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Abstract It is known that the satisfiability problem for Metric Temporal Logic
(MTL) is decidable over finite timed words. In this paper we study the satisfia-
bility problem for extensions of this logic by various process-algebraic operators.
On the negative side we show that satisfiability becomes undecidable when any of
hiding, renaming, or asynchronous parallel composition are added to the logic. On
the positive side we show decidability with the addition of alphabetised parallel
composition and fixpoint operators. We use one-clock Timed Propositional Tempo-
ral Logic (TPTL(1)) as a technical tool for the decidability results and show that
TPTL(1) with fixpoints provides a logical characterisation of the class of languages
accepted by one-clock timed alternating automata.

1 Introduction

The model of time usually adopted in computer-aided verification and process al-
gebra isqualitative it offers an ordering of the various events a given system may
go through, but abstracts away fraqnantitative or metric information regarding
the precise timing of these events. If such information is required, one must adopt
a more sophisticated framework, modelling time using real numbers for example.
Over the last two decades, much work has gone into developing and studying such
frameworks, both in the model-checking and in the process-algebraic communities.
This paper studies extensions of the linear dense-time specification formalism
Metric Temporal Logic (MTL)MTL, introduced by Koymans in 1990 [13], is one
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of the most prominent logics for reasoning about real-time systems. MTL formulas
can either be interpreted irstate-basedemantics, in which observations are made
continuously, or in arevent-basedemantics, in which observations are recorded

as instantaneous ‘snapshots’ whenever a discrete change, or ‘event’, occurs. In the
latter, models of formulas atémed wordsi.e., sequences of events together with
associated real-valued timestamps.

Unfortunately, it has long been known that MTL satisfiability is undecidable in
the state-based semantics [2, 9]. Moreover, it was shown more recently that over
infinite timed words, MTL is also undecidable [19]. Surprisingly, MTL turned out
to be decidable—albeit with non-primitive recursive complexity—over finite timed
words [20]. Subsequent to this discovery, various fragments of MTL—over both
semantics and over both finite and infinite behaviours—were shown to be decidable;
for a recent survey of these results, we refer the reader to [5, 21].

This paper focuses on extensions of MTL by various natural process-algebraic
operators, from the point of view of computability. Accordingly, we are exclusively
interested in the event-based semantics over finite timed words, as all other seman-
tics immediately result in undecidability. We consider MTL augmented with the
following various operators:

e Hiding. This operator, which corresponds to existential quantification, provides
a convenient way to abstract away unimportant events (as regards a particular
property of interest).

e RenamingSimilarly to hiding, the renaming operator is useful for expressing
specifications and constructing abstractions of systems; it can be used, for exam-
ple, to group the various possible events into a small number of categories.

e Asynchronous parallel compositioAlso known agnterleavingor shuffle prod-
uct, this operator combines the behaviours of two systems in as liberal a way as
possible; in particular, each system is entirely oblivious to the other one.

e Alphabetised parallel compositioAlso known ag(partially) synchronous par-
allel composition Two systems thus composed will synchronise over their com-
mon events, and otherwise proceed independently of each other. This operator is
particularly useful to model communication over a well-defined interface.

e Fixpoints. Fixpoint operators are omnipresent in process algebra and model
checking, enhancing the expressiveness of various formalisms and allowing one,
for example, to model recursion.

The results of this paper are two-fold. On the negative side, we show that MTL
augmented with any of hiding, renaming, or asynchronous parallel composition be-
comes undecidable. The main result, however, is that we can augment MTL with
both alphabetised parallel composition and least fixpoint operators and still retain
decidability over finite words. The key technical tools we use to obtain decid-
ability are the one-clock (or one-variable) fragment of Timed Propositional Tem-
poral Logic, denoted TPTL(1) [3], and one-clock Timed Alternating Automata
(1TAA) [15, 20]. Moreoever, we show that the extension of TPTL(1) with fixpoints
provides a complete logical characterisation of 1 TAA, which is of independent in-
terest.
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The process-algebraic operators listed above originate from Tony Hoare’s Com-
municating Sequential Processes (CSP), undoubtedly the most prominent linear-
time process algebra. These operators, or slight variations thereof, have also fig-
ured in other process algebras and in the context of temporal and dynamic logics.
For example, Lange [14] considers LTL with fixpoint operators, showing that it is
expressively equivalent to finite alternating automata with weak parity acceptance
conditions. Hiding also appears in temporal logic in the guise of existential quan-
tification over propositional variables. Sistla, Vardi, and Wolper [26] show that LTL
with existential quantification can expressatregular languages. Over real time, it
is known that Metric Interval Temporal Logic (MITL) with existential quantification
can express all languages that are accepted by timed automata [11]. Propositional
Dynamic Logic with interleaving has been considered in [16].

One of the key contributions of Tony Hoare’s work on CSP has been a deeper
understanding of the central phenomenonafideterminisnn semantics. Hoare’s
classic texiCommunicating Sequential Proces§&2], for example, devotes an en-
tire chapter to the subject; his perspective on nondeterminism, in particular as a
mechanism of underspecification, but also as an inevitable consequence of concur-
rency, has proven enormously influential.

