
Universality and Language Inclusion for

Open and Closed Timed Automata?

Joël Ouaknine1 and James Worrell2

1 Computer Science Department, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh PA 15213, USA

joelo@andrew.cmu.edu
2 Department of Mathematics, Tulane University,

New Orleans LA 70118, USA
jbw@math.tulane.edu

Abstract. The algorithmic analysis of timed automata is fundamentally
limited by the undecidability of the universality problem. For this reason
and others, there has been considerable interest in restricted classes of
timed automata. In this paper we study the universality problem for
two prominent such subclasses: open and closed timed automata. This
problem is described as open in [6, 8] in the case of open timed automata.
We show here that the problem is undecidable for open timed automata
over strongly monotonic time (no two events are allowed to occur at the
same time), and decidable over weakly monotonic time. For closed timed
automata, we show that the problem is undecidable regardless of the
monotonicity assumptions on time. As a corollary, we settle the various
language inclusion problems over these classes of timed automata.

1 Introduction

Timed automata were introduced by Alur and Dill [1] and have since become a
standard modelling paradigm for real-time systems. Unfortunately, the algorith-
mic analysis of timed automata is limited by the undecidability of the univer-
sality problem (can a given timed automaton perform every timed trace?) [1]. It
has also been argued that timed automata provide unrealistic and too powerful
expressive power to the system designer. In attempting to address these difficul-
ties, a number of researchers have studied restricted classes of timed automata
[6, 2, 4, 5].

? The first author was supported by the Defense Advanced Research Project Agency
(DARPA) and the Army Research Office (ARO) under contract no. DAAD19-01-1-
0485, and the Office of Naval Research (ONR) under contract no. N00014-95-1-0520.
The second author was supported by ONR and NSF. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of DARPA, ARO,
ONR, NSF, the U.S. Government or any other entity.

2 Joël Ouaknine and James Worrell

Two prominent such subclasses are open timed automata (all clock con-
straints must be strict, as in x < 3 as opposed to x 6 3) and closed timed au-
tomata (clock constraints are non-strict). Open timed automata have the desir-
able property of being ‘acceptance-robust’: whenever they accept a timed trace,
they also accept all neighbouring traces that are sufficiently ‘close’ to the trace
in question. Closed timed automata, on the other hand, are ‘rejection-robust’,
in that rejected traces are stable under small temporal perturbations. Closed
timed automata also precisely correspond to the finite-state fragment of Timed
CSP [10], and can conservatively approximate mixed timed automata with in-
finitesimal ‘precision’ [6, 9]. For this reason, they are very often used in practice
[4, 3]. In addition, open and closed timed automata have certain complemen-
tary ‘digitization’ properties which can prove extremely valuable to the efficient
algorithmic analysis of their behaviour [7, 3, 4].

In this paper, we study the universality problem for both these important
classes of timed automata. This problem is described as open in [6, 8] in the
case of open timed automata. We show here that it is undecidable if the under-
lying dense-time domain is strongly monotonic (no two events can occur at the
same time), and decidable (for open timed automata) if the dense-time domain
is weakly monotonic (several events are allowed to occur simultaneously). This
is a rather surprising result as most researchers usually regard the monotonic-
ity assumptions on time as unimportant, and indeed often pick one and never
look back. In the case of closed timed automata, we show that the universality
problem is undecidable regardless of the dense-time domain used.

Alur and Dill’s original proof of the undecidability of the universality prob-
lem for timed automata encodes the halting computations of a Turing-complete
machine M as a set of timed traces LAD(M), and then shows that the comple-
ment of this language can be captured by some timed automaton [1]. As noted
in [5, 8], this encoding is quite fragile, and requires the timed automaton to dif-
ferentiate points in time with infinite precision. This, of course, can be difficult
to achieve with either exclusively open or exclusively closed clock constraints.
Nonetheless, we show here that, by at most doubling the number of clocks used,
open timed automata are still powerful enough to capture the required undecid-
able language, under the semantic assumption of strongly monotonic time.

The reason this device breaks down over weakly monotonic time is that it
is impossible to construct an open timed automaton which captures precisely
all timed traces that fail to be strongly monotonic, in other words all timed
traces that have at least two events occurring at the same time. And indeed,
digitization techniques [7] can be used to show that the universality problem is
decidable in that case.

