
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Convex language semantics for nondeterministic probabilistic

automata ✩,✩✩,✩✩✩

Gerco van Heerdt a, ,∗, Justin Hsu b, , Joël Ouaknine c, Alexandra Silva b

a Droit Financial Technologies, United Kingdom
b Cornell University, United States
c MPI-SWS, Germany

A B S T R A C T

We explore language semantics for automata combining probabilistic and nondeterministic behaviors. We first show that there are precisely two
natural semantics for probabilistic automata with nondeterminism. For both choices, we show that these automata are strictly more expressive
than deterministic probabilistic automata, and we prove that the problem of checking language equivalence is undecidable by reduction from the
threshold problem. However, we provide a discounted metric that can be computed to arbitrarily high precision.

1. Introduction

Probabilistic automata are fundamental models of randomized computation. They serve as useful tools to study the semantics
and correctness of probabilistic programming languages [2,3], randomized algorithms [4,5], and machine learning [6,7]. Likewise,

nondeterministic automata are well-studied models for concurrent and distributed systems [8].

Interest in systems that exhibit both random and nondeterministic behaviors goes back to Rabin’s randomized techniques to
increase the efficiency of distributed algorithms in the 1970s and 1980s [4,5]. This line of research yielded several automaton models
supporting both nondeterministic and probabilistic choice [9--11]. Formal techniques and tools developed for these models have been
successfully used in verification tasks [12,13,11,14], but there are multiple ways of combining nondeterminism and randomization,

and there remains room for further investigation.

In this paper we study nondeterministic probabilistic automata (NPAs) and propose a novel probabilistic language semantics.

NPAs are similar to Segala systems [9] in that transitions can make combined nondeterministic and probabilistic choices, but NPAs
also have an output weight in [0,1] for each state, reminiscent of observations in Markov Decision Processes. This enables us to define
the expected weight of a word in a similar way as in standard nondeterministic automata: the output of an NPA on an input word can
be computed in a deterministic version of the automaton, using a careful choice of algebraic structure for the state space.

The resulting notion of equivalence is a type of language equivalence (also known as trace equivalence) and is coarser than
probabilistic bisimulation [15--18], which distinguishes systems with different branching structure even if the total weight assigned

✩ This article belongs to Section B: Logic, semantics and theory of programming, Edited by Don Sannella.
✩✩ This is an extended version of the ICTAC’18 paper with the same title [1], including more examples, all proofs, and a new section (Section 3.3). This work was
developed when the first and last author were at University College London. The work was partially supported by ERC starting grant ProFoundNet (679127), ERC
consolidator grant AVS-ISS (648701), EPSRC Standard Grant CLeVer (EP/S028641/1), a Leverhulme Prize (PLP-2016-129), a Royal Society Wolfson Fellowship, and
an NSF grant (1637532).
✩✩✩ Joël Ouaknine is also affiliated with Keble College, Oxford as emmy.network Fellow, and supported by DFG grant 389792660 as part of TRR 248 (see https://

perspicuous-computing.science).

* Corresponding author.

E-mail address: alexandra.silva@gmail.com (A. Silva).

https://doi.org/10.1016/j.tcs.2025.115191

Received 6 April 2019; Received in revised form 1 June 2023; Accepted 17 March 2025

Theoretical Computer Science 1040 (2025) 115191

Available online 21 March 2025
0304-3975/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0003-0669-6865
http://orcid.org/0000-0002-8953-7060
http://emmy.network/
https://perspicuous-computing.science
https://perspicuous-computing.science
mailto:alexandra.silva@gmail.com
https://doi.org/10.1016/j.tcs.2025.115191
https://doi.org/10.1016/j.tcs.2025.115191
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115191&domain=pdf

G. van Heerdt, J. Hsu, J. Ouaknine et al.

to a word is the same. This difference is well-known, even for purely probabilistic systems [19]; different target applications may call
for different notions of equivalence.

After reviewing mathematical preliminaries in Section 2, we introduce the NPA model and explore its semantics in Section 3. We
show that there are precisely two natural ways to define the language semantics of such systems—by either taking the maximum or

the minimum of the weights associated with the different paths labeled by an input word. The proof of this fact relies on an abstract
view on these automata generating probabilistic languages with algebraic structure. Specifically, probabilistic languages have the
structure of a convex algebra, analogous to the join-semilattice structure of standard languages. These features can abstractly be seen
as so-called Eilenberg-Moore algebras for a monad—the distribution and the powerset monads, respectively—which can support new

semantics and proof techniques (see, e.g., [16,20]). In order to support the use of NPAs in practice and proof techniques for their

equivalence we explore a finite representation of their semantics (Section 3.3). We also include a soundness theorem for the finitary

determinization construction.

In Section 4, we compare NPAs with standard, deterministic probabilistic automata (DPAs) as formulated by Rabin [21]. Our

semantics ensures that NPAs recover DPAs in the special case when there is no nondeterministic choice. Furthermore, we show that
there are weighted languages accepted by NPAs that are not accepted by any DPA. We use the theory of linear recurrence sequences
to give a separation even for weighted languages over a unary alphabet.

In Section 5, we turn to equivalence. We prove that language equivalence of NPAs is undecidable by reduction from so-called
threshold problems, which are undecidable [22--24]. The hard instances encoding the threshold problem are equivalences between
probabilistic automata over a two-letter alphabet. Thus, the theorem immediately implies that equivalence of NPAs is undecidable
when the alphabet size is at least two. The situation for automata over unary alphabets is more subtle; in particular, the threshold
problem over a unary alphabet is not known to be undecidable. However, we give a reduction from the Positivity problem on
linear recurrence sequences, a problem where a decision procedure would likely entail breakthroughs in open problems in number

theory [25]. Finally, we propose a discounted metric on languages. This metric cannot be computed exactly due to the undecidability

result, but we show that the metric can be approximated to arbitrarily high precision.

We survey related work and conclude in Section 6.

2. Preliminaries

We start by introducing some mathematical background on convex algebras, monads, probabilistic automata, and language se-

mantics.

2.1. Convex algebra

A set 𝐴 is a convex algebra, or a convex set, if for all 𝑛 ∈ ℕ and tuples (𝑝𝑖)𝑛𝑖=1 of numbers in [0,1] summing up to 1 (that is,∑𝑛

𝑖=1 𝑝𝑖 = 1) there is an operation denoted
∑𝑛

𝑖=1 𝑝𝑖(−)𝑖 ∶ 𝐴𝑛 →𝐴 satisfying the following properties for (𝑎1,… , 𝑎𝑛) ∈𝐴𝑛:

Projection. If 𝑝𝑗 = 1 (and hence 𝑝𝑖 = 0 for all 𝑖 ≠ 𝑗), we have
∑𝑛

𝑖=1 𝑝𝑖𝑎𝑖 = 𝑎𝑗 .

Barycenter. For any 𝑛 tuples (𝑞𝑖,𝑗)𝑚𝑗=1 in [0,1] satisfying for all 𝑖 = 1,⋯ , 𝑛,
∑𝑚

𝑗=1 𝑞𝑖,𝑗 = 1, we have

𝑛 ∑
𝑖=1

𝑝𝑖

(
𝑚 ∑
𝑗=1

𝑞𝑖,𝑗𝑎𝑗

)
=

𝑚 ∑
𝑗=1

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑞𝑖,𝑗

)
𝑎𝑗 .

Informally, a convex algebra structure gives a way to take finite convex combinations of elements in a set 𝐴. Given this structure, we
can define convex subsets and generate them by elements of 𝐴.

Example 2.1 (Unit interval). The interval [0,1] has a standard convex structure which we use throughout this paper. Namely, for

𝐴 = [0,1], the operation
∑𝑛

𝑖=1 𝑝𝑖(−)𝑖 ∶ 𝐴𝑛 →𝐴 is simply defined using standard sum and multiplication operations over the elements
of [0,1]. More generally, any interval [𝑎, 𝑏] ⊂ℝ is a convex set using the operation as above.

Definition 2.2. A subset 𝑆 ⊆ 𝐴 is convex if it is closed under all convex combinations. That is, it has to be a convex subalgebra. A
convex set 𝑆 is generated by a set 𝐺 ⊆𝐴 if for all 𝑠 ∈ 𝑆 , there exist 𝑛 ∈ℕ, (𝑝𝑖)𝑛𝑖=1, (𝑔𝑖)𝑛𝑖=1 ∈𝐺𝑛 such that 𝑠 =

∑
𝑖 𝑝𝑖𝑔𝑖. When 𝐺 is finite,

we say that 𝑆 is finitely generated.

We can also define morphisms between convex sets.

Definition 2.3. An a˙ine map between two convex sets 𝐴 and 𝐵 is a function ℎ ∶ 𝐴→𝐵 commuting with convex combinations:

ℎ

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑎𝑖

)
=

𝑛 ∑
𝑖=1

𝑝𝑖ℎ(𝑎𝑖).

Theoretical Computer Science 1040 (2025) 115191

2

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Example 2.4. For 𝐴 = [0,1] and 𝐵 = [1∕2,3∕2] the map ℎ ∶ 𝐴→𝐵 given by

ℎ(𝑎) = 𝑎+ 1∕2

is an a˙ine map. We can show this using basic arithmetic on real numbers and the fact that (𝑝𝑖)𝑛𝑖=1 is a sequence of numbers in [0,1]
summing up to 1:

ℎ

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑎𝑖

)
=

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑎𝑖

)
+ 1∕2

=

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑎𝑖

)
+ 1 × 1∕2

=

(
𝑛 ∑

𝑖=1
𝑝𝑖𝑎𝑖

)
+

(
𝑛 ∑

𝑖=1
𝑝𝑖

)
× 1∕2

=
𝑛 ∑

𝑖=1
𝑝𝑖(𝑎𝑖 + 1∕2)

=
𝑛 ∑

𝑖=1
𝑝𝑖ℎ(𝑎𝑖).

2.2. Monads and their algebras

Our definition of language semantics will be based on the category theoretic framework of monads and their algebras. Monads
can be used to model computational side-effects such as nondeterminism and probabilistic choice. An algebra allows us to interpret
such side-effects within an object of the category.

Definition 2.5. A monad (𝑇 , 𝜂,𝜇) consists of an endofunctor 𝑇 and two natural transformations: a unit 𝜂∶ Id ⇒ 𝑇 and a multiplication
𝜇∶ 𝑇𝑇 ⇒ 𝑇 , making the following diagrams commute.

𝑇 𝑇𝑇

𝑇𝑇 𝑇

𝜂

𝑇 𝜂 𝜇

𝜇

𝑇 𝑇𝑇 𝑇𝑇

𝑇𝑇 𝑇

𝑇𝜇

𝜇 𝜇

𝜇

When there is no risk of confusion, we identify a monad with its endofunctor.

Example 2.6 (Monads). We give three examples of monads in the category of sets and functions.

1. The non-empty powerset monad is given by (P𝑓 ,{−},
⋃
), where P𝑓 denotes the finite nonempty powerset functor sending each

set to the set of its finite nonempty subsets, {−} is the singleton operation, and
⋃

is set union.

2. The list monad is the triple ((−)∗,nil, + +), where (−)∗ denotes the finite list functor sending each set 𝐴 to the set 𝐴∗ of finite lists
over 𝐴, nil is the empty list, and ++ is list concatenation.

3. The vector space monad (over a field 𝔽) is given by (𝑉 (−),unit, 𝜇), where 𝑉 (𝑋) denotes the free vector space generated by 𝑋: the
vector space with basis 𝑋, the set of abstract linear combinations of elements of 𝑋 with coefficients in 𝔽 ; unit maps an element
of 𝑋 to the corresponding basis vector, and 𝜇∶ 𝑉 (𝑉 (𝑋))→ 𝑉 (𝑋) sends an abstract linear combination of vectors to the actual
linear combination which is a well-defined element of 𝑉 (𝑋).

We will see in Section 2.3 two other examples of monads: the distribution monad (over sets) and the convex powerset functor

(over convex sets).

Definition 2.7. An algebra for a monad (𝑇 , 𝜂,𝜇) is a pair (𝑋,ℎ) consisting of a carrier set 𝑋 and a function ℎ ∶ 𝑇𝑋 →𝑋 making the
following diagrams commute.

𝑋 𝑇𝑋

𝑋

𝜂

ℎ

𝑇𝑇𝑋 𝑇𝑋

𝑇𝑋 𝑋

𝑇ℎ

𝜇 ℎ

ℎ

Definition 2.8. A homomorphism from an algebra (𝑋,ℎ) to an algebra (𝑌 ,𝑘) for a monad 𝑇 is a function 𝑓 ∶ 𝑋 → 𝑌 making the
diagram below commute.

Theoretical Computer Science 1040 (2025) 115191

3

G. van Heerdt, J. Hsu, J. Ouaknine et al.

𝑇𝑋 𝑇𝑌

𝑋 𝑌

𝑇𝑓

ℎ 𝑘

𝑓

Example 2.9 (Algebras for a monad). The algebras for the finite powerset monad are precisely the join-semilattices with bottom, and
their homomorphisms are maps that preserve finite joins. The algebras for the finite list monad are monoids, and their homomorphisms
are maps that preserve the monoid operation. The algebras for the vector space monad are vector spaces and their homomorphisms
are linear maps.

The algebras for any monad together with their homomorphisms form a category, the so-called category of Eilenberg-Moore algebras
for a monad.

2.3. Distribution and convex powerset monads

We will work with two monads closely associated with convex sets.

In the category of sets, the distribution monad (D, 𝛿,𝑚) maps a set 𝑋 to the set of distributions over 𝑋 with finite support. The
support of a distribution 𝑑 is given by

𝗌𝗎𝗉𝗉(𝑑) = {𝑎 ∈𝐴 ∣ 𝑑(𝑎) ≠ 0} ∈ P𝑓𝐴.

