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Termination analysis of linear loops plays a key rôle in several areas of computer science, including program

verification and abstract interpretation. Already for the simplest variants of linear loops the question of

termination relates to deep open problems in number theory, such as the decidability of the Skolem and

Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time

linear dynamical systems. In this paper, we introduce the class of o-minimal invariants, which is broader

than any previously considered, and study the decidability of the existence and algorithmic synthesis of such
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1 INTRODUCTION
This paper is concerned with the existence and algorithmic synthesis of suitable invariants for
discrete-time linear dynamical systems. Invariants are one of the most fundamental and useful

notions in the quantitative sciences, and within computer science play a central rôle in areas such

as program analysis and verification, abstract interpretation, static analysis, and theorem proving.

To this day, automated invariant synthesis remains a topic of active research; see, e.g., [22], and

particularly Sec. 8 therein.
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In program analysis, invariants are often invaluable tools enabling one to establish various

properties of interest. Our focus here is on simple linear loops, of the following form:

𝑃 : 𝑥 ← 𝑠; while 𝑥 ∉ 𝐹 do 𝑥 ← 𝐴𝑥 , (1)

where 𝑥 is a𝑑-dimensional column vector of variables, 𝑠 is a𝑑-dimensional vector of integer, rational,

or real numbers, 𝐴 ∈ Q𝑑×𝑑 is a square rational matrix of dimension 𝑑 , and 𝐹 ⊆ R𝑑 represents the
halting condition.

Much research has been devoted to the termination analysis of such loops (and variants thereof);

see, e.g., [2, 3, 30]. For 𝑆 ⊆ R𝑑 , we say that 𝑃 terminates on 𝑆 if it terminates for all initial vectors

𝑠 ∈ 𝑆 . One of the earliest and most famous results in this line of work is due to Kannan and

Lipton, who showed polynomial-time decidability of termination in the case where 𝑆 and 𝐹 are both

singleton vectors with rational entries [20, 21]. This work was subsequently extended to instances

in which 𝐹 is a low-dimensional vector space [7, 9] or a low-dimensional polyhedron [8]. Still

starting from a fixed initial vector, the case in which the halting set 𝐹 is a hyperplane is equivalent to

the famous Skolem Problem for linear recurrence sequences, whose decidability has been open for

many decades [36, §3.9], although once again positive results are known in low dimensions [25, 39].

The case in which 𝐹 is a half-space corresponds to the Positivity Problem for linear recurrence

sequences, likewise famously open in general but for which some partial results also exist [27, 28].

Cases in which the starting set 𝑆 is infinite have also been extensively studied, usually in

conjunction with a halting set 𝐹 consisting of a half-space. For example, decidability of termination

for 𝑆 = R𝑑 , 𝑆 = Q𝑑 , and 𝑆 = Z𝑑 are known [4, 19, 26, 38]. In the vast majority of cases, however,

termination is a hard problem (and often undecidable [41]), which has led researchers to turn to

semi-algorithms and heuristics. One of the most popular and successful approaches to establishing

termination is the use of ranking functions, on which there is a substantial body of work; see,

e.g., [2], which includes a broad survey on the subject.

Observe, for a loop 𝑃 such as that given in (1), that failure to terminate on a set 𝑆 corresponds to

the existence of some vector 𝑠 ∈ 𝑆 from which 𝑃 loops forever. It is important to note, however,

that the absence of a suitable ranking function does not necessarily entail non-termination, owing

to the non-completeness of the method. Yet surprisingly, as pointed out in [18], there has been

significantly less research in methods seeking to establish non-termination than in methods aimed

at proving termination. Most existing efforts for the former have focused on the synthesis of

appropriate invariants; see, e.g., [10–12, 14–16, 32–34].

In order to make this notion more precise, let us associate with our loop 𝑃 a discrete-time linear
dynamical system (𝐴, 𝑠). The orbit of this dynamical system is the set O = {𝐴𝑛𝑠 | 𝑛 ≥ 0}. It is clear
that 𝑃 fails to terminate from 𝑠 iff O is disjoint from 𝐹 . A possible method to establish the latter is

therefore to exhibit a set I ⊆ R𝑑 such that:

(1) I contains the initial vector 𝑠 , i.e., 𝑠 ∈ I;
(2) I is invariant under 𝐴, i.e., 𝐴I ⊆ I; and
(3) I is disjoint from 𝐹 , i.e., I ∩ 𝐹 = ∅.

Indeed, the first two conditions ensure that I contains the entire orbit O, from which the desired

claim follows thanks to the third condition.

In instances of non-termination, one notes that the orbit O itself is always an invariant meeting

the above conditions. However, since in general one does not know how to algorithmically check

Condition (3), such an invariant is of little use. One therefore usually first fixes a suitable class of

candidate sets for which the above conditions can be mechanically verified, and within that class,

one seeks to determine if an invariant can be found. Examples of such classes include polyhedra [12],

algebraic sets [33], and semi-algebraic sets [15].
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Main contributions.We focus on loops of the form given in (1) above. We introduce the class

of o-minimal invariants, which, to the best of our knowledge, is significantly broader than any of

the classes previously considered in the context of linear loops. An o-minimal invariant is one

that is definable in some o-minimal expansion of the ordered field ℜexp of real numbers with real

exponentiation. We also consider two large classes of halting sets, namely those definable over the

ordered field ℜ0 of real numbers (i.e., semi-algebraic sets) and those definable in ℜexp.

Given 𝑠 ∈ Q𝑑 , 𝐴 ∈ Q𝑑×𝑑 , and 𝐹 ⊆ R𝑑 , our main results are the following: if 𝐹 is a semi-algebraic

set, it is decidable whether there exists an o-minimal invariant I containing 𝑠 and disjoint from 𝐹 ,

and moreover in positive instances such an invariant can be defined explicitly in ℜ0. For the more

general case in which 𝐹 is ℜexp-definable, assuming Schanuel’s conjecture it is decidable whether

there exists an o-minimal invariant I containing 𝑠 and disjoint from 𝐹 , and moreover in positive

instances such an invariant can be defined explicitly in ℜexp.

We illustrate below some of the key ideas from our approach. Consider a linear dynamical system

(𝐴, 𝑠) with 𝐴 ∈ Q3×3
whose orbit O is depicted in Figure 1. In our example, O spirals outward at

some rate 𝜌1 in the 𝑥,𝑦-plane, and increases along the 𝑧-axis at some rate 𝜌2. Intuitively, 𝜌1 and 𝜌2
are the moduli of the eigenvalues of 𝐴.

We now consider a ‘normalised’ version of 𝐴, with both moduli set to 1. We then connect every

point on the normalised orbit with a trajectory ray to its corresponding point on O, while respecting
the rates 𝜌1 and 𝜌2 (see Figure 2). One can observe that the normalised orbit is dense in the unit

circle. We prove that any o-minimal invariant for (𝐴, 𝑠) must in fact eventually contain every

trajectory ray for every point on the unit circle; we depict the union of these rays, referred to as the

trajectory cone, in Figure 3. Finally, we show that any o-minimal invariant must in fact contain some

truncation of the trajectory cone from below, starting from some height. That is, there is a uniform

bound from which all the rays must belong to the invariant. Moreover, we can now synthesise

an ℜexp-definable o-minimal invariant by simply adjoining a finite number of orbit points to the

truncated trajectory cone, as depicted in Figure 4.

Fig. 1. The orbit O of
(𝐴, 𝑠)

Fig. 2. Trajectory rays
of O.

Fig. 3. Trajectory cone
for O.

Fig. 4. Invariant set for
O.

It is worth emphasising that, whilst in general there cannot exist a smallest o-minimal invariant,

the family of truncated cones that we define plays the rôle of a ‘minimal class’, in the sense that any
o-minimal invariant must necessarily contain some truncated cone. We make all of these notions

precise in the main body of the paper.

The works that are closest to ours in the literature are [15], [16], and [14], which consider

the same kind of loops as we do here, but restricted to the case in which the halting set 𝐹 is

always a rational singleton. The authors then exhibit procedures for deciding the existence of semi-

algebraic invariants ([15, 16]) and semi-linear invariants [14]. The present paper has a considerably

broader scope, in that we deal with much wider classes both of invariants and halting sets. From a

technical standpoint, the present paper correspondingly makes heavy use of model-theoretic and

number-theoretic tools that are entirely absent from the above papers.
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Specifically, we make use of o-minimality in order to reason about the structure of the proposed

invariants, as well as quantifier elimination in the case of semialgebraic targets. On the number-

theoretic front, we heavily rely on Baker’s Theorem in order to obtain decidability results. These

tools are needed here, as opposed to [15, 16], since, intuitively, when 𝐹 is not a singleton the general

termination problem is not known to be decidable, and in particular, the “interaction” of the orbit

with 𝐹 is not limited to a single orbit point, but may require reasoning about the asymptotics of the

orbit.

2 PRELIMINARIES AND MAIN DEFINITIONS
We write ℜ0 for the structure ⟨R, 0, 1, +, ·, <⟩, i.e., the ordered field of real numbers with constants

0 and 1. A sentence in the corresponding first-order language can be considered as a quantified

Boolean combination of atomic propositions of the form 𝑃 (𝑥1, . . . , 𝑥𝑛) > 0, where 𝑃 is a polynomial

with integer coefficients and 𝑥1, . . . , 𝑥𝑛 are variables. Tarski famously showed that the first-order

theory of ℜ0 admits quantifier elimination [37] and is therefore decidable. In addition to ℜ0, we

also consider the structure ℜexp, obtained by expanding ℜ0 with the real exponentiation function

𝑥 ↦→ 𝑒𝑥 . It is an open question whether the theory of the reals with exponentiation is decidable;

however decidability was established subject to Schanuel’s conjecture by MacIntyre andWilkie [23].

(Schanuel’s conjecture is a unifying conjecture in transcendental number theory that generalises

many of the classical results of that subject.) MacIntyre and Wilkie further showed in [23] that

decidability of the theory of ℜexp implies a weak form of Schanuel’s conjecture.

Letℜ be an expansion of the structureℜ0. A set 𝑆 ⊆ R𝑑 is definable inℜ if there exists a formula

𝜑 (𝑥1, . . . , 𝑥𝑑 ) inℜwith free variables𝑥1, . . . , 𝑥𝑑 such that 𝑆 =
{
(𝑐1, . . . , 𝑐𝑑 ) ∈ R𝑑 | ℜ |= 𝜑 (𝑐1, . . . , 𝑐𝑑 )

}
.

A function 𝑓 : 𝐵 → R𝑚 with 𝐵 ⊆ R𝑛 is definable inℜ if its graph Γ(𝑓 ) = {(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ 𝐵} ⊆ R𝑛+𝑚
is an ℜ-definable set. For ℜ = ℜ0, the ordered field of real numbers, ℜ0-definable sets (resp. func-

tions) are known as semi-algebraic sets (resp. functions).

Remark 1. Our usage of the terms “definable” and “semi-algebraic” corresponds to “definable
without parameters” and “semi-algebraic without parameters” in model theory.

