The Orbit Problem for parametric linear dynamical systems

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters.

More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors uv ∈ Qd, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ Rd×d, and a positive integer n ∈ N, such that Nnu = v.

We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Proceedings of CONCUR 21, LIPIcs 203, 2021. 18 pages.

PDF © 2021 Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell.



Imprint / Data Protection