
On Process-Algebraic Extensions of Metric
Temporal Logic

Christoph Haase, Joël Ouaknine, and James Worrell

Abstract It is known that the satisfiability problem for Metric Temporal Logic
(MTL) is decidable over finite timed words. In this paper we study the satisfia-
bility problem for extensions of this logic by various process-algebraic operators.
On the negative side we show that satisfiability becomes undecidable when any of
hiding, renaming, or asynchronous parallel composition are added to the logic. On
the positive side we show decidability with the addition of alphabetised parallel
composition and fixpoint operators. We use one-clock Timed Propositional Tempo-
ral Logic (TPTL(1)) as a technical tool for the decidability results and show that
TPTL(1) with fixpoints provides a logical characterisation of the class of languages
accepted by one-clock timed alternating automata.

1 Introduction

The model of time usually adopted in computer-aided verification and process al-
gebra isqualitative: it offers an ordering of the various events a given system may
go through, but abstracts away fromquantitative, or metric, information regarding
the precise timing of these events. If such information is required, one must adopt
a more sophisticated framework, modelling time using real numbers for example.
Over the last two decades, much work has gone into developing and studying such
frameworks, both in the model-checking and in the process-algebraic communities.

This paper studies extensions of the linear dense-time specification formalism
Metric Temporal Logic (MTL). MTL, introduced by Koymans in 1990 [13], is one

Christoph Haase
Oxford University Computing Laboratory, UK, e-mail:chrh@comlab.ox.ac.uk

Jöel Ouaknine
Oxford University Computing Laboratory, UK, e-mail:joel@comlab.ox.ac.uk

James Worrell
Oxford University Computing Laboratory, UK, e-mail:jbw@comlab.ox.ac.uk

1

2 Christoph Haase, Joël Ouaknine, and James Worrell

of the most prominent logics for reasoning about real-time systems. MTL formulas
can either be interpreted in astate-basedsemantics, in which observations are made
continuously, or in anevent-basedsemantics, in which observations are recorded
as instantaneous ‘snapshots’ whenever a discrete change, or ‘event’, occurs. In the
latter, models of formulas aretimed words, i.e., sequences of events together with
associated real-valued timestamps.

Unfortunately, it has long been known that MTL satisfiability is undecidable in
the state-based semantics [2, 9]. Moreover, it was shown more recently that over
infinite timed words, MTL is also undecidable [19]. Surprisingly, MTL turned out
to be decidable—albeit with non-primitive recursive complexity—over finite timed
words [20]. Subsequent to this discovery, various fragments of MTL—over both
semantics and over both finite and infinite behaviours—were shown to be decidable;
for a recent survey of these results, we refer the reader to [5, 21].

This paper focuses on extensions of MTL by various natural process-algebraic
operators, from the point of view of computability. Accordingly, we are exclusively
interested in the event-based semantics over finite timed words, as all other seman-
tics immediately result in undecidability. We consider MTL augmented with the
following various operators:

• Hiding. This operator, which corresponds to existential quantification, provides
a convenient way to abstract away unimportant events (as regards a particular
property of interest).

• Renaming.Similarly to hiding, the renaming operator is useful for expressing
specifications and constructing abstractions of systems; it can be used, for exam-
ple, to group the various possible events into a small number of categories.

• Asynchronous parallel composition.Also known asinterleavingor shuffle prod-
uct, this operator combines the behaviours of two systems in as liberal a way as
possible; in particular, each system is entirely oblivious to the other one.

• Alphabetised parallel composition.Also known as(partially) synchronous par-
allel composition. Two systems thus composed will synchronise over their com-
mon events, and otherwise proceed independently of each other. This operator is
particularly useful to model communication over a well-defined interface.

• Fixpoints. Fixpoint operators are omnipresent in process algebra and model
checking, enhancing the expressiveness of various formalisms and allowing one,
for example, to model recursion.

The results of this paper are two-fold. On the negative side, we show that MTL
augmented with any of hiding, renaming, or asynchronous parallel composition be-
comes undecidable. The main result, however, is that we can augment MTL with
both alphabetised parallel composition and least fixpoint operators and still retain
decidability over finite words. The key technical tools we use to obtain decid-
ability are the one-clock (or one-variable) fragment of Timed Propositional Tem-
poral Logic, denoted TPTL(1) [3], and one-clock Timed Alternating Automata
(1TAA) [15, 20]. Moreoever, we show that the extension of TPTL(1) with fixpoints
provides a complete logical characterisation of 1TAA, which is of independent in-
terest.

On Process-Algebraic Extensions of Metric Temporal Logic 3

The process-algebraic operators listed above originate from Tony Hoare’s Com-
municating Sequential Processes (CSP), undoubtedly the most prominent linear-
time process algebra. These operators, or slight variations thereof, have also fig-
ured in other process algebras and in the context of temporal and dynamic logics.
For example, Lange [14] considers LTL with fixpoint operators, showing that it is
expressively equivalent to finite alternating automata with weak parity acceptance
conditions. Hiding also appears in temporal logic in the guise of existential quan-
tification over propositional variables. Sistla, Vardi, and Wolper [26] show that LTL
with existential quantification can express allω-regular languages. Over real time, it
is known that Metric Interval Temporal Logic (MITL) with existential quantification
can express all languages that are accepted by timed automata [11]. Propositional
Dynamic Logic with interleaving has been considered in [16].

One of the key contributions of Tony Hoare’s work on CSP has been a deeper
understanding of the central phenomenon ofnondeterminismin semantics. Hoare’s
classic textCommunicating Sequential Processes[12], for example, devotes an en-
tire chapter to the subject; his perspective on nondeterminism, in particular as a
mechanism of underspecification, but also as an inevitable consequence of concur-
rency, has proven enormously influential.

From a semantic standpoint, it seems fair to say that the development of the stan-
dard failures divergences model for CSP [6] arose principally as a solution to the
problem of adequately handling nondeterminism in a denotational setting. The prob-
lems turned out considerably more resilient in the timed world, and a fully satisfac-
tory understanding of nondeterminism in Timed CSP has not yet been reached [25].
Nonetheless, one of the pivotal notions to emerge from the study of nondeterminism
in both the untimed and timed settings is that ofoperators that preserve determin-
ism. It is remarkable—although perhaps not entirely surprising—that in the present
paper, the operators that preserve decidability turn out to be precisely those that
preserve determinism (quite independently of the fact that basic MTL formulas do
exhibit native ‘nondeterminism’ through disjunction in any case).

Nondeterminism was also studied around the same time as Tony Hoare by
Robin Milner, and features in his seminal workA Calculus of Communicating Sys-
tems[17]. Milner was however exclusively concerned with operational semantics at
the time, and consequently his outlook had a very different flavour. Outside of pro-
cess algebra and semantics, nondeterminism has an even older history, going back
(at least) some two millennia in philosophy, and half a century in other areas of
computer science [22], notably formal language theory, algorithms, and complexity.
Modern applications of nondeterminism can be found, among others, in computer
security, artificial intelligence, and software engineering.