Alur and Dill’s construction is unfortunately not directly applicable when
it comes to closed timed automata. The reason is that closed timed automata
only accept languages that are closed in the ‘d-topology’ [6], whereas the lan-
guage meant to be captured (the complement of LAD(M)) is not d-closed. A
similar problem was noticed by Henzinger and Raskin in the context of robust
timed automata. In particular they established the undecidability of the univer-

Universality and Language Inclusion for Open and Closed Timed Automata 3

sality problem for robust timed automata and tube languages using a variant
of LAD(M) stable under small temporal perturbations [8]. Unfortunately, when
interpreted over mere timed traces, the language complement they define again
fails to be d-closed. Nonetheless, we were able to utilize their ideas to define a
suitable language having d-closed complement and which can be captured by a
closed timed automaton. The basic trick is to alter the definition of LAD(M) so
that events have strictly positive durations; this is achieved by having separate
signals explicitly denote the beginning and end of a previously instantaneous
event. These delimiters are then required to lie in certain iteratively defined
open sets, yielding a language with d-closed complement. This establishes that
the universality problem for closed timed automata is indeed undecidable.

These results enable us to settle the various language inclusion problems
(does a timed automaton accept all the timed traces of another one?) over
these classes of timed automata. It turns out that the only decidable instance
is whether the language of a closed timed automaton is a subset of that of an
open timed automaton, when interpreted over weakly monotonic time.

2 Timed Automata and Timed Traces

Let C be a finite set of clocks, denoted x, y, z, etc. We define the set ΦC of clock
constraints over C via the following grammar (here k ∈ N is a non-negative
integer).

φ ::= true | x < k | x 6 k | x > k | x > k | φ ∧ φ | φ ∨ φ .

Definition 1. A (mixed) timed automaton is a tuple (Σ,S, S0, Sf , C,E), where

– Σ is a finite alphabet of events,
– S is a finite set of locations,
– S0 ⊆ S is a set of start locations,
– Sf ⊆ S is a set of final locations,
– C is a finite set of clocks, and
– E ⊆ S ×S ×ΦC ×Σ ×P(C)×ΦC is a finite set of transitions. A transition

(s, s′, φ, a,R, φ′) allows a jump from location s to s′, communicating event
a ∈ Σ in the process, provided the precondition φ on clocks is met. After-
wards, the clocks in R are nondeterministically reset to values satisfying the
postcondition φ′, and all other clocks remain unchanged. We assume that all
clocks appearing in φ′ are in R, and that φ′ is satisfiable.

An open timed automaton is a timed automaton in which all pre- and post-
conditions φ, φ′ ∈ ΦC on edges are open, i.e., are generated by the grammar

φ ::= true | x < k | x > k | φ ∧ φ | φ ∨ φ .

A closed timed automaton is a timed automaton in which all pre- and post-
conditions on edges are closed, i.e., are generated by the grammar

φ ::= true | x 6 k | x > k | φ ∧ φ | φ ∨ φ .

4 Joël Ouaknine and James Worrell

Remark 2. Our definitions of mixed, open, and closed timed automata follow
[6, 8]. One however finds many variants in the literature: allowing direct com-
parisons between clocks, e.g., x − y > k; allowing rational, rather than integral,
bounds in constraints; including invariant clock constraints on locations; allow-
ing clocks to be reset to zero only; considering infinite trace semantics with Büchi
or Muller acceptance conditions, rather than finite traces as we do in this paper.
It is however not difficult to verify that all the results presented here extend
straightforwardly to any combination of these variants.

A clock interpretation is a function ν : C −→ R
+, where R

+ stands for the
non-negative real numbers. If t ∈ R

+, we let ν + t be the clock interpretation
such that (ν + t)(x) = ν(x) + t for all x ∈ C.

A state is a triple (s, t, ν), where s ∈ S is a location, t ∈ R
+ is the global time

elapsed since the automaton was switched on, and ν is a clock interpretation.
A run of a timed automaton A = (Σ,S, S0, Sf , C,E) is a finite alternating

sequence of states and transitions e = (s0, t0, ν0)
α1−→ (s1, t1, ν1)

α2−→ . . .
αn−→

(sn, tn, νn), with the ti’s non-decreasing, and each state (si, ti, νi) recording the
data immediately following the previous transition αi = (si−1, si, φi, ai, Ri, φ

′
i) ∈

E. In addition,

1. s0 ∈ S0 and t0 = 0.
2. For all 0 6 i 6 n−1: νi+(ti+1−ti) satisfies φi+1, νi+1(x) = νi(x)+(ti+1−ti)

for all x ∈ C \ Ri+1, and νi+1 satisfies φ′
i+1.

3. sn ∈ Sf .

A timed event is a pair (t, a), where t ∈ R
+ is called the timestamp of

the event a ∈ Σ. A timed trace is a finite sequence of timed events with non-
decreasing timestamps. The set of all timed traces is denoted WMTT, which
stands for ‘Weakly Monotonic Timed Traces’. The set of all timed traces in
which all timestamps are strictly positive and no two timed events have the
same timestamp is denoted SMTT (the ‘S’ stands for ‘Strongly’).

