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Abstract
The Skolem Problem asks to determine whether a given linear recurrence sequence (LRS) has a
zero term. Showing decidability of this problem is equivalent to giving an effective proof of the
Skolem-Mahler-Lech Theorem, which asserts that a non-degenerate LRS has finitely many zeros.
The latter result was proven over 90 years ago via an ineffective method showing that such an LRS
has only finitely many p-adic zeros. In this paper we consider the problem of determining whether
a given LRS has a p-adic zero, as well as the corresponding function problem of computing all
p-adic zeros up to arbitrary precision. We present algorithms for both problems and report on their
implementation within the Skolem tool. The output of the algorithms is unconditionally correct, and
termination is guaranteed subject to the p-adic Schanuel Conjecture (a standard number-theoretic
hypothesis concerning the p-adic exponential function). While these algorithms do not solve the
Skolem Problem, they can be exploited to find natural-number and rational zeros under additional
hypotheses. To illustrate this, we apply our results to show decidability of the Simultaneous Skolem
Problem (determine whether two coprime linear recurrences have a common natural-number zero),
again subject to the p-adic Schanuel Conjecture.
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1 Introduction

1.1 The Skolem Problem
A linear recurrence sequence (LRS) u = ⟨un⟩∞n=0 is a sequence of algebraic numbers satisfying
a linear recurrence relation:

un+d = ad−1un+d−1 + · · ·+ a0un (1.1)

where a0, . . . , ad−1 ∈ Q. We call d the order of the recurrence. If d is the minimum order of
a recurrence satisfied by u then we call d the order of u. A rational LRS is one all of whose
entries are rational numbers.

The zero set of an LRS u is {n ∈ N : un = 0}. The celebrated Skolem-Mahler-Lech
theorem [16, 12, 10] states that the zero set is comprised of a union of a finite set and
finitely many arithmetic progressions. The statement may be refined via the concept of
non-degeneracy. Define the characteristic polynomial of the recurrence (1.1) to be

g(X) := Xd − ad−1Xd−1 − · · · − a0 . (1.2)

Let λ1, . . . , λs ∈ Q be the distinct roots of g; these are called the characteristic roots of u.
We say u is non-degenerate if no ratio λi/λj of distinct characteristic roots is a root of unity.
A given LRS can be effectively decomposed as the merge of finitely many non-degenerate
LRS [9, Theorem 1.6]. The core of the Skolem-Mahler-Lech Theorem is that a non-degenerate
LRS that is not identically zero has finitely many zero terms. Unfortunately, the proof of this
result remains ineffective: there is no known algorithm to determine whether a non-degenerate
LRS has a zero. This is the famous Skolem Problem:

▶ Problem 1 (The Skolem Problem). Given an LRS u specified by a non-degenerate linear
recurrence and a set of initial values (with all data consisting of algebraic numbers), determine
whether there exists n ∈ N such that un = 0.

One can also formulate a corresponding function version of this problem in which the task is
to compute the finite set of zeros of a given non-degenerate LRS. We denote the decision
version by SP(N) and the function version by FSP(N). This notation makes explicit that we
are looking for natural-number zeros of the LRS.

It is folklore that computability of FSP(N) reduces to decidability of SP(N). Assuming
the latter, given an LRS u, the finitely many zeros in each non-degenerate subsequence of
u can be found by brute-force search and, since the infinite suffix of an LRS remains an
LRS, one can use a decision procedure for SP(N) to certify that no zeros remain to be found.
However, decidability of the Skolem Problem has remained open for close to a century, with
only partial results known from restricting the order (see the exposition of [2] on results of
[17, 18, 1]), restricting to reversible sequences of low order [11], or restricting to simple LRS
and assuming certain number-theoretic conjectures [3].

In the remainder of this section we introduce various relaxations of the Skolem Problem
that arise by extending LRS to larger domains and seeking zeros of such extensions.

1.2 The Bi-Skolem Problem
The first variant of the Skolem Problem involves bi-infinite (that is, two-way infinite)
sequences. Indeed, given a recurrence (1.1) and initial values u0, . . . , ud−1 ∈ Q, there is a
unique bi-infinite sequence u = ⟨un⟩∞n=−∞ that satisfies the recurrence. We call u a linear
recurrent bi-sequence (LRBS). For example, the Fibonacci sequence extends to an LBRS
⟨. . . , 5,−3, 2− 1, 1, 0, 1, 1, 2, 3, 5 . . .⟩.



P. Bacik, J. Ouaknine, D. Purser, and J. Worrell 3

▶ Problem 2 (Bi-Skolem Problem). Given an LRBS u, specified by a non-degenerate linear
recurrence and a set of initial values, determine whether there exists n ∈ Z such that un = 0.

We use the notation SP(Z) to refer to the above decision problem and we write FSP(Z) for
the corresponding function version, in which we output the finite set of zeros of a given
non-degenerate bi-infinite sequence.

For function problems P1, P2, write P1 ≤ P2 if there is a Turing reduction from P1 to
P2. Here for purposes of comparison we view decision problems as function problems with
outputs in {TRUE, FALSE}. Write P1 ≡ P2 if P1 ≤ P2 and P2 ≤ P1. Then it is easy to see
that

SP(Z) ≤ FSP(Z) ≡ FSP(N) ≡ SP(N) .

Indeed, the reduction FSP(Z) ≤ FSP(N) is realised by splitting a given bi-infinite LRS around
the index zero into forward and backward sequences (both of which are LRS) and computing
the respective zeros of each of the two one-way infinite sequences.

Unlike for Skolem’s Problem, it is not known whether the function version of the Bi-
Skolem Problem reduces to its decision version, i.e., it is not known whether FSP(Z) ≤ SP(Z).
The reduction holds if one assumes the weak p-adic Schanuel Conjecture [3].