From a semantic standpoint, it seems fair to say that the development of the stan-
dard failures divergences model for CSP [6] arose principally as a solution to the
problem of adequately handling nondeterminism in a denotational setting. The prob-
lems turned out considerably more resilient in the timed world, and a fully satisfac-
tory understanding of nondeterminism in Timed CSP has not yet been reached [25].
Nonetheless, one of the pivotal notions to emerge from the study of nondeterminism
in both the untimed and timed settings is thabpgrators that preserve determin-
ism It is remarkable—although perhaps not entirely surprising—that in the present
paper, the operators that preserve decidability turn out to be precisely those that
preserve determinism (quite independently of the fact that basic MTL formulas do
exhibit native ‘nondeterminism’ through disjunction in any case).

Nondeterminism was also studied around the same time as Tony Hoare by
Robin Milner, and features in his seminal wokkCalculus of Communicating Sys-
tems[17]. Milner was however exclusively concerned with operational semantics at
the time, and consequently his outlook had a very different flavour. Outside of pro-
cess algebra and semantics, nondeterminism has an even older history, going back
(at least) some two millennia in philosophy, and half a century in other areas of
computer science [22], notably formal language theory, algorithms, and complexity.
Modern applications of nondeterminism can be found, among others, in computer
security, artificial intelligence, and software engineering.

Most proofs have been omitted from this paper and can be found in the technical
report [8].
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2 Preliminaries

Let R, denote the set of non-negative real numbé&rs, the set of non-negative
rational numbers, anll the set of positive integers. The $&t is the set of positive
integers up to and including, i.e.,N, := {1,...,n}. For an intervaly C R, and
reRy, I+r:={u+r|ue s} Byldx :={(x,X) | x € X} we denote the identity
relation on a seX. Given a binary relatioR C X x Y, we define its functional
lifting R: X — Z2(Y) asR(X) := {y | (x,y) € R}. We callR total if R(x) # 0 for
all x € X. Given a functionf : X — Y, its updatef[x — y] : X — Y is defined as
fix—Vy](z) :=yif z=xandf[x— Yy](2) := f(z) otherwise.

In the untimed world, traces of systems are usually modelled as finite or infinite
words over some alphabet of evetsHowever, as discussed in the Introduction,
this model does not allow one to make quantitative assertions regavtigggvents
occur. A natural way to overcome this drawback, first proposed by Reed and Roscoe
in the development of Timed CSP [23, 24], is to model traces of timed systems as
finite or infinite words over the event alphabet together with timestamps indicating
the time of occurrence of events. In the remainder of this paper we focus exclusively
on finite timed words.

Definition 1 (Timed words). Let X be a nonempty finite set of events.titne se-
quencer is a finite sequence; 1z. .. T, of time values fronRR , such thatr; < 7,1
forall 1 <i<n. Atimedword p overX is atuple(oc, 7) wherert is a time sequence
ando = 010;... 0, is a word overr of the same length as

The set of all finite timed words ove? is written T X*. Note that our notion of
time isweakly monotonicin that we allow several events to share the same times-
tamp. Similar results to the ones presented here also holstrfamgly monotonic
time, although as pointed out in [10], awkward complications arise when disallow-
ing the possibility of simultaneous events in the presence of parallel composition
operators. Note that we do not require the first element of a time sequence to be
zero.

Thelengthof a timed wordp is denoted byp| and is the length of the underlying
time sequence. Alternatively, we can represent a timed word as a sequéincecf
eventsby writing p = (01,71)(02,72) ... (On, Tn). FOr convenience, we also define
auxiliary functions as follows: for X i < |p|, ai(p) := 0; and7i(p) := 7, where
(61,7 ) is thei-th timed event op. Given a timed worg, denote byp'/ the timed
word (6;,0)(Gi41,Gi1— 7). (0,7 — 5),1 <i < j < |p|. Moreoverp' := ptlP|
and forj > |p|, p" := p'. GivenE C X, the timed wordp \ E is obtained fronp
by deleting all timed eventss;, 7i) from p with o; € E.

Definition 2 (TPTL(1) syntax). TPTL(1) formulas are defined inductively accord-
ing to the following grammar:

=aleVe2| 20O | o1 % Q2| X~C|X.Q
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Here,a € X is an event() is thenext operatorZ is theuntil operatorx is aclock
variable, c € Q1 and~ € {<,<,=,#,>,>}. Note that TPTL(1) makes use of a
single clock variablex.

We define the standard Boolean abbreviatigng ¢, := —(—¢1 V —¢2), ¢1 —
@2 '=-@1V @, T :=aVv-a and.l := —T. Theeventuallyoperator is defined as
O =T % ¢ and theglobally operator aslo := —=0—¢. The clock variable in
TPTL(1) formulas is the key reference for making quantitative statements about the
evolution of time. It allows one to ‘freeze’ (or record) time points along a timed
word, which can later be compared to the current time. Whenholds at some
time pointz, x is bound tor in ¢ and when the clock constrairt~ c is evaluated
at some later time point, it is checked whether or nat — 7 ~ c. This can be seen
this asresettingthe clockx at time pointr.

Originally, TPTL as introduced in [3] allowed for multiple clock variables. How-
ever, that logic has an undecidable satisfiability problem and we therefore only con-
sider its one-variable fragment TPTL(1) in this paper.

We now give a non-standard presentation of the semantics of TPTL(1), which can
however easily be shown to be equivalent to that commonly found in the literature.
Its main advantage is to ease the definition of fixpoint operators later on.

