilities with which the
automaton accepts the constituent well-opened traces. This is achieved simply
by identifying f1 with i1, because i1 does not have any incoming transitions
and f1 has no outgoing ones. We write A∗1 for the automaton obtained from
A1 in this way. Let A = J∆K, B = JθK and C = JΓ → θ′K. We define another
automaton

A|| = 〈Q||,MA + MB + MC , (i1, i2), (f1, f2), δ 〉,

where Q|| = (QO
1 × QO

2) + (QO
1 × QP

2 + QP
1 × QO

2), which will model all the
interactions that may result in well-opened complete plays of σ; τ . This is done
by parallel composition of A∗1 with A2 synchronized on moves from B. The
function δ is defined by the transitions given below (qO

1 , qP
1 below range over

O-states and P-states of A∗1 respectively; qO
2 , qP

2 are used analogously for A2):

– for any qO
1 ∈ QO

1 and x ∈ MC

(qO
1 , qO

2)
x,1−−→ (qO

1 , qP
2) if qO

2
x,1−−→ qP

2

(qO
1 , qP

2)
x,p−−→ (qO

1 , qO
2) if qP

2
x,p−−→ qO

2

– for any qO
2 ∈ QO

2 and x ∈ MA

(qO
1 , qO

2)
x,1−−→ (qP

1 , qO
2) if qO

1
x,1−−→ qP

1

(qP
1 , qO

2)
x,p−−→ (qO

1 , qO
2) if qP

1
x,p−−→ qO

1

– for any x ∈ MB

(qO
1 , qP

2)
x,p−−→ (qP

1 , qO
2) if qO

1
x,1−−→ qP

1 and qP
2

x,p−−→ qO
2

(qP
1 , qO

2)
x,p−−→ (qO

1 , qP
2) if qP

1
x,p−−→ qO

1 and qO
2

x,1−−→ qP
2 .

By the structure of interaction sequences (as described, for instance, by the state
diagram in Figure 2 of [10]) each run of A|| determines an interaction sequence

of σ and τ . Moreover, because accepting runs of A∗1 and A2 determine complete
plays in the respective games (well-opened for A2), the accepting runs of A||
determine interactions that, when projected onto MA + MC yield well-opened
complete plays in A ⇒ C. Note that the probability of an accepting run of A||
is the product of probabilities associated with the corresponding runs of A∗1 and
A2. Because interaction sequences are uniquely determined by the constituent
plays, for any w ∈ Lwo

J∆→(Γ→θ′)K ∩ L
comp
J∆→(Γ→θ′)K we get

A||(w) =
∑

r∈AccA|| (w)

PA||(r)

=
∑

r1∈AccA∗
1
(w�A,B)

∑
r2∈AccA∗

2
(w�B,C)

PA∗
1
(w � A,B) · PA2(w � B,C)

= A∗1(w � A,B) · A2(w � B,C) = σ(w � A,B) · τ(w � B,C).

By the composition formula for σ; τ , in order to construct an A ⇒ C-automaton
for ∆ ` λΓ.MN , it now suffices to relabel all transitions on B-moves as ε-
transitions and subsequently replace them using Mohri’s algorithm [19] (in fact,
the full power of the algorithm is needed to handle composition with while and
new, other cases can be easily solved “by hand”). Because B-moves are only
available from states in (QO

1 ×QP
2 +QP

1 ×QO
2), the automaton after the ε-removal

will be an A ⇒ C-automaton with the partition of states given before.
Finally, we discuss contraction. It is interpreted simply by identifying moves

originating from the two contracted copies of θ, i.e. by relabelling. To complete
the argument, we only need to show that the transition function retains the shape
required in A-automata. This is obvious for P-states but (at least in principle)
the relabelling might produce an O-state with two outgoing transitions on the
same O-move. Then we claim that the O-state is unreachable and, consequently,
can be deleted. Indeed, if it were reachable, there would exist a position s such
that the automaton representing the term before contraction would read both
s o1 and s o2, where o1 and o2 are O-moves from the two different copies of θ.
By 5. both so1 and so2 would be plays then, but this is impossible because
only one of them can satisfy visibility (since the questions justifying o1 and o2

cannot appear in the O-view at the same time). Consequently, contraction can
be interpreted in such a way that we get an automaton of the required shape.