1.3 The Rational Skolem Problem
Having expanded the index set of an LRS to Z in the Bi-Skolem Problem, we consider
a further expansion of its domain to Q, which leads us to consider rational zeros of an
LRS. One way to realise this generalisation is via the exponential-polynomial formulation of
LRS. It is classical that an LRS u of order d with characteristic roots λ1, . . . , λs admits the
following representation:

un =
s∑

i=1
Pi(n)λn

i , (1.3)

where the Pi are polynomials with algebraic coefficients and degree one less than the
multiplicity of λi as a root of g, the characteristic polynomial of u. We say that a

b ∈ Q is a
rational zero of u if

∑s
i=1 P ( a

b )λ
a
b
i = 0, where λ

a
b denotes any b-th root of λa. For example,

the sequence un = 4n + 2 has a rational zero at 1
2 that is witnessed by setting 41/2 := −2.

The Rational Skolem Problem SP(Q) asks to determine whether a given LRS has a rational
zero, while its function analog FSP(Q) asks to compute all rational zeros of a non-degenerate
sequence. We note that the definition of rational zeros is consistent with that of integer zeros,
that is, the integer rational zeros of u are precisely the zeros of the bi-infinite extension of u.

A recent result [4, Proposition 4.5] shows that the denominator of any rational zero can
be effectively bounded. This allows us to determine the relationship of the Rational Skolem
Problem with the Bi-Skolem Problem and the usual Skolem Problem. We have

SP(Q)
(1)
≡ SP(Z)

(2)
≤ SP(N) ≡ FSP(N) ≡ FSP(Z)

(3)
≡ FSP(Q) ,

where, as noted earlier, (2) is an equivalence assuming the weak p-adic Schanuel Conjecture.
Indeed, suppose u is an LRS satisfying (1.3). We may compute a bound bmax on the largest
denominator of any rational zero of u. For the reduction (1) we note that deciding SP(Q)
is equivalent to deciding SP(Z) on every LRS v defined by vn :=

∑s
i=1 Pi( n

b )(λ1/b
i )n, where

1 ≤ b ≤ bmax. The reduction (3) is similar.
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1.4 The p-adic Skolem Problem
The main contributions of this paper concern the p-adic zeros of an LRS, that is, zeros lying
in a p-adic completion Zp of the integers with respect to a given prime p. Roughly speaking,
the idea is to extend a given LRS u = ⟨un⟩∞n=0 to a map f : Zp → Zp such that f(n) = un

for all n ∈ Z. We then determine whether f has any zeros in Zp and, if yes, we approximate
them to arbitrary precision. It turns out that f can have zeros other than the integer or
rational zeros of the original LRS u. Hence the ability to determine the existence of p-adic
zeros does not directly solve Skolem’s Problem. Nevertheless, as our results and experiments
show, working p-adically offers a practical approach to finding integer zeros of an LRS that
can moreover find all integer zeros subject to additional assumptions and hypotheses.

By way of example, consider the ring Z3 of 3-adic integers, which is the Cauchy completion
of Z with respect to the absolute value | · |3. The latter is defined by writing |a|3 := 3−k,
where k is the order of 3 as a divisor of a ∈ Z (the larger k, the smaller the absolute value).
It turns out that the LRS un = 4n + 2 extends uniquely to a continuous map f : Z3 → Z3.
It is not difficult to see that f( 1

2 ) = 0. Indeed, write nk := 1+3k

2 for all k ∈ N. Since
2nk = 1 + 3k+1 we see that limk→∞ nk = 1

2 in Z3. On the other hand, it can be shown by
induction that unk

≡ 0 mod 3k+1 for all k and hence limk→∞ unk
= 0 in Z3. By continuity

we conclude that f( 1
2 ) = 0.

We define the p-adic Skolem Problem in a slightly more general setting than in the
discussion above in order to accommodate LRS u taking values in the ring O of integers of a
number field. We refer to Section 2 for full details. For a prime ideal p of O, we denote by Op

the Cauchy completion of O with respect to the p-adic absolute value | · |p. Assuming that p

does not divide the constant term of the recurrence (1.1), there exists N ≥ 1 and analytic
functions f0, . . . , fN−1 : Op → Op such that uNn+ℓ = fℓ(n) for all n ∈ N. Let us call a zero
of one of the above functions fℓ a p-adic zero of u. The proof of the Skolem-Mahler-Lech
Theorem shows that u has finitely many p-adic zeros—but it does not allow one to determine
whether a given u has any p-adic zeros and, if so, how to compute them (hence the proof
does not tell us anything about computing the integer zeros either). This motivates:

▶ Problem 3 (The p-adic Skolem Problem). Given a non-degenerate LRS u and prime ideal
p in the splitting field of its characteristic polynomial, determine whether u has a p-adic zero.

The function version of this problem asks to compute a finite representation of all p-adic
zeros of u (see Definition 7), allowing us both to count the number of p-adic zeros and to
approximate them to arbitrary precision (with respect to the p-adic absolute value). As
shorthand we denote the decision and function problems respectively by SP(Op) and FSP(Op).

It is open whether any of the above-mentioned variants of Skolem’s Problem can be
reduced to SP(Op) or FSP(Op). The essential problem is that we do not know how to
determine in general whether a p-adic zero of a given LRS is rational or not. While our
decision procedure can approximate such a zero to arbitrary precision, it cannot in general
certify that it is irrational or even non-integer. See Section 3.4 for further discussion.

1.5 Main Results
Our main theoretical result is the following.

▶ Theorem 4. Assuming the p-adic Schanuel Conjecture, SP(Op) is decidable and FSP(Op)
is computable.

When the characteristic polynomial of u splits in Zp (which occurs for infinitely many
primes p by the Chebotarev density theorem), we may take Op = Zp. In this case we have
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implemented the algorithm for FSP(Op) in the Skolem tool.1 Preliminary experiments in
Section 4 show the practical applicability of our algorithm, including for the task of finding
rational and integer zeros.

The main technical lemma (also subject to the p-adic Schanuel Conjecture) behind
the proof of Thm. 4 shows that if two exponential polynomials are coprime in the ring of
exponential polynomials, then every common p-adic zero must be rational. This lemma
allows us to decide the Simultaneous Skolem Problem: determine whether two LRS have a
common integer zero.

▶ Theorem 5. Assuming the p-adic Schanuel Conjecture, the Simultaneous Skolem Problem
is decidable for coprime LRS.