Given a timed wordp and a TPTL(1) formulap, the semantic functiofji—]°
mapse to an element of the set (p) := (N, x R,). Intuitively, (i,r) € [o]° if
¢ holds at position in p when the value of the clock variabdasr.

Definition 3 (TPTL(1) semantics). The semantics of a TPTL(1) formulais de-
fined by induction on the structure @f as follows:

[a]® = {(i,r) | o' =ai €N, andr e R, }

[prv @2]? = [@1]P U [e2]?

[~ol? ={@,r) [ €Ny andr e R, }\ [o]?

[Oel? =A{(,r) | (i+1r)€[o]° andr =r'+7 — 541}

[or % @2]° :={(i,r) | 3j.i < j <|p[and(j,r +7; —7) € [¢]* and
vki <k< jimplies(kr+%—1) € [¢1]°}

[x~c]P = {(i,r) [ € Np|,r € Ry, andr ~ c}

[x-e]P ={@,r)[(i,0) € [o]” andr e R}

We write p |= ¢ iff (1,71(p)) € [@]°, andL(¢) :={p | p = ¢} for the timed
language defined by. A TPTL(1) formulag is calledsatisfiableff L(¢) # 0. The
problem of checking whether a formudais satisfiable has been shown to be de-
cidable with non-primitive recursive complexity in [20], by translating TPTL(1) for-
mulas into one-clock timed alternating automata (1 TAA), introduced subseqtently.

The real-time logic MTL can be defined as a syntactic fragment of TPTL(1). It
is known to be strictly less expressive than TPTL(1) [4].

Definition 4 (MTL). MTL formulas are defined according to the following gram-
mar, wherea € X and.# is an open, half-open, or closed interval with endpoints in

Q+:

1 Technically speaking, [20] deals with Metric Temporal Logic rather than TPTL(1). The proof
techniques however carry over straightforwardly.
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p=aloVe2 | 20| Qs | o1 %s @2

The semantics of MTL formulas is given by a translation funcfien' that maps
MTL formulas to TPTL(1) formulas, as follows:

al:=a Os0) :=xO(xe 7 neh
(Vo) == 0[Ve (o1 % ¢2)' = x(] % (xe I N @)))
(=9)" = (o)
wherex € .# denotes the obvious corresponding conjunction of inequalities.

We callO » thetime-constrained nexand% » the time-constrained untibper-
ators. Thetime-constrained eventuallyperator( » andglobally operator] , are
defined similarly to their TPTL(1) counterparts. We also sometimes abuse notation
and use pseudo-arithmetic expressions, suck-a5 to denote intervals.

Let Sbe a finite set ofocations and define the s&b(S) of formulas as follows:

o=t |ffloA@| o1V |S|X~C|XQ

wherese S, ce Q1 and~ € {<,<,=,#,>,>}. Asin TPTL(1),x ~ cis a clock
constraint and the expressigmp resets the clock variable i.e., bindsxto 0 in ¢.

Definition 5 (1TAA). A one-clock timed alternating automaton (1TAA)is a five-
tuples = (X,S %, F, §) whereX is afinite alphabet, Sis a finite set ofocations
S is theinitial location, F C Sis a finite set ohccepting locationsandd : Sx X —
@(9) is thetransition function .

Given a 1TAA«7, astateof 7 is a tuple(s,v), wheresis alocation and € Q; a
clock value. Aconfiguration Cof <7 is a finite set of states, a{dsy, 0) } is theinitial
configurationof <. By C+r we denote the configuratiof(s,v+r) | (s,v) € C}.
We call a configuratiolC acceptingif s € F for every locations occurring inC.
For convenience, given a 1TA&, = (Ei,S,§O,F|,6i) we introduce functions for
accessing each of the components®fe.g.,.S(#) = S, so(#) = %, etc.

Given a configuratio©® and a clock value, we define a Boolean valuation on
@(S) as follows:

Cleytt

CEvoi A iff ClEy@randC =y @2
CeEvorVe iff CEyprorClEy @
Ckyvs iff (s,v)eC
CkEvx~c |iff v~cC

CEvxo iff Cko0

Definition 6 (Run). Given a finite timed worg of lengthn, defined; := 7j — 7j_1
for 1 < j <nwith 7p:=0. Arun of a 1TAA &7 onp is a finite sequence of config-
urations

d fo d o; d
Co~bCL5CpBC3 2 B Coy1 2 Cop
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such thaCyj 11 = Cyj 4 dj11 and forCpji1 = {(s,Vi) }ier, Coj+2 = Uie) €, where
d.

C =y 6(s,0j+1) with 0 < j < n. Here,Cy; £heg Cj+1 is called a delay step and

Cojs1 2, Cyj12 is a discrete step. A run &cceptingif Cy, is accepting.

A finite timed wordp is accepted by a 1TAA7 with respect to an initial clock
valuev if o/ has an accepting run starting fra@g = {(so,Vv)}. The language ac-
cepted by, L(«7) C TX*, is the set of all finite timed words accepted&ywith
respect to the initial clock value zero.

3 Decidable Cases

In this section we establish the decidability of satisfiability for TPTL(1) augmented
with least fixpoint and alphabetised parallel operators. Our strategy is to translate
a formulag in the extension under consideration to a 1TA# such that_(¢) =
L(<Zp).