By Lemma 2, the Lemma above and the decidability of Equivalence we have:

Theorem 2. ∼= is decidable for second-order PAf terms.

Note that the size of the automaton produced in the above proof will be ex-
ponential in the size of the β-normal term. Because ε-removal and equivalence
testing work in polynomial time, equivalence of β-normal second-order PAf terms
can be decided in Exptime.

7 Probabilistic Program Refinement Is Undecidable

Probabilistic program refinement at second order will be shown undecidable
by reducing Refinement for generative probabilistic automata to probabilis-
tic program refinement. To this end, for each generative automaton where the
probabilities are of the form m/2n, we construct a PAf term representing it in a
way to be described later.

First we discuss how to model the special distributions in PAf . Let us define
a family of terms choicen(M0, · · · ,M2n−1) which evaluate to each of the terms
Mi with the same probability 1

2n :

choice0(M0) = M0

choicen+1(M0, · · · ,M2n+1−1) =
ifzero coin (choicen(M0, · · · ,M2n−1)) (choicen(M2n , · · · ,M2n+1−1)).

Observe that by using the same term M as Mi for several i’s we can vary
(increase) the probability of choicen(M0, · · · ,M2n−1) being equivalent to Mi.
Suppose that, given terms N1, · · · , Nk, we are to construct another term N̂
which evaluates to Ni (1 ≤ i ≤ k) with probability pi = mi

2n , where mi ∈ N
and

∑k
i=1 pi = 1. This can be done by taking N̂ to be choicen(M0, · · · ,M2n−1)

where for M0, · · · ,M2n−1 we take mi copies of Ni for each i = 1, · · · , k (the
order is irrelevant). Then the probability of Ni being selected is mi

2n .
In order to complete the encoding of the special generative automata we

have to define how strings are interpreted. Suppose Σ = {x1, · · · , xm }. A string
w = xj1 · · ·xjl

is then interpreted by the position ŵ:

runrunf (runf,1runxj1
donexj1

donef,1) · · · (runf,1runxjl
donexjl

donef,1)donefdone

in the game Jcomx1 , · · · , comxm , comf,1 → comf ` comK, where we have used
subscripts to indicate the origin of moves from the various occurrences of com.

Lemma 3. Suppose A = 〈Q,Σ, i, F, δ 〉 is a generative automaton and Σ =
{x1, · · · , xm }. There exists a term-in-context Γ ` MA : com, where

Γ = x1 : com, · · · , xm : com, f : com → com,

such that for all s ∈ Lwo
JΓ`comK ∩ L

comp
JΓ`comK:

JΓ ` MAK(s) =
{
A(w) ∃w∈Σ∗ s = ŵ

0 otherwise.

Proof. We will construct MA in such a way that its induced plays will emulate
runs of A. The state of A will be kept in a variable ST . If |Q| > max we
will use sufficiently large tuples of variables, which we also denote by ST . Using
branching we can easily define a case distinction construct case[!ST](· · · ,Hq, · · ·)
which for each q ∈ Q selects Hq if !ST represents q. We will use the first-order
identifier f : com → com for iterating the transitions. MA has the shape

new ST in ST := i; f(case[!ST](· · · ,Hq, · · ·)); [!ST ∈ F]

where [condition] ≡ if condition then skip else div and div ≡ while 1 do skip.
The condition !ST ∈ F can also be implemented via branching. Finally, the
terms Hq will have the shape N̂ and will be constructed for the distribution
δ(q) ∈ P(Σ ×Q). Recall that in order to complete the definition of N̂ we need
to specify the terms N1, · · · , Nk. They are defined as follows: if δ(q)(xj , q

′) = pi

then Ni ≡ (xj ;ST := q′). ut

Theorem 3. @∼ is undecidable.

Proof. Let A1,A2 be generative automata. By the above Lemma and Lemma 1
the refinement of A1 by A2 is equivalent to Γ ` MA1

@∼ MA2 . Because Refine-
ment is undecidable, so is @∼ .

Note that the terms used for simulating generative automata are of second order
(the types of free identifiers have order 0 or 1) and that the encoding does not
rely on while. Accordingly, the undecidability result applies not only to PAf

but also to its while-free fragment. Note however that the above argument did
depend on free first-order identifiers. If we leave them as well as while out, the
problem becomes decidable as the length of the induced well-opened traces is
then bounded (the corresponding automata have no cycles).