Most proofs have been omitted from this paper and can be found in the technical
report [8].

4 Christoph Haase, Joël Ouaknine, and James Worrell

2 Preliminaries

Let R+ denote the set of non-negative real numbers,Q+ the set of non-negative
rational numbers, andN the set of positive integers. The setNn is the set of positive
integers up to and includingn, i.e.,Nn := {1, . . . ,n}. For an intervalI ⊆ R+ and
r ∈R+, I + r := {u+ r | u∈I }. By IdX := {(x,x) | x∈ X} we denote the identity
relation on a setX. Given a binary relationR⊆ X×Y, we define its functional
lifting R : X → P(Y) asR(x) := {y | (x,y) ∈ R}. We call R total if R(x) 6= /0 for
all x ∈ X. Given a functionf : X → Y, its updatef [x 7→ y] : X → Y is defined as
f [x 7→ y](z) := y if z= x and f [x 7→ y](z) := f (z) otherwise.

In the untimed world, traces of systems are usually modelled as finite or infinite
words over some alphabet of eventsΣ . However, as discussed in the Introduction,
this model does not allow one to make quantitative assertions regardingwhenevents
occur. A natural way to overcome this drawback, first proposed by Reed and Roscoe
in the development of Timed CSP [23, 24], is to model traces of timed systems as
finite or infinite words over the event alphabet together with timestamps indicating
the time of occurrence of events. In the remainder of this paper we focus exclusively
on finite timed words.

Definition 1 (Timed words). Let Σ be a nonempty finite set of events. Atime se-
quenceτ is a finite sequenceτ1τ2 . . .τn of time values fromR+ such thatτi ≤ τi+1

for all 1≤ i < n. A timed word ρ overΣ is a tuple(σ ,τ) whereτ is a time sequence
andσ = σ1σ2 . . .σn is a word overΣ of the same length asτ.

The set of all finite timed words overΣ is writtenTΣ ∗. Note that our notion of
time isweakly monotonic, in that we allow several events to share the same times-
tamp. Similar results to the ones presented here also hold forstrongly monotonic
time, although as pointed out in [10], awkward complications arise when disallow-
ing the possibility of simultaneous events in the presence of parallel composition
operators. Note that we do not require the first element of a time sequence to be
zero.

Thelengthof a timed wordρ is denoted by|ρ| and is the length of the underlying
time sequence. Alternatively, we can represent a timed word as a sequence oftimed
eventsby writing ρ = (σ1,τ1)(σ2,τ2) . . .(σn,τn). For convenience, we also define
auxiliary functions as follows: for 1≤ i ≤ |ρ|, σi(ρ) := σi andτi(ρ) := τi , where
(σi ,τi) is thei-th timed event ofρ. Given a timed wordρ, denote byρ i, j the timed
word (σi ,0)(σi+1,τi+1− τi) . . .(σ j ,τ j − τi),1≤ i ≤ j ≤ |ρ|. Moreoverρ i := ρ i,|ρ|

and for j > |ρ|, ρ i, j := ρ i . GivenE ⊆ Σ , the timed wordρ \E is obtained fromρ

by deleting all timed events(σi ,τi) from ρ with σi ∈ E.

Definition 2 (TPTL(1) syntax). TPTL(1) formulas are defined inductively accord-
ing to the following grammar:

ϕ ::= a | ϕ1∨ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2 | x∼ c | x.ϕ

On Process-Algebraic Extensions of Metric Temporal Logic 5

Here,a∈ Σ is an event,© is thenext operator,U is theuntil operator,x is aclock
variable, c ∈ Q+ and∼ ∈ {≤,<,=, 6=,>,≥}. Note that TPTL(1) makes use of a
single clock variable,x.

We define the standard Boolean abbreviationsϕ1∧ϕ2 := ¬(¬ϕ1∨¬ϕ2), ϕ1 →
ϕ2 := ¬ϕ1∨ϕ2, > := a∨¬a, and⊥ := ¬>. Theeventuallyoperator is defined as
♦ϕ := > U ϕ and theglobally operator as�ϕ := ¬♦¬ϕ. The clock variable in
TPTL(1) formulas is the key reference for making quantitative statements about the
evolution of time. It allows one to ‘freeze’ (or record) time points along a timed
word, which can later be compared to the current time. Whenx.ϕ holds at some
time pointτ, x is bound toτ in ϕ and when the clock constraintx∼ c is evaluated
at some later time pointτ ′, it is checked whether or notτ ′−τ ∼ c. This can be seen
this asresettingthe clockx at time pointτ.

Originally, TPTL as introduced in [3] allowed for multiple clock variables. How-
ever, that logic has an undecidable satisfiability problem and we therefore only con-
sider its one-variable fragment TPTL(1) in this paper.

We now give a non-standard presentation of the semantics of TPTL(1), which can
however easily be shown to be equivalent to that commonly found in the literature.
Its main advantage is to ease the definition of fixpoint operators later on.

Given a timed wordρ and a TPTL(1) formulaϕ, the semantic functionJ−Kρ

mapsϕ to an element of the setV (ρ) := P(N|ρ|×R+). Intuitively, (i, r) ∈ JϕKρ if
ϕ holds at positioni in ρ when the value of the clock variablex is r.

Definition 3 (TPTL(1) semantics).The semantics of a TPTL(1) formulaϕ is de-
fined by induction on the structure ofϕ, as follows:

JaKρ := {(i, r) | σ i = a, i ∈ N|ρ|, andr ∈ R+}
Jϕ1∨ϕ2Kρ := Jϕ1Kρ ∪ Jϕ2Kρ

J¬ϕKρ := {(i, r) | i ∈ N|ρ| andr ∈ R+}\ JϕKρ

J©ϕKρ := {(i, r) | (i +1, r ′) ∈ JϕKρ andr = r ′+ τi − τi+1}
Jϕ1 U ϕ2Kρ := {(i, r) | ∃ j.i ≤ j ≤ |ρ| and(j, r + τ j − τi) ∈ Jϕ2Kρ and

∀k.i ≤ k < j implies(k, r + τk− τi) ∈ Jϕ1Kρ}
Jx∼ cKρ := {(i, r) | i ∈ N|ρ|, r ∈ R+, andr ∼ c}
Jx.ϕKρ := {(i, r) | (i,0) ∈ JϕKρ andr ∈ R+}

We write ρ |= ϕ iff (1,τ1(ρ)) ∈ JϕKρ , andL(ϕ) := {ρ | ρ |= ϕ} for the timed
language defined byϕ. A TPTL(1) formulaϕ is calledsatisfiableiff L(ϕ) 6= /0. The
problem of checking whether a formulaϕ is satisfiable has been shown to be de-
cidable with non-primitive recursive complexity in [20], by translating TPTL(1) for-
mulas into one-clock timed alternating automata (1TAA), introduced subsequently.1

The real-time logic MTL can be defined as a syntactic fragment of TPTL(1). It
is known to be strictly less expressive than TPTL(1) [4].