An in-principle decision procedure for the p-adic Skolem Problem can be obtained from a
result in the PhD thesis of Mariaule [13], showing that the first-order theory of the structure
(Op, +, ·, 0, 1, Ep) is decidable assuming the p-adic Schanuel Conjecture (where Ep(x) = epx).
Schanuel’s Conjecture is used in [13] via a desingularisation construction that is similar in
spirit to Lem. 12, but which is not practical to implement. We note also that Thm. 5 does
not follow from the result of [13] since Z is not first-order definable in (Op, +, ·, 0, 1, Ep), as
this would contradict decidability of the latter structure.

2 Preliminaries

We briefly recall relevant notions about p-adic numbers. We refer to [15] for more details. Let
K be a number field and p be a prime ideal in its ring of integers O. Define the absolute value
| · |p in K by |a|p = N(p)−vp(a), where N(p) is the order of the residue field O/p and vp(a)
is the order of p as a divisor of the fractional ideal aO. We denote by Kp the completion
of K with respect to | · |p and define Op := {a ∈ Kp : |a|p ≤ 1}. An element a ∈ Op can be
represented uniquely as an infinite series a =

∑∞
n=0 anπn where the an lie in a fixed set of

representatives of Op/p and π is a uniformiser, that is, a generator of the unique maximal
ideal of Op. In the special case that K is the field Q of rational numbers and p is the ideal
pZ for a prime p, the above completion yields the field Qp of p-adic numbers and the ring Zp

of p-adic integers. We denote by Cp the Cauchy completion of the algebraic closure of Qp.
For a prime p lying over p we can regard Kp as a subfield of Cp.

Consider an LRS u given by the formula (1.3) and let K be the field generated by the
characteristic roots and the initial values of u. Pick a prime ideal p ⊆ O that does not divide
the constant term of the recurrence for u (so that vp(λi) = 0 for all i). Choose N ∈ Z≥1 to
be the smallest positive integer such that vp(λN

i − 1) > e
p−1 for all i, where e = ep is the

ramification index. For ℓ ∈ {0, 1, . . . , N − 1} we define the ℓ-th p-adic interpolant of u to be
the analytic function

fℓ(x) =
s∑

i=1
Pi(Nx + ℓ)λℓ

i exp(x log λN
i ) (2.1)

with x ∈ Op. Then fℓ(n) = uNn+ℓ for each n ∈ Z≥0 and so (2.1) defines an extension of u

to Op. In fact, the right-hand side of (2.1) converges for any x ∈ OCp and we call such an x

an extended p-adic zero if fℓ(x) = 0 for some ℓ ∈ {0, . . . , N − 1}.
The following is a key lemma for finding zeros of power series on Kp.

1 Skolem may be experimented with online at https://skolem.mpi-sws.org/?padic. For the algorithm
described in this paper, toggle the switch labelled “Use p-adic algorithm”.

https://skolem.mpi-sws.org/?padic
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▶ Theorem 6 (Hensel’s Lemma for power series). Let f be a power series with coefficients in
Op that converges on Op. If a ∈ Op satisfies

|f(a)|p < |f ′(a)|2p

then there is a unique α ∈ Op such that f(α) = 0 and |α− a|p < |f ′(α)|p.

The following definition explains how we treat approximate p-adic zeros of power series:

▶ Definition 7. A specification of a p-adic zero x ∈ Op of an analytic function f : Op → Op is
an element y = a0 + · · ·+ arπr, where π is a uniformiser for Op, such that |f(y)|p < |f ′(y)|2p,
and |x− y| < |f ′(y)|p.

Hensel’s Lemma ensures that x is defined uniquely.
In the rest of the section we list some results on which we rely.

▶ Theorem 8 (Masser [14]). Let K be a number field of degree D over Q. For s ≥ 1 let
λ1, . . . , λs be non-zero elements of K having height at most h over Q. Then the group of
multiplicative relations

L = {(k1, . . . , ks) ∈ Zs : λk1
1 . . . λks

s = 1}

is generated (as an additive subgroup of Zs) by a collection of vectors all of whose entries
have absolute value at most

(csh)s−1Ds−1 (log(D + 2))3s−3

(log log(D + 2))3s−4 .

The following is a generalisation of Strassman’s Theorem, commonly known via the notion
of the Newton Polygon; see [15], page 307.

▶ Theorem 9. Let p be a prime, and let f(X) =
∑

anXn ∈ OCp [[X]] be a nonzero
convergent power series. Given r ≥ 0, suppose µ < ν are the extreme indices n for which
vp(an) + nr = min

j≥0
vp(aj) + jr. Then f has exactly ν − µ zeros (counting multiplicities) on

the sphere {x ∈ Cp : vp(x) = r}.

Finally we state the p-adic Schanuel Conjecture (see [5, 13]), and the Skolem Conjecture.

▶ Conjecture 10 (p-adic Schanuel’s Conjecture). Let n ≥ 1 and t1, . . . , tn ∈ Cp (with valuation
at least 1

p−1 ) linearly independent over Q. Then

trdegQ Q(t1, . . . , tn, exp(t1), . . . , exp(tn)) ≥ n

where trdegQ K denotes the transcendence degree of K over Q.

▶ Conjecture 11 (The Skolem Conjecture). Let u be a simple rational LRBS taking values
in the ring Z[ 1

b ] for some integer b. Then u has no integer zero iff, for some integer m ≥ 2
with gcd(b, m) = 1, we have that un ̸≡ 0 mod m for all n ∈ Z.

3 Decidability of the p-adic Skolem Problem

3.1 Informal Outline of the Algorithm
In this section we prove Thm. 4, assuming the p-adic Schanuel Conjecture. We start with
an informal description of an algorithm that attempts to find the p-adic zeros of an LRS u
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using only brute-force search and Hensel’s Lemma. We note the problem with this approach,
which motivates the subsequent development involving p-adic Schanuel’s Conjecture.