The unit 𝛿∶ 𝑋 →D𝑋 maps 𝑥 ∈𝑋 to the point distribution at 𝑥. For the multiplication 𝑚 ∶ DD𝑋 →D𝑋, let 𝑑 ∈DD𝑋 be a finite
distribution with support {𝑑1,… , 𝑑𝑛} ∈ P𝑓D𝑋 and define

𝑚(𝑑)(𝑥) =
𝑛 ∑

𝑖=1
𝑑(𝑑𝑖) × 𝑑𝑖(𝑥).

The category of algebras for the distribution monad is precisely the category of convex sets and a˙ine maps—we will often implicitly

identify these two representations.

In the category of convex sets, the finitely generated nonempty convex powerset monad [16] (P𝑐 ,{−},
⋃
) maps a convex set 𝐴 to the

set of finitely generated nonempty convex subsets of 𝐴.1 The convex algebra structure on P𝑐𝐴 is given by
∑𝑛

𝑖=1 𝑝𝑖𝑈𝑖 = {
∑𝑛

𝑖=1 𝑝𝑖𝑢𝑖 ∣
𝑢𝑖 ∈ 𝑈𝑖 for all 1 ≤ 𝑖 ≤ 𝑛} with every 𝑈𝑖 ∈ P𝑐𝐴. The unit map {−} ∶ 𝐴 → P𝑐𝐴 maps 𝑎 ∈ 𝐴 to a singleton convex set {𝑎}, and the
multiplication

⋃
∶ P𝑐P𝑐𝐴→ P𝑐𝐴 is again the union operation, which collapses nested convex sets.

As an example, we can consider this monad on the convex algebra [0,1]. The result is a finitely generated convex set.

Lemma 2.10. The convex set P𝑐[0,1] is generated by its elements {0}, {1}, and [0,1], i.e., 𝖼𝗈𝗇𝗏({{0},{1}, [0,1]}) = P𝑐[0,1].

Proof. The finitely generated nonempty convex subsets of [0,1] are of the form [𝑝, 𝑞] for 𝑝, 𝑞 ∈ [0,1], and [𝑝, 𝑞] = 𝑝{1}+ (𝑞− 𝑝)[0,1]+
(1 − 𝑞){0}. □

To describe automata with both nondeterministic and probabilistic transitions, we will work with convex powersets of distributions.

The functor P𝑐D taking sets 𝑋 to the set of finitely generated nonempty convex sets of distributions over 𝑋 can be given a monad
structure.2

Explicitly, the (a˙ine) convex algebra structure on P𝑐𝐴 for any convex algebra (𝐴,𝛼) is the map 𝜔𝐴 ∶ DP𝑐𝐴→ P𝑐𝐴 given by

𝜔𝐴(𝑑) = {(𝛼 ◦D𝑐)(𝑑) ∣ 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾𝐴},

where

𝖼𝗁𝗈𝗂𝖼𝖾𝐴 = {𝑐 ∶ P𝑐𝐴→𝐴,∀𝑈 ∈ P𝑐𝐴. 𝑐(𝑈) ∈𝑈},

which induces the composite monad (P𝑐D, 𝛿, 𝑚̂) defined by

𝑋

D𝑋 P𝑐D𝑋

𝛿

𝛿

{−}

P𝑐DP𝑐D𝑋

P𝑐P𝑐D𝑋 P𝑐D𝑋

𝑚̂
P𝑐𝜔 ⋃ (1)

1 In prior work [16], the monad was defined to take all convex subsets rather than just the finitely generated ones. However, since all the monad operations preserve
finiteness of the generators, the restricted monad we consider is also well-defined.

2 Formally, the functor D in this composition is a functor from the category of sets to the category of convex sets. To simplify notation, we identify this functor

with the distribution functor D we defined above since they are defined in the same way on sets. One can show that the codomain of the set endofunctor D is indeed
convex sets.

Theoretical Computer Science 1040 (2025) 115191

4

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Note that 𝜔 is natural since P𝑐 is a functor on the category of convex sets.

For all convex sets (𝐴,𝛼) and 𝑆 ∈ P𝑓𝐴, we can define the convex closure of 𝑆 (sometimes called the convex hull) 𝖼𝗈𝗇𝗏(𝑆) ∈ P𝑐𝐴

by

𝖼𝗈𝗇𝗏(𝑆) = {𝛼(𝑑) ∣ 𝑑 ∈D𝐴, 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆}.

The 𝖼𝗈𝗇𝗏 maps form a natural transformation, a fact we will use later. To show that this is the case, we first note that 𝖼𝗈𝗇𝗏∶ P𝑓𝐴→ P𝑐𝐴

can be written as

𝖼𝗈𝗇𝗏 = P𝑓𝐴
𝖽𝗂𝗌
←←←←←←←←←←←→ P𝑐D𝐴

P𝑐𝛼
←←←←←←←←←←←←←←←←→ P𝑐𝐴, (2)

where

𝖽𝗂𝗌(𝑆) = {𝑑 ∈D𝐴 ∣ 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆}

can be defined on any set 𝐴. We start by showing that 𝖽𝗂𝗌 is natural.

Lemma 2.11. For all sets 𝐴 and 𝐵 and functions 𝑓 ∶ 𝐴→ 𝐵, the diagram below commutes.

P𝑓𝐴 P𝑐D𝐴

P𝑓𝐵 P𝑐D𝐵

𝖽𝗂𝗌

P𝑓 𝑓 P𝑐D𝑓

𝖽𝗂𝗌

Proof. Consider any 𝑆 ∈ P𝑓𝐴. We will first show that

{D𝑓 (𝑑) ∣ 𝑑 ∈D𝐴, 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆} = {𝑑 ∈D𝐵 ∣ 𝗌𝗎𝗉𝗉(𝑑) ⊆ {𝑓 (𝑎) ∣ 𝑎 ∈ 𝑆}}. (3)

For the inclusion from left to right, note that for each 𝑑 ∈ D𝐴 such that 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆 we have 𝑏 ∈ 𝗌𝗎𝗉𝗉(D𝑓 (𝑑)) only if there exists
𝑎 ∈ 𝑆 such that 𝑓 (𝑎) = 𝑏. Thus, 𝗌𝗎𝗉𝗉(D𝑓 (𝑑)) ⊆ {𝑓 (𝑎) ∣ 𝑎 ∈ 𝑆}. Conversely, consider 𝑑 ∈D𝐵 such that 𝗌𝗎𝗉𝗉(𝑑) ⊆ {𝑓 (𝑎) ∣ 𝑎 ∈ 𝑆}. We
define 𝑑′ ∈D𝐴 by

𝑑′(𝑎) = 𝑑(𝑓 (𝑎)) |{𝑎′ ∈ 𝑆 ∣ 𝑓 (𝑎′) = 𝑓 (𝑎)}| .
Then

D𝑓 (𝑑′)(𝑏) =
∑

𝑎∈𝐴,𝑓 (𝑎)=𝑏
𝑑′(𝑎) (definition of D)

=
∑

𝑎∈𝐴,𝑓 (𝑎)=𝑏

𝑑(𝑓 (𝑎)) |{𝑎′ ∈ 𝑆 ∣ 𝑓 (𝑎′) = 𝑓 (𝑎)}| (definition of 𝑑′)

=
∑

𝑎∈𝐴,𝑓 (𝑎)=𝑏

𝑑(𝑏) |{𝑎′ ∈ 𝑆 ∣ 𝑓 (𝑎′) = 𝑏}|
= 𝑑(𝑏).

Now we have

(P𝑐D𝑓 ◦ 𝖽𝗂𝗌)(𝑆) = P𝑐D𝑓 ({𝑑 ∈D𝐴 ∣ 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆}) (definition of 𝖽𝗂𝗌)

= {D𝑓 (𝑑) ∣ 𝑑 ∈D𝐴, 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑆} (definition of P𝑐)

= {𝑑 ∈D𝐵 ∣ 𝗌𝗎𝗉𝗉(𝑑) ⊆ {𝑓 (𝑎) ∣ 𝑎 ∈ 𝑆}} (3)

= 𝖽𝗂𝗌({𝑓 (𝑎) ∣ 𝑎 ∈ 𝑆}) (definition of 𝖽𝗂𝗌)

= (𝖽𝗂𝗌 ◦ P𝑐𝑓)(𝑆) (definition of P𝑐). □

Lemma 2.12. For all convex sets (𝐴,𝛼) and (𝐵,𝛽) and a˙ine maps 𝑓 ∶ 𝐴→𝐵, the diagram below commutes.

P𝑓𝐴 P𝑐𝐴

P𝑓𝐵 P𝑐𝐵

𝖼𝗈𝗇𝗏

P𝑓 𝑓 P𝑐𝑓

𝖼𝗈𝗇𝗏

Theoretical Computer Science 1040 (2025) 115191

5

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Proof. As seen below, this follows almost directly from the previous result.

P𝑓𝐴 P𝑐𝐴

P𝑐D𝐴

P𝑐D𝐵

P𝑓𝐵 P𝑐𝐵

𝖼𝗈𝗇𝗏

P𝑓 𝑓

𝖽𝗂𝗌
(2)

1 P𝑐𝑓

P𝑐𝛼

P𝑐D𝑓 2

P𝑐𝛽

𝖼𝗈𝗇𝗏

𝖽𝗂𝗌
(2)

1 Lemma 2.11 2 𝑓 is a˙ine □

2.4. Automata and language semantics

In this section we review the general language semantics for automata with side-effects provided by a monad (see, e.g., [26--28]).

This categorical framework is the foundation of our language semantics for NPAs.

Definition 2.13 (T-automaton). Given a monad (𝑇 , 𝜂,𝜇) in the category of sets, an output set 𝑂, and a (finite) alphabet Σ, a 𝑇 -

automaton is defined by a tuple (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ), where 𝑆 is the set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝛾 ∶ 𝑆 → 𝑂 is the output
function, and 𝜏𝑎 ∶ 𝑆 → 𝑇𝑆 for 𝑎 ∈ Σ are the transition functions.

This abstract formulation encompasses many standard notions of automata. For instance, we recover deterministic (Moore) au-

tomata by letting 𝑇 be the identity monad; deterministic acceptors are a further specialization where the output set is the set 2 = {0,1},

with 0 modeling rejecting states and 1 modeling accepting states. If we use the powerset monad, we recover nondeterministic acceptors
and with the vector space monad one recovers weighted automata.

Any 𝑇 -automaton can be determinized, using a categorical generalization of the powerset construction [27].

Definition 2.14 (Determinization). Given a monad (𝑇 , 𝜂,𝜇) in the category of sets, an output set 𝑂 with a 𝑇 -algebra structure
𝑜 ∶ 𝑇𝑂 → 𝑂, and a (finite) alphabet Σ, a 𝑇 -automaton (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) can be determinized into the deterministic automaton
(𝑇𝑆, 𝑠′0, 𝛾

′,{𝜏′
𝑎
}𝑎∈Σ) given by 𝑠′0 = 𝜂(𝑠0) ∈ 𝑇𝑆 and

𝛾 ′ ∶ 𝑇𝑆 →𝑂 𝜏′
𝑎
∶ 𝑇𝑆 → 𝑇𝑆

𝛾 ′ = 𝑜 ◦ 𝑇 𝛾 𝜏′
𝑎
= 𝜇 ◦ 𝑇 𝜏𝑎.

This construction allows us to define the language semantics of any 𝑇 -automaton as the semantics of its determinization.

Definition 2.15. Given a monad (𝑇 , 𝜂,𝜇) in the category of sets, an output set 𝑂 with a 𝑇 -algebra structure 𝑜 ∶ 𝑇𝑂→𝑂, and a (finite)

alphabet Σ, the language accepted by a 𝑇 -automaton A = (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) is the function LA ∶ Σ∗ →𝑂 given by LA = (𝑙A ◦ 𝜂)(𝑠0),
where 𝑙A ∶ 𝑇𝑆 →𝑂Σ∗ is defined inductively by

𝑙A(𝑠)(𝜀) = (𝑜 ◦ 𝑇 𝛾)(𝑠) 𝑙A(𝑠)(𝑎𝑣) = 𝑙A((𝜇 ◦ 𝑇 𝜏𝑎)(𝑠))(𝑣).

Example 2.16 (Deterministic probabilistic automata). As an example of a 𝑇 -automaton and its semantics, take 𝑇 to be the distribution
monad D and the output set 𝑂 to be the interval [0,1]. Instantiating the definition of 𝑇−automata (for finite3 state space 𝑆) yields
deterministic probabilistic automata (DPAs): automata with a finite state space 𝑆 , an output function of type 𝑆 → [0,1], and transition
functions of type 𝑆 →D𝑆 for each 𝑎 ∈ Σ. To instantiate the language semantics of such automata, we use the usual D-algebra structure
𝔼 ∶ D[0,1]→ [0,1] computing the expected weight:

𝔼(𝑑) =
∑

𝑎∈𝗌𝗎𝗉𝗉(𝑑)
𝑑(𝑎) ⋅ 𝑎.

More concretely, the semantics works as follows. Let (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) be a DPA. At any time while reading a word, we are in
a convex combination of states

∑𝑛

𝑖=1 𝑝𝑖𝑠𝑖 (equivalently, a distribution over states). The current output is given by evaluating the

3 All concrete automata considered in this paper will have a finite state space (cf. Section 4), but this is not required by Definition 2.13. The reason for this is
two-fold. First, the determinization procedure (Definition 2.14) often results in an automaton with an infinite state space even when starting from a 𝑇 -automaton with
a finite state space: e.g. the distribution monad, for example, does not preserve finite sets in general. Second, the semantics of each 𝑇 -automaton is given in terms of a
mapping to an automaton of languages (Definition 2.15) and that language automaton has an infinite state space. Even when 𝑇 is the identity monad and we recover

deterministic Moore automata the language automaton has as state space all power series 𝑂𝐴∗
which is an infinite set.