Least Fixpoints

Introducing the least fixpoint operator offers a natural way to express recursive spec-
ifications in TPTL(1). The resulting logig TPTL(1) is strictly more expressive than
TPTL(1).

In order to guarantee the existence of fixpoints, we restrid®TL(1) formulas
to be in negation normal form, i.e., with negations only occurring in front of events
from X. We moreover drop the until operator, since it can be expressed with the least
fixpoint operator.

Definition 7 (uTPTL(1) syntax). The set ofu TPTL(1) formulas is defined induc-
tively according to the following grammar:

pu=T[L[Ala[-a[Z|x~c|x@|O¢|pAe2| o1V 2| nZ.¢

Here, Z is a propositional variablefrom a finite set%”, uZ is theleast fixpoint
operator, andi is an end-marker that is only true at the last position of a timed
word, i.e., is equivalent te- (O T. A uTPTL(1) formulae is closedif every Z in

¢ occurs within the scope of a least fixpoint operaiat. Otherwise, the formula

is deemed to bepenand we may writep(Z;,...,Z) to indicate thatz, ...,z
occur unbound imp. If Z € 2 is bound ing, we require without loss of generality
that there be exactly one least fixpoint quantifigt occurring in¢. By fpd(¢p) we
denote thdixpoint depthof ¢, which is the maximum nesting depth of least fixpoint
operators, e.gfpd(uY.(O(avyY)vuzZ.(bv O(Y AZ)))) = 2. Note that the until
operatorg; 7 ¢, can be introduced as an abbreviationfiat. (g2 vV (@1 A OZ)).
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The semantics gt TPTL(1) formulas is given with respect to anvironment,,
which enables one to evaluate opghPTL(1) formulas. Given a timed worg, &
is a mapping from the propositional variables#to ¥ (p).

The clauses of Definition 3, which prescribe the semantics of TPTL(1) formulas,
carry over touTPTL(1) formulas whose outermost connective is in TPTL(1). The
additional clauses specific toTPTL(1) are as follows:

e = {(lpln) |1 € Ry}
[21? = &(2)
[MZy(Z)E = DM € 7 (p) | TV (D2 0y M)

Thus,[[uZ.y/(Z)]]g is the least fixpoint of the functioR,, 7 , : (M) := [[W]]E[Z»—»M]'
Before we show the decidability @f TPTL(1) by translation to 1TAA, we give
an example of the usefulness of this extension of TPTL(1).

Example 1The formulaever{p) expresses the property thatis true on a timed
word an even number of times. The untimed languadg efer{¢)) is not counter-
free and not expressible in TPTL(1).

ever{g) = uY.((@ A (HVOY)) V(e AOUZ.(me AOZ) V (¢ A(HV OY)))))

(Of course, one would need to pttp in negation normal form, which can readily
be done as soon as a concretss supplied.)

The existence of least fixpoints is a consequence of the subsequent lemma and
the Knaster-Tarski fixpoint theorem.

Lemma 1. For any timed wordp, uTPTL(1) formulagp(Z,Z;,...,2Z), and valua-
tion of the propositional variable§, the function § 7 , ¢ is monotone with respect
to C.

Let ¢[Z/y] be theuTPTL(1) formula obtained fronp in which every occur-
rence ofZ in ¢ is replaced byy. Approximants of a formulaZ.y(Z) are induc-
tively defined for any € N as:

u°z.y(z) = L
uZy(Z) = y(Z/WZ.y(2)]

The next lemma is a standard result about approximants:

Lemma 2. For any timed worgp anduTPTL(1) formulap = uZ.y(Z), M = [[(p]]g
iff there exists an & N such that M= [u'Z.y(2)];.

Given auTPTL(1) formulag(Z,Zy,...,Z), Z is guardedin ¢ if it occurs in
the scope of a next operator. We call a formulgroper if for every subformula
UZ.y(Z) in ¢, Z is guarded iny(Z). Properness oft TPTL(1) formulas will be
assumed in the following without loss of generality, sipc& (Z Vv y(Z)) is equiv-
alent touZ.yw(Z) anduzZ.(Z A y(Z)) is equivalent tal.. Since we are dealing with
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finite timed words the fixpoint o, 7 , ¢ is unique for proper formulas. It therefore
follows that least and greatest fixpoints coincide gdrPTL(1), obviating the need
for two distinct fixpoint operators.

Lemma 3. Letp be atimed word an@(Z,Z,...,2Z) be a formula such that Z oc-
curs guarded inp(Z). Thenfor allg,M*,N*, F, 7 , : (M*) =M*and F, 7 , ¢ (N*) =
N* implies M = N*.

Although we have not explicitly allowed for arbitrary negatipifPTL(1) still
is closed under complement. Given a formglawe define its complemeri by
induction on the structure af, where;~ maps the relatior- to its complementary
relation, e.g.< to >, = to # etc.

T= L a=-a X~T = X~C OLV Q2 = P12
1:=T =a=a O¢ :=-4vOp HZ.¢ = uz@
4:=QT7T Z:=2 QLA Q2 == Q1V P2

Lemma 4. Let be a propeu TPTL(1) formula. Thefi,r) € [[(p]]g iff (i,r) ¢ [[6]]%.
where&(Z) :={(i,r) |i € Ny andre R, }\ &(2).