Let fℓ : Op → Op be an interpolant of a given LRS u. We would like to compute
specifications of all the zeros of fℓ in Op. The idea is to search for zeros lying in the residue
classes of Op modulo πr for r = 1, 2, 3, . . ., where π is a uniformiser of Op. Consider a
representative z ∈ Op of a residue class of O modulo πr. If fℓ(z) ̸≡ 0 mod πr then the residue
class of z does not contain a zero of fℓ, and we can proceed to search other residue classes. If
fℓ(z) ≡ 0 mod πr and vp(fℓ(z)) > 2vp(f ′

ℓ(z)) then the residue class contains a unique zero of
fℓ by Hensel’s Lemma. If neither of the above cases hold then the residue class may contain
any number of zeros of fℓ. Note that we can use Thm. 9 to determine the exact the number
of extended p-adic zeros (lying in the extension Cp of Op) of fℓ in the residue class of z.2
If this number is zero then we can again proceed to consider other residue classes. If the
number is positive then we can refine our search by looking at residue classes modulo πr+1

contained in the current class. If all the zeros of fℓ in Op are simple then this search will
eventually terminate. However, if there is a zero of multiplicity two or more then the search
will run forever (as the inequality vp(fℓ(z)) > 2vp(f ′

ℓ(z)) will never hold). The key challenge
is thus to identify multiple zeros of fℓ in Op and determine their multiplicity.

It so happens that for irreducible factors of fℓ, assuming p-adic Schanuel’s Conjecture,
the only possible zeros of multiplicity two or more are rational. This is the content of the
main technical results in this section and it allows us to amend the above algorithm so that
it always terminates. Specifically, in parallel with the above-described process, we search by
enumeration for rational zeros of fℓ. We thus find all p-adic zeros either by specifying them
with Hensel’s Lemma or by enumerating and checking directly. We use Thm. 9 to certify
that all zeros have thereby been found.

3.2 Simultaneous Zeros of Coprime Exponential Polynomials
We now state our main technical lemma.

▶ Lemma 12. Let K be a number field, P, Q ∈ K[x0, x1, . . . , x2s] be coprime multivariate
polynomials, that are also coprime to any irreducible polynomial of the form

∑s
i=1(ai+bix0)xi,

ai, bi ∈ Z, ai and bi not all 0. Let p ⊆ O be a prime ideal lying above prime p ∈ Z. Let
λ1, . . . , λs ∈ K be such that vp(λi − 1) > e

p−1 where e = ep/p is the ramification index,
and such that the p-adic logarithms log λ1, . . . , log λs are linearly independent over Q. Let
fP (x) = P (x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)), with fQ defined analogously.

Assuming the p-adic Schanuel Conjecture, if fP (x) = fQ(x) = 0, then x ∈ Q.

Proof. Suppose x ∈ Op satisfies fP (x) = fQ(x). Suppose that x ̸∈ Q. First, assume that
the set S = {log λ1, . . . , log λs, x log λ1, . . . , x log λs} is linearly independent over Q. By the
p-adic Schanuel Conjecture,

trdegQQ(S ∪ {exp(x log λ1), . . . , exp(x log λs), λ1, . . . , λs})
= trdegQQ(x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)) ≥ 2s . (3.1)

2 Let fℓ(x) =
∑∞

n=0 an(x − z)n be a power-series expansion of fℓ around z and calculate the respective
smallest and largest indices µ < ν for which vp(an)+nr = min

j≥0
vp(aj)+ jr by computing each derivative

f
(j)
ℓ (z) mod πk for increasing powers k. By Thm. 9 there are ν − µ extended p-adic zeros in the same

residue class as z modulo πr.
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Now fP (x) = fQ(x) = 0 implies that T = {x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)}
is comprised of at most 2s− 1 algebraically independent elements. Indeed, pick some element
σ of {xi : 0 ≤ i ≤ 2s} with positive degree in P . Then fP (x) = 0 implies that the component
of T corresponding to σ is algebraic over the remaining components of T . Now fQ(x) = 0
implies that the remaining components of S are algebraically dependent. Indeed, if σ does
not appear in Q then this is obviously true, otherwise since P and Q are coprime, the
multivariate resultant Resσ(P, Q) is a non-zero polynomial in the remaining components of
{xi : 0 ≤ i ≤ 2s} \ {σ} with a zero at (x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs))
(see, e.g., [7, pp. 163–164]). Thus

trdegQQ(x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)) ≤ 2s− 1 (3.2)

which contradicts (3.1).
We deduce that the set S must be linearly dependent over Q. Consequently, we have

s∑
i=1

(ai + bix) log λi = 0

for some ai, bi ∈ Z, with the bi not all zero. Without loss of generality, assume that b1 ̸= 0.
Suppose now that S \ {x log λ1} is a Q-linearly independent set. Then the p-adic Schanuel
Conjecture gives

trdegQQ(S ∪ {exp(x log λ1), . . . , exp(x log λs), λ1, . . . , λs})
= trdegQQ(x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)) ≥ 2s− 1 . (3.3)

Note that the multivariate polynomial R(x0, . . . xs) =
∑s

i=1(ai + bix0)xi is irreducible.
Indeed, if R were reducible then R = R1R2 with R1 = R1(x0) and R2 = R2(x1, . . . , xs) linear
polynomials with rational coefficients. Since x ̸∈ Q, R1(x) ̸= 0 so R2(log λ1, . . . , log λs) = 0,
which contradicts Q-linear independence of log λ1, . . . , log λs.

Now we have fP (x) = fQ(x) =
∑s

i=1(ai+bix) log λi = 0, and the multivariate polynomials
P, Q and R(x0, . . . xs) =

∑s
i=1(ai + bix0)xi are all coprime. Hence, by repeating the earlier

argument with resultants several times on P, Q, R, the set T is comprised of at most 2s− 2
algebraically independent elements. Therefore,

trdegQQ(x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)) ≤ 2s− 2 (3.4)

which contradicts (3.3). We conclude that the elements log λ1, . . . , log λs, x log λ2, . . . , x log λs

are linearly dependent over Q. So
s∑

i=1
(ai + bix) log λi =

s∑
i=1

(ci + dix) log λi = 0

for ai, bi, ci, di ∈ Z, and b1 ̸= 0, d1 = 0. Therefore,

x = −
∑s

i=1 ai log λi∑s
j=1 bj log λj

= −
∑s

i=1 ci log λi∑s
j=1 dj log λj

and hence(
s∑

i=1
ai log λi

) s∑
j=1

dj log λj

−( s∑
i=1

ci log λi

) s∑
j=1

bj log λj

 = 0 . (3.5)
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This is a non-trivial algebraic relationship between log λ1, . . . , log λs. Indeed, suppose the
coefficients of any monomial in log λ1, . . . , log λs in the equation (3.5) are all zero. This gives
the system of equations

{aidj + ajdi = cibj + cjbi : 1 ≤ i, j ≤ s} .