Theoretical Computer Science 1040 (2025) 115191

6

G. van Heerdt, J. Hsu, J. Ouaknine et al.

sum
∑𝑛

𝑖=1 𝑝𝑖𝛾(𝑠𝑖). On reading a symbol 𝑎 ∈ Σ, we transition to the convex combination of convex combinations
∑𝑛

𝑖=1 𝑝𝑖𝜏𝑎(𝑠𝑖), say∑𝑛

𝑖=1 𝑝𝑖
∑𝑚𝑖

𝑗=1 𝑞𝑖,𝑗𝑠𝑖,𝑗 , which is collapsed to the final convex combination
∑𝑛

𝑖=1
∑𝑚𝑖

𝑗=1 𝑝𝑖𝑞𝑖,𝑗𝑠𝑖,𝑗 (again, a distribution over states).

Remark 2.17. One may wonder if the automaton model would be more expressive if the initial state 𝑠0 in an automaton
(𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) would be an element of 𝑇𝑆 rather than 𝑆 . This is not the case, since we can always add a new element to 𝑆
that simulates 𝑠0 by setting its output to (𝑜 ◦ 𝑇 𝛾)(𝑠0) and its transition on 𝑎 ∈ Σ to (𝜇 ◦ 𝑇 𝜏𝑎)(𝑠0).

For instance, DPAs allowing a distribution over states as the initial state can be represented by an initial state distribution 𝜇, an
output vector 𝛾 , and transitions 𝜏𝑎. In typical presentations, 𝜇 and 𝛾 are represented as weight vectors over states, and the 𝜏𝑎 are
encoded by stochastic matrices.

3. Nondeterministic probabilistic automata

We now introduce an automaton model supporting probabilistic and nondeterministic behaviors, inspired by Segala [9]. On each
input letter, the automaton can choose from a finitely generated nonempty convex set of distributions over states. After selecting a
distribution, the automaton then transitions to its next state probabilistically. Each state has an output weight in [0,1]. The following
formalization is an instantiation of Definition 2.13 with the monad P𝑐D.

Definition 3.1. A nondeterministic probabilistic automaton (NPA) over a (finite) alphabet Σ is defined by a tuple (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ),
where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝛾 ∶ 𝑆 → [0,1] is the output function, and 𝜏𝑎 ∶ 𝑆 → P𝑐D𝑆 are the transition
functions indexed by inputs 𝑎∈ Σ.

As an example, consider the NPA below.

1

0

1 1

𝑎, 𝑏

𝑎

𝑠0

1
2

1
2

𝑎, 𝑏

𝑠1

𝑎

𝑏
𝑠2

1
2

1
2 𝑎, 𝑏

𝑠3

(4)

States are labeled by their direct output (i.e., their weight from 𝛾) while outgoing edges represent transitions. Additionally, we write
the state name next to each state. We only indicate a set of generators of the convex subset that a state transitions into. If one of these
generators is a distribution with nonsingleton support, then a transition into a black dot is depicted. Outgoing transitions represent
the distribution, and are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section formalizes the language semantics, based on the general framework

from Section 2.4.

3.1. From convex algebra to language semantics

To define language semantics for NPAs, we will use the monad structure of P𝑐D. To be able to use the semantics from Section 2.4,

we need to specify a P𝑐D-algebra structure 𝑜 ∶ P𝑐D[0,1]→ [0,1]. Moreover, our model should naturally coincide with DPAs when
transitions make no nondeterministic choices, i.e., when each transition function maps each state to a singleton distribution over

states. Thus, we require the P𝑐D-algebra 𝑜 to extend the expected weight function 𝔼. That is, we want 𝑜 to be of the form

𝑜 = P𝑐D[0,1]
P𝑐𝔼
←←←←←←←←←←←←←←←←←→ P𝑐[0,1]

𝛼
←←←←←←→ [0,1] (5)

for some P𝑐 -algebra structure 𝛼 on [0,1]. This in particular makes the diagram below commute, as a result of naturality of {−} and
the fact that 𝛼 ◦ {−} = 𝗂𝖽 by one of the algebra laws.4

D[0,1]

P𝑐D[0,1] [0,1]

{−} 𝔼

𝑜

(6)

4 In the conference version of the present paper, we defined 𝑜 extending 𝔼 as the commutativity of (6). We then included a result [1, Proposition 1] implying that
the two definitions—the one above given by (5) and the commutativity of (6)�-are equivalent, but the proof given in the paper is incorrect: it applies the functor P𝑐

to 𝛿, which is not an a˙ine map in general. We do not know whether the equivalence holds. We believe that our new notion of 𝑜 extending 𝔼 is more natural: if one
thinks of 𝛼 as a nondeterministic choice between expectations, the corresponding 𝑜 is the function first calculating the expectation of each choice, followed by the
appropriate choice itself.

Theoretical Computer Science 1040 (2025) 115191

7

G. van Heerdt, J. Hsu, J. Ouaknine et al.

3.2. Characterizing the P𝑐D-algebra on [0,1]

While in principle there could be many different P𝑐D-algebras on [0,1] leading to different language semantics for NPAs, we will
show that there are exactly two P𝑐 -algebras on [0,1]: the map computing the minimum and the map computing the maximum. This
leads to two P𝑐D-algebras on [0,1] that extend 𝔼.

Proposition 3.2. The only P𝑐 -algebras on the convex set [0,1] are 𝗆𝗂𝗇 and 𝗆𝖺𝗑.

Proof. Let 𝛼∶ P𝑐[0,1]→ [0,1] be a P𝑐 -algebra. Then for any 𝑟 ∈ [0,1], 𝛼({𝑟}) = 𝑟, and the diagram below must commute.

P𝑐P𝑐[0,1] P𝑐[0,1]

P𝑐[0,1] [0,1]

P𝑐𝛼

⋃
𝛼

𝛼

(7)

Furthermore, 𝛼 is an a˙ine map. Since 𝖼𝗈𝗇𝗏({{0},{1}, [0,1]}) = P𝑐[0,1] by Lemma 2.10, 𝛼({0}) = 0, and 𝛼({1}) = 1, 𝛼 is completely

determined by 𝛼([0,1]). We now calculate that

𝛼([0,1]) = 𝛼

(⋃
{[0, 𝑝] ∣ 𝑝 ∈ [0,1]}

)
= (𝛼 ◦

⋃
◦ 𝖼𝗈𝗇𝗏)({{0}, [0,1]})

= (𝛼 ◦ P𝑐𝛼 ◦ 𝖼𝗈𝗇𝗏)({{0}, [0,1]}) (7)

= (𝛼 ◦ 𝖼𝗈𝗇𝗏 ◦ P𝑓 𝛼)({{0}, [0,1]}) (Lemma 2.12)

= (𝛼 ◦ 𝖼𝗈𝗇𝗏)({𝛼({0}), 𝛼([0,1])}) (definition of P𝑓)

= (𝛼 ◦ 𝖼𝗈𝗇𝗏)({0, 𝛼([0,1])})

= 𝛼([0, 𝛼([0,1])])

= 𝛼(𝛼([0,1])[0,1] + (1 − 𝛼([0,1])){0})

= 𝛼([0,1]) ⋅ 𝛼([0,1]) + (1 − 𝛼([0,1])) ⋅ 𝛼({0}) (𝛼 is a˙ine)

= 𝛼([0,1])2 + (1 − 𝛼([0,1])) ⋅ 0

= 𝛼([0,1])2.

Thus, we have either 𝛼([0,1]) = 0 or 𝛼([0,1]) = 1. Consider any finitely generated nonempty convex subset [𝑝, 𝑞] ⊆ [0,1]. If 𝛼([0,1]) = 0,

then Lemma 2.10 gives

𝛼([𝑝, 𝑞]) = 𝛼(𝑝{1} + (𝑞 − 𝑝)[0,1] + (1 − 𝑞){0})

= 𝑝 ⋅ 𝛼({1}) + (𝑞 − 𝑝) ⋅ 𝛼([0,1]) + (1 − 𝑞) ⋅ 𝛼({0})

= 𝑝 ⋅ 1 + (𝑞 − 𝑝) ⋅ 0 + (1 − 𝑞) ⋅ 0 = 𝑝 =𝗆𝗂𝗇([𝑝, 𝑞]);

if 𝛼([0,1]) = 1, then

𝛼([𝑝, 𝑞]) = 𝛼(𝑝{1} + (𝑞 − 𝑝)[0,1] + (1 − 𝑞){0})

= 𝑝 ⋅ 𝛼({1}) + (𝑞 − 𝑝) ⋅ 𝛼([0,1]) + (1 − 𝑞) ⋅ 𝛼({0})

= 𝑝 ⋅ 1 + (𝑞 − 𝑝) ⋅ 1 + (1 − 𝑞) ⋅ 0 = 𝑞 =𝗆𝖺𝗑([𝑝, 𝑞]).

We now show that 𝗆𝗂𝗇 is an algebra; the case for 𝗆𝖺𝗑 is analogous. We have

𝗆𝗂𝗇

(
𝑛 ∑

𝑖=1
𝑟𝑖[𝑝𝑖, 𝑞𝑖]

)
=𝗆𝗂𝗇

([
𝑛 ∑

𝑖=1
𝑟𝑖 ⋅ 𝑝𝑖,

𝑛 ∑
𝑖=1

𝑟𝑖 ⋅ 𝑞𝑖

])

=
𝑛 ∑

𝑖=1
𝑟𝑖 ⋅ 𝑝𝑖

=
𝑛 ∑

𝑖=1
𝑟𝑖 ⋅𝗆𝗂𝗇([𝑝𝑖, 𝑞𝑖]),

so 𝗆𝗂𝗇 is an a˙ine map. Furthermore, clearly 𝗆𝗂𝗇({𝑟}) = 𝑟 for all 𝑟 ∈ [0,1], and for all 𝑆 ∈ P𝑐P𝑐[0,1],

𝗆𝗂𝗇
(⋃

𝑆

)
=𝗆𝗂𝗇({𝗆𝗂𝗇(𝑇) ∣ 𝑇 ∈ 𝑆}) = (𝗆𝗂𝗇 ◦ P𝑐𝗆𝗂𝗇)(𝑆). □

Theoretical Computer Science 1040 (2025) 115191

8

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Corollary 3.3. The only P𝑐D-algebras on [0,1] extending 𝔼 are P𝑐D[0,1]
P𝑐𝔼
←←←←←←←←←←←←←←←←←→ P𝑐[0,1]

𝗆𝗂𝗇
←←←←←←←←←←←←←←→ [0,1] and P𝑐D[0,1]

P𝑐𝔼
←←←←←←←←←←←←←←←←←→ P𝑐[0,1]

𝗆𝖺𝗑
←←←←←←←←←←←←←←←→ [0,1].

Consider again the NPA (4). Since we can always choose to remain in the initial state, the 𝗆𝖺𝗑 semantics assigns 1 to each word
for this automaton. The 𝗆𝗂𝗇 semantics is more interesting. Consider reading the word 𝑎𝑎. On the first 𝑎, we transition from 𝑠0 to
𝖼𝗈𝗇𝗏{𝑠0,

1
2 𝑠1 +

1
2 𝑠2} ∈ P𝑐D𝑆 . Reading the second 𝑎 gives

𝖼𝗈𝗇𝗏
{
𝖼𝗈𝗇𝗏

{
𝑠0,

1
2 𝑠1 +

1
2 𝑠2

}
,
1
2 {𝑠1} +

1
2

{
1
2 𝑠1 +

1
2 𝑠2

}}
∈ P𝑐DP𝑐D𝑆.

Now we first apply P𝑐𝜔 to eliminate the outer distribution, arriving at

𝖼𝗈𝗇𝗏
{
𝖼𝗈𝗇𝗏

{
𝑠0,

1
2 𝑠1 +

1
2 𝑠2

}
,

{
3
4 𝑠1 +

1
4 𝑠2

}}
∈ P𝑐P𝑐D𝑆.

Taking the union yields

𝖼𝗈𝗇𝗏
{
𝑠0,

1
2 𝑠1 +

1
2 𝑠2,

3
4 𝑠1 +

1
4 𝑠2

}
∈ P𝑐D𝑆,

which leads to the convex subset of distributions over outputs

𝖼𝗈𝗇𝗏
{
1, 12 ⋅ 0 +

1
2 ⋅ 1,

3
4 ⋅ 0 +

1
4 ⋅ 1

}
∈ P𝑐D[0,1].

Calculating the expected weights gives 𝖼𝗈𝗇𝗏{1, 12 ,
1
4 } ∈ P𝑐[0,1], which has a minimum of 14 . One can show that on reading any word

𝑢 ∈ Σ∗ the automaton outputs 2−𝑛, where 𝑛 is the length of the longest sequence of 𝑎’s occurring in 𝑢.

The semantics coming from 𝗆𝖺𝗑 and 𝗆𝗂𝗇 are highly symmetrical; in a sense, they are two representations of the same semantics.5

Technically, we establish the following relation between the two semantics—this will be useful to avoid repeating proofs twice for

each property.