The lemma can be proved straightforwardly by induction on the structupeusing
the properness of the subformulaZ.y(Z) of ¢ and the resulting unique fixpoint
property.

The translation of a TPTL(1) formulag into a 1TAA 7, is given by induction
onfpd(¢) and is somewhat similar to the untimed case considered in [14]. Recall
thatZ is assumed to be guarded yn(Z) for any subformulauZ.y(Z) of ¢. For
fpd(¢) = 0, we definew, by induction on the structure qf:

e Casep = a.Definesy = (Z,{Sp},Sp,0,6) with §(sp,a) = tt andd(sy,b) = ff
if b a.

e Case ¢ = . Define o7, = (Z,{Sp,S+},Sp,{S+},8) with 5(sp,a) = s; and
d(sy,a)=ffforallae X.

e Caseq = Z. Define.o/y, = (Z,{Sp},Sp,0,6) with 5(sp,a) =t for all ae X.
Note that we will refer tes, ass; in the induction stegp = uZ.y(Z).

e Caseq = x~ c. Define.o/y = (£,{Sp},Sp,0,6) with §(sp,a) = x ~ c for all
ac’k.

e Caseq = x.y. Define .oy, = (X,{Sp} US(y),Sp,F (), ) with 5(syp,a) =
X.8(y)(so(y),a) andac X andd(s,a) = 5(Ay)(s,a) for all se S(Ay).

e Case @ = y1 A yn. Define o, = (X,{Sp} U S(ay,) U S(y,),Sp, F (Hy,) U
F(cAy,).8) With 8(Sp,2) = 8(Ay,)(So(Hy).2) A 8(Hy,)(So(Hy,),2) and
o(s,a) = 6(Hy,a) if se Y, ) forallac X.

e Casep = Q. Definesry = (X,{Sp} US(y),Sp,F (), ) with 5(sp,a) =
So(#y) andd(s,a) = o(y)(s,a) for all se §(e7,) anda e X.

The cases whep is T, L,—a, or y1 V y» are defined in a similar way. In the
construction above we assume different subformulas to have disjoint sets of states,
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but thater, = 4, if @ = y. In particular, ifZ is a free variable inp, then .o,
contains exactly one stasg corresponding t@.

Now for fpd(¢) = n+ 1, we consider the only relevant cape= uZ.y(Z); the
construction for the remaining cases can be done along similar lines as the above.
Definegz%w = (2, {S(p} US(JZZ,,(Z)), F (ﬂw(a), 5) with S(S(p, a)= S(MW(Z))(S()(,Q%,(Z)), a),
0(sz,a) = 6(sp,a), andé(s,a) = 8(Fy,(z))(s,a) for all sdistinct froms, andsz.
Here,a € X ands; is the state obtained from the 1TAA correspondin@ tduring
the inductive construction af(Z). The transition function is well-defined sinZe
occurs guarded iw(2).

Lemma 5. Let ¢ be a closedt TPTL(1) formula ang a timed word. Theri,r) €
[o]P iff <7, has an accepting run op' with initial clock value r.

Theorem 1. Satisfiability inuTPTL(1) over finite words is decidable with non-
primitive recursive complexity.

The translation fronuTPTL(1) formulas to 1TAA also works in the other di-
rection, i.e., for any 1TAA there exists a closgdPTL(1) formula¢,, such that
p € L(&) iff p = 9., as we now demonstrate. The translation has the same struc-
ture as the analogous constructiorue€alculus formulas from alternating automata
in the untimed case.

At this point it is helpful to extend the definition @fTPTL(1) to allow fixed
points invectorial form Given am-dimensional vector of variablés= (Zy,...,Z,)
and ann-dimensional vector of formula&ps, ..., ¢,), we allow for vectorial fix-
pointsuZ.(¢i,...,¢n). Given a timed worgb, such a vectorial fixed point is inter-
preted as an element of tinefold product?’(p)" according to the following rule,
whereM,; is thei-th component oM

[1Z.(1,....00)]2 == ({{M € 7 (p)" | [@]Z .\ SMiforall 1<i <n}.

Let p be a timed word and let; denote the-th projection? (p)" — ¥ (p) for
1<i<n.

Proposition 1. Given a vectorial fixed point formul@Z.(¢,...,¢n), for each
i € {1,...,n} there is a corresponding TPTL(1) formulay; such tha’mi([[(p]]g) =

[l
Proof. The proof is by repeated application of the Beklentity

w1 (Y,2)-(¢1,... @n)]E = [UY.@u[Z/uZ (@2, on)]]E -
This identity is valid in any complete lattice, so holds for our semantics.

Now lete = (X,S s0,F,8) be a 1TAA. LetZ = (Zs| s€ S) be a vector of variables
indexed by the set of locations @f. Recall from Definition 5 that the transition
function§ of < takes values in the set of expressidnsS). The first step in defining

¢/ is to give a translation mapping each expresspan ®(S) to a corresponding

uTPTL(1) formulag* with free variables irZ. To this end we write:
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=T (‘PlA(Pz)i:(pf/\(pg (ch)*:ch
fif =1 (p1V )" = of v ol (x.0)f = x. ¢t
SI = QZS

For each locatios € Swe define quTPTL(1) formulags(Z), where

2) = Vacr(and(sa)*)  if sis not accepting
PL2) =\ 4V Vaes (an 8(s a)t) if s is accepting

Recall thatsp € Sis the initial location ofe7. We defineg,, to be theuTPTL(1)
formula that is equivalent to trsg-th component of the vectorial fixed poinZ . (¢ |
s€ 9)). Such a formula is guaranteed to exist by Proposition 1.