Definition 4 (MTL). MTL formulas are defined according to the following gram-
mar, wherea∈ Σ andI is an open, half-open, or closed interval with endpoints in
Q+:

1 Technically speaking, [20] deals with Metric Temporal Logic rather than TPTL(1). The proof
techniques however carry over straightforwardly.

6 Christoph Haase, Joël Ouaknine, and James Worrell

ϕ ::= a | ϕ1∨ϕ2 | ¬ϕ | ©I ϕ | ϕ1 UI ϕ2

The semantics of MTL formulas is given by a translation function(−)† that maps
MTL formulas to TPTL(1) formulas, as follows:

a† := a

(ϕ1∨ϕ2)† := ϕ
†
1 ∨ϕ

†
2

(¬ϕ)† := ¬(ϕ†)

(©I ϕ)† := x.© (x∈I ∧ϕ
†)

(ϕ1 UI ϕ2)† := x.(ϕ†
1 U (x∈I ∧ϕ

†
2))

wherex∈I denotes the obvious corresponding conjunction of inequalities.

We call©I the time-constrained nextandUI the time-constrained untiloper-
ators. Thetime-constrained eventuallyoperator♦I andglobally operator�I are
defined similarly to their TPTL(1) counterparts. We also sometimes abuse notation
and use pseudo-arithmetic expressions, such as ‘=1’, to denote intervals.

Let Sbe a finite set oflocations, and define the setΦ(S) of formulas as follows:

ϕ ::= tt | ff | ϕ1∧ϕ2 | ϕ1∨ϕ2 | s | x∼ c | x.ϕ

wheres∈ S, c∈ Q+ and∼ ∈ {<,≤,=, 6=,≥,>}. As in TPTL(1),x∼ c is a clock
constraint and the expressionx.ϕ resets the clock variablex, i.e., bindsx to 0 in ϕ.

Definition 5 (1TAA). A one-clock timed alternating automaton (1TAA)is a five-
tupleA = (Σ ,S,s0,F,δ) whereΣ is afinite alphabet, S is a finite set oflocations,
s0 is theinitial location , F ⊆Sis a finite set ofaccepting locationsandδ : S×Σ →
Φ(S) is thetransition function .

Given a 1TAAA , astateof A is a tuple(s,v), wheres is a location andv∈Q+ a
clock value. Aconfiguration Cof A is a finite set of states, and{(s0,0)} is theinitial
configurationof A . By C+ r we denote the configuration{(s,v+ r) | (s,v) ∈C}.
We call a configurationC acceptingif s∈ F for every locations occurring inC.
For convenience, given a 1TAAAi = (Σi ,Si ,si

0,Fi ,δi) we introduce functions for
accessing each of the components ofAi , e.g.,S(Ai) = Si , s0(Ai) = si

0, etc.
Given a configurationC and a clock valuev, we define a Boolean valuation on

Φ(S) as follows:

C |=v tt
C |=v ϕ1∧ϕ2 iff C |=v ϕ1 andC |=v ϕ2

C |=v ϕ1∨ϕ2 iff C |=v ϕ1 or C |=v ϕ2

C |=v s iff (s,v) ∈C
C |=v x∼ c iff v∼ c
C |=v x.ϕ iff C |=0 ϕ

Definition 6 (Run). Given a finite timed wordρ of lengthn, defined j := τ j − τ j−1

for 1≤ j ≤ n with τ0 := 0. A run of a 1TAA A on ρ is a finite sequence of config-
urations

C0
d1 C1

σ1−→C2
d2 C3

σ2−→ ·· · dn C2n−1
σn−→C2n

On Process-Algebraic Extensions of Metric Temporal Logic 7

such thatC2 j+1 = C2 j + d j+1 and forC2 j+1 = {(si ,vi)}i∈I , C2 j+2 =
⋃

i∈I C
′
i , where

C′
i |=vi δ (si ,σ j+1) with 0≤ j < n. Here,C2 j

d j+1
 C2 j+1 is called a delay step and

C2 j+1
σ j+1−−−→C2 j+2 is a discrete step. A run isacceptingif C2n is accepting.

A finite timed wordρ is accepted by a 1TAAA with respect to an initial clock
valuev if A has an accepting run starting fromC0 = {(s0,v)}. The language ac-
cepted byA , L(A)⊆ TΣ ∗, is the set of all finite timed words accepted byA with
respect to the initial clock value zero.

3 Decidable Cases

In this section we establish the decidability of satisfiability for TPTL(1) augmented
with least fixpoint and alphabetised parallel operators. Our strategy is to translate
a formulaϕ in the extension under consideration to a 1TAAAϕ such thatL(ϕ) =
L(Aϕ).

Least Fixpoints

Introducing the least fixpoint operator offers a natural way to express recursive spec-
ifications in TPTL(1). The resulting logicµTPTL(1) is strictly more expressive than
TPTL(1).

In order to guarantee the existence of fixpoints, we restrictµTPTL(1) formulas
to be in negation normal form, i.e., with negations only occurring in front of events
from Σ . We moreover drop the until operator, since it can be expressed with the least
fixpoint operator.

Definition 7 (µTPTL(1) syntax). The set ofµTPTL(1) formulas is defined induc-
tively according to the following grammar:

ϕ ::=> | ⊥ | a | a | ¬a | Z | x∼ c | x.ϕ | ©ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | µZ.ϕ

Here,Z is a propositional variablefrom a finite setZ , µZ is the least fixpoint
operator, anda is an end-marker that is only true at the last position of a timed
word, i.e., is equivalent to¬©>. A µTPTL(1) formulaϕ is closedif every Z in
ϕ occurs within the scope of a least fixpoint operatorµZ. Otherwise, the formula
is deemed to beopenand we may writeϕ(Z1, . . . ,Zk) to indicate thatZ1, . . . ,Zk

occur unbound inϕ. If Z ∈Z is bound inϕ, we require without loss of generality
that there be exactly one least fixpoint quantifierµZ occurring inϕ. By fpd(ϕ) we
denote thefixpoint depthof ϕ, which is the maximum nesting depth of least fixpoint
operators, e.g.,fpd(µY.(©(a∨Y)∨ µZ.(b∨©(Y∧Z)))) = 2. Note that the until
operatorϕ1U ϕ2 can be introduced as an abbreviation forµZ.(ϕ2∨ (ϕ1∧©Z)).