Proposition 3.4. Consider an NPA A= (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) under the 𝗆𝗂𝗇 semantics. Define 𝛾 ′ ∶ 𝑆 → [0,1] by 𝛾 ′(𝑠) = 1− 𝛾(𝑠), and consider
the NPA A′ = (𝑆, 𝑠0, 𝛾

′,{𝜏𝑎}𝑎∈Σ) under the 𝗆𝖺𝗑 semantics. Then LA′ (𝑢) = 1 −LA(𝑢) for all 𝑢 ∈ Σ∗.

Proof. We prove a stronger property by induction on 𝑢: for all 𝑥∈ P𝑐D𝑆 and 𝑢 ∈ Σ∗, we have 𝑙A′ (𝑥)(𝑢) = 1− 𝑙A(𝑥)(𝑢). This is sufficient
because A and A′ have the same initial state. We have

𝑙A′ (𝑥)(𝜀)

= (𝗆𝖺𝗑 ◦ P𝑐𝔼 ◦ P𝑐D𝛾 ′)(𝑥) (Definition 2.15)

= (𝗆𝖺𝗑 ◦ P𝑐𝔼)

({
𝜆𝑝.

∑
𝑠∈𝑆,𝛾′(𝑠)=𝑝

𝑑(𝑠)
|||||| 𝑑 ∈ 𝑥

})
(definition of P𝑐D)

=𝗆𝖺𝗑

({ ∑
𝑝∈[0,1]

𝑝 ⋅
∑

𝑠∈𝑆,𝛾′(𝑠)=𝑝
𝑑(𝑠)

|||||| 𝑑 ∈ 𝑥

})
(definition of P𝑐𝔼)

=𝗆𝖺𝗑

({ ∑
𝑝∈[0,1]

𝑝 ⋅
∑

𝑠∈𝑆,𝛾(𝑠)=1−𝑝
𝑑(𝑠)

|||||| 𝑑 ∈ 𝑥

})
(definition of 𝛾 ′)

=𝗆𝖺𝗑

({ ∑
𝑝∈[0,1]

(1 − 𝑝) ⋅
∑

𝑠∈𝑆,𝛾(𝑠)=𝑝
𝑑(𝑠)

|||||| 𝑑 ∈ 𝑥

})

=𝗆𝖺𝗑

({ ∑
𝑝∈[0,1]

(1 − 𝑝) ⋅D𝛾(𝑑)(𝑝)
|||||| 𝑑 ∈ 𝑥

})

=𝗆𝖺𝗑

({
1 −

∑
𝑝∈[0,1]

𝑝 ⋅D𝛾(𝑑)(𝑝)
|||||| 𝑑 ∈ 𝑥

})

= 1 −𝗆𝗂𝗇

({ ∑
𝑝∈[0,1]

𝑝 ⋅D𝛾(𝑑)(𝑝)
|||||| 𝑑 ∈ 𝑥

})
= 1 − (𝗆𝗂𝗇 ◦ P𝑐𝔼)({D𝛾(𝑑) ∣ 𝑑 ∈ 𝑥}) (definition of P𝑐𝔼)

5 The 𝗆𝖺𝗑 semantics is perhaps slightly preferable since it recovers standard nondeterministic finite automata when there is no probabilistic choice and the output
weights are in {0,1}.

Theoretical Computer Science 1040 (2025) 115191

9

G. van Heerdt, J. Hsu, J. Ouaknine et al.

= 1 − (𝗆𝗂𝗇 ◦ P𝑐𝔼 ◦ P𝑐D𝛾)(𝑥) (definition of P𝑐)

= 1 − 𝑙A(𝑥)(𝜀) (Definition 2.15).

Furthermore,

𝑙A′ (𝑥)(𝑎𝑣) = 𝑙A′

((⋃
◦ P𝑐𝜔 ◦ P𝑐D𝜏𝑎

)
(𝑥)

)
(𝑣) (Definition 2.15)

= 1 − 𝑙A

((⋃
◦ P𝑐𝜔 ◦ P𝑐D𝜏𝑎

)
(𝑥)

)
(𝑣) (induction hypothesis)

= 1 − 𝑙A(𝑥)(𝑎𝑣) (Definition 2.15). □

3.3. Using the finite representation

In this section we will show how to compute the semantics of nondeterministic probabilistic automata using a finite representation.

Note that each transition of the NPAs we consider goes to a potentially infinite set of distributions over states. However, this set is
finitely generated and can thus be finitely presented. In order for NPAs to be used in practice it is essential to have this finite
presentation extended to the automaton level. This requires simulating the determinization construction of Definition 2.14 on the
finite presentation and proving a soundness result, which we will do in this section. We start by making the finite presentation explicit
in the following definition.

Definition 3.5. A finitary NPA over a (finite) alphabet Σ is defined by a tuple (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ), where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆

is the initial state, 𝛾 ∶ 𝑆 → [0,1] is the output function, and 𝜏𝑎 ∶ 𝑆 → P𝑓D𝑆 are the transition functions indexed by inputs 𝑎∈ Σ.

To run these automata we need to determinize them, but there is no monad structure on the functor P𝑓D [29--31]. However, we
do know what the semantics should be, since a finitary NPA A = (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) extends to the NPA Â = (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ), where
for each 𝑎 ∈ Σ,

𝜏𝑎 = 𝑆
𝜏𝑎
←←←←←←←←←→ P𝑓D𝑆

𝖼𝗈𝗇𝗏
←←←←←←←←←←←←←←←←←→ P𝑐D𝑆,

and this NPA can be determinized as P𝑐D is a monad. Our plan now is to simulate the determinization of the extension NPA on the
finitary NPA and show that the map 𝖼𝗈𝗇𝗏∶ P𝑓D𝑆 → P𝑐D𝑆 forms an automaton homomorphism between the two, which guarantees
language equivalence (and hence soundness of the construction).

We mirror 𝜔𝐴 ∶ DP𝑐𝐴→ P𝑐𝐴 for a convex set (𝐴,𝛼) in the finite case by the function 𝜓𝐴 ∶ DP𝑓𝐴→ P𝑓𝐴 given by

𝜓𝐴(𝑑) = {(𝛼 ◦D𝑐′)(𝑑) ∣ 𝑐′ ∶ 𝗌𝗎𝗉𝗉(𝑑)→𝐴,∀𝑈 ∈ 𝗌𝗎𝗉𝗉(𝑑). 𝑐′(𝑈) ∈𝑈}.

This allows us to define a determinization that is not an instance of Definition 2.14 but has the crucial property having a finite
description and being equivalent to the aforementioned infinite determinization construction.

Definition 3.6 (Finitary NPAs determinization). The determinization of a finitary NPA (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ) is the automaton (P𝑓D𝑆,
{𝛿(𝑠0)}, 𝛾̂ ,{𝜏𝑎}𝑎∈Σ), where

𝛾̂ = P𝑓D𝑆
P𝑓D𝛾
←←←←←←←←←←←←←←←←←←←←←←←←←→ P𝑓D[0,1]

P𝑓𝔼
←←←←←←←←←←←←←←←←←←→ P𝑓 [0,1]

𝛼
←←←←←←→ [0,1]

𝜏𝑎 = P𝑓D𝑆
P𝑓D𝜏𝑎
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P𝑓DP𝑓D𝑆

P𝑓 𝜓D𝑆
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P𝑓P𝑓D𝑆

⋃
←←←←←←←←←→ P𝑓D𝑆.

and 𝛼 can be either 𝗆𝗂𝗇 or 𝗆𝖺𝗑.

The following results will be used to prove Theorem 3.12, which states that 𝖼𝗈𝗇𝗏 is an automaton homomorphism from the finitary

determinization to the (convex) determinization obtained through Definition 2.14. This guarantees both automata accept the same
language and therefore implies that the construction above is sound. The results needed in the proof of the soundness theorem include
several properties about the support of a distribution (𝗌𝗎𝗉𝗉) and the convex closure of a set (𝖼𝗈𝗇𝗏):

1. 𝗌𝗎𝗉𝗉 is a natural transformation from D to P𝑓 (Lemma 3.7).

2. 𝗌𝗎𝗉𝗉 is a monad morphism from D to P𝑓 (Lemma 3.8).

3. 𝖼𝗈𝗇𝗏 is a monad morphism from P𝑓 to P𝑐 (up to the forgetful functor from the category of convex sets, Lemma 3.9).6

4. 𝜔, the (a˙ine) convex algebra structure on P𝑐𝐴, and its analogue for the finite powerset case�-𝜓𝐴�-are compatible via 𝖼𝗈𝗇𝗏
(Lemma 3.10).

5. The output maps of the determinizations are compatible via 𝖼𝗈𝗇𝗏 (Lemma 3.11).

6 For both of these monad morphisms we do not include the compatibility with the units. It would be trivial to extend the proofs, but these particular properties
are not needed in the final theorem.

Theoretical Computer Science 1040 (2025) 115191

10

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Lemma 3.7. For each function 𝑓 ∶ 𝑋 → 𝑌 , the diagram below commutes.

D𝑋 D𝑌

P𝑓𝑋 P𝑓 𝑌

D𝑓

𝗌𝗎𝗉𝗉 𝗌𝗎𝗉𝗉

P𝑓 𝑓

Proof. For each 𝑑 ∈D𝑋,

(𝗌𝗎𝗉𝗉 ◦D𝑓)(𝑑) = 𝗌𝗎𝗉𝗉

(
𝜆𝑦 ∈ 𝑌 .

∑
𝑥∈𝑋,𝑓 (𝑥)=𝑦

𝑑(𝑥)

)
(definition of D)

= {𝑦 ∈ 𝑌 ∣ ∃𝑥 ∈ 𝗌𝗎𝗉𝗉(𝑑). 𝑓 (𝑥) = 𝑦} (definition of 𝗌𝗎𝗉𝗉)

= {𝑓 (𝑥) ∣ 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝑑)}

= (P𝑓 𝑓 ◦ 𝗌𝗎𝗉𝗉)(𝑑) (definition of P𝑓). □

Lemma 3.8. For each set 𝑋, the diagram below commutes.

DD𝑋 P𝑓D𝑋 P𝑓P𝑓𝑋

D𝑋 P𝑓𝑋

𝗌𝗎𝗉𝗉

𝑚

P𝑓 𝗌𝗎𝗉𝗉

⋃
𝗌𝗎𝗉𝗉

Proof. For each 𝑑 ∈DD𝑋,(⋃
◦ P𝑓 𝗌𝗎𝗉𝗉 ◦ 𝗌𝗎𝗉𝗉

)
(𝑑)

=
⋃

{𝗌𝗎𝗉𝗉(𝑒) ∣ 𝑒 ∈ 𝗌𝗎𝗉𝗉(𝑑)} (definition of P𝑓)

= {𝑥 ∈ 𝗌𝗎𝗉𝗉(𝑒) ∣ 𝑒 ∈ 𝗌𝗎𝗉𝗉(𝑑)} (definition of
⋃

)

= {𝑥 ∈𝑋 ∣ ∃𝑒 ∈ 𝗌𝗎𝗉𝗉(𝑑). 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝑒)}

= 𝗌𝗎𝗉𝗉

(
𝜆𝑥 ∈𝑋.

∑
𝑒∈D𝑋

𝑑(𝑒) ⋅ 𝑒(𝑥)

)
(definition of 𝗌𝗎𝗉𝗉)

= (𝗌𝗎𝗉𝗉 ◦𝑚)(𝑑) (definition of 𝑚). □

Lemma 3.9. For each convex set 𝐴, the diagram below commutes.

P𝑓P𝑓𝐴 P𝑓P𝑐𝐴 P𝑐P𝑐𝐴

P𝑓𝐴 P𝑐𝐴

⋃
P𝑓 𝖼𝗈𝗇𝗏 𝖼𝗈𝗇𝗏

⋃
𝖼𝗈𝗇𝗏

Proof. We will first show that the diagram

P𝑓P𝑓𝐴 P𝑓P𝑐D𝐴 P𝑐DP𝑐D𝐴 P𝑐P𝑐D𝐴

P𝑓𝐴 P𝑐D𝐴

P𝑓 𝖽𝗂𝗌

⋃
𝖽𝗂𝗌 P𝑐𝜔

⋃
𝖽𝗂𝗌

(8)

commutes. Consider any 𝑈 ∈ P𝑓P𝑓𝐴. We define

𝑋 =
(
𝖽𝗂𝗌 ◦

⋃)
(𝑈) =

{
𝑑 ∈D𝐴 ∣ 𝗌𝗎𝗉𝗉(𝑑) ⊆

⋃
𝑈

}
,

rewritten by expanding the definition of 𝖽𝗂𝗌, and

𝑌

=
(⋃

◦ P𝑐𝜔 ◦ 𝖽𝗂𝗌 ◦ P𝑓 𝖽𝗂𝗌
)
(𝑈)

1
=

(⋃
◦ P𝑐𝜔 ◦ 𝖽𝗂𝗌

)
({𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈})

Theoretical Computer Science 1040 (2025) 115191

11

G. van Heerdt, J. Hsu, J. Ouaknine et al.

2
=

(⋃
◦ P𝑐𝜔

)
({𝑒 ∈DP𝑐D𝐴 ∣ 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}})

3
=

⋃
{{(𝑚 ◦D𝑐)(𝑒) ∣ 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴} ∣ 𝑒 ∈DP𝑐D𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}}

= {(𝑚 ◦D𝑐)(𝑒) ∣ 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴, 𝑒 ∈DP𝑐D𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}}.