If u = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 is a timed trace, we define an operator
untime(u) =̂ a1a2 . . . an which removes all timestamps from u, retaining only
the relative order of events. This operator extends to sets of timed traces in the
obvious way.

Given a run e = (s0, t0, ν0)
α1−→ (s1, t1, ν1)

α2−→ . . .
αn−→ (sn, tn, νn), we pro-

duce an associated timed trace tt(e) = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉, where each
ai is the event component of the transition αi.

Finally, we define the following two trace semantics for timed automata:
WJAK =̂ {tt(e) | e is a run of A} represents the set of dense-time weakly mono-
tonic timed traces of A, whereas SJAK =̂ WJAK ∩ SMTT denotes the set of
dense-time strongly monotonic timed traces of A.

3 Regions, Digitization, and Topology

In this section we review the region automaton construction of Alur and Dill [1],
the digitization results of Henzinger, Manna, and Pnueli [7], and the d-topology
of Jagadeesan, Henzinger, and Gupta [6].

Universality and Language Inclusion for Open and Closed Timed Automata 5

3.1 Region Automata

Let A = (Σ,S, S0, Sf , C,E) be a timed automaton. Let k be the largest integer
constant appearing in any of the clock constraints associated with the transitions
of A. We define an equivalence relation ∼ on the set of clock interpretations as
follows: ν ∼ ν′ if

1. For all clocks x ∈ C, either bν(x)c = bν ′(x)c, or both ν(x) and ν ′(x) are
greater than k.

2. For all x, y ∈ C with ν(x), ν(y) 6 k, we have fract(ν(x)) 6 fract(ν(y)) ⇔
fract(ν′(x)) 6 fract(ν ′(y)).

3. For all x ∈ C with ν(x) 6 k, fract(ν(x)) = 0 ⇔ fract(ν ′(x)) = 0.

It is easy to check that ∼ partitions the set of clock interpretations into finitely
many equivalence classes, termed clock regions.

We define a partial order 4 on clock regions as follows: r 4 r′ if, for any
ν ∈ r, there exists a non-negative real t ∈ R

+ such that ν + t ∈ r′. We also
define a transitive and antisymmetric relation ≺ on clock regions in the same
way except that t is required to be strictly positive. Note that r ≺ r for some,
but not all, clock regions r.

We now define the (weakly monotonic) region automaton WREG(A) of A
as follows. Its alphabet is the same as that of A, Σ. The states of WREG(A)
consist of all pairs (s, r), where s ∈ S is a location of A and r is a clock region of
A. The start states of WREG(A) consist of all states of the form (s0, r), where
s0 ∈ S0, and its accepting states consist of all states of the form (sf , r), where

sf ∈ Sf . WREG(A) has a transition (s, r)
a

−→ (s′, r′) provided there exist a
clock region r′′ < r and an A-transition (s, s′, φ, a,R, φ′) ∈ E such that all clock
interpretations in r′′ satisfy φ, r′′ and r′ agree when restricted to clocks not
belonging to R, and all clock interpretations in r′ meet φ′.

We also define the (strongly monotonic) region automaton SREG(A) in ex-
actly the same way except that we replace the relation 4 with ≺.

The (untimed) languages accepted by WREG(A) and SREG(A) are denoted
JWREG(A)K and JSREG(A)K respectively.

We now have:

Theorem 3 (Alur and Dill [1]). For any timed automaton A, JWREG(A)K =
untime(WJAK) and JSREG(A)K = untime(SJAK).

We refer the reader to [1] for the proof.

The emptiness problem is to decide whether the set of timed traces of a timed
automaton is empty. As an immediate consequence of Theorem 3, the emptiness
problem for timed automata over either weakly or strongly monotonic time is
decidable.

The reachability problem is to decide, given an arbitrary fixed event, whether
a timed automaton has at least one trace in which this event occurs. This problem
is equivalent to the emptiness problem, and is thus always decidable.

6 Joël Ouaknine and James Worrell

3.2 Digitization

Let t ∈ R
+ and let 0 6 ε 6 1 be real numbers. If fract(t) < ε, let [t]ε =̂ btc,

otherwise let [t]ε =̂ dte.
We can then extend [·]ε to timed traces by pointwise application to the

timestamps of the trace’s events. We then further extend [·]ε to sets of timed
traces in the usual way.

Definition 4. Let T be a set of timed traces.
T is closed under digitization if, for any 0 6 ε 6 1, [T]ε ⊆ T . T is closed

under inverse digitization if, whenever a timed trace u ∈ WMTT is such that
[u]ε ∈ T for all 0 6 ε 6 1, then u ∈ T .