8 Christoph Haase, Joël Ouaknine, and James Worrell

The semantics ofµTPTL(1) formulas is given with respect to anenvironmentξ ,
which enables one to evaluate openµTPTL(1) formulas. Given a timed wordρ, ξ

is a mapping from the propositional variables inZ to V (ρ).
The clauses of Definition 3, which prescribe the semantics of TPTL(1) formulas,

carry over toµTPTL(1) formulas whose outermost connective is in TPTL(1). The
additional clauses specific toµTPTL(1) are as follows:

JaKρ

ξ
:= {(|ρ|, r) | r ∈ R+}

JZKρ

ξ
:= ξ (Z)

JµZ.ψ(Z)Kρ

ξ
:=

⋂
{M ∈ V (ρ) | Jψ(Z)Kρ

ξ [Z7→M] ⊆M}

Thus,JµZ.ψ(Z)Kρ

ξ
is the least fixpoint of the functionFψ,Z,ρ,ξ (M) := JψKρ

ξ [Z7→M].
Before we show the decidability ofµTPTL(1) by translation to 1TAA, we give

an example of the usefulness of this extension of TPTL(1).

Example 1.The formulaeven(ϕ) expresses the property thatϕ is true on a timed
word an even number of times. The untimed language ofL(even(ϕ)) is not counter-
free and not expressible in TPTL(1).

even(ϕ) = µY.((¬ϕ ∧ (a∨©Y))∨ (ϕ ∧©µZ.((¬ϕ ∧©Z)∨ (ϕ ∧ (a∨©Y)))))

(Of course, one would need to put¬ϕ in negation normal form, which can readily
be done as soon as a concreteϕ is supplied.)

The existence of least fixpoints is a consequence of the subsequent lemma and
the Knaster-Tarski fixpoint theorem.

Lemma 1. For any timed wordρ, µTPTL(1) formulaϕ(Z,Z1, . . . ,Zk), and valua-
tion of the propositional variablesξ , the function Fϕ,Z,ρ,ξ is monotone with respect
to⊆.

Let ϕ[Z/ψ] be theµTPTL(1) formula obtained fromϕ in which every occur-
rence ofZ in ϕ is replaced byψ. Approximants of a formulaµZ.ψ(Z) are induc-
tively defined for anyi ∈ N as:

µ
0Z.ψ(Z) := ⊥

µ
i+1Z.ψ(Z) := ψ[Z/µ

iZ.ψ(Z)]

The next lemma is a standard result about approximants:

Lemma 2. For any timed wordρ andµTPTL(1) formulaϕ = µZ.ψ(Z), M = JϕKρ

ξ

iff there exists an i∈ N such that M= Jµ iZ.ψ(Z)Kρ

ξ
.

Given aµTPTL(1) formulaϕ(Z,Z1, . . . ,Zk), Z is guardedin ϕ if it occurs in
the scope of a next operator. We call a formulaϕ proper if for every subformula
µZ.ψ(Z) in ϕ, Z is guarded inψ(Z). Properness ofµTPTL(1) formulas will be
assumed in the following without loss of generality, sinceµZ.(Z∨ψ(Z)) is equiv-
alent toµZ.ψ(Z) andµZ.(Z∧ψ(Z)) is equivalent to⊥. Since we are dealing with

On Process-Algebraic Extensions of Metric Temporal Logic 9

finite timed words the fixpoint ofFϕ,Z,ρ,ξ is unique for proper formulas. It therefore
follows that least and greatest fixpoints coincide forµTPTL(1), obviating the need
for two distinct fixpoint operators.

Lemma 3. Let ρ be a timed word andϕ(Z,Z1, . . . ,Zk) be a formula such that Z oc-
curs guarded inϕ(Z). Then for allξ ,M∗,N∗, Fϕ,Z,ρ,ξ (M∗) = M∗ and Fϕ,Z,ρ,ξ (N∗) =
N∗ implies M∗ = N∗.

Although we have not explicitly allowed for arbitrary negation,µTPTL(1) still
is closed under complement. Given a formulaϕ, we define its complementϕ by
induction on the structure ofϕ, where,∼ maps the relation∼ to its complementary
relation, e.g.,< to≥, = to 6= etc.

> := ⊥
⊥ := >
a := ©>

a := ¬a

¬a := a

Z := Z

x∼ c := x∼c

©ϕ := a∨©ϕ

ϕ1∧ϕ2 := ϕ1∨ϕ2

ϕ1∨ϕ2 := ϕ1∧ϕ2

µZ.ϕ := µZ.ϕ

Lemma 4. Letϕ be a properµTPTL(1) formula. Then(i, r)∈ JϕKρ

ξ
iff (i, r) /∈ JϕKρ

ξ
,

whereξ (Z) := {(i, r) | i ∈ N|ρ| and r∈ R+}\ξ (Z).

The lemma can be proved straightforwardly by induction on the structure ofϕ using
the properness of the subformulasµZ.ψ(Z) of ϕ and the resulting unique fixpoint
property.

The translation of aµTPTL(1) formulaϕ into a 1TAAAϕ is given by induction
on fpd(ϕ) and is somewhat similar to the untimed case considered in [14]. Recall
that Z is assumed to be guarded inψ(Z) for any subformulaµZ.ψ(Z) of ϕ. For
fpd(ϕ) = 0, we defineAϕ by induction on the structure ofϕ:

• Caseϕ = a. DefineAϕ = (Σ ,{sϕ},sϕ , /0,δ) with δ (sϕ ,a) = tt andδ (sϕ ,b) = ff
if b 6= a.

• Case ϕ = a. Define Aϕ = (Σ ,{sϕ ,sa},sϕ ,{sa},δ) with δ (sϕ ,a) = sa and
δ (sa,a) = ff for all a∈ Σ .

• Caseϕ = Z. DefineAϕ = (Σ ,{sϕ},sϕ , /0,δ) with δ (sϕ ,a) = tt for all a ∈ Σ .
Note that we will refer tosϕ assZ in the induction stepϕ = µZ.ψ(Z).

• Caseϕ = x∼ c. DefineAϕ = (Σ ,{sϕ},sϕ , /0,δ) with δ (sϕ ,a) = x∼ c for all
a∈ Σ .

• Caseϕ = x.ψ. DefineAϕ = (Σ ,{sϕ} ∪S(Aψ),sϕ ,F(Aψ),δ) with δ (sϕ ,a) =
x.δ (Aψ)(s0(Aψ),a) anda∈ Σ andδ (s,a) = δ (Aψ)(s,a) for all s∈ S(Aψ).

• Case ϕ = ψ1 ∧ ψ2. Define Aϕ = (Σ ,{sϕ} ∪ S(Aψ1) ∪ S(Aψ2),sϕ ,F(Aψ1) ∪
F(Aψ2),δ) with δ (sϕ ,a) = δ (Aψ1)(s0(Aψ1),a) ∧ δ (Aψ2)(s0(Aψ2),a) and
δ (s,a) = δ (Aψi ,a) if s∈ S(Aψi) for all a∈ Σ .