By taking the equation corresponding to i = j = 1, d1 = 0 and b1 ̸= 0 imply that c1 = 0.
Therefore, we have

a1dj = cjb1, ∀1 ≤ j ≤ s

so cj = a1
b1

dj for all 1 ≤ j ≤ s. Therefore x = a1
b1

, contradicting our assumption that x ̸∈ Q.
But since log λ1, . . . , log λs are Q-linearly independent, the p-adic Schanuel Conjecture

implies they are algebraically independent. This contradicts (3.5). We conclude finally that
our initial assumption that x ̸∈ Q must have been false, and so x ∈ Q. ◀

Some remarks are in order.
▶ Remark 13. The result also holds if we work instead with Schanuel’s Conjecture on elements
of C, and logarithms and exponentials over C.
▶ Remark 14. By taking Q to be an integer polynomial in x0 in the lemma statement, one
sees that irrational algebraic numbers cannot be zeros of exponential polynomials that are
not polynomials in the usual sense.
▶ Remark 15. In the language of the theorem, call fP an exponential polynomial with
algebraic coefficients if xi does not appear in P with positive degree for 1 ≤ i ≤ s. Then
the theorem shows that any irrational zero z of an exponential polynomial with algebraic
coefficients has a unique irreducible exponential polynomial with algebraic coefficients that it
is a root of (if z is algebraic this is just its normal minimal polynomial). Therefore, just as in
the case of algebraic numbers, we may associate to any exponential-algebraic number (i.e., a
root of an exponential polynomial with algebraic coefficients) a unique minimal exponential
polynomial with algebraic coefficients that it is a root of.
The application of this result to LRS is the following corollary.

▶ Corollary 16. Let K, λ1, . . . , λs be as in Lem. 12. Let P ∈ K[x0, x1, . . . , x2s] be non-zero
and irreducible and such that x1, . . . xs do not appear with positive degree in P . Let fP (x) =
P (x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)). Assuming the p-adic Schanuel Con-
jecture, if x ∈ Op is a zero of fP with multiplicity ≥ 2 then x ∈ Q.

Proof. Let Q ∈ K[x0, . . . , x2s] be the polynomial such that

f ′
P (x) = Q(x, log λ1, . . . , log λs, exp(x log λ1), . . . , exp(x log λs)) .

Suppose fP , f ′
P have an irrational common zero. We are done if we show P, Q are coprime

to each other and to any irreducible polynomial R =
∑s

i=1(ai + bix0)xi for any ai, bi ∈ Z
not all zero, as then we can immediately conclude this cannot hold by Lem. 12.

Since P is irreducible, P, Q only fail to be coprime if P | Q. Note that

Q = ∂0P +
s∑

i=1
xixs+i∂s+iP

Since P has no xi component for each 1 ≤ i ≤ s, we have P |xi=0, i∈I = P is a non-zero
polynomial dividing Q|xi=0, i∈I for any subset I ⊆ {1, . . . , s}. In particular this implies
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that P | ∂0P , hence ∂0P = 0 since it has strictly lower total degree than P . Now using
I = {1, . . . , s} \ i for each i, we also have P | xixs+i∂s+iP . Since we assume fP has a zero,
we must have P | ∂s+iP , implying ∂s+iP = 0 since it has strictly smaller total degree than
P . We conclude that P must be constant as all of its partial derivatives vanish. This is
impossible as we assume fP has a zero, so P and Q are coprime.

Now, since P has no xi component for 1 ≤ i ≤ s, P, R are obviously coprime.
Finally, R, Q are only not coprime if R | Q. Suppose that Q = RT for some T ∈

K[x0, . . . , x2s]. Then setting all xi = 0 for 1 ≤ i ≤ s makes both sides of the equation vanish,
so in particular ∂0P = 0. But then P has no x0 component, so clearly R cannot divide Q, so
this is a contradiction. Thus, P, Q, R are all coprime for any choice of R as described, so
Lem. 12 applies. This completes the proof. ◀

We may now ask, do there exist rational zeros of exponential polynomials f with irreducible
underlying multivariate polynomials, with multiplicity greater than 1? Unfortunately, the
answer is yes.

▶ Example 17. Let Q(x, y) = x2(x−1)+y2. Then (x−1) is a prime ideal in Q[x] which divides
x2(x− 1) exactly once and does not divide the coefficient of y2, so by Eisenstein’s criterion
Q(x, y) is irreducible in Q[x][y] = Q[x, y]. Now let f(x) = Q(exp(x log 2)−1, exp(x log 3)−1).
It is easy to see that 0 is a multiplicity 2 root of f .

It would be interesting to determine the lowest possible order of an LRS with irreducible
associated multivariate polynomial and a zero with multiplicity greater than 1, however we
do not investigate this further here.

3.3 The Algorithm and the Proof of Termination and Correctness
With Corollary 16 in hand, we may amend the algorithm outlined earlier for finding the
p-adic zeros of an LRS. First we define a recursive subroutine given by Algorithm 1, which
finds the p-adic zeros of a suitable p-adic analytic function f .

Using the subroutine in Algorithm 1, we present an algorithm to find all the p-adic zeros
of an LRS as Algorithm 2. Computing the multiplicatively independent subset in Line 1
can be done by Masser’s Theorem (Thm. 8). In Line 2 we use multiplicative relations to
express the M -th power of each root that is not in the multiplicatively independent set as a
monomial (with positive and negative integer powers) in those roots in the set. This allows
us to express the subsequence ⟨uMn+t⟩∞n=0 as a polynomial in n and the n-th powers of the
multiplicatively independent roots.