Theorem 2.Let o7 be a 1TAA andp,, its correspondinguTPTL(1) formulae.
Then {o/) =L(¢y).

This result, together with the construction underlying Theorem 1, shows that
uTPTL(1) characterises the class of languages accepted by one-clock timed alter-
nating automata.

Alphabetised Parallel Composition of TPTL(1) Formulas

In this section we consider TPTL(1) extended with the alphabetised parallel compo-
sition operatoi| and show the decidability of the augmented logic. This extension is
useful for specifying systems that run independently subject to sharing some events
in common. As an example, consider the following specification:

(O(processed— O<1queued) | (O(queued— O-1send).

It describes a system consisting of a processor and a sender that run independently
of each other and only synchronise on theeuedevent. The specification requires

that a processed item be queued by the processor inekisstep within one time

unit, and that each queued item be sent by the sender ingkistep one time

unit later. However, in the timed trace of the composed system internal events from
the sender may occur betweempm@cessedndqueueevent of the processor. This
issue is resolved by thig operator which ensures that the events unrelated to each
specification do not interfere with it.

Formally, we augment the syntax of TPTL(1) in Definition 2 with an additional
term for thealphabetised parallel compositiopy || ¢2. The alphabetised parallel
compositionof timed wordsp; and p, over the alphabet®; and X, respectively
is defined as followsp € p1 || p2 C T(Z1UXp)* iff p1=p\ (Z2—Z1) andpy =
p\ (X1 — X3). Informally speaking, the timed events fropa and p, are merged
in p with the requirement that the timed events fraimn X, occur at the same
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time points in botlp; andp,. The semantics of TPTL(1) together with alphabetised
parallel composition is obtained by adding the following clause to Definition 3:

[01 ]| 920P = {(i,r) | 3p1.p2.p' € p1 || P2, (L,7) € [@a], (L,7) € [92]?}

We have seen in the previous section how to construct a 1TAA from a TPTL(1)
formula ¢. We now extend this construction to show decidability of TPTL(1) with
alphabetised parallel composition. Rat {1,2}, given TPTL(1) formulasp; with
their corresponding event alphabéisand 1TAA <%, we show how to construct a
1TAA o || o suchthat (<A || %) =L(¢1 || ¢2). Leters = (XZ1,S %o, F, ), define
o1 extended withZ, as;a/fz = (Z1UX5,S%,F,8'), whered’(s,a) = {s} for all
ae X;—X; andd’'(s,a) = 4(s,a) otherwise. Without loss of generality we assume
the set of states af4 and.<, to be disjoint. Define || o 1= (X1 U X, () U
S(eth) U {SH 1 {SH }LF(A)UF(95),6), where

8(.2)(s.a) if se (1)
8(s.a) = { 8(*)(s.) if s€ ()
8(/72)(so(h), ) A (5™ (so( 7). ) if s=§,

Decidability of TPTL(1) + alphabetised parallel composition is then a conse-
quence of the following lemma.

Lemma 6. Let.o) and.«% be two 1TAA over the alphabeXs and X, respectively.
Theng || <% has an accepting run omiff <4 has an accepting run om\ (22— X1)
and .« has an accepting run op\ (X1 — X2).

Proof. Given an accepting ruo < Ci % ... % Cpn of 4 || <% on p, by ex-
. . i ] d . di+d; .
haustively replacingCyi_» 4 Cy g O Cy M Caiv1 With Coip © ot Gy g if

oi € Xy — X, intersecting each remainir with {(s,r) | s€ S(«),r € R, }, and
replacingCo with {(so(2#1),0)}, we obtain an accepting run of;. The construction
works, sinceCy;_,N{(s,r) |se€ §(aA),r € Ry} =C5 1 N{(sr)|se Ya),r e
R, } ensures that we obtain a valid run@f onp \ (X, — X;). Similarly, we obtain
an accepting run of% onp \ (Z1 — X2).

Conversely, leCy 4 C o, o Con be an accepting run ofy on p;. This

run can be altered to become an accepting runz® on p. In general, for
(0,7))(0j4+1, Tj+1) - - - (Ok, ) in p with oj,0k € X1, 0y € Lo — Xy for j < £ <k

and (oj, 7)) equal to(c;,7) in p1, Co_1 — Cy Fealpy) (e Cziy1 can be ex-
haustively replaced witls 1 222 Cy Al rne o Ta(p) — 7i(p) 2%

Tip1(P1)—Tk-1( Git1(P1)

.. s 2 Coiia Cuii2 in order to obtain an accepting run mfZ
onp. Then by joining the accepting runst:?gZ2 and;zizzl and settingo = {(s/,0)}

we obtain an accepting run of; || <% onp.

Theorem 3. Satisfiability in TPTL(1) augmented with alphabetised parallel compo-
sition is decidable over finite words with non-primitive recursive complexity.
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It is not hard to see that it is possible to combine the inductive constructions of
1TAA from uTPTL(1) and TPTL(1) together with alphabetised parallel composi-
tion. Hence satisfiability for TPTL(1) augmented both with fixpoint operators and
alphabetised parallel composition is decidable.