• Caseϕ = ©ψ. DefineAϕ = (Σ ,{sϕ}∪S(Aψ),sϕ ,F(Aψ),δ) with δ (sϕ ,a) =
s0(Aψ) andδ (s,a) = δ (Aψ)(s,a) for all s∈ S(Aψ) anda∈ Σ .

The cases whenϕ is >,⊥,¬a, or ψ1∨ψ2 are defined in a similar way. In the
construction above we assume different subformulas to have disjoint sets of states,

10 Christoph Haase, Joël Ouaknine, and James Worrell

but thatAϕ = Aψ if ϕ = ψ. In particular, if Z is a free variable inϕ, thenAϕ

contains exactly one statesZ corresponding toZ.
Now for fpd(ϕ) = n+ 1, we consider the only relevant caseϕ = µZ.ψ(Z); the

construction for the remaining cases can be done along similar lines as the above.
DefineAϕ =(Σ ,{sϕ}∪S(Aψ(Z)),F(Aψ(Z)),δ) with δ (sϕ ,a)= δ (Aψ(Z))(s0(Aψ(Z)),a),
δ (sZ,a) = δ (sϕ ,a), andδ (s,a) = δ (Aψ(Z))(s,a) for all s distinct fromsϕ andsZ.
Here,a∈ Σ andsZ is the state obtained from the 1TAA corresponding toZ during
the inductive construction ofψ(Z). The transition function is well-defined sinceZ
occurs guarded inψ(Z).

Lemma 5. Let ϕ be a closedµTPTL(1) formula andρ a timed word. Then(i, r) ∈
JϕKρ iff Aϕ has an accepting run onρ i with initial clock value r.

Theorem 1.Satisfiability in µTPTL(1) over finite words is decidable with non-
primitive recursive complexity.

The translation fromµTPTL(1) formulas to 1TAA also works in the other di-
rection, i.e., for any 1TAA there exists a closedµTPTL(1) formulaϕA such that
ρ ∈ L(A) iff ρ |= ϕA , as we now demonstrate. The translation has the same struc-
ture as the analogous construction ofµ-calculus formulas from alternating automata
in the untimed case.

At this point it is helpful to extend the definition ofµTPTL(1) to allow fixed
points invectorial form. Given ann-dimensional vector of variablesZ = (Z1, . . . ,Zn)
and ann-dimensional vector of formulas(ϕ1, . . . ,ϕn), we allow for vectorial fix-
pointsµZ.(ϕ1, . . . ,ϕn). Given a timed wordρ, such a vectorial fixed point is inter-
preted as an element of then-fold productV (ρ)n according to the following rule,
whereMi is thei-th component ofM :

JµZ.(ϕ1, . . . ,ϕn)K
ρ

ξ
:=

⋂
{M ∈ V (ρ)n | JϕiK

ρ

ξ [Z 7→M] ⊆Mi for all 1≤ i ≤ n} .

Let ρ be a timed word and letπi denote thei-th projectionV (ρ)n → V (ρ) for
1≤ i ≤ n.

Proposition 1. Given a vectorial fixed point formulaµZ.(ϕ1, . . . ,ϕn), for each
i ∈ {1, . . . ,n} there is a correspondingµTPTL(1) formulaψi such thatπi(JϕKρ

ξ
) =

JψiK
ρ

ξ
.

Proof. The proof is by repeated application of the Bekić identity

π1Jµ(Y,Z).(ϕ1, . . . ,ϕn)K
ρ

ξ
= JµY.ϕ1[Z/µZ.(ϕ2, . . . ,ϕn)]K

ρ

ξ
.

This identity is valid in any complete lattice, so holds for our semantics.

Now letA = (Σ ,S,s0,F,δ) be a 1TAA. LetZ = (Zs | s∈ S) be a vector of variables
indexed by the set of locations ofA . Recall from Definition 5 that the transition
functionδ of A takes values in the set of expressionsΦ(S). The first step in defining
ϕA is to give a translation mapping each expressionϕ in Φ(S) to a corresponding
µTPTL(1) formulaϕ‡ with free variables inZ. To this end we write:

On Process-Algebraic Extensions of Metric Temporal Logic 11

tt‡ = >
ff‡ = ⊥

(ϕ1∧ϕ2)‡ = ϕ
‡
1 ∧ϕ

‡
2

(ϕ1∨ϕ2)‡ = ϕ
‡
1 ∨ϕ

‡
2

(x∼ c)‡ = x∼ c

(x.ϕ)‡ = x.ϕ‡

s‡ = ©Zs

For each locations∈ Swe define aµTPTL(1) formulaϕs(Z), where

ϕs(Z) =
{∨

a∈Σ (a∧δ (s,a)‡) if s is not accepting
a ∨

∨
a∈Σ (a∧δ (s,a)‡) if s is accepting

Recall thats0 ∈ S is the initial location ofA . We defineϕA to be theµTPTL(1)
formula that is equivalent to thes0-th component of the vectorial fixed pointµZ.(ϕs |
s∈ S)). Such a formula is guaranteed to exist by Proposition 1.

Theorem 2.Let A be a 1TAA andϕA its correspondingµTPTL(1) formulaϕ.
Then L(A) = L(ϕA).

This result, together with the construction underlying Theorem 1, shows that
µTPTL(1) characterises the class of languages accepted by one-clock timed alter-
nating automata.

Alphabetised Parallel Composition of TPTL(1) Formulas

In this section we consider TPTL(1) extended with the alphabetised parallel compo-
sition operator‖ and show the decidability of the augmented logic. This extension is
useful for specifying systems that run independently subject to sharing some events
in common. As an example, consider the following specification:

(�(processed→©≤1queued)) ‖ (�(queued→©=1send)).

It describes a system consisting of a processor and a sender that run independently
of each other and only synchronise on thequeuedevent. The specification requires
that a processed item be queued by the processor in thenextstep within one time
unit, and that each queued item be sent by the sender in thenext step one time
unit later. However, in the timed trace of the composed system internal events from
the sender may occur between aprocessedandqueue-event of the processor. This
issue is resolved by the‖ operator which ensures that the events unrelated to each
specification do not interfere with it.