Theorem 4 follows from the next result.

▶ Proposition 18. Assuming the p-adic Schanuel Conjecture, Algorithm 2 always terminates.
Upon termination it outputs all p-adic zeros of the given LRS u.

Proof. Since each factor P defined on line 5 is irreducible, by Corollary 16, the p-adic
Schanuel Conjecture implies that every zero in Op of f either has multiplicity 1 or is rational.
Therefore, in the zeroSearch subroutine (Algorithm 1), all p-adic zeros of f with multiplicity
greater than 1 will eventually be found by the search for rational zeros on line 14, and
all p-adic zeros of f with multiplicity equal to 1 will eventually be found by the Hensel
condition on line 8. Note that the multiplicity of every rational zero q can be determined
by finding the first j such that f (j)(q) ̸= 0. This can be done as f (j)(q) is a polynomial in
log λMN

1 , . . . , log λMN
s . By the p-adic Schanuel Conjecture, these logarithms are algebraically

independent, hence f (j)(q) = 0 iff the coefficients of log λMN
i are 0 for all i.
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Algorithm 1 The zeroSearch subroutine

Input: A non-zero p-adic analytic function f : Op → Op, integer r representing the
depth of the residue class considered, and residue class representative zr of
class zr mod pr. We let π be a computed uniformiser for p, and A a set of
representatives of the residue field Op/p (both may be easily computed given
K and p).

Output: A complete list of elements of Op that are either rational zeros of f or give
a specification of a p-adic zero of f .

1 define zeroSearch (f, r, zr, zerosFound):
2 foreach a ∈ A do
3 zr+1 ← zr + aπr;
4 multCount ← sum of the multiplicities of zeros x in zerosFound with

x ≡ zr+1 mod πr+1;
5 n← the number (counting multiplicity) of extended p-adic zeros

≡ zr+1 mod πr+1 (computed using Thm. 9);
6 if n = multCount then next a;
7 else if n = multCount + 1 then
8 if vp(f ′(zr+1)) < 2vp(f(zr+1)) then append zr+1 to zerosFound;
9 else append zeroSearch (f, r + 1, zr+1, zerosFound) to zerosFound;

10 next a

11 else
12 in parallel until (1) or (2) terminate do
13 (1) foreach q ∈ Q with q ≡ zr+1 mod πr+1 do
14 if f(q) = 0 then
15 Append q to zerosFound;
16 Append zeroSearch (f, r + 1, zr+1, zerosFound) to zerosFound;
17 (2) Append zeroSearch (f, r + 1, zr+1, zerosFound) to zerosFound;
18 multCount ← sum of the multiplicities of zeros x in zerosFound with

x ≡ zr+1 mod πr+1;
19 next a

20 return zerosFound
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Algorithm 2 An algorithm to compute the p-adic zeros of an LRS u

Input: An LRS u, number field K containing u and its characteristic roots, and
prime ideal p ⊆ O lying above prime p with vp(λ) = 0 for all characteristic
roots λ.

Output: A list of elements of Op giving specifications of all the p-adic zeros of u.
1 Compute a multiplicatively independent subset {λ1, . . . , λs} of the characteristic

roots;
2 Compute least integer M > 0 such that for each 0 ≤ t ≤M − 1 we may write

uMn+t = Pt(n, λn
1 , . . . , λn

s ) for multivariate polynomial Pt with algebraic coefficients;
3 Compute least integer N > 0 such that vp(λMN

i − 1) > e
p−1 for all 1 ≤ i ≤ s, where

e = ep/p is the ramification index;
4 foreach 0 ≤ t ≤M − 1, 0 ≤ ℓ ≤ N − 1 do
5 foreach P irreducible factor of of Pt do
6 f(x)← P (Nx + ℓ, exp(x log λMN

1 ), . . . , exp(x log λMN
s ));

7 output: zeroSearch (f, 0, 0, ∅)

Now, if f has any extended p-adic zero x ∈ Cp \ Op, there is some R such that for
every z ∈ Op, vp(x − z) < R. Therefore, for large enough r, the number n computed in
zeroSearch (f, r, zr, zerosFound) does not count any extended p-adic zeros. This ensures
that zeroSearch (f, r, zr, zerosFound) always terminates for large enough r (since eventually
multCount will equal n), which implies that zeroSearch (f, 0, 0, ∅) terminates due to the
recursive structure of the subroutine.

Since all p-adic zeros of f are eventually found, and termination can only occur once all
p-adic zeros are found, the output is correct. ◀

▶ Remark 19. We stress that the p-adic Schanuel Conjecture is required only for termination,
not for correctness. When the algorithm terminates, its output is unconditionally correct.
We end by noting a consequence for the Simultaneous Skolem Problem. Given two LRS u, v,
suppose their exponential-polynomial expansions may be written in terms of multiplicatively
independent characteristic roots {λ1, . . . , λs} (possibly after going to subsequences to deal
with roots of unity brought on from the multiplicative relations). Suppose the multivariate
polynomials defined by the respective exponential-polynomial expansions are coprime.3 In
this case we say that u and v are coprime. We define the Simultaneous Skolem Problem to
be the problem of deciding whether two LRS u and v share an integer zero.

▶ Theorem 5. Assuming the p-adic Schanuel Conjecture, the Simultaneous Skolem Problem
is decidable for coprime LRS.

Proof. Pick p such that the characteristic polynomials of both u, v split in Zp, and consider
the LRS w defined by wn = v2

n + pu2
n. For some N ≥ 1, and all 0 ≤ ℓ ≤ N − 1, their

interpolants with respect to p are related by fw,ℓ = f2
v,ℓ + pf2

u,ℓ. For all x ∈ Zp, fw,ℓ(x) = 0
iff fv,ℓ(x) = fu,ℓ(x) = 0. Indeed, if fv,ℓ(x), fu,ℓ(x) are non-zero then vp(fv,ℓ(x)2) is even, and
vp(pfu,ℓ(x)2) is odd, so fw,ℓ ̸= 0.