For A a timed automaton, the above definitions apply to WJAK.

For T ⊆ WMTT a set of timed traces, let Z(T) be the set of all integral
timed traces of T , i.e., those timed traces in T all of whose events have integral
timestamps.

The main digitization result is as follows:

Theorem 5 (Henzinger, Manna, and Pnueli [7]). Let T be a set of timed
traces closed under digitization, and let T ′ be a set of timed traces closed under
inverse digitization. Then T ⊆ T ′ if and only if Z(T) ⊆ Z(T ′).

The right-to-left implication is trivial. For the positive direction, let u ∈ T .
Since T is closed under digitization, [u]ε ∈ T for any ε. However Z(T) ⊆ Z(T ′),
thus [u]ε ∈ T ′ for any ε. Since T ′ is closed under inverse digitization, u ∈ T ′ as
required.

Observe that integral timed traces over alphabet Σ are in natural one-to-one
correspondence with untimed traces over alphabet Σ ∪ {X}, where the event
X /∈ Σ represents the passage of one time unit. For T a set of integral timed
traces, we write T X for the corresponding unique set of untimed X-traces.

Proposition 6. Let A be a timed automaton. Then (Z(WJAK))X is a regular
language. In other words, the integral timed traces of A can essentially be gen-
erated by an untimed finite automaton.

The required untimed automaton can be obtained by a straightforward mod-
ification of the region automaton WREG(A). The construction is identical but

for transitions. Postulate a transition (s, r)
a

−→ (s′, r′) of the untimed automaton
if there is a transition (s, s′, φ, a,R, φ′) of A such that all clock interpretations
in r satisfy φ, r and r′ agree when restricted to clocks not belonging to R,
and all clock interpretations in r′ meet φ′. In addition, postulate a transition

(s, r)
X
−→ (s, r′) of the untimed automaton if, for all clock interpretations ν ∈ r,

ν + 1 ∈ r′. It is easily checked that this untimed automaton accepts precisely
(Z(WJAK))X, as required.

Corollary 7. Let A and B be timed automata with A closed under digitiza-
tion and B closed under inverse digitization. Then the timed language inclusion
problem of whether WJAK ⊆ WJBK is decidable.

Universality and Language Inclusion for Open and Closed Timed Automata 7

We will also make use of the following result:

Proposition 8. Closed timed automata are closed under digitization, and open
timed automata are closed under inverse digitization.

Our proof follows that presented in [7].

Let us first consider the case in which A is a closed timed automaton. Let
e = (s0, t0, ν0)

α1−→ (s1, t1, ν1)
α2−→ . . .

αn−→ (sn, tn, νn) be a run of A, with
αj = (sj−1, sj , φj , aj , Rj , φ

′
j). Observe that, for any clock x and index j, νj(x) =

tj − ti + ri(x), where i 6 j is the index of the last transition which reset clock x
(or is 0 if x was never reset), and ri(x) is the nondeterministic value that x was
reset to. For i > 1, ri(x) must satisfy the closed postcondition φ′

i(x).

To show that A is closed under digitization, it suffices to show, given 0 6

ε 6 1, that the prospective run e′ = (s0, [t0]ε, ν
′
0)

α1−→ (s1, [t1]ε, ν
′
1)

α2−→ . . .
αn−→

(sn, [tn]ε, ν
′
n) is a valid run of A. Here ν ′

j(x) = [tj]ε−[ti]ε+r′i(x), where the indices
j and i are obtained from e as explained above, and the r′i(x)’s are carefully
chosen as we now explain. For e′ to be a valid run of A, each reset value r′i(x) and
clock interpretation ν ′

i must meet the relevant closed pre- and postconditions.
Since by assumption the ri’s and νi’s do meet these constraints, it suffices to
show that one can choose each r′i(x) subject to: (i) ri(x) 6 k ⇒ r′i(x) 6 k and
ri(x) > k ⇒ r′i(x) > k, for any integer k, and (ii) νj(x) 6 k ⇒ ν′

j(x) 6 k and
νj(x) > k ⇒ ν′

j(x) > k, again for any integer k.

First observe that, for any integer k, any real numbers p and q, and any ε,
p − q 6 k ⇒ [p]ε − [q]ε 6 k, and p − q > k ⇒ [p]ε − [q]ε > k.

Now choose r′i(x) = [ti]ε − [ti − ri(x)]ε. By the above, r′i(x) clearly satisfies
(i). For any index j, we also have ν ′

j(x) = [tj]ε− [ti]ε +r′i(x) = [tj]ε− [ti−ri(x)]ε
by definition of r′i(x). Since νj(x) = tj − (ti − ri(x)), our earlier observation
implies that (ii) must too be satisfied, as required.