Formally, we augment the syntax of TPTL(1) in Definition 2 with an additional
term for thealphabetised parallel compositionϕ1 ‖ ϕ2. Thealphabetised parallel
compositionof timed wordsρ1 andρ2 over the alphabetsΣ1 andΣ2 respectively
is defined as follows:ρ ∈ ρ1 ‖ ρ2 ⊆ T(Σ1∪Σ2)∗ iff ρ1 = ρ \ (Σ2−Σ1) andρ2 =
ρ \ (Σ1− Σ2). Informally speaking, the timed events fromρ1 and ρ2 are merged
in ρ with the requirement that the timed events fromΣ1∩ Σ2 occur at the same

12 Christoph Haase, Joël Ouaknine, and James Worrell

time points in bothρ1 andρ2. The semantics of TPTL(1) together with alphabetised
parallel composition is obtained by adding the following clause to Definition 3:

Jϕ1 ‖ ϕ2Kρ := {(i, r) | ∃ρ1,ρ2.ρ
i ∈ ρ1 ‖ ρ2,(1, r) ∈ Jϕ1Kρ1,(1, r) ∈ Jϕ2Kρ2}

We have seen in the previous section how to construct a 1TAA from a TPTL(1)
formulaϕ. We now extend this construction to show decidability of TPTL(1) with
alphabetised parallel composition. Fori ∈ {1,2}, given TPTL(1) formulasϕi with
their corresponding event alphabetsΣi and 1TAAAi , we show how to construct a
1TAA A1 ‖A2 such thatL(A1 ‖A2) = L(ϕ1 ‖ ϕ2). LetA1 = (Σ1,S,s0,F,δ), define
A1 extended withΣ2 asA Σ2

1 := (Σ1∪Σ2,S,s0,F,δ ′), whereδ ′(s,a) = {s} for all
a∈ Σ2−Σ1 andδ ′(s,a) = δ (s,a) otherwise. Without loss of generality we assume
the set of states ofA1 andA2 to be disjoint. DefineA1 ‖ A2 := (Σ1∪Σ2,S(A1)∪
S(A2)∪{s‖},{s‖},F(A1)∪F(A2),δ), where

δ (s,a) =

δ (A Σ2

1)(s,a) if s∈ S(A1)
δ (A Σ1

2)(s,a) if s∈ S(A2)
δ (A Σ2

1)(s0(A1),a)∧δ (A Σ1
2)(s0(A2),a) if s= s‖

Decidability of TPTL(1) + alphabetised parallel composition is then a conse-
quence of the following lemma.

Lemma 6. Let A1 andA2 be two 1TAA over the alphabetsΣ1 andΣ2 respectively.
ThenA1 ‖A2 has an accepting run onρ iff A1 has an accepting run onρ \(Σ2−Σ1)
andA2 has an accepting run onρ \ (Σ1−Σ2).

Proof. Given an accepting runC0
d1 C1

σ1−→ . . .
σn−→ C2n of A1 ‖ A2 on ρ, by ex-

haustively replacingC2i−2
di C2i−1

σi−→ C2i
di+1 C2i+1 with C2i−2

di+di+1 C2i+1 if
σi ∈ Σ2−Σ1, intersecting each remainingCi with {(s, r) | s∈ S(A1), r ∈ R+}, and
replacingC0 with {(s0(A1),0)}, we obtain an accepting run ofA1. The construction
works, sinceC′

2i−2∩{(s, r) | s∈ S(A1), r ∈ R+} = C′
2i+1∩{(s, r) | s∈ S(A1), r ∈

R+} ensures that we obtain a valid run ofA1 onρ \ (Σ2−Σ1). Similarly, we obtain
an accepting run ofA2 on ρ \ (Σ1−Σ2).

Conversely, letC0
d1 C1

σ1−→ . . .
σn−→C2n be an accepting run ofA1 on ρ1. This

run can be altered to become an accepting run ofA Σ2
1 on ρ. In general, for

(σ j ,τ j)(σ j+1,τ j+1) . . .(σk,τk) in ρ with σ j ,σk ∈ Σ1, σ` ∈ Σ2− Σ1 for j < ` < k

and (σ j ,τ j) equal to(σi ,τi) in ρ1, C2i−1
σi−→ C2i

τi+1(ρ1)−τi(ρ1)
 C2i+1 can be ex-

haustively replaced withC2i−1
σi(ρ1)−−−→ C2i

τ j+1(ρ)−τ j (ρ)
 C2i + τ j+1(ρ)− τ j(ρ)

σ j+1−−−→

. . .
τi+1(ρ1)−τk−1(ρ)

 C2i+1
σi+1(ρ1)−−−−−→C2i+2 in order to obtain an accepting run ofA Σ2

1

onρ. Then by joining the accepting runs ofA Σ2
1 andA Σ1

2 and settingC0 = {(s‖,0)}
we obtain an accepting run ofA1 ‖A2 on ρ.

Theorem 3.Satisfiability in TPTL(1) augmented with alphabetised parallel compo-
sition is decidable over finite words with non-primitive recursive complexity.

On Process-Algebraic Extensions of Metric Temporal Logic 13

It is not hard to see that it is possible to combine the inductive constructions of
1TAA from µTPTL(1) and TPTL(1) together with alphabetised parallel composi-
tion. Hence satisfiability for TPTL(1) augmented both with fixpoint operators and
alphabetised parallel composition is decidable.

Theorem 4.Satisfiability for TPTL(1) augmented with fixpoint operators and al-
phabetised parallel composition is decidable over finite words, with non-primitive
recursive complexity.

4 Undecidable Cases

In this section we show that augmenting MTL (and a fortiori also TPTL(1)) with
any of hiding, renaming, or asynchronous parallel composition renders the corre-
sponding satisfiability problem undecidable.

To establish these results, we reduce the reachability problem for determinis-
tic two-counter machines (2CM) to satisfiability for MTL with the extensions un-
der consideration. A 2CMM = (S, init,δ) is a finite-state automaton augmented
with two counters over the naturals, whereS is a finite set of states,init ∈ S is the
initial location andδ is the transition function. A configuration ofM is a triple
(s,n0,n1) ∈ S×N×N. From a given configuration, the transition function can test
each of the counters for zero and accordingly change configurations by jumping to
a new location and incrementing, decrementing, or leaving each of the counters un-
touched. A run of a 2CM is a finite sequence of configurations that is consistent with
the transition function. The reachability problem asks whether for a given 2CMM
it is possible to reach a configuration(s,0,0) starting from the initial configuration
(init,0,0). This problem is well-known to be undecidable [18].

Following [1] and [7], we can encode a run of anm-location 2CMM as a timed
word ρ over the alphabetΣ = {a,b1, . . . ,bm,c}. The a-events are used to encode
the value of the counters in unary, eachbi represents a location ofM , andc is
used as a marker. Thei-th configuration(sj ,v1,v2) of a run is stored in the interval
[i, i + 1) of ρ. The eventb j occurs at timei, representing the current locationsj .
In the following, letI := (0,0.25). The number ofa-events in the intervalI + i
encodes the value of the first counter. Likewise, the value of the second counter
is encoded in the intervalI + i + 0.5. The markerc occurs at timei + 0.5 and
the remaining intervals in[i, i + 1) do not contain anya- or bi-events. We assume
that init = s1, so thatb1 is the first event to occur. It is not hard to see that we
can construct an MTL2 formulaϕM such thatϕM ∧♦bi is satisfiable if(si ,0,0) is
reachable. The converse however does not hold, since MTL is incapable of detecting
insertion errors.