Remark 2. Recall that there is a natural first-order interpretation of the field of complex numbers
C in the field of real numbers R. We shall say that a set 𝑆 ⊆ C𝑑 is ℜ-definable if the image {(𝑥,𝑦) ∈
R𝑑 × R𝑑 | 𝑥 + 𝑖𝑦 ∈ 𝑆} of 𝑆 under this interpretation is ℜ-definable.

A totally ordered structure ⟨𝑀, <, . . .⟩ is said to be o-minimal if every definable subset of𝑀 is a

finite union of intervals. Tarski’s result on quantifier elimination [37] implies that ℜ0 is o-minimal.

The o-minimality of ℜexp is due to Wilkie [40] and holds unconditionally. An o-minimal expansion

ℜ of ℜ0 satisfies the following useful properties (see [13] for precise definitions and proofs).

(1) For an ℜ-definable set 𝑆 ⊆ R𝑑 , its topological closure 𝑆 is also ℜ-definable.

(2) For an ℜ-definable function 𝑓 : 𝑆 → R, the number inf {𝑓 (𝑥) | 𝑥 ∈ 𝑆} is ℜ-definable (as a

singleton set).

(3) O-minimal structures admit cell decomposition: every ℜ-definable set 𝑆 ⊆ R𝑑 can be written

as a finite union of connected components called cells. Moreover, each cell is ℜ-definable and

homeomorphic to (0, 1)𝑚 for some𝑚 ∈ {0, 1, . . . , 𝑑} (where for𝑚 = 0 we have that (0, 1)0
is a single point, namely {®0} ⊆ R𝑑 ). The dimension of 𝑆 is defined as the maximal such𝑚

occurring in the cell decomposition of 𝑆 .

(4) For an ℜ-definable function 𝑓 : 𝑆 → R𝑚 , the dimension of its graph Γ(𝑓 ) is the same as the

dimension of 𝑆 .
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As mentioned above, ℜ0 is decidable thanks to its effective quantifier elimination procedure.

Equivalently, given a semi-algebraic set, we can effectively compute its cell decomposition. Unfor-

tunately, few more expressive theories are known to be unconditionally decidable. Our decidability

result in Theorem 6.2 on invariants definable in ℜexp is subject to Schanuel’s conjecture; somewhat

surprisingly, however, we exhibit in Theorem 6.4 an unconditional decidability result.

A discrete-time linear dynamical system (LDS) consists of a pair (𝐴, 𝑠), where 𝐴 ∈ Q𝑑×𝑑 and

𝑠 ∈ Q𝑑 . Its orbit O is the set {𝐴𝑛𝑠 | 𝑛 ∈ N}. An invariant for (𝐴, 𝑠) is a set I ⊆ R𝑑 that contains 𝑠
and is stable under applications of 𝐴, i.e., 𝐴I ⊆ I. Given a set 𝐹 ⊆ R𝑑 , we say that the invariant I
avoids 𝐹 if the two sets are disjoint. An o-minimal invariant is one that is definable in an o-minimal

expansion of ℜexp.

3 FROM THE ORBIT TO TRAJECTORY CONES AND RAYS
Let (𝐴, 𝑠) be an LDS with 𝐴 ∈ Q𝑑×𝑑 and 𝑠 ∈ Q𝑑 . We consider the orbit O = {𝐴𝑛𝑠 | 𝑛 ∈ N}. Write 𝐴

in Jordan form as𝐴 = 𝑃 𝐽𝑃−1 where 𝑃 is an invertible matrix, and 𝐽 is a block diagonal matrix of the

form 𝐽 = diag(𝐵1, . . . , 𝐵𝑘 ), where for every 1 ≤ 𝑖 ≤ 𝑘 , 𝐵𝑖 ∈ C𝑑𝑖×𝑑𝑖 is a Jordan block corresponding

to an eigenvalue 𝜆𝑖 :

𝐵𝑖 =
©­­«
𝜆𝑖 1

. . .
. . .
. . . 1

𝜆𝑖

ª®®¬ .
To reflect the block structure of 𝐽 , we often range over {1, . . . , 𝑑} via a pair (𝑖, 𝑗), with 1 ≤ 𝑖 ≤ 𝑘
and 1 ≤ 𝑗 ≤ 𝑑𝑖 , which denotes the index corresponding to row 𝑗 in block 𝑖; we refer to this notation

as block-row indexing.
Henceforth, we assume that for all 1 ≤ 𝑖 ≤ 𝑘 we have that 𝜆𝑖 ≠ 0 (i.e., that the matrices 𝐴 and

𝐽 are invertible). Indeed, if 𝜆𝑖 = 0, then 𝐵𝑖 is a nilpotent block and therefore, for the purpose of

invariant synthesis, we can ignore finitely many points of the orbit under 𝐴 until 𝐵𝑛𝑖 is the 0 block.

We can then restrict our attention to the image of 𝐴𝑛 , by identifying it with R𝑑−𝑑𝑖 .
For all 𝑖 ∈ {1, . . . , 𝑘} we can write 𝜆𝑖 = 𝜌𝑖𝜉𝑖 where 𝜌𝑖 > 0 is positive real and 𝜉𝑖 is a complex

number of absolute value 1, with both 𝜌𝑖 and 𝜉𝑖 being algebraic.

Observe that now, for every set 𝐹 ⊆ R𝑑 , we have that 𝐴𝑛𝑠 ∈ 𝐹 iff 𝐽𝑛𝑠 ′ ∈ 𝑃−1𝐹 where 𝑠 ′ = 𝑃−1𝑠 .
For every 𝑛 > 𝑑 , 𝐽𝑛 = diag(𝐵𝑛

1
, . . . , 𝐵𝑛

𝑘
) with

𝐵𝑛𝑖 =

©­­­­«
𝜆𝑛𝑖

𝑛
𝜆𝑖
𝜆𝑛𝑖 · · · ( 𝑛

𝑑𝑖−1)
𝜆
𝑑𝑖−1
𝑖

𝜆𝑛𝑖

. . .
...

𝜆𝑛𝑖

ª®®®®¬
.

Every coordinate of 𝐽𝑛𝑠 ′ is of the form 𝜆𝑛𝑖 𝑄𝑖, 𝑗 (𝑛) = (𝜌𝑖𝜉𝑖 )𝑛𝑄𝑖, 𝑗 (𝑛) = 𝜌𝑛𝑖 𝜉𝑛𝑖 𝑄𝑖, 𝑗 (𝑛) for some 1 ≤ 𝑖 ≤ 𝑘
and 1 ≤ 𝑗 ≤ 𝑑𝑖 , where 𝑄𝑖, 𝑗 is a polynomial (possibly with complex coefficients) that depends on 𝐽

and 𝑠 ′.
Let 𝑅 = diag(𝜌1, . . . , 𝜌𝑘 ) and 𝐿 = diag(𝜉1, . . . , 𝜉𝑘 ). We define T to be the subgroup of the torus

in C𝑘 generated by the multiplicative relations of the normalised eigenvalues 𝜉1, . . . , 𝜉𝑘 . That is,

consider the subgroup 𝐺 =
{
𝑣 = (𝑣1, . . . , 𝑣𝑘 ) ∈ Z𝑘 | 𝜉𝑣11 · · · 𝜉

𝑣𝑘
𝑘

= 1

}
of Z𝑘 , and let

T =

{
(𝛼1, . . . , 𝛼𝑘 ) ∈ C𝑘 | |𝛼𝑖 | = 1 for all 𝑖 , and for every 𝑣 ∈ 𝐺, 𝛼𝑣1

1
· · ·𝛼𝑣𝑘

𝑘
= 1

}
.

A result by Masser [24] allows to compute a basis for𝐺 , and hence a representation of T. Specifically,
we use the following form of the result, adapted to our setting from [5, Theorem 3.1]:
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Theorem 3.1 (Masser). Denote by ∥𝐴∥ the description length of 𝐴 ∈ Q𝑑×𝑑 (i.e., the sum of the
lengths of the binary encodings of its entries), then there exists a basis of 𝐺 , as defined above, such
that the absolute value of each entry of the basis vectors is at most (𝑐𝑑 · poly(∥𝐴∥))𝑑−1𝑑!6𝑑 , where 𝑐 is
some absolute constant.

Theorem 3.1 allows us to compute a basis by exhaustive search, going over all sets of vectorswhose

entries are below the given bound. Since we use binary encoding, and the bound in Theorem 3.1 is

single-exponential in ∥𝐴∥, then each basis can be represented in polynomial space (hence finding a

basis can be done in polynomial space).

Using Kronecker’s theorem on inhomogeneous simultaneous Diophantine approximation [6] it

is shown in [29] that {𝐿𝑛 | 𝑛 ∈ N} is a dense subset of {diag(𝛼1, . . . , 𝛼𝑘 ) | (𝛼1, . . . , 𝛼𝑘 ) ∈ T}.
Thus, for every 𝑛 ∈ N, we have

𝐽𝑛𝑠 ′ ∈
{(
𝜌𝑛
1
𝑝1𝑄1,1 (𝑛), . . . , 𝜌𝑛𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑛)

)⊺ | (𝑝1, . . . , 𝑝𝑘 ) ∈ T} .
We now define a continuous over-approximation of the expressions 𝜌𝑛𝑖 by replacing 𝑛 ∈ N

with log 𝑡 , where 𝑡 ≥ 1 is a real variable, so that, writing 𝑏𝑖 := log 𝜌𝑖 , 𝜌
𝑛
𝑖 becomes 𝑡𝑏𝑖 . This over-

approximation leads to the following definition, which is central to our approach.

Definition 3.2. For every 𝑡0 ≥ 1, we define the trajectory cone1 for the orbit O as

C𝑡0 =
{(
𝑡𝑏1𝑝1𝑄1,1 (log 𝑡), . . . , 𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)

)⊺ | (𝑝1, . . . , 𝑝𝑘 ) ∈ T, 𝑡 ≥ 𝑡0} .
In particular, we have that 𝐽𝑛𝑠 ′ ∈ C1.
In order to analyse invariants, we require a finer-grained notion than the entire trajectory cone.

To this end, we introduce the following.

Definition 3.3. For every 𝑝 = (𝑝1, . . . , 𝑝𝑘 ) ∈ T and every 𝑡0 ≥ 1, we define the (trajectory) ray2

r(𝑝, 𝑡0) =
{(
𝑡𝑏1𝑝1𝑄1,1 (log 𝑡), . . . , 𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)

)⊺ | 𝑡 ≥ 𝑡0} .
Observe that we have C𝑡0 =

⋃
𝑝∈T r(𝑝, 𝑡0).

Example 3.4. Consider the matrix 𝐴 = diag(5, 2) and the initial point 𝑠 = (1, 1)⊺ . We then have

T =
{(
1, 1

)}
and C𝑡0 =

{(
𝑡 log 5, 𝑡 log 2

)⊺ | 𝑡 ≥ 𝑡0}. Observe that this is not an ℜ0-definable set, as the

quotient
log 5

log 2
is not rational. This shows that even for diagonalizable matrices (where C𝑡0 has a

simple form, devoid of the polynomials 𝑄𝑖, 𝑗 ), ℜ0 might not be enough to recover definability of the

orbit (in the sense of Theorem 4.1 below).