Here 1 applies P𝑓𝖽𝗂𝗌, 2 expands the definition of the outer 𝖽𝗂𝗌, 3 expands the definition of P𝑐 , and finally we take the union
of the resulting set of sets. We will show that 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋. Regarding the former inclusion, consider any 𝑑 ∈ D𝐴 such that
𝗌𝗎𝗉𝗉(𝑑) ⊆

⋃
𝑈 . For each 𝑉 ∈𝑈 we define 𝑑𝑉 ∈D𝐴 by

𝑑𝑉 (𝑎) =
⎧⎪⎨⎪⎩

𝑑(𝑎) |{𝑉 ′∈𝑈 ∣𝑎∈𝑉 ′}|∑𝑏∈𝑉
𝑑(𝑏) |{𝑉 ′∈𝑈 ∣𝑏∈𝑉 ′}| if 𝑎 ∈ 𝑉

0 if 𝑎 ∉ 𝑉 .

This is indeed a distribution, as∑
𝑎∈𝑉

𝑑(𝑎) |{𝑉 ′ ∈𝑈 ∣ 𝑎 ∈ 𝑉 ′}|∑𝑏∈𝑉
𝑑(𝑏) |{𝑉 ′∈𝑈 ∣𝑏∈𝑉 ′}|

=
∑
𝑎∈𝑉

𝑑(𝑎) |{𝑉 ′ ∈𝑈 ∣ 𝑎 ∈ 𝑉 ′}| ⋅ 1 ∑
𝑏∈𝑉

𝑑(𝑏) |{𝑉 ′∈𝑈 ∣𝑏∈𝑉 ′}|
=

(∑
𝑎∈𝑉

𝑑(𝑎) |{𝑉 ′ ∈𝑈 ∣ 𝑎 ∈ 𝑉 ′}|
)

⋅
1 ∑

𝑏∈𝑉
𝑑(𝑏) |{𝑉 ′∈𝑈 ∣𝑏∈𝑉 ′}|

= 1.

Now we define 𝑐 ∶ P𝑐D𝐴→D𝐴 for 𝑊 ∈ P𝑐D𝐴, which is nonempty and thus contains an element 𝑤 ∈𝑊 , by

𝑐(𝑊) =

{
𝑑𝑉 if 𝑊 = 𝖽𝗂𝗌(𝑉) for some 𝑉 ∈𝑈

𝑤 otherwise.

Note that 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴. We further define 𝑒 ∈DP𝑐D𝐴 by

𝑒(𝑊) =

{∑
𝑎∈𝑉

𝑑(𝑎) |{𝑉 ′∈𝑈 ∣𝑎∈𝑉 ′}| if 𝑊 = 𝖽𝗂𝗌(𝑉) for some 𝑉 ∈𝑈

0 otherwise.

By definition, 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}. It follows from the definitions of 𝑒 and 𝑑𝑉 that for all 𝑉 ∈𝑈 and 𝑎 ∈ 𝑉 ,

(𝑒 ◦ 𝖽𝗂𝗌)(𝑉) ⋅ 𝑑𝑉 (𝑎) =
𝑑(𝑎) |{𝑉 ′ ∈𝑈 ∣ 𝑎 ∈ 𝑉 ′}| . (9)

Thus, for all 𝑎 ∈𝐴,

(𝑚 ◦D𝑐)(𝑒)(𝑎)

=
∑

𝑓∈D𝐴

D𝑐(𝑒)(𝑓) ⋅ 𝑓 (𝑎) (definition of 𝑚)

=
∑

𝑓∈D𝐴,𝑊 ∈P𝑐D𝐴,𝑐(𝑊)=𝑓
𝑒(𝑊) ⋅ 𝑓 (𝑎) (definition of D)

=
∑

𝑊 ∈P𝑐D𝐴

𝑒(𝑊) ⋅ 𝑐(𝑊)(𝑎)

=
∑
𝑉 ∈𝑈

(𝑒 ◦ 𝖽𝗂𝗌)(𝑉) ⋅ (𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑎) (definition of 𝑒)

=
∑
𝑉 ∈𝑈

(𝑒 ◦ 𝖽𝗂𝗌)(𝑉) ⋅ 𝑑𝑉 (𝑎) (definition of 𝑐)

=
∑

𝑉 ∈𝑈,𝑎∈𝑉
(𝑒 ◦ 𝖽𝗂𝗌)(𝑉) ⋅ 𝑑𝑉 (𝑎) (definition of 𝑑𝑉)

=
∑

𝑉 ∈𝑈,𝑎∈𝑉

𝑑(𝑎) |{𝑉 ′ ∈𝑈 ∣ 𝑎 ∈ 𝑉 ′}| (9)

= 𝑑(𝑎),

so (𝑚 ◦D𝑐)(𝑒) = 𝑑, which concludes the first inclusion.

Theoretical Computer Science 1040 (2025) 115191

12

G. van Heerdt, J. Hsu, J. Ouaknine et al.

For the inclusion 𝑌 ⊆ 𝑋, consider any 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴 and 𝑒 ∈DP𝑐D𝐴 such that 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}. We need to show that
𝗌𝗎𝗉𝗉((𝑚 ◦D𝑐)(𝑒)) ⊆

⋃
𝑈 . We have

𝗌𝗎𝗉𝗉((𝑚 ◦D𝑐)(𝑒))

=
(⋃

◦ P𝑓 𝗌𝗎𝗉𝗉
)
(𝗌𝗎𝗉𝗉(D𝑐(𝑒))) (Lemma 3.8)

=
(⋃

◦ P𝑓 𝗌𝗎𝗉𝗉 ◦ P𝑓 𝑐

)
(𝗌𝗎𝗉𝗉(𝑒)) (Lemma 3.7)

⊆

(⋃
◦ P𝑓 𝗌𝗎𝗉𝗉 ◦ P𝑓 𝑐

)
({𝖽𝗂𝗌(𝑉) ∣ 𝑉 ∈𝑈}) (monotonicity)

=
⋃

{(𝗌𝗎𝗉𝗉 ◦ 𝑐 ◦ 𝖽𝗂𝗌)(𝑉) ∣ 𝑉 ∈𝑈} (definition of P𝑓 𝗌𝗎𝗉𝗉 ◦ P𝑓 𝑐)

=
⋃

{𝑊 ∣𝑊 ⊆ 𝑉 ∈𝑈} (definition of 𝖽𝗂𝗌)

⊆
⋃

{𝑉 ∣ 𝑉 ∈𝑈}

=
⋃

𝑈.

Note that both
⋃

and any P𝑓 𝑓 for any function 𝑓 are monotone. This concludes commutativity of (8).

Below we show commutativity of the original diagram, using the factorization of 𝖼𝗈𝗇𝗏 through 𝖽𝗂𝗌.

P𝑓P𝑓𝐴 P𝑓𝐴

P𝑓P𝑐D𝐴 P𝑐DP𝑐D𝐴 P𝑐P𝑐D𝐴 P𝑐D𝐴

P𝑓P𝑐𝐴 P𝑐DP𝑐𝐴 P𝑐P𝑐𝐴 P𝑐𝐴

⋃
P𝑓 𝖽𝗂𝗌

(8)
𝖽𝗂𝗌

𝖽𝗂𝗌

P𝑓P𝑐𝛼 1

P𝑐𝜔

P𝑐DP𝑐𝛼
2

⋃
P𝑐P𝑐𝛼

3
P𝑐𝛼

𝖽𝗂𝗌 P𝑐𝜔
⋃

1 Lemma 2.11 2 naturality of 𝜔 3 naturality of
⋃

□

Lemma 3.10. For each convex set (𝐴,𝛼), the diagram below commutes.

DP𝑓𝐴 DP𝑐𝐴

P𝑓𝐴 P𝑐𝐴

D𝖼𝗈𝗇𝗏

𝜓𝐴 𝜔

𝖼𝗈𝗇𝗏

Proof. Note that 𝜓𝐴 can be written as

𝜓𝐴 =DP𝑓𝐴
𝜌
←←←←←←→ P𝑓D𝐴

P𝑓 𝛼
←←←←←←←←←←←←←←←←←←→ P𝑓𝐴, (10)

where

𝜌(𝑑) = {𝑑𝑐′ ∣ 𝑐′ ∈ 𝐶} 𝐶 = {𝑐′ ∶ 𝗌𝗎𝗉𝗉(𝑑)→𝐴,∀𝑈 ∈ 𝗌𝗎𝗉𝗉(𝑑). 𝑐′(𝑈) ∈𝑈}

and 𝑑𝑐′ ∈D𝐴 for any 𝑐′ ∈ 𝐶 is given by

𝑑𝑐′ (𝑎) =
∑

𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′(𝑈)=𝑎
𝑑(𝑈).

We will first show that the diagram

DP𝑓𝐴 DP𝑐D𝐴

P𝑓D𝐴 P𝑐D𝐴

D𝖽𝗂𝗌

𝜌 𝜔

𝖼𝗈𝗇𝗏

(11)

commutes. Given 𝑑 ∈DP𝑓𝐴, let us define the sets

𝑋 = (𝜔 ◦D𝖽𝗂𝗌)(𝑑)
1
= {(𝑚 ◦D(𝑐 ◦ 𝖽𝗂𝗌))(𝑑) ∣ 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴}

2
=

{
𝜆𝑎 ∈𝐴.

∑
𝑓∈D𝐴

D(𝑐 ◦ 𝖽𝗂𝗌)(𝑑)(𝑓) ⋅ 𝑓 (𝑎)
|||| 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴

}

Theoretical Computer Science 1040 (2025) 115191

13

G. van Heerdt, J. Hsu, J. Ouaknine et al.

3
=

{
𝜆𝑎 ∈𝐴.

∑
𝑓∈D𝐴,𝑈∈𝗌𝗎𝗉𝗉(𝑑),(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)=𝑓

𝑑(𝑈) ⋅ 𝑓 (𝑎)
|||| 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴

}

=

{
𝜆𝑎 ∈𝐴.

∑
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

𝑑(𝑈) ⋅ (𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎)
|||| 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴

}
and

𝑌 = (𝖼𝗈𝗇𝗏 ◦ 𝜌)(𝑑)
4
= {𝑚(𝑒) ∣ 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)}

2
=

{
𝜆𝑎 ∈𝐴.

∑
𝑓∈D𝐴

𝑒(𝑓) ⋅ 𝑓 (𝑎)
|||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)

}

=

{
𝜆𝑎 ∈𝐴.

∑
𝑓∈𝜌(𝑑)

𝑒(𝑓) ⋅ 𝑓 (𝑎)
|||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)

}

5
=

⎧⎪⎨⎪⎩𝜆𝑎 ∈𝐴.
∑

𝑓∈D𝐴,∃𝑐′∈𝐶. 𝑓=𝑑𝑐′
𝑒(𝑓) ⋅ 𝑓 (𝑎)

|||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)
⎫⎪⎬⎪⎭

=
⎧⎪⎨⎪⎩𝜆𝑎 ∈𝐴.

∑
𝑓∈D𝐴,𝑐′∈𝐶,𝑓=𝑑𝑐′

𝑒(𝑓) ⋅ 𝑓 (𝑎) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑓}| |||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)
⎫⎪⎬⎪⎭

=
⎧⎪⎨⎪⎩𝜆𝑎 ∈𝐴.

∑
𝑐′∈𝐶

𝑒(𝑑𝑐′) ⋅ 𝑑𝑐′ (𝑎) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }| |||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)
⎫⎪⎬⎪⎭

6
=

⎧⎪⎨⎪⎩𝜆𝑎 ∈𝐴.
∑

𝑐′∈𝐶,𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′(𝑈)=𝑎

𝑒(𝑑𝑐′) ⋅ 𝑑(𝑈) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }| |||| 𝑒 ∈DD𝐴, 𝗌𝗎𝗉𝗉(𝑒) ⊆ 𝜌(𝑑)
⎫⎪⎬⎪⎭ .

Here 1 , 2 , 3 , and 4 expand the definition of 𝜔, 𝑚, D, and 𝖼𝗈𝗇𝗏, respectively. Step 5 uses the definition of 𝜌, and 6 expands
the definition of 𝑑𝑐′ . We need to show 𝑋 ⊆ 𝑌 and 𝑌 ⊆𝑋. For the former, consider any 𝑐 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾D𝐴. We define 𝑒 ∈DD𝐴 by

𝑒(𝑓) =
∑

𝑐′∈𝐶,𝑑𝑐′ =𝑓

∏
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑐′(𝑈)).

To show that 𝑒 is a distribution, we define for any 𝑍 ∈ P𝑓𝐴 such that 𝑍 ⊆ 𝗌𝗎𝗉𝗉(𝑑),

𝐶𝑍 = {𝑐′ ∶ 𝑍 →𝐴,∀𝑈 ∈𝑍. 𝑐′(𝑈) ∈𝑈}.

We will show that∑
𝑐′∈𝐶𝑍

∏
𝑈∈𝑍

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑐′(𝑈)) = 1. (12)

First suppose that 𝑍 is a singleton {𝑈}, and note that 𝐶{𝑈} ≅𝑈 via the element picked by the choice function. Thus,∑
𝑐′∈𝐶{𝑈}

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑐′(𝑈)) =
∑
𝑎∈𝑈

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎) = 1.

Now assume that 𝑍 =𝑍′ ⊎ {𝑈} with |𝑍| ≥ 2 and that we have∑
𝑐′∈𝐶𝑍′

∏
𝑉 ∈𝑍′

(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′(𝑉)) = 1.

