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Abstract. Linear recurrence sequences permeate a vast number of areas
of mathematics and computer science. In this paper, we survey the state
of the art concerning certain fundamental decision problems for linear
recurrence sequences, namely the Skolem Problem (does the sequence
have a zero?), the Positivity Problem (is the sequence always positive?),
and the Ultimate Positivity Problem (is the sequence ultimately always
positive?).

1 Introduction

A linear recurrence sequence is an infinite sequence 〈u0, u1, u2, . . .〉 of num-
bers having the following property: there exist constants a1, a2, . . . , ak such
that, for all n, un+k = a1un+k−1 + a2un+k−2 + . . . + akun. If the initial val-
ues u0, u1, . . . , uk−1 of the sequence are provided, the recurrence relation defines
the rest of the sequence uniquely.

The best-known example of a linear recurrence sequence was provided by
Leonardo of Pisa in the 12th century: the so-called Fibonacci sequence 〈0, 1, 1, 2,
3, 5, 8, 13, . . .〉, which satisfies the recurrence relation un+2 = un+1+un. Leonardo
of Pisa introduced this sequence as a means to model the growth of an idealised
population of rabbits. Not only has the Fibonacci sequence been extensively
studied since, but linear recurrence sequences now form a vast subject in their
own right, with numerous applications in mathematics and other sciences. A
deep and extensive treatise on the mathematical aspects of recurrence sequences
is the recent monograph of Everest et al. [4].

In this paper, we mainly focus on decision problems relating to linear recur-
rence sequences. In order for such problems to be well-defined, we need to place
certain restrictions on the sequences under consideration. Firstly, we shall only
be interested in sequences of real numbers, and in particular shall require that
the initial values as well as all constants appearing in recurrence relations be
real. We will often specialise further, by requiring for example that all initial
values and constants be integral, or rational, or algebraic.

The three main decision problems which will concern us are the following:

– The Skolem Problem: does a given linear recurrence sequence have a zero?
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– The Positivity Problem: are all the terms of a given linear recurrence
sequence positive?
(Note that this problem comes in two natural flavours, according to whether
strict or non-strict positivity is required.)

– The Ultimate Positivity Problem: is the given linear recurrence sequence
ultimately positive, i.e., are all the terms of the sequence positive except
possibly for a finite number of exceptions?
(Note, likewise, that this problem admits two natural variants.)

The above problems (and closely related variants) have applications in many
different areas, such as theoretical biology (analysis of L-systems, population
dynamics), software verification (termination of linear programs), probabilistic
model checking (reachability in Markov chains, stochastic logics), quantum com-
puting (threshold problems for quantum automata), as well as combinatorics,
term rewriting, and the study of generating functions. For example, a particular
term of a linear recurrence sequence usually has combinatorial significance only
if it is non-negative. Likewise, a linear recurrence sequence modelling population
growth is biologically meaningful only if it is uniformly positive.

At the time of writing, the decidability of each of these decision problems,
whether for integer, rational, or algebraic linear recurrence sequences, is open,
although partial results are known. We shall review, to the best of our knowledge,
the state of the art in the literature concerning these problems, and also recall
a number of key facts about linear recurrence sequences.

2 Preliminaries

2.1 Linear Recurrence Sequences

We recall some fundamental properties of linear recurrence sequences. Results
are stated without proofs, and we refer the reader to [4] for details.

Let 〈un〉∞n=0 be a linear recurrence sequence satisfying the recurrence relation
un+k = a1un+k−1 + . . .+ akun. We say that the sequence has order k provided
ak is non-zero. (Thus the Fibonacci sequence, for example, has order 2.) The
characteristic polynomial of the sequence is

p(x) = xn − a1x
n−1 − . . .− ak−1x− ak .

Let λ1, . . . , λm ∈ C be a list of the distinct (possibly repeated) roots of p.
Then there are complex single-variable polynomials A1, A2, . . . , Am such that,
for all n,

un = A1(n)λn
1 + . . .+Am(n)λn

m .

The Aj ’s are then uniquely determined by the initial values u0, . . . , uk−1 of the
recurrence sequence.