4 CONSTRUCTING INVARIANTS FROM TRAJECTORY CONES
We now proceed to show that the trajectory cones defined in Section 3 can be used to characterise

o-minimal invariants. More precisely, we show that for an LDS (𝐴, 𝑠) with 𝐴 = 𝑃 𝐽𝑃−1, the image

under 𝑃 of every trajectory cone C𝑡0 , augmented with finitely many points from O, is an invariant.

Moreover, we show that such invariants are ℜexp-definable, and hence o-minimal. Complementing

this, we show in Section 5 that every o-minimal invariant must contain some trajectory cone.

In what follows, let𝐴 = 𝑃 𝐽𝑃−1, 𝑠 , as well as the real numbers 𝑏1, . . . , 𝑏𝑑 be defined as in Section 3.

Theorem 4.1. For every 𝑡0 ≥ 1, the set 𝑃 · C𝑡0 ∪ {𝐴𝑛𝑠 | 𝑛 < log 𝑡0} is an ℜexp-definable invariant
for the LDS (𝐴, 𝑠).
1
These sets are, of course, not really cones. Nevertheless, if for all 𝑖 we have 𝑏𝑖 = 1 and the polynomials𝑄𝑖,𝑗 are constant,

then the set C𝑡0 is a conical surface formed by the union of rays going from the origin through all points of T. The initial

segments of the rays, of length determined by the parameter 𝑡0, are removed.

2
Likewise, this set is not, strictly speaking, a straight half-line.
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The intuition behind Theorem 4.1 is as follows. Clearly, the orbit O itself is always an invariant

for (𝐴, 𝑠). However, it is generally not definable in any o-minimal structure (in particular, since it has

infinitely many connected components). In order to recover definability in ℜexp while maintaining

stability under 𝐴, the invariants constructed in Theorem 4.1 over-approximate the orbit by the

image of the trajectory cone C𝑡0 under the linear transformation 𝑃 . Finally, a finite set of points

from O is added to this image of the trajectory cone, to fill in the missing points in case 𝑡0 is too

large.

The proof of Theorem 4.1 has several parts. First, recall that the trajectory cone itself, C𝑡0 , is
an over-approximation of the set

{
𝐽𝑛𝑃−1𝑠 | 𝑛 ∈ N

}
. As such, clearly C𝑡0 ⊆ C𝑑 . In comparison, the

orbit can be written as O =
{
𝑃 𝐽𝑛𝑃−1𝑠 | 𝑛 ∈ N

}
⊆ R𝑑 . We prove in Section 4.1 the following simple

lemma, from which it follows that the entire set 𝑃 · C𝑡0 is also a subset of R𝑑 .

Lemma 4.2. For every 𝑝 ∈ T and 𝑡0 ≥ 1, we have 𝑃 · r(𝑝, 𝑡0) ⊆ R𝑑 .

In the second part of the proof of Theorem 4.1, we show that 𝑃 · C𝑡0 is stable under 𝐴. The key
ingredient is the following lemma, which characterises the action of 𝐽 on rays and is proved in

Section 4.2.

Lemma 4.3. For every 𝑝 = (𝑝1, . . . , 𝑝𝑘 ) ∈ T and 𝑡0 ≥ 1, we have 𝐽 · r(𝑝, 𝑡0) = r(𝐿𝑝, 𝑒𝑡0).

The next lemma then lifts Lemma 4.3 to the entire trajectory cone.

Lemma 4.4. For every 𝑡0 ≥ 1, we have 𝐽 · C𝑡0 ⊆ C𝑡0 .

Proof. Recall that C𝑡0 =
⋃
𝑝∈T r(𝑝, 𝑡0). By Lemma 4.3 we have that 𝐽 · C𝑡0 =

⋃
𝑝∈T r(𝐿𝑝, 𝑒𝑡0). But

𝑒𝑡0 > 𝑡0 and 𝐿𝑝 ∈ T iff 𝑝 ∈ T. Hence we have that r(𝐿𝑝, 𝑒𝑡0) ⊆ r(𝐿𝑝, 𝑡0), from which we conclude

that 𝐽 · C𝑡0 ⊆
⋃
𝑝∈T r(𝐿𝑝, 𝑡0) =

⋃
𝑝∈T r(𝑝, 𝑡0) = C𝑡0 . □

The proof of Theorem 4.1 combines all these ingredients together and is given in subsection 4.3.

4.1 Proof of Lemma 4.2
Recall that we have 𝐴 = 𝑃 𝐽𝑃−1, where 𝐽 = diag(𝐵1, . . . , 𝐵𝑘 ) is a block diagonal matrix with

𝐵𝑖 ∈ C𝑑𝑖×𝑑𝑖 the Jordan block corresponding to eigenvalue 𝜆𝑖 . Write 𝑃 =
(
𝑃1 . . . 𝑃𝑘

)
, where

𝑃𝑖 ∈ C𝑑×𝑑𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}. Since the generalized eigenspaces of 𝐴 respectively corresponding

to pairs of complex-conjugate eigenvalues are themselves element-wise conjugate, we can partition

the set {1, . . . , 𝑘} into singletons and pairs of the form {𝑖1, 𝑖2} such that 𝑑𝑖1 = 𝑑𝑖2 , 𝑃𝑖1 = 𝑃𝑖2 , and

𝐵𝑖1 = 𝐵𝑖2 . In this case we say that 𝑖1 and 𝑖2 are conjugate block indices.
By definition, for conjugate block indices 𝑖1, 𝑖2 we have that for all 𝑗 ∈ {1, . . . , 𝑑𝑖1 } the column of

𝑃 with block-column index (𝑖1, 𝑗) is conjugate to the column of 𝑃 with block-column index (𝑖2, 𝑗).
Likewise the row of 𝑃−1 with block-row index (𝑖1, 𝑗) is conjugate to that with index (𝑖2, 𝑗).3 In
particular, for the vector 𝑠 ′ = 𝑃−1𝑠 we have that the entries 𝑠 ′𝑖1, 𝑗 and 𝑠

′
𝑖2, 𝑗

are complex conjugates.

Let 𝑝 ∈ T and 𝑡0 ≥ 1. Consider the vector 𝑣 :=
©­­«
𝑡𝑏1𝑝1𝑄1,1 (log 𝑡)

...

𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)

ª®®¬ ∈ r(𝑝, 𝑡0). Fix two conjugate
block indices 𝑖1, 𝑖2 ∈ {1, . . . , 𝑘}. We claim that for all 𝑗 ∈ {1, . . . , 𝑑𝑖1 } the entries of 𝑣 with respective

block-row indices (𝑖1, 𝑗) and (𝑖2, 𝑗), namely 𝑡𝑏1𝑝𝑖1𝑄𝑖1, 𝑗 (log 𝑡) and 𝑡𝑏2𝑝𝑖2𝑄𝑖2, 𝑗 (log 𝑡), are mutually

conjugate.

3
Since 𝑃 = 𝑃𝑆 for 𝑆 the permutation matrix that interchanges conjugate blocks, we have 𝑃−1 = 𝑆−1𝑃−1.
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Towards proving the claim, observe that for every 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑑𝑖 we have

𝑄𝑖, 𝑗 (log 𝑡) =
𝑑𝑖−𝑗∑
𝑚=0

(
log 𝑡
𝑚

)
𝜆𝑚
𝑖

· 𝑠 ′𝑖, 𝑗+𝑚

with (𝑖, 𝑗 +𝑚) being a block-row index.
4
It follows that the values 𝑄𝑖1, 𝑗 (log 𝑡) and 𝑄𝑖2, 𝑗 (log 𝑡) are

complex conjugates. Note moreover that we have 𝑝𝑖1𝑝𝑖2 = 1 since 𝑝 ∈ T and 𝜉𝑖1𝜉𝑖2 = 1. Thus 𝑝𝑖1
and 𝑝𝑖2 are also complex conjugates. Finally we note that 𝑏𝑖1 = log |𝜆𝑖1 | = log |𝜆𝑖2 | = 𝑏𝑖2 and hence

𝑡𝑏𝑖1 = 𝑡𝑏𝑖2 . The claim follows.

Given the above claim and the fact that for conjugate block indices 𝑖1 and 𝑖2, for all 𝑗 the respective

rows of 𝑃 with indices (𝑖1, 𝑗) and (𝑖2, 𝑗) are element-wise conjugate, we conclude that 𝑃𝑣 ∈ R. This
concludes the proof. □

4.2 Proof of Lemma 4.3

Let 𝑦 =
©­­«
𝑡𝑏1𝑝1𝑄1,1 (log 𝑡)

...

𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)

ª®®¬ ∈ r(𝑝, 𝑡0). We claim that 𝐽𝑦 =
©­­«
(𝑒𝑡)𝑏1𝜉1𝑝1𝑄1,1 (log(𝑒𝑡))

...

(𝑒𝑡)𝑏𝑘 𝜉𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log(𝑒𝑡))

ª®®¬. Note that
since 𝐿𝑝 = (𝜉1𝑝1, . . . , 𝜉𝑘𝑝𝑘 ), the above suffices to conclude the proof.

Consider a coordinate𝑚 = (𝑖, 𝑗) of 𝐽𝑦 in block-row index, with 𝑗 < 𝑑𝑖 . The case of 𝑗 = 𝑑𝑖 is

similar and simpler. To simplify notation, we write 𝜉, 𝜌, and 𝑑 instead of 𝜉𝑖 , 𝜌𝑖 , and 𝑑𝑖 , respectively.

Then we have

(𝐽𝑦)𝑚 = 𝜉𝜌𝑡𝑏𝑖𝑝𝑖𝑄𝑖, 𝑗 (log 𝑡) + 𝑡𝑏𝑖𝑝𝑖𝑄𝑖, 𝑗+1 (log 𝑡) .
Recall that

5

𝑄𝑖, 𝑗 (log 𝑡) =
𝑑−𝑗∑
𝑐=0

(
log 𝑡
𝑐

)
(𝜌𝜉)𝑐 𝑠

′
𝑖, 𝑗+𝑐 ,

with (𝑖, 𝑗 + 𝑐) in block-row index. We can then write

(𝐽𝑦)𝑚 = 𝜉𝜌𝑡𝑏𝑖𝑝𝑖

𝑑−𝑗∑
𝑐=0

(
log 𝑡
𝑐

)
(𝜌𝜉)𝑐 𝑠

′
𝑖, 𝑗+𝑐 + 𝑡𝑏𝑖𝑝𝑖

𝑑−𝑗−1∑
𝑐=0

(
log 𝑡
𝑐

)
(𝜌𝜉)𝑐 𝑠

′
𝑖, 𝑗+𝑐+1 . (2)

We now compare this to coordinate𝑚 of our claim, namely

(𝑒𝑡)𝑏𝑖 𝜉𝑝𝑖𝑄𝑖, 𝑗 (log(𝑒𝑡)) = (𝑒𝑡)𝑏𝑖 𝜉𝑝𝑖
𝑑−𝑗∑
𝑐=0

(
log(𝑒𝑡 )
𝑐

)
(𝜌𝜉)𝑐 𝑠

′
𝑖, 𝑗+𝑐 . (3)

We compare the right-hand sides of Equations (2) and (3) by comparing the coefficients of 𝑠 ′𝑖,𝑞 for
𝑞 ∈ { 𝑗, . . . , 𝑑} (these being the only ones that appear in the expressions). For 𝑞 = 𝑗 we see that

in (2) the number 𝑠 ′𝑖, 𝑗 occurs in the first summand only, and its coefficient is thus 𝜉𝜌𝑡𝑏𝑖𝑝𝑖 , while

in (3) it is (𝑒𝑡)𝑏𝑖 𝜉𝑝𝑖 = 𝑒𝑏𝑖 𝑡𝑏𝑖 𝜉𝑝𝑖 = 𝜌𝑡𝑏𝑖 𝜉𝑝𝑖 , since 𝑏𝑖 = log 𝜌 . Thus, the coefficients are equal.