Observe that 𝐶𝑍 ≅ 𝐶𝑍′ ×𝑈 via the element picked from 𝑈 . Then∑
𝑐′∈𝐶𝑍′∪{𝑈}

∏
𝑉 ∈𝑍′∪{𝑈}

(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′(𝑉))

=
∑

𝑐′∈𝐶𝑍′ ,𝑎∈𝑈
(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎) ⋅

∏
𝑉 ∈𝑍′

(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′(𝑉))

Theoretical Computer Science 1040 (2025) 115191

14

G. van Heerdt, J. Hsu, J. Ouaknine et al.

=
∑

𝑐′∈𝐶𝑍′

∏
𝑉 ∈𝑍′

(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′(𝑉))

= 1,

using the induction hypothesis in the last step. Finally, to see that 𝑒 is a distribution, note that 𝐶 = 𝐶𝗌𝗎𝗉𝗉(𝑑) and thus∑
𝑓∈D𝐴,𝑐′∈𝐶,𝑑𝑐′ =𝑓

∏
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑐′(𝑈))

=
∑
𝑐′∈𝐶

∏
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

(𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑐′(𝑈))

= 1.

We are now ready to show that this definition of 𝑒 induces the right element of 𝑌 . For all 𝑎 ∈𝐴,∑
𝑐′∈𝐶,𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′(𝑈)=𝑎

𝑒(𝑑𝑐′) ⋅ 𝑑(𝑈) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }|
=

∑
𝑐′∈𝐶,𝑈∈𝗌𝗎𝗉𝗉(𝑑),

𝑐′(𝑈)=𝑎,𝑐′′∈𝐶,𝑑𝑐′′ =𝑑𝑐′

∏
𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))|{𝑐′′′ ∈ 𝐶 ∣ 𝑑𝑐′′′ = 𝑑𝑐′ }| ⋅ 𝑑(𝑈)

=
∑
𝑐′∈𝐶,

𝑐′′∈𝐶,𝑑𝑐′′ =𝑑𝑐′

∏
𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))|{𝑐′′′ ∈ 𝐶 ∣ 𝑑𝑐′′′ = 𝑑𝑐′ }| ⋅

∑
𝑈∈𝗌𝗎𝗉𝗉(𝑑),
𝑐′(𝑈)=𝑎

𝑑(𝑈)

=
∑
𝑐′∈𝐶,

𝑐′′∈𝐶,𝑑𝑐′′ =𝑑𝑐′

∏
𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))|{𝑐′′′ ∈ 𝐶 ∣ 𝑑𝑐′′′ = 𝑑𝑐′ }| ⋅

∑
𝑈∈𝗌𝗎𝗉𝗉(𝑑),
𝑐′′(𝑈)=𝑎

𝑑(𝑈)

=
∑

𝑐′∈𝐶,𝑐′′∈𝐶,𝑑𝑐′′ =𝑑𝑐′ ,
𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′′(𝑈)=𝑎

𝑑(𝑈) ⋅
∏

𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))|{𝑐′′′ ∈ 𝐶 ∣ 𝑑𝑐′′′ = 𝑑𝑐′ }|
=

∑
𝑐′′∈𝐶,

𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′′(𝑈)=𝑎

𝑑(𝑈) ⋅
∏

𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)
(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))

=
∑

𝑐′′∈𝐶𝗌𝗎𝗉𝗉(𝑑)⧵{𝑈} ,
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

𝑑(𝑈) ⋅ (𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎) ⋅
∏

𝑉 ∈𝗌𝗎𝗉𝗉(𝑑)⧵{𝑈}
(𝑐 ◦ 𝖽𝗂𝗌)(𝑉)(𝑐′′(𝑉))

=
∑

𝑈∈𝗌𝗎𝗉𝗉(𝑑)
𝑑(𝑈) ⋅ (𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎).

Here we expanded the definition of 𝑒 in the first step and applied (12) in the last step.

Regarding the other inclusion 𝑌 ⊆𝑋, consider any 𝑒∈DD𝐴 such that 𝗌𝗎𝗉𝗉(𝑒) ⊆ {𝑑𝑐′ ∣ 𝑐′ ∈ 𝐶}. We define 𝑐 ∶ P𝑐D𝐴→D𝐴 by

𝑐(𝑉)(𝑎) =
∑

𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑉 =𝖽𝗂𝗌(𝑈)

∑
𝑐′∈𝐶,𝑐′(𝑈)=𝑎

𝑒(𝑑𝑐′) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }|
To see that 𝑐(𝑉) is a distribution for any 𝑉 ∈ P𝑐D𝐴, note that

∑
𝑎∈𝐴,𝑐′∈𝐶,𝑐′(𝑈)=𝑎

𝑒(𝑑𝑐′) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }| = ∑
𝑐′∈𝐶

𝑒(𝑑𝑐′) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }| = 1.

Furthermore, for all 𝑎 ∈𝐴,∑
𝑈∈𝗌𝗎𝗉𝗉(𝑑)

𝑑(𝑈) ⋅ (𝑐 ◦ 𝖽𝗂𝗌)(𝑈)(𝑎) =
∑

𝑈∈𝗌𝗎𝗉𝗉(𝑑),𝑐′∈𝐶,𝑐′(𝑈)=𝑎

𝑒(𝑑𝑐′) ⋅ 𝑑(𝑈) |{𝑐′′ ∈ 𝐶 ∣ 𝑑𝑐′′ = 𝑑𝑐′ }|
by the definition of 𝑐, so this defines the right element of 𝑋. This concludes the commutativity of (11), which completes the diagram
below.

Theoretical Computer Science 1040 (2025) 115191

15

G. van Heerdt, J. Hsu, J. Ouaknine et al.

DP𝑓𝐴 DP𝑐𝐴

DP𝑐D𝐴

P𝑓D𝐴 P𝑐D𝐴

P𝑓𝐴 P𝑐𝐴

D𝖼𝗈𝗇𝗏

D𝖽𝗂𝗌

𝜌

𝜓

(10)

(2)

𝜔

DP𝑐𝛼

𝜔 2
𝖼𝗈𝗇𝗏

P𝑓 𝛼

(11)

1 P𝑐𝛼

𝖼𝗈𝗇𝗏

1 Lemma 2.12 2 naturality of 𝜔 □

Lemma 3.11. The diagrams below commute.

P𝑓 [0,1] P𝑐[0,1]

[0,1]

𝖼𝗈𝗇𝗏

𝗆𝗂𝗇
𝗆𝗂𝗇

P𝑓 [0,1] P𝑐[0,1]

[0,1]

𝖼𝗈𝗇𝗏

𝗆𝖺𝗑
𝗆𝖺𝗑

Proof. We only show the case for 𝗆𝗂𝗇, as the one for 𝗆𝖺𝗑 is analogous. For each 𝑈 ∈ P𝑓 [0,1], we have

(𝗆𝗂𝗇 ◦ 𝖼𝗈𝗇𝗏)(𝑈) =𝗆𝗂𝗇({𝔼(𝑑) ∣ 𝑑 ∈D([0,1]), 𝗌𝗎𝗉𝗉(𝑑) ⊆𝑈})

=𝗆𝗂𝗇

({ ∑
𝑎∈𝗌𝗎𝗉𝗉(𝑑)

𝑑(𝑎) ⋅ 𝑎
|||| 𝑑 ∈ [0,1], 𝗌𝗎𝗉𝗉(𝑑) ⊆ 𝑈

})
=𝗆𝗂𝗇(𝑈),

where in the first two steps we expand the definitions of 𝖼𝗈𝗇𝗏(𝑈) and 𝔼(𝑑), respectively, and for the last step we note that to minimize
the sum, the distribution 𝑑 should be chosen so as to concentrate all probability mass at the minimum element of 𝑈 . □

We are now ready to prove the main result of this section: soundness of the finitary version of the determinization construction.

Theorem 3.12 (Soundness of finitary determinization). Given any finitary NPA (𝑆, 𝑠0, 𝛾,{𝜏𝑎}𝑎∈Σ), the map 𝖼𝗈𝗇𝗏∶ P𝑓D𝑆 → P𝑐D𝑆 is an
automaton homomorphism from its determinization to the determinization of its convex extension.

Proof. Noting 𝖼𝗈𝗇𝗏 ◦ {−} = {−}, the initial state is trivially preserved. For the output maps, we have commutativity of the following
diagram.

P𝑓D𝑆 P𝑓D[0,1] P𝑓 [0,1]

P𝑐D𝑆 P𝑐D[0,1] P𝑐[0,1] [0,1]

P𝑓D𝛾

𝖼𝗈𝗇𝗏 1

P𝑓𝔼

𝖼𝗈𝗇𝗏 1 𝖼𝗈𝗇𝗏
𝛼

2
P𝑐D𝛾 P𝑐𝔼 𝛼

1 Lemma 2.12 2 Lemma 3.11

To conclude, 𝖼𝗈𝗇𝗏 commutes with each of the transition functions for 𝑎 ∈ Σ.

P𝑓D𝑆 P𝑓DP𝑓D𝑆 P𝑓P𝑓D𝑆 P𝑓D𝑆

P𝑓DP𝑐D𝑆 P𝑓P𝑐D𝑆

P𝑐D𝑆 P𝑐DP𝑓D𝑆 P𝑐DP𝑐D𝑆 P𝑐P𝑐D𝑆 P𝑐D𝑆

P𝑓D𝜏𝑎

𝖼𝗈𝗇𝗏
1

P𝑓 𝜓

P𝑓D𝖼𝗈𝗇𝗏

𝖼𝗈𝗇𝗏 1

⋃
P𝑓 𝖼𝗈𝗇𝗏

3 𝖼𝗈𝗇𝗏
P𝑓 𝜔

𝖼𝗈𝗇𝗏

2

1 𝖼𝗈𝗇𝗏

P𝑐D𝜏𝑎 P𝑐D𝖼𝗈𝗇𝗏 P𝑐𝜔
⋃

1 Lemma 2.12 2 Lemma 3.10 3 Lemma 3.9 □

4. Expressive power of NPAs

Our convex language semantics for NPAs coincides with the standard semantics for DPAs when all convex sets in the transition
functions are singleton sets. In this section, we show that NPAs are in fact strictly more expressive than DPAs. We give two results.

First, we exhibit a concrete language over a binary alphabet that is recognizable by a NPA, but not recognizable by any DPA. This

Theoretical Computer Science 1040 (2025) 115191

16

G. van Heerdt, J. Hsu, J. Ouaknine et al.

argument uses elementary facts about weighted languages, and actually shows that NPAs are strictly more expressive than weighted
finite automata (WFAs). A WFA (over a field 𝔽) is a 𝑇 -automaton over the free vector space monad 𝑉 (see Example 2.6). More
concretely, a WFA is a finite set of states 𝑆 together with two linear maps 𝑜 ∶ 𝑆 → 𝔽 and 𝑡 ∶ 𝑆 → 𝑉 (𝑆)𝐴 and an initial vector

𝑖 ∈ 𝑉 (𝑆). A WFA accepts weighted languages 𝔽𝐴∗
, as per Definition 2.15.

Next, we separate NPAs and DPAs over a unary alphabet. This argument is substantially more technical, relying on deeper results
from number theory about linear recurrence sequences.

4.1. Separating NPAs and DPAs: binary alphabet

Consider the language L𝑎 ∶ {𝑎, 𝑏}∗ → [0,1] by L𝑎(𝑢) = 2−𝑛, where 𝑛 is the length of the longest sequence of 𝑎’s occurring in 𝑢.

Recall that this language is accepted by the NPA (4) using the 𝗆𝗂𝗇 algebra.

Theorem 4.1. NPAs are more expressive than DPAs. Specifically, there is no DPA, or even WFA, accepting L𝑎.

Proof. Assume there exists a WFA accepting L𝑎, and let 𝑙(𝑢) for 𝑢 ∈ {𝑎, 𝑏}∗ be the language of the linear combination of states reached
after reading the word 𝑢. We will show that the languages 𝑙(𝑎𝑛𝑏) for 𝑛 ∈ ℕ are linearly independent. Since the function that assigns
to each linear combination of states its accepted language is a linear map, this implies that the set of linear combinations of states of
the WFA is a vector space of infinite dimension, a contradiction.

The proof is by induction on a natural number 𝑚. Assume that for all natural numbers 𝑖 ≤ 𝑚 the languages 𝑙(𝑎𝑖𝑏) are linearly

independent. For all 𝑖 ≤ 𝑚 we have 𝑙(𝑎𝑖𝑏)(𝑎𝑚) = 2−𝑚 and 𝑙(𝑎𝑖𝑏)(𝑎𝑚+1) = 2−𝑚−1; however, 𝑙(𝑎𝑚+1𝑏)(𝑎𝑚) = 𝑙(𝑎𝑚+1𝑏)(𝑎𝑚+1) = 2−𝑚−1. If
𝑙(𝑎𝑚+1𝑏) is a linear combination of the languages 𝑙(𝑎𝑖𝑏) for 𝑖 ≤𝑚, then there are constants 𝑐1,… , 𝑐𝑚 ∈ℝ such that in particular

(𝑐1 +⋯+ 𝑐𝑚)2−𝑚 = 2−𝑚−1 and (𝑐1 +⋯+ 𝑐𝑚)2−𝑚−1 = 2−𝑚−1.

These equations cannot be satisfied. Therefore, for all natural numbers 𝑖 ≤ 𝑚 + 1 the languages 𝑙(𝑎𝑖𝑏) are linearly independent. We
conclude by induction that for all 𝑚 ∈ ℕ the languages 𝑙(𝑎𝑖𝑏) for 𝑖 ≤ 𝑚 are linearly independent, which implies that all languages
𝑙(𝑎𝑛𝑏) for 𝑛 ∈ℕ are linearly independent. □

A similar argument works for NPAs under the 𝗆𝖺𝗑 algebra semantics—one can easily repeat the argument in the above theorem
for the language accepted by the NPA resulting from applying Proposition 3.4 to the NPA (4).