By Thm. 4, we may find all p-adic zeros of w. By coprimality of u, v, all the p-adic zeros
found must be rational according to Lem. 12. Therefore they may be found by a brute-force
guess-and-check search, which in particular identifies all common integer zeros. ◀

3 Note that two LRS that are coprime in the sense of [8] are coprime in our sense.
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▶ Remark 20. The condition that u and v are coprime is fairly generic. A sufficient
condition for u and v to be coprime is that v has a characteristic root that is multiplicatively
independent from the characteristic roots of u (or vice-versa).

3.4 The Skolem Conjecture and the Skolem Problem
As noted earlier, it is open whether there is a Turing reduction between FSP(N) and FSP(Op).
For a given sequence u, if we happen to choose a prime ideal p such that all p-adic zeros
of u are rational, then they can all be identified, and the output of Algorithm 2 gives a
certificate that we have found all the integer zeros. This solves FSP(N) for u. One may ask
whether such a prime ideal always exists. It turns out that a generalisation of this idea is
equivalent to the Skolem Conjecture, also known as the Exponential Local-Global Principle
(see Conjecture 11).

▶ Theorem 21. The Skolem Conjecture is equivalent to the following statement: if u is
a simple rational LRBS taking values in the ring Z[ 1

b ] for some integer b, then u has no
integer zero iff there exists N ∈ Z≥1 and prime ideals p1, . . . , pt lying above primes p1, . . . , pt

coprime to b such that for all 0 ≤ ℓ ≤ N − 1, there exists i such that uNn+ℓ has no pi-adic
zeros in Zpi

.

Proof. Suppose u is a simple rational LRBS of order d taking values in the ring Z[ 1
b ] for

some integer b and that u has no integer zeros (the reverse implication is trivial for both
statements).

Suppose the Skolem Conjecture holds, then there’s an integer m with gcd(m, b) = 1 and
un ̸≡ 0 mod m for all n ∈ Z. Write

m =
t∏

i=1
pki

i .

Since Z/pki
i Z has finitely many elements, the vector (un, un+1, . . . , un+d−1) takes only finitely

many values mod pki
i and thus eventually repeats. Since u has order d, this means that

un mod pki is periodic, with some period Ni. Let N =
∏

i Ni. Then each subsequence uNn+ℓ

for 0 ≤ ℓ ≤ N − 1 is constant mod m. In particular, for each 0 ≤ ℓ ≤ N − 1 there’s i such
that uNn+ℓ ̸≡ 0 mod pki

i . Therefore there are no pi-adic zeros of uNn+ℓ in Zpi
.

Now suppose there exist N , p1, . . . , pt, p1, . . . , pt as in the theorem statement. Then
for each 0 ≤ ℓ ≤ N − 1, the subsequence uNn+ℓ has no pi-adic zeros in Zpi

for some i,
which means that vpi

(uNn+ℓ) < kℓ for some integer kℓ. Let k = max
ℓ

kℓ. Then the Skolem
Conjecture holds for u with m =

∏
i pk

i . ◀

4 Implementation and Experimental Analysis

The algorithm described in Algorithm 2 has been implemented into the Skolem tool4 first
introduced in [3], for primes p such that the characteristic polynomial g of a given LRS splits
in Zp. Concretely, the tool first searches for the smallest prime greater than some prescribed
lower bound (by default 3) such that g splits in Zp, before computing the p-adic zeros of
u. We have also implemented a shortened “Hensel-only” algorithm that assumes all zeros
have multiplicity 1 and uses only Hensel’s Lemma to identify zeros. This avoids having to

4 https://skolem.mpi-sws.org?padic

https://skolem.mpi-sws.org?padic
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d Success Total % 	 Count of instances with n zeros for n: Avg #Zeros of type
(Count) (Count) 0 1 2 3 4 5 6+ prime Z Q \ Z ?

2 8886 8886 100% 0.6 4322 3730 625 112 59 20 18 9.2 839 108 4817
3 8921 8921 100% 2.2 3896 2825 1526 378 154 21 121 34.5 862 3 7962
4 9080 9160 99% 11.3 3527 3017 1687 537 183 28 101 144.7 983 2 9281
5 4892 9172 53% 25.7 1830 1710 903 316 95 13 25 263.8 568 0 4803
6 934 9162 10% 30.0 346 327 188 50 15 2 6 252.5 144 0 1081
7 96 9201 1% 33.3 29 34 22 8 3 0 0 240.9 17 0 97

Table 1 Summary of “Hensel-only” algorithm, for each order from 2 − 7. The 	 indicates the
average running time in seconds for successful cases (failed cases timeout at 60s). Averages are gray
where skewed by having many timeouts (counts may also be affected, but should be considered
relative to the successful cases).

d Avg StdDev Max Min Timeouts

2 9 5 37 3 0/4435
3 35 29 227 5 0/4460
4 151 146 1831 5 0/4578
5 817 905 11677 7 0/4582
6 5962 6395 45413 7 1/4581
7 18164 13268 49957 31 1842/4602
(a) Growth of primes that would be used by the algorithm
(mean, standard deviation, max and min of the required prime
reported for each LRS order d), with timeout of 60s or if the
prime would exceed 50000. The max at order 7 (gray) can be
attributed to the timeout, rather than the true value.

d Success Total % 	

2 8886 8886 100% 0.9
3 8920 8921 100% 3.0
4 8613 9160 94% 19.1
5 2 9172 0% 5.9
6 0 9162 0%
7 0 9201 0%
(b) Summary of the full algorithm
with 60s timeout.

Table 2 Values gray where skewed by the timeout.

compute a multiplicatively independent subset of the characteristic roots, having to consider
irreducible factors, and having to carry out a parallel search for rational zeros. LRS with
p-adic zeros of multiplicity greater than 1 are relatively rare, so this shortened algorithm
terminates for most (but not all) LRS in general. The tool is written in Python, using the
SageMath computer-algebra system.