For 𝑞 > 𝑗 , write 𝑞 = 𝑗 + 𝑐 with 𝑐 ≥ 1; the coefficient at 𝑠 ′𝑖, 𝑗+𝑐 in (2) is then

𝜉𝜌𝑡𝑏𝑖𝑝𝑖

(
log 𝑡
𝑐

)
(𝜌𝜉)𝑐 + 𝑡

𝑏𝑖𝑝𝑖

(
log 𝑡
𝑐−1

)
(𝜌𝜉)𝑐−1 =

𝑡𝑏𝑖 𝜌𝜉𝑝𝑖

(𝜌𝜉)𝑐

((
log 𝑡

𝑐

)
+
(
log 𝑡

𝑐 − 1

))
=
𝑡𝑏𝑖 𝜉𝜌𝑝𝑖

𝜉𝑐

(
log 𝑡 + 1

𝑐

)
4
Here, for 𝑠 ∈ R and𝑚 ∈ N, one defines

( 𝑠
𝑚

)
= 1

𝑚!

∏𝑚−1
𝑖=0 (𝑠 − 𝑖) , which maintains consistency with the original definition

of𝑄𝑖,𝑗 in Section 3.

5
Here, for 𝑤 ∈ R and𝑚 ∈ N, one defines

(𝑤
𝑚

)
= 1

𝑚!

∏𝑚−1
𝑖=0 (𝑤 − 𝑖) , which maintains consistency with the original definition

of𝑄𝑖,𝑗 in Section 3.
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where the last equality follows from a continuous version of Pascal’s identity. Finally, by noticing

that log 𝑡 + 1 = log(𝑒𝑡), it is easy to see that this is the same coefficient as in (3).

4.3 Proof of Theorem 4.1
Let 𝑡0 ≥ 1. By applying Lemma 4.2 to every 𝑝 ∈ T, we conclude that 𝑃 · C𝑡0 ⊆ R𝑑 . It is then
easy to see that 𝑃 · C𝑡0 is definable in ℜexp (note that the only reason the set C𝑡0 might fail to be

ℜexp-definable is that the underlying domain should be R and not C).
Next, by Lemma 4.4 we have that 𝐽 · C𝑡0 ⊆ C𝑡0 . Applying 𝑃 from the left, we get 𝑃 𝐽 · C𝑡0 ⊆ 𝑃 · C𝑡0 .

Thus, we have 𝐴𝑃 · C𝑡0 = 𝑃 𝐽𝑃−1𝑃 · C𝑡0 = 𝑃 𝐽 · C𝑡0 ⊆ 𝑃 · C𝑡0 .
Finally, observe that {𝐴𝑛𝑠 | 𝑛 ≥ log 𝑡0} ⊆ 𝑃 · C𝑡0 . Since any finite subset of O can be described in

ℜ0, we conclude that the set {𝐴𝑛𝑠 | 𝑛 < log 𝑡0} ∪ 𝑃 · C𝑡0 is an ℜexp-definable invariant for (𝐴, 𝑠).

5 O-MINIMAL INVARIANTS MUST CONTAIN TRAJECTORY CONES
In this section we consider invariants definable in o-minimal extensions of ℜexp. Fix such an

extension ℜ for the remainder of this section.

Theorem 5.1. Consider an ℜ-definable invariant I for the LDS (𝐴, 𝑠). Then there exists 𝑡0 ≥ 1

such that 𝑃 · C𝑡0 ⊆ I.

To prove Theorem 5.1, we begin by making following claims of increasing strength:

Claim 1. For every 𝑝 ∈ T there exists 𝑡0 ≥ 1 such that 𝑃 · r(𝑝, 𝑡0) ⊆ I or 𝑃 · r(𝑝, 𝑡0) ∩ I = ∅.

Claim 2. For every 𝑝 ∈ T there exists 𝑡0 ≥ 1 such that 𝑃 · r(𝑝, 𝑡0) ⊆ I.

Claim 3. There exists 𝑡0 ≥ 1 such that for every 𝑝 ∈ T we have 𝑃 · r(𝑝, 𝑡0) ⊆ I.

Proof of Claim 1. Fix 𝑝 ∈ T. Then the set

{𝑡 ≥ 0 : 𝑃 (𝑡𝑏1𝑝1𝑄1,1 (log 𝑡), . . . , 𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (log 𝑡))⊤ ∈ I}
is ℜ-definable and hence comprises a finite union of intervals. If this set contains an unbounded

interval then there exists 𝑡0 such that 𝑃 · r(𝑝, 𝑡0) ⊆ I; otherwise there exists 𝑡0 such that 𝑃 · r(𝑝, 𝑡0) ∩
I = ∅. □

Before proceeding to Claim 2, we prove an auxiliary lemma, which is an adaptation of a similar

result from [15]. For a set 𝑋 , we write 𝑋 to refer to the topological closure of 𝑋 . We use the usual

topology on R𝑛 , C𝑛 , and the (usual) subspace topology on their subsets.

Lemma 5.2. Let 𝑆, 𝐹 ⊆ T be ℜ-definable6 sets such that 𝑆 = 𝐹 = T. Then 𝐹 ∩ 𝑆 ≠ ∅.

Proof. We start by stating two properties of the dimension of a definable set in an o-minimal

theoryℜ. First, for anyℜ-definable set𝑋 ⊆ R𝑛 we have dim(𝑋 ) = dim(𝑋 ) [13, Chapter 4, Theorem
1.8]. Secondly, if𝑋 ⊆ 𝑌 areℜ-definable subsets ofR𝑛 that have the same dimension, then𝑋 has non-

empty interior in 𝑌 [13, Chapter 4, Corollary 1.9]. In the situation at hand, since dim(𝐹 ) = dim(𝐹 ),
it follows that 𝐹 has non-empty interior with respect to the subspace topology on 𝐹 = 𝑆 . But then 𝑆

is dense in 𝑆 while 𝐹 has non-empty interior in 𝑆 , and thus 𝑆 ∩ 𝐹 ≠ ∅. □

Proof of Claim 2. We strengthen Claim 1. Assume byway of contradiction that there exist 𝑝 ∈ T
and 𝑡0 ∈ R such that 𝑃 · r(𝑝, 𝑡0) ∩I = ∅, and consider 𝐽−1 · r(𝑝, 𝑡0). Let 𝑞 ∈ T be 𝐿−1𝑝 = ( 𝑝1

𝜉1
, . . . ,

𝑝𝑘
𝜉𝑘
)

and let 𝑡1 =
𝑡0
𝑒
. Then 𝑝 = 𝐿𝑞 and 𝑡0 = 𝑒𝑡1 and, by Lemma 4.3, 𝐽 r(𝑞, 𝑡1) = r(𝐿𝑞, 𝑒𝑡1) = r(𝑝, 𝑡0). Since 𝐽

is invertible, we conclude that 𝐽−1r(𝑝, 𝑡0) = r(𝑞, 𝑡1).
6
Recall that, in order to reason about T ⊆ C𝑘 in ℜ, we identify C with R2.
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We now claim that 𝑃 · r(𝑞, 𝑡1) ∩ I = ∅. Recall that 𝑃 · r(𝑝, 𝑡0) ∩ I = ∅. Applying 𝐴−1 = 𝑃 𝐽−1𝑃−1,
we have by the above that 𝑃 · r(𝑞, 𝑡1) ∩ 𝐴−1I = ∅. Since 𝐴I ⊆ I, then I ⊆ 𝐴−1I, so we have

𝑃 · r(𝑞, 𝑡1) ∩ I ⊆ 𝑃 · r(𝑞, 𝑡1) ∩𝐴−1I = ∅.
Clearly 𝑡1 ≤ 𝑡0 and r(𝑞, 𝑡0) ⊆ r(𝑞, 𝑡1), so in particular 𝑃 · r(𝑞, 𝑡0) ∩ I = ∅. Thus, assuming

𝑃 · r(𝑝, 𝑡0) ∩ I = ∅, we have just proved that 𝑃 · r(𝐿−1𝑝, 𝑡0) ∩ I = ∅; repeating this argument, we

get that for every 𝑛 ∈ N, the point 𝑠 = 𝐿−𝑛𝑝 satisfies 𝑃 · r(𝑠, 𝑡0) ∩ I = ∅.
Let 𝑆 = {𝐿−𝑛𝑝 | 𝑛 ∈ N}. Then 𝑆 is dense in T, since the group of multiplicative relations

defined by the eigenvalues of 𝐿−1 is the same as the one defined by those of 𝐿. Define 𝑆 ′ =

{𝑠 ∈ T | 𝑃 · r(𝑠, 𝑡0) ∩ I = ∅}. Then 𝑆 ′ is ℜ-definable, and we have 𝑆 ⊆ 𝑆 ′ ⊆ T. Moreover, 𝑆 = T, so

𝑆 ′ = T.
We now prove that, in fact, 𝑆 ′ = T. Assuming (again by way of contradiction) that there exists

𝑞 ∈ T \ 𝑆 ′, then by the definition of 𝑆 ′ we have 𝑃 · r(𝑞, 𝑡0) ∩ I ≠ ∅. It follows that for every 𝑛 ∈ N,
the point 𝑞′ = 𝐿𝑛𝑞 also satisfies 𝑃 · r(𝑞′, 𝑡0) ∩ I ≠ ∅. Define 𝐹 = {𝐿𝑛𝑞 | 𝑛 ∈ N}, then 𝐹 is dense in T.