Any linear recurrence sequence 〈un〉∞n=0 of order k can alternately be defined
in matrix form, in the sense that there is a square matrix M of dimension
k, together with k-dimensional vectors v and w, such that, for all n, un =
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vTMnw. It suffices to take M to be the transpose of the companion matrix
of the characteristic polynomial of the sequence, let v be the vector of initial
values of the sequence (in reverse order), and take w to be the vector whose
first k− 1 entries are 0 and whose kth entry is 1. Conversely, any k-dimensional
square matrix M and vectors v and w give rise to a linear recurrence sequence
〈vTMnw〉∞n=0 of order at most k, thanks to the Cayley-Hamilton Theorem.

Let 〈un〉∞n=0 and 〈vn〉∞n=0 be linear recurrence sequences of order k and l
respectively. Their pointwise product 〈unvn〉∞n=0 and sum 〈un + vn〉∞n=0 are also
linear recurrence sequences of order at most kl and k + l respectively.

2.2 Algebraic Numbers

As is well known, the algebraic numbers form a field: given two algebraic num-
bers, their sum, product, and ratio (provided the divisor is non-zero) are again
algebraic numbers. Moreover, algebraic numbers have canonical representations
with respect to which these operations can be performed in polynomial time. De-
ciding whether two algebraic numbers are equal or whether an algebraic number
is a root of unity can likewise be carried out in polynomial time, as can the prob-
lems of deciding membership in Z, Q, R, and R≥0. The relevant key algorithms
can be found, for example, in [3].

When discussing decision problems regarding linear recurrence sequences of
algebraic numbers, we therefore assume that the relevant algebraic numbers
are provided in some suitable effective canonical form, so that the underlying
questions are algorithmically meaningful.

3 The Skolem Problem

Let us begin by stating one of the most fundamental results about the zeros of
linear recurrence sequences, the celebrated Skolem-Mahler-Lech Theorem:

Theorem 1. Let 〈un〉∞n=0 be a linear recurrence sequence over the reals. Its set
of zeros {n : un = 0} consists of a finite set F , together with a finite number of
arithmetic progressions A1 ∪ . . . ∪Al.

This result is due to Skolem [15], and more general versions were subsequently
obtained by Mahler [11, 12] and Lech [8]. All known proofs of the Skolem-Mahler-
Lech Theorem make use of p-adic techniques, achieving the result in a non-
constructive manner.

3.1 Decidability

As pointed out in [6], algorithmic decision issues in the 1930s had not yet acquired
the importance that they have today. Still, it is customary to regard the Skolem
Problem—deciding whether a given linear recurrence sequence has a zero or
not—as having been open since the publication of Skolem’s original paper. As
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alluded to earlier, it is necessary for this problem to be well-defined that linear
recurrence sequences be given in effective form. To this end, we shall restrict
our attention to linear recurrence sequences of integers, rationals, or algebraic
numbers.

As mentioned above, the proof of the Skolem-Mahler-Lech Theorem is inef-
fective. Subsequently, however, Berstel and Mignotte showed how to obtain all
the arithmetic progressions mentioned in the theorem effectively [1]. The critical
case therefore boils down to linear recurrence sequences provably having a finite
number of zeros, in which case one must decide whether that finite set is empty
or not. As opined by Terence Tao, “[i]t is faintly outrageous that this problem
is still open; it is saying that we do not know how to decide the halting problem
even for ‘linear’ automata!” [17]. Likewise, Richard Lipton describes this state
of affairs as a “mathematical embarrassment” [9].

Partial progress towards decidability of the Skolem Problem has been achieved
by restricting the order of linear recurrence sequences. For sequences of order
1 and 2, decidability is relatively straightforward and considered to be folklore.
Decidability for orders 3 and 4, however, had to wait until the 1980s before being
independently settled positively by Mignotte, Shorey, and Tijdeman [13], as well
as Vereshchagin [18].

The proofs of Mignotte et al. and Vereshchagin are complex and deep. In ad-
dition to p-adic techniques and Galois theory, these proofs rely in a fundamental
way on versions of Baker’s Theorem, discovered in the late 1960s and for which
Alan Baker was awarded the Fields Medal in 1970. To date, all known proofs
of decidability of the Skolem Problem at orders 3 and 4 make essential use of
versions of Baker’s Theorem. An excellent reference for Baker’s Theorem and
variants is Waldschmidt’s book [19].