We now tackle the case in which A is an open timed automaton. We establish
the stronger claim that whenever u ∈ WMTT is a timed trace such that [u]0 ∈
WJAK, then u ∈ WJAK. Thus consider u = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 ∈
WMTT such that [u]0 = due ∈ WJAK. due must originate from a run e =

(s0, dt0e, ν0)
α1−→ (s1, dt1e, ν1)

α2−→ . . .
αn−→ (sn, dtne, νn) of A. For each clock x,

let νj(x) = dtje − dtie+ ri(x) as above. We must show that the prospective run

e′ = (s0, t0, ν
′
0)

α1−→ (s1, t1, ν
′
1)

α2−→ . . .
αn−→ (sn, tn, ν′

n) is a valid run of A, where
ν′

j(x) = tj − ti + r′i(x), for suitable values of r′i(x).

Choose δ a strictly positive real number such that δ < fract(tj) for every
non-integral tj . Let r′i(x) = fract(ti) + bri(x)c − δ if ti is not integral, and let
r′i(x) = dri(x)e − δ otherwise. A simple case analysis (considering integral and
non-integral cases for ti, tj , and ri(x) as needed) establishes the following facts:
(i) ri(x) < k ⇒ r′i(x) < k and ri(x) > k ⇒ r′i(x) > k, for any integer k, and
(ii) νj(x) < k ⇒ ν′

j(x) < k and νj(x) > k ⇒ ν′
j(x) > k, again for any integer k.

This shows that e′ is a valid run of A and completes the proof.

8 Joël Ouaknine and James Worrell

3.3 The d-Topology

Define a metric d on WMTT as follows. For u = 〈(t1, a1), . . . , (tn, an)〉 and
u′ = 〈(t′1, a

′
1), . . . , (t′m, a′

m)〉 two timed traces, if untime(u) 6= untime(u′), then
d(u, u′) =̂ ∞. Otherwise, d(u, u′) =̂ max{|ti − t′i| : 1 6 i 6 n}.

Proposition 9. The semantic mapping WJ·K takes open timed automata to d-
open sets of timed traces, and closed timed automata to d-closed sets of timed
traces.

The assertion concerning open timed automata appears in [6], with the fol-
lowing proof. Let A be an open timed automaton, and consider a run e =
(s0, t0, ν0)

α1−→ . . .
αn−→ (sn, tn, νn) that accepts the timed trace u. Since all clock

constraints are open, for each 0 6 i 6 n, there is an εi > 0 such that substituting
νi − εi or νi + εi (or any clock interpretation in between) for νi in e still gives a
valid run of A. Let ε = min{εi/2 | 0 6 i 6 n}. It is clear that any timed trace
within ε of u can be accepted by A.

Let us now consider the case of a closed timed automaton A. Let u be any
timed trace, and let 〈ui〉i>1 be a sequence of timed traces in WJAK converging
to u. Without loss of generality, since A has only finitely many transitions, we
can assume that the runs ei corresponding to these timed traces share the same
transitions, in the same order. The reset sets associated with these transitions
are required to be closed; we may assume that they are bounded as well (if they
are not, pick an artificial bound that is large enough not to disrupt anything).
The sequence of ei’s therefore essentially lies in a compact subset of R

n (for some
finite n) and must therefore have an accumulation point e. The run e is clearly
a valid run of A, since its clock interpretations are limits of clock interpretations
of the ei’s, and the constraints these must satisfy are all closed. It is also plain
that the run e gives rise to the timed trace u, so that u ∈ WJAK as required.

4 Universality

The universality problem is to decide whether a timed automaton can perform all
possible timed traces. In our framework, this problem gives rise to six subcases,
which depend on the class of automata considered (mixed, open, or closed),
as well as on the semantic assumptions on the dense-time domain (weakly or
strongly monotonic time). In the case of mixed timed automata and either weakly
or strongly monotonic dense time, this problem was shown to be undecidable in
[1]. We now address the remaining cases.

A two-counter machine M is a triple ({b0, b1, . . . , bk}, C,D), where the bi’s
are instructions and C and D are two counters ranging over the non-negative
integers. Both counters are initially empty, and the first instruction M executes
is b0. Each instruction bi, for i < k, either: (i) increments or decrements (if non-
zero) one of the counters, and subsequently jumps to the next instruction, or
(ii) tests one of the counters for emptiness and conditionally jumps to the next
instruction. The instruction bk represents successful termination. A configuration

Universality and Language Inclusion for Open and Closed Timed Automata 9

of M is a triple (bi, c, d), where c and d are the respective values of the counters
C and D. A halting computation of M is a finite sequence of configurations start-
ing with (b0, 0, 0) and ending with a bk-configuration, subject to the constraint
that each successive configuration be a valid successor of the previous one. The
problem of deciding whether a two-counter machine has a halting computation
is undecidable.