But then the set 𝐹 ′ = {𝑞 ∈ T | 𝑃 · r(𝑞, 𝑡0) ∩ I ≠ ∅} satisfies 𝐹 ⊆ 𝐹 ′ ⊆ T and 𝐹 ′ = T. Now the sets

𝑆 ′ and 𝐹 ′ are both definable in ℜ, and the topological closure of each of them is T. It follows from
Lemma 5.2 that 𝐹 ′ ∩ 𝑆 ′ ≠ ∅, which is clearly a contradiction. Therefore, there is no 𝑞 ∈ T \ 𝑆 ′; that
is, 𝑆 ′ = T.
From this, however, it follows that 𝑃 · C𝑡0 ∩ I = ∅, which is again a contradiction, since

𝑃 · C𝑡0 ∩ O ≠ ∅ and O ⊆ I, so we are done. □

Proof of Claim 3. Consider the function 𝑓 : T → R defined by 𝑓 (𝑝) = inf{𝑡 ∈ R | 𝑃 · r(𝑝, 𝑡)
⊆ I}. By Claim 2 this function is well-defined. Since 𝑃 · r(𝑝, 𝑡) isℜ-definable, then so is 𝑓 . Moreover,

its graph Γ(𝑓 ) has finitely many connected components, and the same dimension as T. Thus, there
exists an open set𝐾 ⊆ T (in the induced topology on T) such that 𝑓 is continuous on𝐾 . Furthermore,

𝐾 is homeomorphic to (0, 1)𝑚 for some 0 ≤ 𝑚 ≤ 𝑘 , and thus we can find sets 𝐾 ′′ ⊆ 𝐾 ′ ⊆ 𝐾 such

that 𝐾 ′′ is open, and 𝐾 ′ is closed.7 Since 𝑓 is continuous on 𝐾 , it attains a maximum on 𝐾 ′. Consider
the set {𝐿𝑛 · 𝐾 ′′ | 𝑛 ∈ N}. By the density of {𝐿𝑛 | 𝑛 ∈ N} in T, this is an open cover of T, and hence
there is a finite subcover {𝐿𝑛1𝐾 ′′, . . . , 𝐿𝑛𝑚𝐾 ′′}. Since 𝐾 ′′ ⊆ 𝐾 ′, it follows that {𝐿𝑛1𝐾 ′, . . . , 𝐿𝑛𝑚𝐾 ′}
is a finite closed cover of T.
We now show that, for all 𝑝 ∈ T, we have 𝑓 (𝐿𝑝) ≤ 𝑒 · 𝑓 (𝑝). Indeed, consider any 𝑝 ∈ T and

𝑡 > 0 such that 𝑃 · r(𝑝, 𝑡) ⊆ I. Applying 𝐴 = 𝑃 𝐽𝑃−1, we get 𝑃 𝐽 · r(𝑝, 𝑡) ⊆ 𝐴I ⊆ I. By Lemma 4.3,

𝐽 · r(𝑝, 𝑡) = r(𝐿𝑝, 𝑒𝑡), so we can conclude that 𝑃 · r(𝐿𝑝, 𝑒𝑡) ⊆ I. This means that 𝑃 · r(𝑝, 𝑡) ⊆ I
implies 𝑃 · r(𝐿𝑝, 𝑒𝑡) ⊆ I; therefore, 𝑓 (𝐿𝑝) ≤ 𝑒 · 𝑓 (𝑝).
Now denote 𝑠0 = max𝑝∈𝐾 ′ 𝑓 (𝑝). Then for every 1 ≤ 𝑖 ≤ 𝑚 we have max𝑝∈𝐿𝑛𝑖𝐾 ′ 𝑓 (𝑝) ≤ 𝑒𝑛𝑖𝑠0; so

𝑓 (𝑝) is indeed bounded on T. □

Finally, we conclude from Claim 3 that there exists 𝑡0 ≥ 1 such that 𝑃 · C𝑡0 ⊆ I. This completes

the proof of Theorem 5.1.

6 DECIDING THE EXISTENCE OF O-MINIMAL INVARIANTS
We now turn to the algorithmic aspects of invariants and present our twomain results, Theorems 6.2

and 6.3.

Let ℜ be either ℜ0 or ℜexp. We consider the following problem: given an LDS (𝐴, 𝑠), with
𝐴 ∈ Q𝑑×𝑑 and 𝑠 ∈ Q𝑑 , and given an ℜ-definable halting set 𝐹 ⊆ R𝑑 , we wish to decide whether

there exists an o-minimal invariant I for (𝐴, 𝑠) that avoids 𝐹 , and to compute such an invariant if

it exists. We term this question the O-Minimal Invariant Synthesis Problem for ℜ-Definable Halting
Sets.
7
In case𝑚 = 0, the proof actually follows immediately from Claim 2, since T is finite.
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The following is a consequence of Theorems 4.1 and 5.1.

Lemma 6.1. Let (𝐴, 𝑠) and ℜ be as above, and let 𝐹 be ℜ-definable. Then there exists an o-minimal
invariant I for (𝐴, 𝑠) that avoids 𝐹 iff there is some 𝑡0 ≥ 1 such that 𝑃 · C𝑡0 ∩ 𝐹 = ∅ and such that
𝐴𝑛𝑠 ∉ 𝐹 for every 0 ≤ 𝑛 ≤ log 𝑡0.

Proof. By Theorem 5.1, if an o-minimal invariant I for (𝐴, 𝑠) exists, then there exists 𝑡0 ≥ 1

such that 𝑃 · C𝑡0 ⊆ I. Moreover, I ∩ 𝐹 = ∅ implies O ∩ 𝐹 = ∅, so that 𝐴𝑛𝑠 ∉ 𝐹 for every 𝑛 ∈ N, and
in particular for 0 ≤ 𝑛 ≤ log 𝑡0.

Conversely, let there be 𝑡0 ≥ 1 such that 𝑃 · C𝑡0 ∩ 𝐹 = ∅ and, for every 0 ≤ 𝑛 ≤ log 𝑡0, it holds that

𝐴𝑛𝑠 ∉ 𝐹 . Let 𝑡 ′
0
∈ Q be such that 𝑡 ′

0
≥ 𝑡0. By Theorem 4.1, the set I = 𝑃 · C𝑡 ′

0

∪
{
𝐴𝑛𝑠 | 0 ≤ 𝑛 ≤ log 𝑡 ′

0

}
is an ℜexp-definable invariant that avoids 𝐹 . □

Observe that the formula ∃𝑡0 ≥ 1 : 𝑃 · C𝑡0 ∩ 𝐹 = ∅ is a sentence in ℜexp, and by Lemma 6.1,

deciding the existence of an invariant amounts to determining the truth value of this sentence.

6.1 Decidability for ℜexp-definable halting sets assuming Schanuel’s conjecture.
Applying Theorem 4.1, we note that an invariant for (𝐴, 𝑠) that avoids 𝐹—if one exists—can always

be defined in ℜexp.

Theorem 6.2. The O-Minimal Invariant Synthesis Problem for ℜexp-Definable Halting Sets is
decidable, assuming Schanuel’s conjecture. Moreover, in positive instances, we can explicitly define
such an invariant in ℜexp.

Proof. Assume Schanuel’s conjecture. Then by [23], the first-order theory of the strucure ℜexp

is decidable. Thus we can decide whether there exists 𝑡0 ≥ 1 such that 𝑃 · C𝑡0 ∩𝐹 = ∅. If the sentence
is false, then by Lemma 6.1 there is no invariant, and we are done. If the sentence is true, however,

it still remains to check whether 𝐴𝑛𝑠 ∉ 𝐹 for every 0 ≤ 𝑛 ≤ log 𝑡0. While we can decide whether

𝐴𝑛𝑠 ∈ 𝐹 for a fixed 𝑛, observe that we do not have an a priori bound on 𝑡0. Hence we proceed as

follows: For every 𝑛 ∈ 1, 2, . . ., check both whether 𝐴𝑛𝑠 ∈ 𝐹 and, for 𝑡0 = 𝑒
𝑛
, whether 𝑃𝐶𝑡0 ∩ 𝐹 = ∅.

In case 𝐴𝑛𝑠 ∈ 𝐹 , then clearly there is no invariant, since O ∩ 𝐹 ≠ ∅, and we are done. On the other

hand, if 𝑃𝐶𝑡0 ∩ 𝐹 = ∅, then return the ℜexp-definable invariant as per Lemma 6.1.

We claim that the above procedure always halts. Indeed, we know that there exists 𝑡0 for which

𝑃 · C𝑡0 ∩ 𝐹 = ∅. Thus, either for some 𝑛 < log 𝑡0, it holds that 𝐴
𝑛𝑠 ∈ 𝐹 , in which case there is no

invariant and we halt when we reach 𝑛, or we proceed until we reach 𝑛 ≥ log 𝑡0, in which case we

halt and return the invariant. □

Remark 3. It is interesting to note that, should Schanuel’s conjecture turn out to be false, the above
procedure could still never return a ‘wrong’ invariant. The worst that could happen is that decidability
of ℜexp fails in that the putative algorithm of [23] simply never halts, so no verdict is ever returned.

6.2 Unconditional decidability for semi-algebraic halting sets.
In this section we restrict attention to semi-algebraic halting sets. Our main result is as follows.

Theorem 6.3. The O-Minimal Invariant Synthesis Problem for Semi-Algebraic Halting Sets is
decidable. Moreover, in positive instances, we can explicitly define such an invariant in ℜ0.

Theorem 6.3 may come as a double surprise: first, as shown by Lemma 6.1, deciding the existence

of an o-minimal invariant amounts to determining the truth value of the sentence ∃𝑡0 ≥ 1 :

𝑃 · C𝑡0 ∩ 𝐹 = ∅. Since 𝑃 · C𝑡0 might not be definable in ℜ0, then this sentence is only ℜexp-

definable, even when 𝐹 is ℜ0-definable. Therefore, determining the truth value of this sentence

is not immediate. Second, even if we do manage to determine the truth value of this sentence,
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the synthesized invariant as per Theorem 4.1 (namely 𝑃 · C𝑡0 along with a finite “tail”) is ℜexp

definable, but might not be ℜ0 definable. Thus, the synthesized invariant in Theorem 6.3 must be

more elaborate than 𝑃 · C𝑡0 .
We prove Theorem 6.3 in parts, first addressing the decidability of the existence of an o-minimal

invariant (Theorem 6.4 below), and then showing how to synthesize, in positive instances, a

ℜ0-definable invariant (Section 6.2.1).

Theorem 6.4. The O-Minimal Invariant Synthesis Problem for Semi-Algebraic Halting Sets is
decidable. Moreover, in positive instances, we can explicitly define such an invariant in ℜexp.

By Lemma 6.1, in order to prove Theorem 6.4, it is enough to decide the truth value of the

ℜexp-sentence ∃𝑡0 ≥ 1 : 𝑃 · C𝑡0 ∩ 𝐹 = ∅. Indeed, as 𝐴𝑛𝑠 ∈ Q𝑑 , one can always check unconditionally

whether for a given 𝑛 the vector 𝐴𝑛𝑠 belongs to the semi-algebraic set 𝐹 . The algorithm is then

otherwise the same as that presented in the proof of Theorem 6.2. The proof of Theorem 6.4

therefore boils down to the following lemma.