When a zero is found, the tool attempts to determine if it is an integer or rational zero.
If this procedure is inconclusive the unidentified zero is likely to be transcendental over Q,
but we cannot be sure, thus it is reported as unknown. In the web interface, the user can
request the p-adic expansion up to any given precision.

We report the analysis in Figure 1 and Tables 1, 2a, and 2b. Our experiments considered
the same randomly generated set of LRS as used in [3], up to order 7 and ran with up
to 24 instances in parallel on 32 core (including Hyper-Threading) Intel Xeon E5-2667 v2
machines with 256GB RAM. Instances which are degenerate or identically zero are excluded
as unsupported. Recall that the goal of [3] was to find only integer zeros.

Table 1 considers the shortened “Hensel-only” algorithm. With a sixty-second timeout
the tool completes almost all instances up to order 4, but reduces to around half of instances
at order 5. In Table 2a and Figure 1d we considered the prime required on a 50% sample of
the dataset, without computing the zeros (in order to speed up the computation). The tool
appears to succeed within sixty seconds for LRS which require a prime up to between 400
and 500 (see Figure 1d). We observe the growth is approximately d!, and provides evidence
of why the tool can easily handle order 4 and most of order 5, but order 6 would be an order
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Figure 1 (a)-(c): Timing comparison between the Hensel-only and full algorithm (in seconds) in
cases where both succeed within 60s. (d): Distribution of instances requiring a prime in a given
range, and the instances for which the Hensel-only algorithm terminates in 60s (displayed up to
900); the system is highly effective up to primes of around 400-500 in this time limit.

of magnitude slower. The high standard deviation show that there is quite some spread.
The performance of Algorithm 2 is depicted in Table 2b. With a 60s timeout the tool

is effective up to order 4, but a longer timeout would be required at order 5. Counts of
zeros, zero types and average prime are not shown, but are comparable with Table 1 where
computed. Not a single example of an LRS with a multiplicity of order greater than 1 was
found in this randomly generated set of LRS, showing that these instances are relatively rare.
Where both succeed for orders 2-4, the full alogrithm is between 1.3 to 1.5 times slower than
the Hensel-only approach (see Figure 1a-c).

5 Concluding Remarks

5.1 A Remark on Rational Zeros

Note that rational non-integer zeros can be found as p-adic zeros for certain p, but not
always. This is because, informally, interpolating an LRS u using some prime ideal p fixes a
definition of each λ

1
b
i for each b ∈ Z≥1, whereas the notion of rational zero allows λ

1
b
i to be

any b-th root of λi. This phenomenon can be seen in the example below.

▶ Example 22. Consider the Tribonacci sequence, defined by un+3 = un+2 + nn+1 + un

and u0 = 0, u1 = u2 = 1. In [4] it is shown that the set of rational zeros of the Tribonacci
sequence is exactly {0,−1,−4,−17, 1/3,−5/3}.
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The characteristic polynomial of the Tribonacci sequence splits in Zp for p = 47, 103, 199
(among others). Let the ℓ-th interpolant with respect to p be denoted fp,ℓ, that is, the
analytic function fp,ℓ : Zp → Zp such that fp,ℓ(n) = uNn+ℓ for ℓ ∈ {0, . . . , N − 1}. Here we
used N = 46, 51, 198 for p = 47, 103, 199 respectively. We used the tool to compute all the
p-adic zeros of u for each p. Define Zp to be the set of tuples (z, ℓ), where z is the p-adic
zero of u such that fp,ℓ(z) = 0.

Z47 = {(0, 0), (−2/3, 29), (−1, 29), (−2/3, 31), (−1, 42), (−1, 45)}
Z103 = {(0, 0), (−1/3, 13), (−1/3, 16), (−1/3, 17), (−2/3, 17), (−2/3, 30),

(−2/3, 33), (−2/3, 34), (−1, 34), (−1, 47), (−1, 50)},
Z199 = {(0, 0), (185 + 195 · 199 + 135 · 1992 + . . . , 26), (−1/3, 49), (−1/3, 62),

(−1/3, 65), (−1/3, 66), (52 + 63 · 199 + 3 · 1992 + . . . , 92), (−2/3, 115),
(−2/3, 128), (−2/3, 131), (−2/3, 132), (118 + 129 · 199 + 69 · 1992 + . . . , 158),

(−1, 181), (−1, 194), (−1, 197)} .

For each tuple (z, ℓ) corresponding to a rational zero of u, recover the rational zero as Nz + ℓ.
For p = 47 and N = 46, all the rational zeros of u are correctly identified and there are
no transcendental 47-adic zeros.
For p = 103 and N = 51, each integer zero gives rise to three 103-adic zeros. For example,
n = −4 gives rise to (−1/3, 13), (−2/3, 30), (−1, 47). However, the rational zeros of u do
not appear as 103-adic zeros of u. There are also no transcendental 103-adic zeros of u.
For p = 199 and N = 198, again each integer zero gives rise to three 199-adic zeros.
Similarly to p = 103, the rational zeros of u do not appear as 199-adic zeros, but there
are several transcendental 199-adic zeros of u.

5.2 Further Research
We have described and implemented an algorithm to determine a finite representation of all p-
adic zeros of an LRS for suitable p, with termination subject to the p-adic Schanuel Conjecture.
However, the ideas in this paper have further implications. Instead of interpolating an LRS
in Op for some prime ideal p, we can instead choose a branch of the complex logarithm and
interpolate an LRS u to get a function f : C→ C. Further, if u is a rational LRS, we can
restrict to a function fR : R→ R. As pointed out in Remark 13, a version of Lem. 12 holds
when interpolating in R or C as well, hence a version of Corollary 16 holds for such g too
(subject to Schanuel’s Conjecture). One can use this in conjunction with ideas of [6] to find
an algorithm to determine whether fR has a zero on bounded intervals, and in some cases in
R. We plan to explore this more in future work.

Furthermore, we note that any p-adic zero of an LRS u that has been found by Hensel’s
Lemma in our algorithm can be approximated to high precision very efficiently. In cases
where an upper bound is known on the largest size of an integer zero of u (such as for order-4
LRS), this provides a potentially much faster way to elicit all the zeros of u. We also plan to
expand on this in a future paper.
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