An instructive and accessible paper, available as a technical report [6], paints
a much more detailed history of the Skolem Problem than we have sketched
above. It also includes self-contained primers on the relevant mathematical tools,
including algebraic numbers, Galois theory, rings and ideals, p-adic techniques,
and Baker’s Theorem. The paper also claims to prove that the Skolem Problem
is decidable for integer linear recurrence sequences of order 5. Unfortunately,
it appears that the proof is incorrect, with no immediately apparent way to
repair it. The critical case which is not adequately handled by the authors is
that of a linear recurrence sequence 〈un〉∞n=0 whose characteristic polynomial
has five distinct roots, four of which (λ1, λ2, λ1, λ2) are complex and of the
same magnitude, and one of which, r, is real and of strictly smaller magnitude.

In this case, the terms of the linear recurrence sequence are of the form

un = |λ1|n (a cos(nθ1 + ϕ1) + b cos(nθ2 + ϕ2)) + crn ,

where θ1 and θ2 are the arguments of λ1 and λ2 respectively, a, b, and c are real
algebraic numbers, and ϕ1 and ϕ2 are the arguments of two algebraic numbers,
all of which can be effectively calculated. If |a| and |b| differ, there does not
appear to be a general mechanism to decide whether un = 0 for some n. More
precisely, in cases where none of the un’s are 0, there does not seem to be a way
to substantiate this fact.
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Finally, let us mention an earlier paper claiming decidability of the Skolem
Problem for rational linear recurrence sequences of all orders [10]. Unfortunately,
this paper is also incorrect. In it, the author correctly expresses the terms of a
given linear recurrence sequence 〈un〉∞n=0 as un = vTMnw, for M a matrix
comprising only non-negative entries. (We reproduce a similar construction in
Subsection 3.3 below.) The author then invokes the Perron-Frobenius Theorem
to argue that the dominant terms in the explicit solution for un are ‘well-behaved’
in that they all involve eigenvalues λ of M such that λ/|λ| is a root of unity.
Unfortunately the argument breaks down because the explicit solution for un

is an expression which need not involve all the eigenvalues of M , and therefore
the dominant terms need not be functions of the eigenvalues of M of maximum
modulus.

3.2 Complexity

To the best of our knowledge, no upper complexity bounds have been published
in relation to the decidability of the Skolem Problem at orders 4 and below. In [2],
Blondel and Portier showed that the Skolem Problem for integer linear recurrence
sequences is NP-hard. We are not aware of other lower bounds, whether for
linear recurrence sequences of arbitrary order (as in [2]) or for restricted classes
of sequences.

PSPACE-hardness in the case of rational linear recurrence sequences of arbi-
trary order is claimed in [10]. Unfortunately, this is also incorrect. The purported
proof attempts to reduce non-universality for two-letter automata to the Skolem
Problem. The author effectively defines a linear recurrence sequence 〈cn〉∞n=0

such that cn is the sum over all words w of length n of the number of accepting
computations along w. But non-universality of the automaton clearly does not
imply that one of the cn’s must be 0. The reduction is therefore incorrect.

3.3 Variants and Reductions

It will undoubtedly come as no surprise to the reader that many computational
problems are equivalent, or reducible, to the Skolem Problem. We record below
a small sample of such observations.

We begin by noting that the integral and rational versions of the Skolem
Problem are equivalent: given a rational linear recurrence sequence 〈un〉∞n=0,
there exists an integer linear recurrence sequence 〈vn〉∞n=0, of the same order,
such that, for all n, un = 0 iff vn = 0. The sequence 〈vn〉∞n=0 is straightforwardly
obtained from 〈un〉∞n=0 by multiplying the recurrence relation as well as the initial
values of the sequence by a suitable integer so as to clear the denominators of
all rational numbers.

A second observation regards a variant of the Skolem Problem in which we are
given a linear recurrence sequence 〈un〉∞n=0 of order k, together with a constant
c, and are asked whether there exists n such that un = c. This easily reduces
to an instance of the standard Skolem Problem for a linear recurrence sequence
〈vn〉∞n=0 of order k + 1. Indeed, by letting vn = un − c, and noting that the



6 Joël Ouaknine and James Worrell

constant sequence 〈−c〉∞n=0 has order 1, we can invoke results on the sum of
linear recurrence sequences to establish the desired claim.