Lemma 6.5. For 𝐹 a semi-algebraic set, it is decidable whether there exists 𝑡0 ≥ 1 such that 𝑃 ·C𝑡0∩𝐹 =

∅.

Our key tool is the following celebrated result from transcendental number theory:

Theorem 6.6 (Baker’s theorem [1]). Let 𝛼1, . . . , 𝛼𝑚 ∈ C be algebraic numbers different from
0 and let 𝑏1, . . . , 𝑏𝑚 ∈ Z be integers. Write Λ = 𝑏1 log𝛼1 + . . . + 𝑏𝑚 log𝛼𝑚 . There exists a number 𝐶
effectively computable from 𝑏1, . . . , 𝑏𝑚, 𝛼1, . . . , 𝛼𝑚 such that if Λ ≠ 0 then |Λ| > 𝐻−𝐶 , where 𝐻 is the
maximum height of 𝛼1, . . . , 𝛼𝑚 .

Recall that the subgroup T of the torus defined by the multiplicative relations of the eigenvalues

of 𝐴 is a semi-algebraic set. Write 𝝉 (𝑡) = (𝑡𝑏1𝑄1,1 (log 𝑡), . . . , 𝑡𝑏𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)), and consider the set

𝑈 =

{
(𝑧1, . . . , 𝑧𝑑 )⊺ ∈ C𝑑 | ∀(𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑃 (𝑧1𝑝1, . . . , 𝑧𝑑𝑝𝑑 )⊺ ∈ R𝑑 \ 𝐹

}
.

It is enough to decide whether there exists 𝑡0 ≥ 1 such that for all 𝑡 ≥ 𝑡0, 𝝉 (𝑡) ∈ 𝑈 .

Observe that𝑈 is a semi-algebraic set (see Remark 2 on Page 4).

Using cell decomposition, describe 𝑈 as a finite union of connected components, each of which

is given by a conjunction of the form

∧𝑚
𝑙=1
𝑅𝑙 (𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑑 ) ∼𝑙 0. Here, for every 1 ≤ 𝑙 ≤ 𝑚,

∼𝑙 ∈ {>,=} and𝑅𝑙 is a polynomial with integer coefficients in variables𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑑 ; for each

𝑖 , the variables 𝑢𝑖 and 𝑣𝑖 represent Re 𝑧𝑖 and Im 𝑧𝑖 , the real and imaginary parts of 𝑧𝑖 , respectively.

We claim that we can restrict our attention to a single connected component. Indeed, first note

that by substituting 𝝉 (𝑡) for (𝑧1, . . . , 𝑧𝑑 ) in the conjunction

∧𝑚
𝑙=1
𝑅𝑙 ∼𝑙 0, we get a constraint on 𝑡

expressible in ℜexp. By o-minimality of ℜexp, the set of all 𝑡 ∈ R satisfying this conjunction is a

finite union of points and (possibly unbounded) intervals. Therefore, since the number of connected

components is finite, the following two statements are equivalent: (i) there exists 𝑡0 ≥ 1 such that

for all 𝑡 ≥ 𝑡0 it holds that 𝝉 (𝑡) ∈ 𝑈 , and (ii) there exists a single connected component of 𝑈 for

which this holds (perhaps with a larger value of 𝑡0).

Thus, we now need to decide whether we can find 𝑡0 ≥ 1 such that for every 𝑡 ≥ 𝑡0 it holds that
𝑅𝑙 (𝝉 (𝑡)) ∼𝑙 0 for every 1 ≤ 𝑙 ≤ 𝑚. Fix 1 ≤ 𝑙 ≤ 𝑚. Recall that we consider every vector in C𝑑 as a
vector in R2𝑑 ; thus, the polynomial 𝑅𝑙 has the form∑

𝑖

𝑎𝑖 · 𝑢
𝑛′𝑖,1
1
· . . . · 𝑢𝑛

′
𝑖,𝑑

𝑑
· 𝑣𝑛

′′
𝑖,1

1
· . . . · 𝑣𝑛

′′
𝑖,𝑑

𝑑
,
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with 𝑎𝑖 ∈ Z and 𝑛′𝑖,𝑠 , 𝑛′′𝑖,𝑠 ∈ Z≥0. Therefore, 𝑅𝑙 (𝝉 (𝑡)) is the sum of terms of the form

𝑎𝑖 · 𝑡 (𝑛
′
𝑖,1+𝑛′′𝑖,1) ·𝑏1+...+(𝑛′𝑖,𝑑+𝑛

′′
𝑖,𝑑
) ·𝑏𝑘 ·(Re𝑄1,1 (log 𝑡))𝑛

′
𝑖,1 · . . . · (Re𝑄𝑘,𝑑𝑘 (log 𝑡))

𝑛′
𝑖,𝑘 ·

(Im𝑄1,1 (log 𝑡))𝑛
′′
𝑖,1 · . . . · (Im𝑄𝑘,𝑑𝑘 (log 𝑡))

𝑛′′
𝑖,𝑘

where 𝑄𝑖, 𝑗 (·), as above, are polynomials from the definition of trajectory cones. Note that all 𝑄𝑖, 𝑗
are only evaluated at real points, and hence it is easy for us to refer to Re𝑄𝑖, 𝑗 and Im𝑄𝑖, 𝑗 ; these are

polynomials in one real variable with real algebraic coefficients. We rewrite 𝑅𝑙 (𝝉 (𝑡)) in the form∑
𝑖

𝑡𝑛𝑖,1 ·𝑏1+...+𝑛𝑖,𝑘 ·𝑏𝑘 · 𝑓𝑖 (log 𝑡)

where each 𝑓𝑖 (·) is also a polynomial with real algebraic coefficients, and 𝑏1, . . . , 𝑏𝑘 are distinct log-

arithms of the moduli of the eigenvalues of𝐴. We can compute all these polynomials 𝑓𝑖 , eliminating

from the sum all terms that have 𝑓𝑖 ≡ 0.

Observe that 𝑅𝑙 (𝝉 (𝑡)) is a function of a single variable 𝑡 > 0. In order to reason about the sign

of this expression as 𝑡 →∞, we need to determine its leading term. To that end, we first need to

decide for every 𝑖 ≠ 𝑗 whether the two new exponents 𝑛𝑖,1𝑏1 + . . . + 𝑛𝑖,𝑘𝑏𝑘 and 𝑛 𝑗,1𝑏1 + . . . + 𝑛 𝑗,𝑘𝑏𝑘
are equal and, if not, which is larger. (If the exponents are equal, we aggregate the polynomials 𝑓𝑖
and 𝑓𝑗 accordingly.) By rearranging the terms, it’s enough to decide whether 𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 > 0

for some 𝑛1, . . . , 𝑛𝑘 ∈ Z. Recall that 𝑏 𝑗 = log 𝜌 𝑗 . By Baker’s theorem, there exists an effectively

computable 𝜖 > 0 such that either 𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 = 0, or |𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 | > 𝜖 .
We now proceed by computing an approximation Δ of 𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 with additive error

at most
𝜖
3
. This is easily done, as we are dealing with computable quantities. We then have that

Δ ∈ [−𝜖
3
, 𝜖
3
] iff 𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 = 0, and otherwise we have sign(Δ) = sign(𝑛1𝑏1 + . . . + 𝑛𝑘𝑏𝑘 ).

Thus we can sort the exponents 𝑛𝑖,1 · 𝑏1 + . . . + 𝑛𝑖,𝑘 · 𝑏𝑘 in descending order and, using the same

procedure, compare each of them to 0.

Now consider the term that has the largest exponent,𝑚; suppose this term is 𝑡𝑚 · 𝑓𝑖 (log 𝑡). Then
the sign of 𝑅𝑙 (𝝉 (𝑡)) as 𝑡 →∞ is determined by the sign of the leading term of the polynomial 𝑓𝑖 (·);
only if the sum is empty can the sign of 𝑅𝑙 (𝝉 (𝑡)) be 0 for all sufficiently large 𝑡 .

The argument above shows that we can compute the leading terms of the expressions 𝑅𝑙 (𝝉 (𝑡))
and decide whether the conjunction

∧𝑚
𝑙=1
𝑅𝑙 ∼𝑙 0 holds for all 𝑡 ≥ 𝑡0 starting from some 𝑡0. This

completes the proof.

6.2.1 Existence of Semi-Algebraic Invariants for Semi-Algebraic Halting Sets. We now proceed to

show that in the case of a semi-algebraic halting set, the existence of an o-minimal invariant implies

the existence of a semi-algebraic invariant (note that clearly the other implication is trivial).

Intuitively, the trajectory cone C𝑡0 is not already a semi-algebraic set for two “reasons”: the

log 𝑡 factors, and the possibly-irrational exponents 𝑏𝑖 . In the following, we over-approximate these

factors by semi-algebraic components. However, as we will show, the approximation must carefully

take into account the relationships between the exponents.

Let 𝜖 ∈ (0, 1), and consider the trajectory cone C𝑡0 . We define an over-approximating set of C𝑡0
by replacing the log 𝑡 factors by an interval ranging from some constant lower bound 𝜇 to 𝑡𝜖 . That

is, define for 𝜇 ∈ Q and 𝑡0 ∈ R

C̃𝑡0,𝜖,𝜇 =


©­­«
𝑡𝑏1𝑝1𝑄1,1 (𝑠)

...

𝑡𝑏𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠)

ª®®¬ : (𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑡 ≥ 𝑡0, 𝜇 ≤ 𝑠 ≤ 𝑡𝜖
 .
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Next, we modify the irrational 𝑏𝑖 exponents into rational ones. This is done in two parts. First,

we approximate 𝑏𝑖 by lower and upper rational bounds, next we enforce additive relationships

among the approximations.

Consider vectors ℓ = (ℓ1, . . . , ℓ𝑘 ), u = (𝑢1, . . . , 𝑢𝑘 ) ∈ Q𝑘 with ℓ ≤ b ≤ u and define

Box(ℓ, u) =
{
c ∈ R𝑘 : ℓ ≤ c ≤ u

}
.

Second, let b = (𝑏1, . . . , 𝑏𝑘 ), and define

S =
{
c ∈ R𝑘 : ∀z ∈ Z𝑘 , b · z = 0 implies c · z = 0

}
to be the set of vectors that maintain the integer additive relationships among the 𝑏𝑖 .

We are now ready to define the fat trajectory cone, which is a semi-algebraic set that approximates

C̃𝑡0,𝜖,𝜇 . Given 𝑡0, 𝜖, 𝜇, ℓ, and u, we define

F ℓ ,u
𝑡0,𝜖,𝜇

=


©­­«
𝑡𝑐1𝑝1𝑄1,1 (𝑠)

...

𝑡𝑐𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠)

ª®®¬ : (𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑡 ≥ 𝑡0, 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 , c ∈ S ∩ Box(ℓ, u)

 .
That is, we replace the exponents vector b with a vector c that is close enough to b, and maintains

its additive relations.