Let M be a two-counter machine. Following [1], we define a set of timed traces
LAD(M) as follows. Given any halting computation 〈(bi0 , c0, d0), (bi1 , c1, d1), . . . ,
(bin

, cn, dn)〉 of M , we include in LAD(M) the following timed trace u over the
alphabet Σ = {b0, b1, . . . , bk, c, d}: untime(u) = bi0c

c0dd0bi1c
c1dd1 . . . bin

ccnddn ;
u is strongly monotonic (no two events occur at the same time); the timestamp
of bij

is j + t0, where t0 is the timestamp of bi0 ; for all 0 6 j 6 n − 1: (i) if
cj+1 = cj , then for each timed event (t, c) in the time interval (j, j + 1) + t0,
there is a timed event (t + 1, c) in the time interval (j + 1, j + 2) + t0; (ii) if
cj+1 = cj + 1, then for every (t, c) in the time interval (j + 1, j + 2) + t0, except
the last one, there is a timed event (t− 1, c); (iii) if cj+1 = cj − 1, then for every
(t, c) in the time interval (j, j+1)+t0, except the last one, there is a timed event
(t + 1, c); (iv) the same requirements hold of the d’s.

By construction, M has a halting computation if and only if LAD(M) 6= ∅,
which is equivalent to SMTT \ LAD(M) 6= SMTT. We now show that there
exists an open timed automaton A such that SJAK = SMTT \ LAD(M). The
following theorem then immediately follows.

Theorem 10. The universality problem for open timed automata over strongly
monotonic dense time is undecidable. In other words, given an open timed au-
tomaton A, it is undecidable whether SJAK = SMTT.

It remains to exhibit said open automaton A. The construction we sketch is
similar to that of [1]; even though the automaton they construct is not open,
with a little care and a few additional clocks it is possible to produce an open
automaton A such that SJAK = SMTT \ LAD(M).

Since open automata are trivially closed under finite unions, it is sufficient to
exhibit a collection of open automata, each of which accepts timed traces not in
LAD(M), and the sum total of which accepts all such traces. We illustrate two
cases; the remainder are left to the reader.

The automaton below accepts exactly those timed traces u of the form
untime(u) = (Σ \ {bi})

∗bi0(Σ \ {bi})
∗bi1(Σ \ {bi})

∗ . . . bin
(Σ \ {bi})

∗ with the
property that some bij

fails to occur j time units after the occurrence of bi0 . In
what follows, start locations are depicted with an incoming arrow not originat-
ing from any other location, and final locations are doubly circled. Preconditions
are decorated with a question mark (?), and postconditions with an exclamation
mark (!). An edge labelled with a set of events stands for a collection of edges
with the same source and target, one for each of the events in the set. The rest
of the notation is self-explanatory.

10 Joël Ouaknine and James Worrell

//ONMLHIJK
@GF ECD

Σ

��
{bi}

x,y<1!

//ONMLHIJK
@GF ECD
Σ\{bi}

��

{bi}

y<1∨x>2?
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

We claim that this automaton accepts exactly the required timed traces. Let
u be such a trace, with bi0 occurring at time t0. There must be some m such that
bij

occurred at time j + t0 for all j < m, but bim
occurred at some time other

than m+t0. If the occurrence of bim
was too early, that can be captured with the

clock y reset to 0. If, on the other hand, bim
occurred too late, then by resetting

x sufficiently close to 1 the trace will also be accepted. Of course, if each bij
did

occur exactly one time unit after the previous one, then no assignments of values
to x or y can make the automaton accept the trace.

As a second example, suppose that instruction b1 is meant to leave the value
of counter C unchanged. The automaton below accepts precisely those timed
traces u in which some instance of b1 is followed, within one time unit, by a list
of c’s which cannot be put in one-to-one unit-duration-delayed correspondence
with the list of c’s in the following unit-duration time interval.

//ONMLHIJK
@GF ECD

Σ

��
b1

x<1!

//ONMLHIJK
@GF ECD

Σ

��
x<1? c

y,z<1!

//ONMLHIJKGFED@ABC
@GF ECDΣ

y<1∨z>2?

��

@GA BCD
Σ\{c}

__

//ONMLHIJK
@GA BCD

Σ

__

b1 //

GF ED
b1, x<1!

��ONMLHIJK
@GA BCD
Σ\{bi}

__

Σ\{bi}

x<1!

//ONMLHIJK Σ

y<1!