8 Conclusion and Future Work

The main result of this paper is an Exptime algorithm for deciding proba-
bilistic contextual equivalence of β-normal second-order Probabilistic Idealized
Algol terms. Subject to mild conditions, this corresponds to the natural notion of
equivalence for randomized algorithms, namely identical input/output distribu-
tions, and therefore enables the comparison of different randomized algorithms
against each other.

It can be shown that probabilistic equivalence is Pspace-hard, since it sub-
sumes the deterministic case, which itself is Pspace-complete [22]. We conjec-
ture that probabilistic equivalence is in fact also Pspace-complete. In any case,
even the Exptime bound is quite encouraging within the realm of verification,
and we therefore intend to implement our algorithm to conduct a number of
experimental case studies.

An interesting alternative to (exact) probabilistic equivalence is that of ap-
proximate probabilistic equivalence, parameterized by some small ‘tolerance mar-
gin’ ε. Such a notion would allow us to quantitatively compare two random-
ized algorithms, or a randomized and a deterministic algorithm, by checking
whether their input/output distributions remain within a predetermined small
bound of each other. Unfortunately, the most natural interpretation of approxi-
mate equivalence is already undecidable for reactive probabilistic automata, by a
simple reduction from Nonemptiness with threshold. Moreover, contextual
approximate equivalence for programs seems difficult to define sensibly: if two
non-divergent programs fail to be exactly equivalent, then a context can always
be manufactured that, through some kind of ‘statistical testing’, can magnify

the differences between the two programs to arbitrarily large values. We would
like to investigate this question in greater detail, perhaps by restricting contexts
to using their arguments only a bounded number of times. We would also like
to discover conditions under which such problems become decidable (cf. [17]), or
alternatively develop efficient semi-algorithms for them.

References

1. Rabin, M.O.: Algorithms and Complexity. Academic Press, 1976.
2. Motwani, R., Raghavan, P.: Randomized Algorithms. CUP, 1995.
3. Reynolds, J.: The essence of Algol. In Jaco W. de Bakker and J. C. van Vliet,

eds.: Algorithmic Languages. North-Holland, 1981.
4. Ghica, D.R., McCusker, G.: Reasoning about Idealized Algol using regular expres-

sions. In ICALP 2000, LNCS 1853.
5. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H.L.: Applying game semantics

to compositional software modelling and verification. In TACAS 2004, LNCS 2988.
6. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking

with PRISM: a hybrid approach. In TACAS 2002, LNCS 2280.
7. Bustan, D., Rubin, S., Vardi, M.: Verifying ω-regular properties of Markov chains.

In CAV 2004, LNCS 3114.
8. Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic con-

current systems. In IFIP WG 2.2/2.3 Conference on Programming Concepts and
Methods, 1990.

9. Lowe, G.: Probabilistic and prioritized models of Timed CSP. Theoretical Com-
puter Science 138(2), 1995.

10. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. on Comp.
Logic 3(3), 2002.

11. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF. Information and
Computation 163(2), 2000.

12. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In O’Hearn, P.W., Tennent,
R.D., eds.: Algol-like languages, Birkhaüser, 1997.

13. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 1963.
14. Paz, A.: Introduction to Probabilistic Automata. Academic Press, 1971.
15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, MIT. Available as Technical Report MIT/LCS/TR-676, 1995.
16. Stoelinga, M.I.A.: An introduction to probabilistic automata. In Rozenberg, G.,

ed.: EATCS bulletin. Volume 78, 2002.
17. Tzeng, W.G.: A polynomial-time algorithm for the equivalence of probabilistic

automata. SIAM Journal on Computing 21, 1992.
18. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of

fixed dimension. Theoretical Computer Science 36(3), 2003.
19. Mohri, M.: Generic e-removal and input e-normalization algorithms for weighted

transducers. International Journal of Foundations of Computer Science 13, 2002.
20. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.

Journal of Automata, Languages and Combinatorics 7, 2002.
21. Abramsky, S.: Algorithmic games semantics: a tutorial introduction. In Schwicht-

enberg, H., Steinbruggen, R., eds.: Proof and System Reliability. Kluwer, 2002.
22. Murawski, A.: Games for complexity of second-order call-by-name programs. The-

oretical Computer Science, to appear.