It is not immediate from the definition of F ℓ ,u
𝑡0,𝜖,𝜇

that it is indeed a semi-algebraic set, nor that

we can compute a representation of it. Indeed, we cannot quantify the exponents c in the first-

order theory of the reals, and it is not clear that the set S can be finitely represented. We start by

addressing these issues.

Lemma 6.7. F ℓ ,u
𝑡0,𝜖,𝜇

is definable in ℜ0, and we can compute a representation of it.

Proof. Recall that b = (𝑏1, . . . , 𝑏𝑘 ) where 𝑏𝑖 = log 𝜌𝑖 for every 𝑖 . Consider the abelian group

𝐿 =
{
z ∈ Z𝑘 : 𝜚 z = 1

}
where 𝜚 z = 𝜌

𝑧1
1
· · · 𝜌𝑧𝑘

𝑘
. By [24] we can compute a finite basis

{
z1, . . . , z𝑚

}
for

𝐿.

Note that for every z ∈ Z𝑘 we have that b · z = 0 iff 𝜚 z = 1. Thus, we can write

S =
{
c ∈ R𝑘 : ∀z ∈ Z𝑘 , z ∈ 𝐿 implies c · z = 0

}
=

{
c ∈ R𝑘 :

𝑚∧
𝑖=1

c · z𝑖 = 0

}
.

Let S′ =
{
r ∈ R𝑘 :

∧𝑚
𝑖=1 r

z𝑖 = 1

}
where, as before, rz = 𝑟𝑧1

1
· · · 𝑟𝑧𝑘

𝑘
. Consider some 𝑡 > 1. For every

c ∈ R𝑘 , denote 𝑡c = (𝑡𝑐1 , . . . , 𝑡𝑐𝑘 ), then clearly c ∈ S iff 𝑡c ∈ S′. In addition, c ∈ Box(ℓ, u) iff
𝑡c ∈ Box(𝑡 ℓ , 𝑡u). We conclude that we can write

F ℓ ,u
𝑡0,𝜖,𝜇

=


©­­«
𝑟1𝑝1𝑄1,1 (𝑠)

...

𝑟𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠)

ª®®¬ : (𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑡 ≥ 𝑡0, 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 , r ∈ S′ ∩ Box(𝑡 ℓ , 𝑡u)

 .
Since T, S′ and Box(𝑡 ℓ , 𝑡u) are all semi-algebraic sets (the latter due to ℓ and u being rational

vectors), then so is F ℓ ,u
𝑡0,𝜖,𝜇

.

□

The following lemma is the main result of this section, and states that if 𝑃 · C𝑡0 is disjoint from a

semi-algebraic halting set, then we can approximate it by some appropriate fat cone.

Lemma 6.8. Let 𝑌 be a semi-algebraic set such that 𝑃 · C𝑡0 ∩𝑌 = ∅ for some 𝑡0 ∈ R, then there exist
𝜇, 𝑡1 ∈ R, 𝜖 > 0, and ℓ, u ∈ Q𝑑 such that 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
∩ 𝑌 = ∅ and 𝐴 · 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
⊆ 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2021.



O-Minimal Invariants for Discrete-Time Dynamical Systems 1:15

The rest of the section is devoted to the proof of Lemma 6.8. We start by showing that the fat

cone is invariant under 𝐽 .

Lemma 6.9. For every 𝜖 , there exists 𝑡0 such that for every 𝑡1 ≥ 𝑡0 and for every 𝜇, ℓ, u we have that
𝐽 · F ℓ ,u

𝑡1,𝜖,𝜇
⊆ F ℓ ,u

𝑡1,𝜖,𝜇
.

Proof. Following the proof of Lemma 4.3, we see that for 𝑦 =
©­­«
𝑡𝑐1𝑝1𝑄1,1 (𝑠)

...

𝑡𝑐𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠)

ª®®¬ we have that
𝐽𝑦 =

©­­«
𝑒𝑏1𝑡𝑐1𝜉1𝑝1𝑄1,1 (𝑠 + 1)

...

𝑒𝑏𝑘 𝑡𝑐𝑘 𝜉𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠 + 1)

ª®®¬. Thus, it suffices to show that for large enough 𝑡0, for every 𝑡 ≥ 𝑡0

the following hold:

(1) If 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 then 𝜇 ≤ 𝑠 + 1 ≤ (𝑒𝑡)𝜖 .
(2) (𝑒𝑏1𝑡𝑐1 , . . . , 𝑒𝑏𝑘 𝑡𝑐𝑘 ) = ((𝑒𝑡)𝑐′1 , . . . , (𝑒𝑡)𝑐′𝑘 ) for some c′ ∈ S ∩ Box(ℓ, u).

For item 1, observe that since 𝜇 ≤ 𝑠 , we clearly have 𝜇 ≤ 𝑠 + 1. For the second inequality, since

𝜖 > 0, we have that 𝑒𝜖 − 1 > 0. Let 𝑡0 be large enough such that (𝑒𝜖 − 1)𝑡𝜖 ≥ 1 for every 𝑡 ≥ 𝑡0, then
for every 𝑡 ≥ 𝑡0 we have that 𝑡𝜖 + 1 ≤ (𝑒𝑡)𝜖 . It follows that 𝑠 + 1 ≤ 𝑡𝜖 + 1 ≤ (𝑒𝑡)𝜖 , as desired.

For item 2, define c′ = (𝑐 ′
1
, . . . , 𝑐 ′

𝑘
) by setting 𝑐 ′𝑖 =

𝑏𝑖+log(𝑡 )𝑐𝑖
1+log(𝑡 ) . It is easy to check that 𝑒𝑏𝑖 𝑡𝑐𝑖 ) = (𝑒𝑡)𝑐′𝑖

for every 1 ≤ 𝑖 ≤ 𝑘 . Furthermore, since S∩Box(ℓ, u) is a convex set, and c′ is a convex combination

of b and c, it follows that c′ ∈ S ∩ Box(ℓ, u), and we are done. □

It remains to prove that we can choose a fat cone that is disjoint from the target set.

Lemma 6.10. Let 𝑌 be a semi-algebraic set, and let 𝑡0 ∈ R be such that 𝑃C𝑡0 ∩ 𝑌 = ∅, then there
exist 𝜖 > 0, 𝜇 ∈ R, 𝑡1 ∈ R, and ℓ, u ∈ Q𝑘 such that 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
∩ 𝑌 = ∅.

Proof. Working along the lines of the proof of Lemma 6.5, we define

𝑈 =

{
(𝑧1, . . . , 𝑧𝑑 )⊺ ∈ C𝑑 : ∀(𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑃 (𝑧1𝑝1, . . . , 𝑧𝑑𝑝𝑑 )⊺ ∈ R𝑑 \ 𝑌

}
,

and let 𝜑 be a quantifier-free formula defining 𝑈 . As in the proof of Lemma 6.5, let 𝝉 (𝑡) =

(𝑡𝑏1𝑄1,1 (log 𝑡), . . . , 𝑡𝑏𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)), then for the purpose of evaluating 𝜑 (𝝉 (𝑡)), we can assume

𝜑 is of the form

∧𝑚
𝑙=1
𝑅𝑙 (𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑑 ) ∼𝑙 0. Since 𝑃 · C𝑡0 ∩ 𝑌 = ∅, then 𝑅𝑙 (𝝉 (𝑡)) ∼𝑙 0 for

every 𝑙 and every 𝑡 ≥ 𝑡0. Writing

𝑅𝑙 (𝝉 (𝑡)) =
∑
𝑖

𝑡𝑛𝑖,1 ·𝑏1+...+𝑛𝑖,𝑘 ·𝑏𝑘 · 𝑓𝑖 (log 𝑡), (4)

we show, first, how to replace the exponents vector b by any exponents vector in S ∩ Box(ℓ, u) for
appropriate ℓ, u, and second, how to replace log 𝑡 by 𝑠 for 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 for some appropriate 𝜇 and 𝜖 ,

while maintaining the inequality or equality prescribed by ∼𝑙 .
Denote by𝑁 the set of vectors ni = (𝑛𝑖,1, . . . , 𝑛𝑖,𝑘 ) of exponents in (4). As in the proof of Lemma 6.5,

we can compute 𝛿 > 0 such that for every n, n′ ∈ 𝑁 , if b · (n − n′) ≠ 0 then |b · (n − n′) | > 𝛿 . Let
𝑀 = maxn,n′∈𝑁 ∥n − n′∥ (where ∥·∥ is the Euclidean norm in R𝑘 ).

Claim 4. Let c ∈ R𝑑 be such that ∥b − c∥ ≤ 𝛿
2𝑀

, then, for all n, n′ ∈ 𝑁 , if b · (n − n′) > 0 then
c · (n − n′) > 𝛿

2
.
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Proof of Claim 4. Suppose that b · (n − n′) > 0, then by the above we have b · (n − n′) > 𝛿 ,

and hence

c · (n − n′) = b · (n − n′) + (c − b) · (n − n′) ≥ 𝛿 − ∥c − b∥ · ∥n − n′∥ ≥ 𝛿 − 𝛿

2𝑀
𝑀 =

𝛿

2

.

□

We can now choose ℓ and u such that 𝑢𝑖 − ℓ𝑖 ≤ 𝛿

2𝑀
√
𝑘
so that for all c ∈ Box(ℓ, u) we have

∥b − c∥ ≤

√√√
𝑘∑
𝑖=1

(𝑢𝑖 − ℓ𝑖 )2 ≤

√
𝛿2

(2𝑀)2 =
𝛿

2𝑀
.

It follows from Claim 4 and from the definition of S that, intuitively, every c ∈ Box(ℓ, u) maintains

the order of magnitude of the monomials 𝑡𝑛𝑖,1 ·𝑏1+...+𝑛𝑖,𝑘 ·𝑏𝑘 in 𝑅𝑙 (𝝉 (𝑡)).
More precisely, let 𝝉 ′(𝑡) = (𝑡𝑐1𝑄1,1 (log 𝑡), . . . , 𝑡𝑐𝑘𝑄𝑘,𝑑𝑘 (log 𝑡)) for some c ∈ Box(ℓ, u), Then the

exponent of the ratio of every two monomials in 𝑅𝑙 (𝝉 ′(𝑡)) has the same (constant) sign as the

corresponding exponent in 𝑅𝑙 (𝝉 (𝑡)). Moreover, the exponents of distinct monomials in 𝑅𝑙 (𝝉 (𝑡))
differ by at least

𝛿
2
in 𝑅𝑙 (𝝉 ′(𝑡)).