Finally, let us turn to the matricial representation of linear recurrence se-
quences. Given a k-dimensional square matrix M , along with k-dimensional
vectors v and w, we noted earlier that setting un = vTMnw yields a linear
recurrence sequence. As we now show, it is also possible to express this sequence
as un = ṽT M̃nw̃ for a square matrix M̃ comprising exclusively strictly positive
entries. In performing this reduction, however, we end up with a matrix M̃ of
dimension 2k.

The reduction rests on the fact that any real number can always be written
as the difference of two strictly positive real numbers. Thus one replaces each

entry c of M by a 2× 2 submatrix
[
a b
b a

]
where a, b > 0 and a− b = c.

One easily observes that this representation commutes with matrix addition
and multiplication, since[
a b
b a

]
+
[
a′ b′

b′ a′

]
=
[
a+ a′ b+ b′

b+ b′ a+ a′

]
and

[
a b
b a

] [
a′ b′

b′ a′

]
=
[
aa′ + bb′ ab′ + ba′

ab′ + ba′ aa′ + bb′

]
whereas indeed (a − b) + (a′ − b′) = (a + a′) − (b + b′) and (a − b)(a′ − b′) =
(aa′ + bb′)− (ab′ + ba′).

Having so obtained M̃ , one accordingly adjusts the vectors v and w into ṽ
and w̃ to obtain the desired result.

We can go slightly further and achieve the following: given a linear recurrence
sequence 〈un〉∞n=0 of order k, one can construct a stochastic matrix1 M̂ , together
with vectors v̂ and ŵ, such that, for all n, un = 0 iff v̂T M̂nŵ = 0. The general
Skolem Problem is therefore equivalent to that specialised to linear recurrence
sequences arising from stochastic matrices. Let us however point out that in this
reduction, the dimension of M̂ will be 2k + 1.

We briefly sketch the construction below. Begin by writing un = vTMnw for a
k-dimensional square matrix M . Next, write un = ṽT M̃nw̃ for a 2k-dimensional
square matrix M̃ comprising only non-negative entries. Divide each entry of M̃
by a sufficiently large number, so that the resulting matrix M is substochastic,
and observe that, for all n, un = 0 iff ṽTM

n
w̃ = 0. Finally, add a dummy

‘padding’ (2k + 1)th column to M , as well as a dummy bottom row, so that all
rows of the resulting square matrix M̂ sum to 1. It remains to augment both
vectors ṽ and w̃ by an extra 0 entry, thereby obtaining v̂ and ŵ, which completes
the construction.

4 Positivity and Ultimate Positivity

A perhaps surprising observation concerning the Positivity Problem is that its
decidability would immediately entail the decidability of the Skolem Problem,
1 Recall that a stochastic matrix is a square matrix each of whose rows consists of

nonnegative real numbers, with each row summing to 1.



Decision Problems for Linear Recurrence Sequences 7

since un = 0 iff u2
n ≤ 0, and we know that the pointwise square of a linear

recurrence sequence is again a linear recurrence sequence.2 In the worst case,
however, this trick reduces an instance of the Skolem Problem for a linear recur-
rence sequence of order k to an instance of the Positivity Problem for a linear
recurrence sequence of order k2 + 1. An immediate consequence of the reduction
is the NP-hardness of all versions of the Positivity Problem. Let us note, how-
ever, that no such reduction is known for the Ultimate Positivity Problem, and
therefore that no non-trivial lower bounds are known for this problem.

In view of the above reduction, it might be natural to consider that the
Positivity Problem has been open since the advent of the Skolem Problem. The
earliest explicit reference that we have found in the literature, however, goes back
to the 1970s: the problem is mentioned (in equivalent formulation) in papers of
Salomaa [14] and Soittola [16]; in the latter, the author opines that “in our
estimation, [Skolem and Positivity] will be very difficult problems.”

Indeed, the Positivity Problem has proven rather resilient over time. Decid-
ability for integer linear recurrence sequences of order two was only established
6 years ago [5] whereas order three held out a little longer [7]. The latter paper
points out that the Ultimate Positivity Problem for linear recurrence sequences
of order two and three can be handled via similar techniques. Neither of these
papers however offer any upper bounds on the complexity of their algorithms.

Finally, we note that the variants and reductions which we discussed for the
Skolem Problem apply almost verbatim to the Positivity and Ultimate Positivity
Problem. We leave the precise formulation of these facts to the reader.

References

[1] J. Berstel and M. Mignotte. Deux propriétés désirables des suites récurrentes
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