4.2. Separating NPAs and DPAs: unary alphabet

We now turn to the unary case. A weighted language over a unary alphabet can be represented by a sequence ⟨𝑢𝑖⟩ = 𝑢0, 𝑢1,… of
real numbers. We will give such a language that is recognizable by a NPA but not recognizable by any WFA (and in particular, any

DPA) using results on linear recurrence sequences, an established tool for studying unary weighted languages.

We begin with some mathematical preliminaries. A sequence of real numbers ⟨𝑢𝑖⟩ is a linear recurrence sequence (LRS) if for some
integer 𝑘 ∈ℕ (the order), constants 𝑢0,… , 𝑢𝑘−1 ∈ℝ (the initial conditions), and coefficients 𝑏0,… , 𝑏𝑘−1 ∈ℝ, we have

𝑢𝑛+𝑘 = 𝑏𝑘−1𝑢𝑛−1 +⋯+ 𝑏0𝑢𝑛

for every 𝑛 ∈ℕ. A well-known example of an LRS is the Fibonacci sequence, an order-2 LRS satisfying the recurrence 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛.

Another example of an LRS is any constant sequence, i.e., ⟨𝑢𝑖⟩ with 𝑢𝑖 = 𝑐 for all 𝑖.
Linear recurrence sequences are closed under linear combinations: for any two LRS ⟨𝑢𝑖⟩, ⟨𝑣𝑖⟩ and constants 𝛼, 𝛽 ∈ℝ, the sequence ⟨𝛼𝑢𝑖 + 𝛽𝑣𝑖⟩ is again an LRS (possibly of larger order). We will use one important theorem about LRSs. See the monograph by Everest

et al. [32] for details.

Theorem 4.2 (Skolem-Mahler-Lech). If ⟨𝑢𝑖⟩ is an LRS, then its zero set {𝑖 ∈ℕ ∣ 𝑢𝑖 = 0} is the union of a finite set along with finitely many
arithmetic progressions (i.e., sets of the form {𝑝+ 𝑘𝑛 ∣ 𝑛 ∈ℕ} with 𝑘 ≠ 0).

This is a celebrated result in number theory and not at all easy to prove. To make the connection to probabilistic and weighted
automata, we will use two results. The first proposition follows from the Cayley-Hamilton Theorem.

Proposition 4.3 (see, e.g., [25]). Let L be a weighted unary language recognizable by a weighted automaton 𝑊 . Then the sequence of
weights ⟨𝑢𝑖⟩ with 𝑢𝑖 = L(𝑎𝑖) is an LRS, where the order is at most the number of states in 𝑊 .

While not every LRS can be recognized by a DPA, it is known that DPAs can recognize a weighted language encoding the sign of
a given LRS.

Theorem 4.4 (Akshay, et al. [33, Theorem 3, Corollary 4]). Given any LRS ⟨𝑢𝑖⟩, there exists a stochastic matrix 𝑀 such that

𝑢𝑛 ≥ 0 ⟺ 𝑢𝑇𝑀𝑛𝑣 ≥ 1∕4

Theoretical Computer Science 1040 (2025) 115191

17

G. van Heerdt, J. Hsu, J. Ouaknine et al.

for all 𝑛, where 𝑢 = (1,0,… ,0) and 𝑣 = (0,1,0,… ,0). Equality holds on the left if and only if it holds on the right. The language L(𝑎𝑛) =
𝑢𝑇𝑀𝑛𝑣 is recognizable by a DPA with input vector 𝑢, output vector 𝑣, and transition matrix 𝑀 (Remark 2.17). If the LRS is rational, 𝑀
can be taken to be rational as well.

We are now ready to separate NPAs and WFAs over a unary alphabet.

Theorem 4.5. There is a language over a unary alphabet that is recognizable by an NPA but not by any WFA (and in particular any DPA).

Proof. We will work in the complex numbers ℂ, with 𝑖 being the positive square root of −1 as usual. Let 𝑎, 𝑏 ∈ℚ be nonzero such
that 𝑧 ≜ 𝑎+ 𝑏𝑖 is on the unit circle in ℂ, for instance 𝑎 = 3∕5, 𝑏 = 4∕5 so that |𝑎+ 𝑏𝑖| = 𝑎2 + 𝑏2 = 1. Let 𝑧̄ = 𝑎− 𝑏𝑖 denote the complex

conjugate of 𝑧 and let Re(𝑧) denote the real part of a complex number. It is possible to show that 𝑧 is not a root of unity, i.e., 𝑧𝑘 ≠ 1
for all 𝑘 ∈ ℕ. Let ⟨𝑥𝑛⟩ be the sequence 𝑥𝑛 ≜ (𝑧𝑛 + 𝑧̄𝑛)∕2 = Re(𝑧𝑛). By direct calculation, this sequence has imaginary part zero and
satisfies the recurrence

𝑥𝑛+2 = 2𝑎𝑥𝑛+1 − (𝑎2 + 𝑏2)𝑥𝑛
with 𝑥0 = 1 and 𝑥1 = 𝑎, so ⟨𝑥𝑛⟩ is an order-2 rational LRS. By Theorem 4.4, there exists a stochastic matrix 𝑀 and non-negative
vectors 𝑢, 𝑣 such that

𝑥𝑛 ≥ 0 ⟺ 𝑢𝑇𝑀𝑛𝑣 ≥ 1∕4

for all 𝑛, where equality holds on the left if and only if equality holds on the right. Note that 𝑥𝑛 = Re(𝑧𝑛) ≠ 0 since 𝑧 is not a root
of unity (so in particular 𝑧𝑛 ≠ ±𝑖), hence equality never holds on the right. Letting ⟨𝑦𝑛⟩ be the sequence 𝑦𝑛 = 𝑢𝑇𝑀𝑛𝑣, the (unary)

language with weights ⟨𝑦𝑛⟩ is recognized by the DPA with input 𝑢, output 𝑣 and transition matrix 𝑀 . Furthermore, the constant
sequence ⟨1∕4⟩ is recognizable by a DPA.

Now we define a sequence ⟨𝑤𝑛⟩ with 𝑤𝑛 =max(𝑦𝑛,1∕4). Since ⟨𝑦𝑛⟩ and ⟨1∕4⟩ are recognizable by DPAs, ⟨𝑤𝑛⟩ is recognizable by an
NPA whose initial state nondeterministically chooses between the two DPAs (see Remark 2.17). Suppose for the sake of contradiction
that it is also recognizable by a WFA. Then ⟨𝑤𝑛⟩ is an LRS (by Proposition 4.3) and hence so is ⟨𝑡𝑛⟩ with 𝑡𝑛 = 𝑤𝑛 − 𝑦𝑛. If we now

consider the zero set

𝑆 = {𝑛 ∈ℕ ∣ 𝑡𝑛 = 0}

= {𝑛 ∈ℕ ∣ 𝑦𝑛 > 1∕4} (𝑦𝑛 ≠ 1∕4)

= {𝑛 ∈ℕ ∣ 𝑥𝑛 > 0} (Theorem 4.4)

= {𝑛 ∈ℕ ∣ Re(𝑧𝑛) > 0} (by definition),

Theorem 4.2 implies that 𝑆 is the union of a finite set of indices and along with a finite number of arithmetic progressions. Note that
𝑆 cannot be finite—in the last line, 𝑧𝑛 is dense in the unit circle since 𝑧 is not a root of unity—so there must be at least one arithmetic
progression {𝑝+ 𝑘𝑛 ∣ 𝑛 ∈ℕ}. Letting ⟨𝑟𝑛⟩ be

𝑟𝑛 = (𝑧𝑝 ⋅ (𝑧𝑘)𝑛 + 𝑧̄𝑝 ⋅ (𝑧̄𝑘)𝑛)∕2 = Re(𝑧𝑝 ⋅ (𝑧𝑘)𝑛) = 𝑥𝑝+𝑘𝑛,

we have 𝑝 + 𝑘𝑛 ∈ 𝑆 , so 𝑟𝑛 > 0 for all 𝑛 ∈ ℕ, but this is impossible since it is dense in [−1,1] (because 𝑧𝑘 is not a root of unity for

𝑘 ≠ 0, so 𝑧𝑝 ⋅ (𝑧𝑘)𝑛 is dense in the unit circle). Hence, the unary weighted language ⟨𝑤𝑛⟩ can be recognized by an NPA but not by a
WFA. □

5. Checking language equivalence of NPAs

Now that we have a coalgebraic model for NPA, a natural question is whether there is a procedure to check language equivalence of
NPAs. We will show that language equivalence of NPAs is undecidable by reduction from the threshold problem on DPAs. Nevertheless,

we can define a metric on the set of languages recognized by NPAs to measure their similarity. While this metric cannot be computed
exactly, it can be approximated to any given precision.

5.1. Undecidability and hardness

Theorem 5.1. Equivalence of NPAs is undecidable when |Σ|≥ 2 and the P𝑐D-algebra on [0,1] extends the usual D-algebra on [0,1].

Proof. Let 𝑋 be a DPA and 𝜅 ∈ [0,1]. We define NPAs 𝑌 and 𝑍 as follows:

𝑌 =
𝜅𝜅 𝑋

Σ Σ

Σ
𝑍 = 𝜅 Σ

Theoretical Computer Science 1040 (2025) 115191

18

G. van Heerdt, J. Hsu, J. Ouaknine et al.

Here the node labeled 𝑋 represents a copy of the automaton 𝑋�-the transition into 𝑋 goes into the initial state of 𝑋. Note that the
edges are labeled by Σ to indicate a transition for every element of Σ. We see that L𝑌 (𝜀) = 𝜅 = L𝑍 (𝜀) and (for 𝛼 either 𝗆𝗂𝗇 or 𝗆𝖺𝗑,

as follows from Corollary 3.3)

L𝑌 (𝑎𝑣) = (𝛼 ◦ 𝖼𝗈𝗇𝗏)({𝜅,L𝑋 (𝑣)}) L𝑍 (𝑎𝑣) = 𝜅.

Thus, if 𝛼 = 𝗆𝗂𝗇, then L𝑌 = L𝑍 if and only if L𝑋 (𝑣) ≥ 𝜅 for all 𝑣 ∈ Σ∗; if 𝛼 = 𝗆𝖺𝗑, then L𝑌 = L𝑍 if and only if L𝑋 (𝑣) ≤ 𝜅 for all
𝑣 ∈ Σ∗. Both of these threshold problems are undecidable for alphabets of size at least 2 [22--24]. □

The situation for automata over unary alphabets is more subtle; in particular, the threshold problem is not known to be undecidable
in this case. However, there is a reduction to a long-standing open problem on LRSs.

Given an LRS ⟨𝑢𝑖⟩, the Positivity problem is to decide whether 𝑢𝑖 is non-negative for all 𝑖 ∈ℕ (see, e.g., [25]). While the decidability

of this problem has remained open for more than 80 years, it is known that a decision procedure for Positivity would necessarily

entail breakthroughs in open problems in number theory. That is, it would give an algorithm to compute the homogeneous Diophantine
approximation type for a class of transcendental numbers [25]. Furthermore, the Positivity problem can be reduced to the threshold
problem on unary probabilistic automata. Putting everything together, we have the following.

Corollary 5.2. The Positivity problem for linear recurrence sequences can be reduced to the equivalence problem of NPAs over a unary
alphabet.

Proof. The construction in Theorem 5.1 shows that the lesser-than threshold problem can be reduced to the equivalence problem for

NPAs with 𝗆𝖺𝗑 semantics, so we show that Positivity can be reduced to the lesser-than threshold problem on probabilistic automata
with a unary alphabet. Given any rational LRS ⟨𝑢𝑖⟩, clearly ⟨−𝑢𝑖⟩ is an LRS as well, so by Theorem 4.4 there exists a rational stochastic
matrix 𝑀 such that

−𝑢𝑛 > 0 ⟺ 𝑢𝑇𝑀𝑛𝑣 > 1∕4

for all 𝑛, where 𝑢 = (1,0,… ,0) and 𝑣 = (0,1,0,… ,0). Taking 𝑀 to be the transition matrix, 𝑣 to be the input vector, and 𝑢 to be the
output vector, the probabilistic automaton corresponding to the right-hand side is a nonsatisfying instance to the threshold problem
with threshold ≤ 1∕4 if and only if the ⟨𝑢𝑖⟩ is a satisfying instance of the Positivity problem.

Applying Proposition 3.4 yields an analogous reduction from Positivity to the equivalence problem of NPAs with 𝗆𝗂𝗇 seman-

tics. □

5.2. Checking approximate equivalence

The previous negative results show that deciding exact equivalence of NPAs is computationally intractable (or at least very difficult,

for a unary alphabet). A natural question is whether we might be able to check approximate equivalence. In this section, we show how

to approximate a metric on weighted languages. Our metric will be discounted�-differences in weights of longer words will contribute
less to the metric than differences in weights of shorter words.

Given 𝑐 ∈ [0,1) and two weighted languages 𝑙1, 𝑙2 ∶ Σ∗ → [0,1], we define

𝑑𝑐(𝑙1, 𝑙2) =
∑
𝑢∈Σ∗

|𝑙1(𝑢) − 𝑙2(𝑢)| ⋅(𝑐|Σ|
)|𝑢|

.

Suppose that 𝑙1 and 𝑙2 are recognized by given NPAs. Since 𝑑𝑐 (𝑙1, 𝑙2) = 0 if and only if the languages (and automata) are equivalent,

we cannot hope to compute the metric exactly. We can, however, compute the weight of any finite word under 𝑙1 and 𝑙2. Combined
with the discounting in the metric, we can approximate this metric 𝑑𝑐 within any desired (nonzero) error.