2 This even holds for the until-free fragment of MTL, which is obtained from Definition 4 by
dropping theUI -definition and introducing�I and♦I as primitives.

14 Christoph Haase, Joël Ouaknine, and James Worrell

1

1

1

0 1 2 3

σ1 σ3a a a a aa
τ2 τ4 τ5 τ6 τ7 τ8

Fig. 1 Illustration of a timed word suffering from insertion errors.

Definition 8. Let ρ |= ϕM be a timed word representing a run ofM . Thenρ suffers
from insertion errors if there are 1≤ i < j ≤ |ρ| andσi ,σ j ∈Σ such thatρ contains
(σi ,τi)(a,τi+1) and(σ j ,τi +1)(a,τ j+1) with τ j+1 < τi+1 +1.

An illustration of this definition is presented in Figure 1. First, consider the events
(σ1,0) and(a,τ2). We have that(σ1,0) is followed one time unit later by(σ3,1)
which itself is followed by(a,τ4). However,τ4 < τ2+1 and hence(a,τ4) is wrongly
inserted. Observe that(a,τ2) does not have any corresponding event one time unit
later. Second, thea-event at timeτ7 is also wrongly inserted, since it lies strictly
betweenτ4 +1 andτ5 +1.

D’Souza and Prabhakar show in [7] that MTL augmented with any extension
that is able to characterise a slightly more restricted version of the language from
Definition 8 has an undecidable satisfiability problem. We now use their observation
to establish undecidability of satisfiability of MTL extended with any of hiding,
renaming, or asynchronous parallel composition. For each extension, we define a
formulaϕie that is capable of detecting insertion errors. Whence there exists a run
of M reachingsi iff ϕM ∧♦bi ∧¬ϕie is satisfiable.

4.1 Hiding

Let E⊆ Σ be a set of events. We augment the syntax of TPTL(1) in Definition 2 with
an additional term for thehiding operator\E. In designing specifications, hiding is
used to abstract away irrelevant events. For example, given a setI ⊆ Σ , the formula
(�(ϕ →©<1ψ)) \ I specifies a bounded response property that ‘ignores’ events
from I that could occur betweenϕ andψ. Formally, the semantic mapping for hiding
is obtained by adding the following clause to Definition 3:

Jϕ \EKρ := {(i, r) | ∃ρ
′.ρ i = ρ

′ \E and(1, r) ∈ JϕKρ ′}

It has been observed in [10] that hidden propositions lead to an undecidable sat-
isfiability problem for real-time logics when the underlying time model is dense. In
order to detect insertion errors, we addd to the event alphabet and use the hiding op-
erator in the following way:ρ suffers from insertion errors (following Definition 8)
iff we can insert ad-event intoρ immediately preceding ana-event, in such a way
thatd is followed exactly one time unit later by ana. Formally:

On Process-Algebraic Extensions of Metric Temporal Logic 15

Lemma 7. Let ϕie = (ϕsm∧♦(d∧♦I a∧♦=1a)) \ {d} and ρ |= ϕM be a timed
word representing a run ofM . Thenρ suffers from insertion errors iffρ |= ϕie.

(In the above,ϕsmstands for a formula that captures precisely all strongly monotonic
timed words, i.e., words in which no two events share the same timestamp.)

The lemma shows that hiding renders the satisfiability problem undecidable even
if applied at the outermost level, i.e., checking satisfiability ofϕ \E is undecidable
for MTL formulasϕ. This is not the case for MITL, where checking satisfiability of
ϕ \E for some MITL formulaϕ still is decidable [10].

4.2 Renaming

Let R⊆ Σ × Σ be a total renaming relation overΣ . We augment the syntax of
TPTL(1) in Definition 2 with an additional term for therenamingoperator[R]. Let
us write thatρ ∈ ρ ′[R] iff |ρ| = |ρ ′|, τi(ρ) = τi(ρ ′), andσi(ρ) ∈ R(σi(ρ ′)) for all
1≤ i ≤ |ρ|. The semantics of TPTL(1) together with renaming is obtained by adding
the following clause to Definition 3:

Jϕ[R]Kρ := {(i, r) | ∃ρ
′.ρ i ∈ ρ

′[R] and(1, r) ∈ JϕKρ ′}

The effect of renaming is less drastic than that of hiding, since it does not delete
timed events from timed words. It however still provides a convenient means of
abstraction in specifications. As an example, given a setI ⊆ Σ of internal events
and renaming relationR := {i/b}i∈I ∪ IdΣ\I , the formula(�(ϕ → (b U<1 ψ))[R]
expresses a bounded response property that treats all events fromI in the same way
by grouping them into a single eventb.

Using the renaming operator to detect insertion errors is slightly more involved
than in the previous case, and we describe the procedure with the help of an example
given in Figure 2. Observe that thea-event at timeτ3 is wrongly inserted in the timed
word shown in the lower part of Figure 2. Our tactic is to non-deterministically
rename somea-events tod-events in this timed word in such a way as to identify
the wrongly inserteda-event. Such a renaming is shown in the upper part of the
figure. There we have that thea-event at timeτ1 is immediately followed by exactly
oned-event, which itself is followed exactly one time unit later by ad-event. For the
event at timeτ1, we can then check that there is in strictly more than one time unit
later ana-event followed immediately by ad-event—which identifies the wrongly
inserteda-event.

The formulas below also have to take account of the case in which thea-event at
time τ2 does not have a correspondinga-event one time unit later and are therefore
somewhat trickier to read. However, it is not hard to check that they capture the
intuition described above.

Lemma 8. Let ρ |= ϕM be a timed word representing a run ofM , and let

16 Christoph Haase, Joël Ouaknine, and James Worrell

1

1

0 1 2
a a d a a a d

0 1 2
a a a a a a a

τ1 τ2 τ3

Fig. 2 On the bottom, a timed word suffering from an insertion error, and above its renaming that
allows one to detect it.

ψ := �I ((a∨d)→�I¬d)∧♦I (d∧ (♦=1(d∧�I¬d)∨�[1,1.25)⊥))
ϕie := ♦(ψ ∧♦=1((♦I (a∧♦I d)∨ (�I¬d∧♦I a))))[{(d,a)}∪ IdΣ\{d}]

Thenρ suffers from insertion errors iffρ |= ϕie.

4.3 Asynchronous Parallel Composition

We augment the syntax of TPTL(1) in Definition 2 with an additional term for
theasynchronous parallel compositionoperator9, also known asinterleavingand
(timed) shuffle product. This operator is similar to its alphabetised counterpart in
that it allows one to express specifications on systems that run concurrently.