We are now ready to handle the log 𝑡 factor. First, assume 𝑡0 is large enough that 𝑓𝑖 (log 𝑡) has
constant sign for every 𝑡 ≥ 𝑡0 (otherwise increase 𝑡0 accordingly). We can now let 𝜇 be large enough

that for every 𝑠 ≥ 𝜇, the sign of 𝑓𝑖 (log 𝑡) coincides with the sign of 𝑓𝑖 (𝑠) for every 𝑡 ≥ 𝑡0. It remains

to give an upper bound on 𝑠 of the form 𝑡𝜖 such that substituting 𝑓𝑖 (𝑠) instead of 𝑓𝑖 (log 𝑡) does not
change the ordering of the terms (by their magnitude) in 𝑅𝑙 (𝝉 ′(𝑡)). Let 𝐷 be the maximum degree

of all polynomials 𝑓𝑖 in (4), and define 𝜖 = 𝛿
3𝐷

(in fact, any 𝜖 < 𝛿
2𝐷

would suffice), then we have

that, for 𝑡 ≥ 𝑡0, 𝑓𝑖 (𝑠) has the same sign as 𝑓𝑖 (log 𝑡) for every 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 (by our choice of 𝜇), and

guarantees that substituting 𝑡𝜖 instead of 𝑡 does not change the ordering of the terms (by their

magnitude) in 𝑅𝑙 . Since the exponents of the monomials in 𝑅𝑙 (𝝉 ′(𝑡)) differ by at least
𝛿
2
, it follows

that their order is maintained when replacing log 𝑡 by 𝑠 .

Let 𝝉 ′′(𝑡) = (𝑡𝑐1𝑄1,1 (𝑠), . . . , 𝑡𝑐𝑘𝑄𝑘,𝑑𝑘 (𝑠)) for some c ∈ Box(ℓ, u) and 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 , then by our

choice of 𝜖 , the dominant term in 𝑅𝑙 (𝝉 ′′(𝑡)) is the same as that in 𝑅𝑙 (𝝉 (𝑡)). Therefore, for large
enough 𝑡 , the signs of 𝑅𝑙 (𝝉 ′′(𝑡)) and 𝑅𝑙 (𝝉 (𝑡)) are the same.

By repeating this argument for each 𝑅𝑙 , we can compute 𝑡1 ∈ R, 𝜖 > 0, 𝜇 ∈ R, and ℓ, u ∈ Q𝑘 such
that 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
∩ 𝑌 = ∅, and we are done. □

We are now ready to complete the proof of Theorem 6.3.

Proof of Theorem 6.3. By Theorem 6.4, we can decide whether there exists an o-minimal

invariant for the LDS (𝐴, 𝑠) that avoids a semialgebraic target 𝑌 . Moreover, in positive instances we

can synthesize such an invariant of the form I = 𝑃 · C𝑡0 ∪ {𝐴𝑛𝑠 | 0 ≤ 𝑛 ≤ log 𝑡0} for some 𝑡0 ≥ 1.

In particular, 𝑃 · C𝑡0 ∩ 𝑌 = ∅, so by Lemma 6.8, there exist 𝜇, 𝑡1 ∈ R, 𝜖 > 0, and ℓ, u ∈ Q𝑑 such

that 𝑃 · F ℓ ,u
𝑡1,𝜖,𝜇
∩ 𝑌 = ∅ and 𝑃 · F ℓ ,u

𝑡1,𝜖,𝜇
is invariant under 𝐴. Furthermore, by Lemma 6.7, F ℓ ,u

𝑡1,𝜖,𝜇
is

semialgebraic.

Naively, one might think that F ℓ ,u
𝑡1,𝜖,𝜇

with the addition of the “finite tail” {𝐴𝑛𝑠 | 0 ≤ 𝑛 ≤ log 𝑡1}
would make up a semialgebraic invariant for (𝐴, 𝑠). This, however, may not be the case. Recall that

F ℓ ,u
𝑡1,𝜖,𝜇

=


©­­«
𝑟1𝑝1𝑄1,1 (𝑠)

...

𝑟𝑘𝑝𝑘𝑄𝑘,𝑑𝑘 (𝑠)

ª®®¬ : (𝑝1, . . . , 𝑝𝑑 ) ∈ T, 𝑡 ≥ 𝑡1, 𝜇 ≤ 𝑠 ≤ 𝑡𝜖 , r ∈ S′ ∩ Box(𝑡 ℓ , 𝑡u)

 .
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and observe that if 𝜇 is large and 𝜖 is small, then for small enough 𝑡 ≥ 𝑡1, it may be the case that

𝑡𝜖 < 𝜇, so there does not exist an appropriate 𝑠 . Thus, we may need to extend the finite tail to

capture this.

Let 𝑡2 ≥ 𝑡1 such that for every 𝑛 ≥ log 𝑡2 we have that 𝐴
𝑛𝑠 ∈ F ℓ ,u

𝑡1,𝜖,𝜇
(note that we can compute 𝑡2

by iterating over the orbit, until the first point in F ℓ ,u
𝑡1,𝜖,𝜇

is found), then F ℓ ,u
𝑡1,𝜖,𝜇
∪{𝐴𝑛𝑠 | 0 ≤ 𝑛 ≤ log 𝑡2}

is a semialgebraic invariant for (𝐴, 𝑠) that avoids 𝑌 , which concludes the proof. □

6.3 A Note on Complexity
The proof of Theorem 6.3 does not offer a complexity bound. We now provide a brief analysis

of the complexity. We recall that the algorithmic bottlenecks in the proof of Theorem 6.3 are the

following:

(1) Computing a basis for the group of multiplicative relations of the eigenvalues, hence obtaining

a description of T.
(2) Computing the cell decomposition of the set𝑈 as per Section 6.2.

(3) Computing 𝜖 > 0 to separate the exponents in the description of 𝑅𝑙 (𝝉 (𝑡)), as above.
(4) Concluding whether there exists 𝑡0 > 0 such that 𝑃 · C𝑡0 ∩ 𝐹 = ∅.
(5) Checking whether 𝐴𝑛𝑠 ∈ 𝐹 for some 𝑛 ≤ log 𝑡0.

In the following, we use ∥·∥ to denote encoding length, when the type of encoding is understood

from context.

By Masser’s Theorem (Theorem 3.1), computing the basis for the group of multiplicative relations

can be done in polynomial space in ∥𝐴∥, and ends up with a basis whose description length is

polynomial in ∥𝐴∥.
Next, by Theorem 1.2 of [31], computing the cell decomposition of 𝑈 takes double-exponential

time in ∥𝐹,𝐴∥ (where 𝐹 is the halting set) and the resulting expression consists of an expression of

the form

∨𝐼
𝑖=1

∧𝐽

𝑗=1
𝑅𝑖, 𝑗 ∼𝑖, 𝑗 0, as in Section 6.2, where both 𝐼 and 𝐽 are double-exponential in ∥𝐹,𝐴∥,

as well are the degrees of the polynomials 𝑅𝑖, 𝑗 , and the description length of their coefficients. In

particular, this means that there are double-exponential disjuncts of the form ∧𝑅𝑙 ∼𝑙 0 to reason

about in the proof of Lemma 6.5.

In order to substitute the latter into the bound given by Baker’s Theorem (Theorem 6.6), we

actually need a more explicit form of the bound 𝐻−𝐶 therein (see [1]). Specifically, in the setting of

Theorem 6.6, we have

|Λ| > exp

(
−(16𝑚𝐷)2(𝑚+2) log𝐻 log𝐵

)
,

where 𝐵 is an upper bound on the integer coefficients, and 𝐷 is the degree of the extension field

Q(𝛼1, . . . , 𝛼𝑚) over Q.
Recalling that in our case 𝐷 ≤ 𝑘!, and 𝐵 has double-exponential description length (i.e., log𝐵

is double exponential in ∥𝐹,𝐴∥), we get that 𝜖 itself has double-exponential description length

in ∥𝐹,𝐴∥. Observe that 𝜖 is efficiently computable, since all the functions involved are efficiently

computable (in particular, the logarithm of an algebraic number is efficiently computable by [17]).

Thus, we can determine the dominant exponent of each 𝑅𝑙 in double-exponential time in ∥𝐹,𝐴∥.
We remark that tighter bounds are possible if the halting set, 𝐹 , is given as a first-order formula

with bounded alternation depth.

Recall that now, determining the existence of 𝑡0 such that 𝑃 · C𝑡0 ∩ 𝐹 = ∅ amounts to checking

the sign of the leading coefficient of 𝑓𝑖 , which is simple. However, in order to obtain a concrete

bound on 𝑡0, we must determine when the leading monomial in 𝑅𝑙 (𝝉 (𝑡)) actually dominates the

rest of the terms.
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Recall that the exponents of the monomials in 𝑅𝑙 (𝝉 (𝑡)) differ from each other by at least 𝜖 , and

that the coefficients of the monomials are polylogarithmic in 𝑡 . Thus, an upper bound on 𝑡0 is

obtained in the worst case when

𝑅𝑙 (𝝉 (𝑡)) = 𝑡𝑛 − 𝛽 · 𝑡𝑛−𝜖 · log𝜅 𝑡

where 𝛽 has double-exponential description length in ∥𝐹,𝐴∥ and |𝜅 | is double exponential in ∥𝐹,𝐴∥.
Indeed, this implies that the leading monomial has the slowest growth, and the second-highest

monomial has the fastest.

Thus, we can take 𝑡0 to be the maximal solution of 𝑡𝑛 = 𝛽 · 𝑡𝑛−𝜖 · log𝜅 𝑡 . By dividing by 𝑡𝑛−𝜖 , this
is equivalent to 𝑡𝜖 = 𝛽 log𝜅 𝑡 , and by setting 𝑡 = 𝑥𝜅/𝜖 this is equivalent in turn to 𝑥 = 𝑐 log𝑥 with

𝑐 = 𝜅 · 𝛽1/𝜅/𝜖 . Let 𝜓 (𝑥) = 𝑥/log𝑥 , then we wish to bound the maximal solution to 𝜓 (𝑥) = 𝑐 . We

show that the maximal solution is at most 2𝑐 log 𝑐 (this is also proved in [35, Lemma A.1]).

Recall that𝜓 (𝑥) is increasing for 𝑥 ≥ 𝑒 . We can assume w.l.o.g. that 𝑐 > 𝑒 . Indeed, if 𝑐 ≤ 𝑒 = 𝜓 (𝑒)
then the maximal solution for𝜓 (𝑥) = 𝑐 is with 𝑥 ≤ 𝑒 and we are done.

Observe that𝜓 (2𝑐 log 𝑐) = 𝑐 ·2 log 𝑐/(log 𝑐+log log 𝑐+log 2) > 𝑐 as long as log 𝑐 > log log 𝑐+log 2,
which is the case for 𝑐 ≥ 𝑒 in particular. So the equation𝜓 (𝑥) = 𝑐 has no solutions with 𝑥 ≥ 2𝑐 log 𝑐 .

Therefore, 𝑡0 ≤ (2𝑐 log 𝑐)𝜅/𝜖 . In particular, 𝑐 and 𝑡0 are at most triply exponential in ∥𝐹,𝐴∥, with
doubly exponential description lengths in ∥𝐹,𝐴∥.

Finally, recall that the last algorithmic step is to check whether 𝐴𝑛𝑠 ∈ 𝐹 for 𝑛 ≤ log 𝑡0. Each such

check may potentially take double-exponential time in ∥𝐹,𝐴∥, and there are double-exponential

checks to take.

Thus, overall, the entire algorithm can be implemented in double-exponential time.
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