Theorem 4. Satisfiability for TPTL(1) augmented with fixpoint operators and al-
phabetised parallel composition is decidable over finite words, with non-primitive
recursive complexity.

4 Undecidable Cases

In this section we show that augmenting MTL (and a fortiori also TPTL(1)) with
any of hiding, renaming, or asynchronous parallel composition renders the corre-
sponding satisfiability problem undecidable.

To establish these results, we reduce the reachability problem for determinis-
tic two-counter machines (2CM) to satisfiability for MTL with the extensions un-
der consideration. A 2CM# = (S,init, §) is a finite-state automaton augmented
with two counters over the naturals, wheés a finite set of statesnit € Sis the
initial location andd is the transition function. A configuration o7 is a triple
(s,no,n1) € Sx N x N. From a given configuration, the transition function can test
each of the counters for zero and accordingly change configurations by jumping to
a new location and incrementing, decrementing, or leaving each of the counters un-
touched. Arun of a 2CM is a finite sequence of configurations that is consistent with
the transition function. The reachability problem asks whether for a given 2ZM
it is possible to reach a configurati¢s 0,0) starting from the initial configuration
(init,0,0). This problem is well-known to be undecidable [18].

Following [1] and [7], we can encode a run of erocation 2CM.# as a timed
word p over the alphabeE = {a,bs,...,by,c}. Thea-events are used to encode
the value of the counters in unary, edghrepresents a location o#/, andc is
used as a marker. Thiah configuration(s;j,v1,v2) of a run is stored in the interval
li,i+1) of p. The eventb; occurs at time, representing the current locatisn
In the following, let.# := (0,0.25). The number of-events in the interval? +i
encodes the value of the first counter. Likewise, the value of the second counter
is encoded in the interva¥ + i+ 0.5. The markerc occurs at time + 0.5 and
the remaining intervals ifi,i + 1) do not contain any- or bj-events. We assume
thatinit = s;, so thatb; is the first event to occur. It is not hard to see that we
can construct an MT4.formula ¢ , such thatp , A Oby is satisfiable if(s,0,0) is
reachable. The converse however does not hold, since MTL is incapable of detecting
insertion errors

2 This even holds for the until-free fragment of MTL, which is obtained from Definition 4 by
dropping theZ »-definition and introducing] » and¢{ , as primitives.
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1 1
1
0|'1 a 03 a a L, aa a .
0 T 1 = s 2 T T T3 -

Fig. 1 lllustration of a timed word suffering from insertion errors.

Definition 8. Letp |= ¢, be atimed word representing a rungf. Thenp suffers
from insertion errors if there are I<i < j <|p|andoj, o} € X such thap contains
(0i,7)(a,7i+1) and(oj, 7 +1)(a, Tj41) With 7j11 < 51+ 1.

Anillustration of this definition is presented in Figure 1. First, consider the events
(01,0) and(a, 72). We have thatoi,0) is followed one time unit later byos, 1)
which itself is followed by(a, 74). However,ts < 72+ 1 and hencéa, 74) is wrongly
inserted. Observe thaa, 72) does not have any corresponding event one time unit
later. Second, the-event at timery is also wrongly inserted, since it lies strictly
betweent, + 1 andts + 1.

D’Souza and Prabhakar show in [7] that MTL augmented with any extension
that is able to characterise a slightly more restricted version of the language from
Definition 8 has an undecidable satisfiability problem. We now use their observation
to establish undecidability of satisfiability of MTL extended with any of hiding,
renaming, or asynchronous parallel composition. For each extension, we define a
formula ¢je that is capable of detecting insertion errors. Whence there exists a run
of . reachings iff ¢ 4 A Obi A @i is satisfiable.

4.1 Hiding

LetE C X be a set of events. We augment the syntax of TPTL(1) in Definition 2 with
an additional term for thiding operatof\E. In designing specifications, hiding is
used to abstract away irrelevant events. For example, given a_sE{ the formula
(O(¢p — O<1v)) \ | specifies a bounded response property that ‘ignores’ events
from| that could occur betweapandy. Formally, the semantic mapping for hiding

is obtained by adding the following clause to Definition 3:

[9\EJ? :={(i,r) | 3p".p' = p'\E and(L,r) € [¢]°'}

It has been observed in [10] that hidden propositions lead to an undecidable sat-
isfiability problem for real-time logics when the underlying time model is dense. In
order to detect insertion errors, we atltb the event alphabet and use the hiding op-
erator in the following wayp suffers from insertion errors (following Definition 8)
iff we can insert ad-event intop immediately preceding aa-event, in such a way
thatd is followed exactly one time unit later by @ Formally:
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Lemma 7.Let gie = (@smA O(dA O san Q1)) \ {d} andp = ¢, be a timed
word representing a run of#. Thenp suffers from insertion errors ifp |= @ie.

(In the abovegs, stands for a formula that captures precisely all strongly monotonic
timed words, i.e., words in which no two events share the same timestamp.)

The lemma shows that hiding renders the satisfiability problem undecidable even
if applied at the outermost level, i.e., checking satisfiabilitypdfE is undecidable
for MTL formulas ¢. This is not the case for MITL, where checking satisfiability of
¢\ E for some MITL formulag still is decidable [10].