Given timed wordsρ, ρ1, andρ2 with |ρ| = n, |ρ1| = n1, and|ρ2| = n2, we let
ρ ∈ ρ1 9 ρ2 iff the set of positions{1, . . . ,n} of ρ can be partitioned into disjoint
sets{i1, . . . , in1} and{ j1, . . . , jn2} such thatσk(ρ1) = σik(ρ), τk(ρ1) = τik(ρ) for
1≤ k≤ n1, andσ`(ρ2) = σ j`(ρ), τ`(ρ2) = τ j`(ρ) for 1≤ `≤ n2.

The semantics of TPTL(1) together with asynchronous parallel composition is
obtained by adding the following clause to Definition 3:

Jϕ1 9ϕ2Kρ := {(i, r) | ∃ρ1,ρ2.ρ
i = ρ1 9ρ2,(1, r) ∈ Jϕ1Kρ1,(1, r) ∈ Jϕ2Kρ2}

In order to show undecidability, we use the factϕM holds on timed words with
and without insertion errors. Consequently, the interleavingϕM 9 a only holds on
timed wordswith insertion errors.

Lemma 9. Let ρ |= ϕM be a timed word representing a run ofM and letϕie :=
ϕM 9a. Thenρ suffers from insertion errors iffρ |= ϕie.

We sum up the results of this section in the following theorem.

Theorem 5.The satisfiability problem for MTL augmented with any of hiding, re-
naming, or asynchronous parallel composition is undecidable.

On Process-Algebraic Extensions of Metric Temporal Logic 17

5 Conclusion

In this paper, we have considered various extensions of the central timed specifica-
tion formalism of Metric Temporal Logic by process-algebraic operators originating
from Tony Hoare’s Communicating Sequential Processes. We have argued that such
extensions, each of which strictly enhances the expressive power of MTL, allow for
more natural and versatile specification of timed systems.

On the positive side, we have shown that MTL augmented with both fixpoint
operators and alphabetised parallel composition remains decidable. On the other
hand, the addition of any of hiding, renaming, or asynchronous parallel composition
(also known as interleaving and shuffle product) immediately yields undecidability.

One of our main technical tools has been the one-clock fragment of Timed Propo-
sitional Temporal Logic, TPTL(1). We have shown that extending this formalism
with fixpoint operators provides a precise logical characterisation of the class of
languages accepted by one-clock timed alternating automata, a result of indepen-
dent interest. An intriguing question is whether the fixpoint-extension of then-clock
fragment of TPTL precisely characterises the class of languages accepted byn-clock
timed alternating automata, thereby extending Theorem 2 (notwithstanding the fact
that such languages are in general not recursive).

An interesting avenue for future work would be to investigate more thoroughly
the methodological applications of our decidability results towards the specification
of timed systems themselves built from recursive and concurrent components, such
as Timed CSP processes.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata.Theor. Comput. Sci., 126(2):183–
235, 1994.

2. Rajeev Alur and Thomas A. Henzinger. Real-time logics: complexity and expressiveness.
Technical report, Stanford University, 1990.

3. Rajeev Alur and Thomas A. Henzinger. A really temporal logic.J. ACM, 41(1):181–203,
1994.

4. Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL
and MTL. In Proceedings of FSTTCS, volume 3821 ofLecture Notes in Computer Science,
pages 432–443. Springer, 2005.

5. Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. On expressiveness and
complexity in real-time model checking. InProceedings of ICALP, volume 5126 ofLecture
Notes in Computer Science, pages 124–135. Springer, 2008.

6. Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes.J. ACM, 31(3):560–599, 1984.

7. Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the pointwise and
continuous semantics.STTT, 9(1):1–4, 2007.

8. Christoph Haase, Joël Ouaknine, and James Worrell. On extensions of Metric
Temporal Logic. Technical report, Oxford University Computing Laboratory, 2009.
http://www.comlab.ox.ac.uk/files/2180/how-09.pdf.

9. Thomas A. Henzinger.The temporal specification and verification of real-time systems. PhD
thesis, Stanford University, 1992.

18 Christoph Haase, Joël Ouaknine, and James Worrell

10. Thomas A. Henzinger. Its about time: Real-time logics reviewed. InProceedings of CONCUR,
volume 1466 ofLecture Notes in Computer Science, pages 439–454, 1998.

11. Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-
time languages. InProceedings of ICALP, volume 1443 ofLecture Notes in Computer Science,
pages 580–591. Springer, 1998.

12. C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall International, 1985.
13. Ron Koymans. Specifying real-time properties with Metric Temporal Logic.Real-Time Syst.,

2(4):255–299, 1990.
14. Martin Lange. Weak automata for the linear timeµ-calculus. InProceedings of VMCAI,

volume 3385 ofLecture Notes in Computer Science, pages 267–281. Springer, 2005.
15. Slawomir Lasota and Igor Walukiewicz. Alternating timed automata.ACM Trans. Comput.

Logic, 9(2):1–27, 2008.
16. Alain J. Mayer and Larry J. Stockmeyer. The complexity of PDL with interleaving.Theor.

Comput. Sci., 161(1-2):109–122, 1996.
17. Robin Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Com-

puter Science. Springer, 1980.
18. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1967.
19. Jöel Ouaknine and James Worrell. On Metric Temporal Logic and faulty Turing machines. In

Proceedings of FoSSaCS, volume 3921 ofLecture Notes in Computer Science, pages 217–230.
Springer, 2006.

20. Jöel Ouaknine and James Worrell. On the decidability and complexity of Metric Temporal
Logic over finite words.Logic. Meth. Comp. Sci., 3(1), 2007.

21. Jöel Ouaknine and James Worrell. Some recent results in Metric Temporal Logic. InProceed-
ings of FORMATS, volume 5215 ofLecture Notes in Computer Science, pages 1–13. Springer,
2008.

22. Michael O. Rabin and Dana Scott. Finite automata and their decision problems.IBM Journal
of Research and Development, 3(2):115–125, 1959.

23. George M. Reed and A. W. Roscoe. A timed model for Communicating Sequential Processes.
In Proceedings of ICALP, volume 226 ofLecture Notes in Computer Science, pages 314–323.
Springer, 1986.

24. George M. Reed and A. W. Roscoe. Metric spaces as models for real-time concurrency. In
Proceedings of MFPS, volume 298 ofLecture Notes in Computer Science, pages 331–343.
Springer, 1987.

25. George M. Reed and A. W. Roscoe. The timed failures-stability model for CSP.Theor.
Comput. Sci., 211(1-2):85–127, 1999.

26. A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic (extended abstract). InProceedings of ICALP,
volume 194 ofLecture Notes in Computer Science, pages 465–474. Springer, 1985.