Theorem 5.3. There is a procedure that given 𝑐 ∈ [0,1), 𝜅 > 0, and computable functions 𝑙1, 𝑙2 ∶ Σ∗ → [0,1] outputs 𝑥 ∈ ℝ+ such that |𝑑𝑐(𝑙1, 𝑙2) − 𝑥| ≤ 𝜅.

Proof. Let 𝑛 = ⌈log𝑐((1 − 𝑐) ⋅ 𝜅)⌉ ∈ℕ and define

𝑥 =
∑

𝑢∈Σ∗ ,|𝑢|<𝑛 |𝑙1(𝑢) − 𝑙2(𝑢)| ⋅(𝑐|Σ|
)|𝑢|

.

This sum is over a finite set of finite strings and the weights of 𝑙1(𝑢) and 𝑙2(𝑢) can all be computed exactly, so 𝑥 is computable as well.

Now we can bound

|𝑑𝑐(𝑙1, 𝑙2) − 𝑥| = ∑
𝑢∈Σ∗ ,|𝑢|≥𝑛 |𝑙1(𝑢) − 𝑙2(𝑢)| ⋅(𝑐|Σ|

)|𝑢|
≤

∑
𝑢∈Σ∗ ,|𝑢|≥𝑛

(
𝑐|Σ|

)|𝑢|

Theoretical Computer Science 1040 (2025) 115191

19

G. van Heerdt, J. Hsu, J. Ouaknine et al.

=
∑

𝑖∈ℕ,𝑖≥𝑛
|Σ|𝑖 ⋅(𝑐|Σ|

)𝑖

=
∑

𝑖∈ℕ,𝑖≥𝑛
𝑐𝑖 = 𝑐𝑛

1 − 𝑐
≤ 𝜅,

where the last step is because 𝑛 ≥ log𝑐((1 − 𝑐) ⋅ 𝜅), and thus 𝑐𝑛 ≤ (1 − 𝑐) ⋅ 𝜅, noting that 𝑐 ∈ [0,1) and 𝜅 > 0. □

We leave approximating other metrics on weighted languages—especially nondiscounted metrics—as an intriguing open question.

6. Conclusions

We have defined a novel probabilistic language semantics for nondeterministic probabilistic automata (NPAs). We proved that
NPAs are strictly more expressive than deterministic probabilistic automata, and that exact equivalence is undecidable. We have
shown how to approximate the equivalence question to arbitrary precision using a discounted metric. There are several directions
for future work that we would like to explore. First, it would be interesting to see if different metrics can be defined on probabilistic
languages and what approximate equivalence procedures they give rise to. Second, we would like to explore whether we can extend
logical characterization results in the style of Panangaden et al. [34,35]. Third, we believe that there is an abstract understanding on
the relationship between P𝑓 and P𝑐 that is more general than what we presented in this paper and might lead to analogue results for

further automata types (for instance, work developed after we first submitted this paper on weak distributive laws [36] seems like a
promising direction to explore). Finally, it would be interesting to investigate the class of languages recognizable by our NPAs.

Related work Variants of probabilistic automata have a long history. Our work is closest to the work of Segala [9] in that our

automaton model has both nondeterminism and probabilistic choice. However, we enrich the states with an output weight that is
used in the definition of the language semantics. Our language semantics is coarser than probabilistic (convex) bisimilarity [9] and
bisimilarity on distributions [18]. In fact, in contrast to the hardness and undecidability results we proved for probabilistic language
equivalence, bisimilarity on distributions can be shown to be decidable [18] with the help of convexity. The techniques we use
in defining the semantics are closely related to the recent categorical understanding of bisimilarity on distributions [16]. Bonchi,

Sokolova, and Vignudelli [37] also consider automata based on the convex powerset monad. Using an algebraic presentation for this
monad, they also define the max and min semantics, as well as a ``min-max'' semantics where outputs are closed intervals in [0,1].
The corresponding equivalences resulting from these semantics are then compared to existing trace equivalences from the literature.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We thank Nathanaël Fijalkow and the anonymous reviewers for their useful suggestions to improve the paper.

References

[1] G. van Heerdt, J. Hsu, J. Ouaknine, A. Silva, Convex Language Semantics for Nondeterministic Probabilistic Automata, vol. 11187, Springer, 2018, pp. 472--492.

[2] D. Kozen, Semantics of probabilistic programs, 1979, pp. 101--114.

[3] A. Legay, A.S. Murawski, J. Ouaknine, J. Worrell, On automated verification of probabilistic programs 4963 (2008) 173--187.

[4] M.O. Rabin, Probabilistic algorithms, in: Algorithms and Complexity: New Directions and Results, 1976, pp. 21--39.

[5] M.O. Rabin, 𝑁 -process mutual exclusion with bounded waiting by 4 log2 𝑁 -valued shared variable, J. Comput. Syst. Sci. 25 (1) (1982) 66--75.

[6] B. Balle, J. Castro, R. Gavaldà, Adaptively learning probabilistic deterministic automata from data streams, Mach. Learn. 96 (1--2) (2014) 99--127.

[7] D. Ron, Y. Singer, N. Tishby, The power of amnesia: learning probabilistic automata with variable memory length, Mach. Learn. 25 (2) (1996) 117--149.

[8] V. Sassone, M. Nielsen, G. Winskel, Models for concurrency: towards a classification, Theor. Comput. Sci. 170 (1--2) (1996) 297--348.

[9] R. Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,

1995.

[10] M. Bernardo, R. De Nicola, M. Loreti, Revisiting trace and testing equivalences for nondeterministic and probabilistic processes, Log. Methods Comput. Sci. 10 (1)

(2014).

[11] H. Hermanns, J. Katoen, The how and why of interactive Markov chains, in: LNCS, vol. 6286, 2009, pp. 311--337.

[12] T.A. Henzinger, Quantitative reactive modeling and verification, Comput. Sci. Res. Dev. 28 (4) (2013) 331--344.

[13] M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilistic real-time systems, in: LNCS, vol. 6806, 2011, pp. 585--591.

[14] M. Swaminathan, J.-P. Katoen, E.-R. Olderog, Layered reasoning for randomized distributed algorithms, Form. Asp. Comput. 24 (4) (2012) 477--496.

[15] V. Vignudelli, Behavioral equivalences for higher-order languages with probabilities, Ph.D. thesis, University of Bologna, Italy, 2017.

[16] F. Bonchi, A. Silva, A. Sokolova, The power of convex algebras, in: LIPIcs, vol. 85, 2017, pp. 23:1--23:18.

[17] Y. Deng, R.J. van Glabbeek, M. Hennessy, C. Morgan, Testing finitary probabilistic processes, in: LNCS, vol. 5710, 2009, pp. 274--288.

[18] H. Hermanns, J. Krcál, J. Kretínský, Probabilistic bisimulation: naturally on distributions, in: LNCS, vol. 8704, 2014, pp. 249--265.

[19] M.Y. Vardi, Branching vs. linear time: final showdown, in: LNCS, vol. 2031, 2001, pp. 1--22.

[20] F. Bonchi, D. Pous, Hacking nondeterminism with induction and coinduction, Commun. ACM 58 (2) (2015) 87--95.

[21] M.O. Rabin, Probabilistic automata, Inf. Control 6 (3) (1963) 230--245.

[22] A. Paz, Introduction to Probabilistic Automata, Academic Press, 1971.

[23] V.D. Blondel, V. Canterini, Undecidable problems for probabilistic automata of fixed dimension, Theory Comput. Syst. 36 (2003) 231--245.

[24] N. Fijalkow, Undecidability results for probabilistic automata, ACM SIGLOG News 4 (4) (2017) 10--17.

Theoretical Computer Science 1040 (2025) 115191

20

http://refhub.elsevier.com/S0304-3975(25)00129-X/bib8FE0986646F90E4B73E4123BE95899A4s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibB9010D9DC36E94E0380D762DDAA548DBs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibF1BFAC008E70999652A227AF1AEB75D6s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibD673ED270D50F71CCD33CA1C76AA85EDs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibC8DF64157021F8A946197CD662E2E741s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibD8A5A206B37A078694EAB10F965E4BDCs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib91D35F35FB15431151FCB5F8CEEDA98Fs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibFFB6575FD18A58C73B18073E912E2677s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib1C614D2CD654E153CDAC56095F1B0138s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib1C614D2CD654E153CDAC56095F1B0138s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibA62FE230FB661B05FC34925578F3E2C3s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibA62FE230FB661B05FC34925578F3E2C3s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib36C7664DB293B5C4909575D063636F87s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib2BBFFF1912D05E6515D63B5AAF3C5F59s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib47AC91E280234646A2613EB47538A1FEs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib271BD38B55DA5C994D133E16E772EFF0s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib7902B7C0BE5CEDB6FBADA8D4C7FC42A0s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibC26E0FDF4B7AC5995C34906D5A925241s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib8C5CB4A8E57A127B3E895F2BB3E7308Fs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibB741FDE8B7E83B50B25059AC36B727C5s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib08F60AE5CF4500CCC86A0601C34855CEs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib48294BD7506138589C810757090F9B54s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib279E000C85E694189FF24C70A7FA1E8Fs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib61C379C02C27564D8FDBF5B9BF9B0B3Fs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib084958C2AD7E64BBE2ABF1652DC448BAs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib7DD4A939E3D0A16FB34ED150A14B2FD6s1

G. van Heerdt, J. Hsu, J. Ouaknine et al.

[25] J. Ouaknine, J. Worrell, Positivity problems for low-order linear recurrence sequences, 2014, pp. 366--379.

[26] M.A. Arbib, E.G. Manes, Fuzzy machines in a category, Bull. Am. Math. Soc. 13 (1975) 169--210.

[27] A. Silva, F. Bonchi, M.M. Bonsangue, J.J.M.M. Rutten, Generalizing determinization from automata to coalgebras, Log. Methods Comput. Sci. 9 (1) (2013).

[28] S. Goncharov, S. Milius, A. Silva, Towards a coalgebraic Chomsky hierarchy, in: IFIP International Conference on Theoretical Computer Science (TCS), Rome,

Italy, 2014, pp. 265--280.

[29] D. Varacca, G. Winskel, Distributing probability over non-determinism, Math. Struct. Comput. Sci. 16 (1) (2006) 87--113, https://doi.org/10.1017/

S0960129505005074.

[30] M. Zwart, D. Marsden, No-go theorems for distributive laws, in: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,

Canada, June 24-27, 2019, IEEE, 2019, pp. 1--13.

[31] F. Dahlqvist, R. Neves, Compositional semantics for new paradigms: probabilistic, hybrid and beyond, CoRR, arXiv:1804.04145 [abs], 2018, arXiv:1804.04145,

http://arxiv.org/abs/1804.04145.

[32] G. Everest, A.J. van der Poorten, I.E. Shparlinski, T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, vol. 104, American Mathematical
Society, 2003.

[33] S. Akshay, T. Antonopoulos, J. Ouaknine, J. Worrell, Reachability problems for Markov chains, Inf. Process. Lett. 115 (2) (2015) 155--158.

[34] N. Fijalkow, B. Klin, P. Panangaden, Expressiveness of probabilistic modal logics, revisited, in: LIPIcs, vol. 80, 2017, pp. 105:1--105:12.

[35] J. Desharnais, A. Edalat, P. Panangaden, A logical characterization of bisimulation for labeled Markov processes, 1998, pp. 478--487.

[36] A. Goy, D. Petrisan, Combining probabilistic and non-deterministic choice via weak distributive laws, in: H. Hermanns, L. Zhang, N. Kobayashi, D. Miller (Eds.),

LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, ACM, 2020, pp. 454--464.

[37] F. Bonchi, A. Sokolova, V. Vignudelli, The theory of traces for systems with nondeterminism and probability, arXiv:1808.00923, 2018.

Theoretical Computer Science 1040 (2025) 115191

21

http://refhub.elsevier.com/S0304-3975(25)00129-X/bib3288355114CFAE6BB17DF8331E787BDAs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibB179E2826548A813047C8066685585F4s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibAF893F3767DEA22B04A26DEB2DFDF6A7s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib6B6503CFA8FF18760622630DA905A84Es1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib6B6503CFA8FF18760622630DA905A84Es1
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1017/S0960129505005074
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib67AB212DD805605371B935A296BBE2AFs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib67AB212DD805605371B935A296BBE2AFs1
http://arxiv.org/abs/1804.04145
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib35277533B4B95C20702AF3E8FA703EBCs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib35277533B4B95C20702AF3E8FA703EBCs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib879391964769F90C6DACEB2F4558F07Es1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib565FAC5D2C92FAC10CF349965247EFBBs1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib95C1AF9355B90015FAEEDF5FCE6492D7s1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib2F050DFB06EBD9226427634F1B65B37Ds1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bib2F050DFB06EBD9226427634F1B65B37Ds1
http://refhub.elsevier.com/S0304-3975(25)00129-X/bibEE51C1FBA2D0E14119D237183AF02DF3s1

	Convex language semantics for nondeterministic probabilistic automata
	1 Introduction
	2 Preliminaries
	2.1 Convex algebra
	2.2 Monads and their algebras
	2.3 Distribution and convex powerset monads
	2.4 Automata and language semantics

	3 Nondeterministic probabilistic automata
	3.1 From convex algebra to language semantics
	3.2 Characterizing the PcD-algebra on [0,1]
	3.3 Using the finite representation

	4 Expressive power of NPAs
	4.1 Separating NPAs and DPAs: binary alphabet
	4.2 Separating NPAs and DPAs: unary alphabet

	5 Checking language equivalence of NPAs
	5.1 Undecidability and hardness
	5.2 Checking approximate equivalence

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