4.2 Renaming

Let RC X x X be a total renaming relation over. We augment the syntax of
TPTL(1) in Definition 2 with an additional term for thenamingoperatorR]. Let

us write thatp € p'[R] iff |p| = [p'], 5i(p) = @ (p"), andai(p) € R(ai(p")) for all

1<i <|p|. The semantics of TPTL(1) together with renaming is obtained by adding
the following clause to Definition 3:

[@[R” :={(i,r) | 3p"p' € p'[R and(L;r) € [¢]'}

The effect of renaming is less drastic than that of hiding, since it does not delete
timed events from timed words. It however still provides a convenient means of
abstraction in specifications. As an example, given d setr of internal events
and renaming relatioR := {i/b}ic| Uldyy;, the formula(C(¢ — (b %<1 v))[R|
expresses a bounded response property that treats all eventsifroine same way
by grouping them into a single evelmt

Using the renaming operator to detect insertion errors is slightly more involved
than in the previous case, and we describe the procedure with the help of an example
givenin Figure 2. Observe that theevent at timers is wrongly inserted in the timed
word shown in the lower part of Figure 2. Our tactic is to non-deterministically
rename some-events tod-events in this timed word in such a way as to identify
the wrongly insertec-event. Such a renaming is shown in the upper part of the
figure. There we have that tlaeevent at timer; is immediately followed by exactly
oned-event, which itself is followed exactly one time unit later bg-avent. For the
event at timery, we can then check that there is in strictly more than one time unit
later ana-event followed immediately by d-event—which identifies the wrongly
inserteda-event.

The formulas below also have to take account of the case in whické¢hent at
time 1, does not have a correspondiagevent one time unit later and are therefore
somewhat trickier to read. However, it is not hard to check that they capture the
intuition described above.

Lemma 8. Letp = ¢, be atimed word representing a run.of, and let
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1
1
L a a d , a a a d . -
0 1 2
L a a a , 4a a a a . ~
0 T o] 7 2 ]

Fig. 2 On the bottom, a timed word suffering from an insertion error, and above its renaming that
allows one to detect it.

v =0s((avd) = O,2d)AQ s (dA (O0=2(dAOy—d) VO 105 1))
Pie 1= Q(Y A O=1((0r (AN 0.»d) V (O, ~d A0 »a))))[{(d,a)} Ulds (q)]

Thenp suffers from insertion errors ifp = @ie.

4.3 Asynchronous Parallel Composition

We augment the syntax of TPTL(1) in Definition 2 with an additional term for
theasynchronous parallel compositi@perator]|||, also known asnterleavingand
(timed) shuffle producfThis operator is similar to its alphabetised counterpart in
that it allows one to express specifications on systems that run concurrently.
Given timed word, p1, andp, with |p| = n, |p1| = n1, and|pz| = ny, we let
p € p1]|| p2 iff the set of positions(1,...,n} of p can be partitioned into disjoint
sets{iy,...,in, } @and{ja,...,jn,} such thatoi(p1) = oi,(p), w(p1) = 7 (p) for
1 <k<ng, andoy(p2) = oj,(p), T(p2) = 7j,(p) for L < £ <.
The semantics of TPTL(1) together with asynchronous parallel composition is
obtained by adding the following clause to Definition 3:

[@1lll @2]? := {(i.r) | 3p1,p2-p" = pa |l p2, (1,r) € [@a]P*, (L,1) € [@2]2}

In order to show undecidability, we use the fgct holds on timed words with
and without insertion errors. Consequently, the interleaving ||| a only holds on
timed wordswith insertion errors.

Lemma9.Letp = ¢, be a timed word representing a run o and let e :=
¢y || a. Thenp suffers from insertion errors iff = @ie.

We sum up the results of this section in the following theorem.

Theorem 5. The satisfiability problem for MTL augmented with any of hiding, re-
naming, or asynchronous parallel composition is undecidable.
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5 Conclusion

In this paper, we have considered various extensions of the central timed specifica-
tion formalism of Metric Temporal Logic by process-algebraic operators originating
from Tony Hoare's Communicating Sequential Processes. We have argued that such
extensions, each of which strictly enhances the expressive power of MTL, allow for
more natural and versatile specification of timed systems.

On the positive side, we have shown that MTL augmented with both fixpoint
operators and alphabetised parallel composition remains decidable. On the other
hand, the addition of any of hiding, renaming, or asynchronous parallel composition
(also known as interleaving and shuffle product) immediately yields undecidability.

One of our main technical tools has been the one-clock fragment of Timed Propo-
sitional Temporal Logic, TPTL(1). We have shown that extending this formalism
with fixpoint operators provides a precise logical characterisation of the class of
languages accepted by one-clock timed alternating automata, a result of indepen-
dentinterest. An intriguing question is whether the fixpoint-extension aftieck
fragment of TPTL precisely characterises the class of languages acceptetbiok
timed alternating automata, thereby extending Theorem 2 (notwithstanding the fact
that such languages are in general not recursive).

An interesting avenue for future work would be to investigate more thoroughly
the methodological applications of our decidability results towards the specification
of timed systems themselves built from recursive and concurrent components, such
as Timed CSP processes.
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