//ONMLHIJK
c

y<1∧x>2?
//

@GA BCD
Σ

__

ONMLHIJKGFED@ABC
@GA BCD

Σ

__

Our claim can be justified as follows. We are asserting one of two things: either
there is a c in the unit-duration time interval immediately following b1 which has
no counterpart one time unit later, or vice-versa. The former is captured by the
top component, whereas the latter is captured by the bottom component. For
simplicity, we are assuming that only traces in which the bij

’s happen exactly
at unit-duration time intervals need be considered (cf. previous automaton). In
the bottom automaton, this forces all transitions up to that resetting y to occur
within one time unit of the occurrence of b1.

The other cases are left to the reader. We remark that, while these con-
structions produce an open automaton A with SJAK = SMTT \ LAD(M), it
is in general not possible to exhibit an open automaton A such that WJAK =
WMTT \ LAD(M). Intuitively, this is because we would need in addition to
provide A with the ability to accept any timed trace in which at least two events

Universality and Language Inclusion for Open and Closed Timed Automata 11

occurred at the same time. However, no open timed automaton can capture pre-
cisely this requirement, since it does not correspond to a d-open set of timed
traces. This difficulty turns out to be insuperable, as the following result demon-
strates.

Theorem 11. The universality problem for open timed automata over weakly
monotonic dense time is decidable. In other words, there is an algorithm which,
given an open timed automaton A, decides whether WJAK = WMTT.

Indeed, let A be an open timed automaton. Note that deciding whether
WJAK = WMTT is clearly equivalent to deciding whether WMTT ⊆ WJAK.
But A is closed under inverse digitization (Proposition 8), and WMTT is obvi-
ously closed under digitization. By Corollary 7, the inclusion WMTT ⊆ WJAK
can therefore be decided.

We now move on to closed timed automata. We begin by stating the chief
undecidability result:

Theorem 12. The universality problem for closed timed automata over either
weakly or strongly monotonic dense time is undecidable. In other words, given
a closed timed automaton A, whether WJAK = WMTT and whether SJAK =
SMTT are undecidable.

Unfortunately, we cannot employ the above method to establish this result,
since the complement of LAD(M) is clearly not a d-closed set; indeed, LAD(M)
is in general not d-open since we require certain events to occur exactly one time
unit apart, etc.

Instead, we draw upon a construction of Henzinger and Raskin [8] to manu-
facture a suitable language.1 The basic idea is to alter the definition of LAD(M)
so that events have strictly positive durations; this is achieved by having sepa-
rate signals explicitly denote the beginning and end of a previously instantaneous
event. These delimiters are then required to lie in certain iteratively defined open
sets. As a result, the complement of this language is then d-closed.

To this end, define a slot to be a non-empty open interval of the non-negative
real numbers of length less than one. Given t1 < t2 < t1 + 1, the slot between
t1 and t2 is the open interval (t1, t2), and the slot generated by t1 and t2 is the
open interval (t1 + 1, t2 + 1).

Let M = ({b0, b1, . . . , bk}, C,D) be a two-counter machine. We define a set
of strongly monotonic timed traces LHR(M). The untimed traces of LHR(M) are
the same as those of LAD(M) except that every event p in LAD(M) is replaced by
a pair of consecutive events pp′ in LHR(M). Configurations are encoded in suc-
cessive slots. Moreover, whenever there was a requirement in LAD(M) that some
event q should occur exactly one time unit after some event p, this translates

1 The undecidable language defined by Henzinger and Raskin was also meant to be
stable under small temporal perturbations. However, the primary purpose of their
construction was to establish the undecidability of universality for robust timed au-
tomata and tube languages. When interpreted over mere timed traces, the language
complement they define unfortunately fails to be d-closed.

12 Joël Ouaknine and James Worrell

for LHR(M) into a requirement that the pair qq′ appear in the slot generated by
the pair pp′. Likewise, LAD(M) requirements that some event q appear between
events p and r translate into LHR(M) requirements that qq′ lie in some slot
between pp′ and rr′.

It is clear that LHR(M) is a d-open strongly monotonic subset of WMTT,
and that M has a halting computation if and only if LHR(M) 6= ∅. The latter
is equivalent to both WMTT \ LHR(M) 6= WMTT and SMTT \ LHR(M) 6=
SMTT. One can now adapt the constructions appearing in the proof of Theo-
rem 10 (or simpler yet the constructions of [1] or [8]) to manufacture a closed
timed automaton A such that WJAK = WMTT \ LHR(M) (from which it also
follows that SJAK = SMTT \ LHR(M)). Taken together, these facts establish
Theorem 12.

We illustrate two cases of the automaton construction. Let Σ stand for the
set {b0, b

′
0, b1, b

′
1, . . . , bk, b′k, c, c′, d, d′}. The automaton below accepts any trace

which is not strongly monotonic.

//ONMLHIJK
@GF ECD

Σ

��
Σ

x:=0!

//ONMLHIJK
Σ

x=0? //ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Suppose now that instruction b1 is meant to leave the value of counter C
unchanged. A possible timed trace violating this requirement is one in which
the event b1 is eventually followed, prior to the next instruction, by a pair of
events 〈(t, c), (t′, c′)〉, with no pair of consecutive events cc′ appearing in the slot
(t + 1, t′ + 1). (This, of course, handles only one half of the required bijection.)
The automaton below accepts all such timed traces.

//ONMLHIJK
@GF ECD

Σ

��
b1 //ONMLHIJK

@GF ECD
Σ\{bi}

��
c

x:=0!

//ONMLHIJK c′

y:=0!

//ONMLHIJKGFED@ABC
@GF ECDΣ

x61?

�� c
++

@A BC
y>1? Σ

OO

ONMLHIJKGFED@ABC
@GF ECD

c

��

Σ\{c,c′}

kk
Σ

y>1?
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

We justify our claim as follows. A pair of consecutive events cc′ fails to appear
in a slot (t + 1, t′ + 1) precisely when every occurrence of c (if any) after time
t + 1 fails to be immediately followed by a c′ before time t′ + 1.

5 Language Inclusion

Theorem 13. Let A and B be timed automata drawn independently from the
classes of mixed, open, or closed timed automata. The language inclusion problem
over weakly monotonic dense time as to whether WJAK ⊆ WJBK is only decidable
when A is drawn from the class of closed timed automata and B is drawn from
the class of open timed automata. The language inclusion problem over strongly
monotonic dense time as to whether SJAK ⊆ SJBK is undecidable in all instances.

Universality and Language Inclusion for Open and Closed Timed Automata 13

Let us first consider the case of weakly monotonic time. The single decidable
instance (A closed and B open) follows directly from Proposition 8 and Corol-
lary 7. On the other hand, by choosing A such that WJAK = WMTT (so that
the question WJAK ⊆ WJBK reduces to the universality problem for B), we can
dispose of all cases in which B is either mixed or closed (Theorem 12).

For the remaining two cases (B open and A either mixed or open), let A be
the following timed automaton:

//ONMLHIJKGFED@ABC
@GF ECD

x>1? x<1!

Σ

��

Notice that A accepts exactly the strongly monotonic timed traces—in other
words, WJAK = SMTT. The question WJAK ⊆ WJBK therefore reduces to
the universality problem for B over strongly monotonic time, and is therefore
undecidable (Theorem 10).

The case of strongly monotonic time is dealt with in similar fashion.

6 Summary

The two tables below summarize the universality and language inclusion results
discussed in this paper.

Class of Universality
Timed Automata Weakly Monotonic Time Strongly Monotonic Time

Mixed Undecidable Undecidable
Open Decidable Undecidable
Closed Undecidable Undecidable

A B WJAK ⊆ WJBK? SJAK ⊆ SJBK?
Mixed Mixed Undecidable Undecidable
Open Mixed Undecidable Undecidable
Closed Mixed Undecidable Undecidable
Mixed Open Undecidable Undecidable
Open Open Undecidable Undecidable
Closed Open Decidable Undecidable
Mixed Closed Undecidable Undecidable
Open Closed Undecidable Undecidable
Closed Closed Undecidable Undecidable

14 Joël Ouaknine and James Worrell

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[2] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211:253–273, 1999.

[3] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata
and digital circuits. In Proceedings of CONCUR 98, volume 1466, pages 470–484.
Springer LNCS, 1998.

[4] D. Bošnački. Digitization of timed automata. In Proceedings of FMICS 99, 1999.
[5] M. Fränzle. Analysis of Hybrid Systems: An ounce of realism can save an infinity

of states. In Proceedings of CSL 99, volume 1683, pages 126–140. Springer LNCS,
1999.

[6] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proceedings of HART 97, volume 1201, pages 331–345. Springer LNCS, 1997.

[7] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proceedings of ICALP 92, volume 623, pages 545–558. Springer LNCS, 1992.

[8] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid
systems. In Proceedings of HSCC 00, volume 1790, pages 145–159. Springer LNCS,
2000.

[9] J. Ouaknine and J. B. Worrell. Revisiting digitization, robustness,
and decidability for timed automata. Submitted, 2003. Available from
www.andrew.cmu.edu/∼joelo.

[10] J. Ouaknine and J. B. Worrell. Timed CSP = closed timed ε-automata. Submit-
ted, 2003. Available from www.andrew.cmu.edu/∼joelo.

