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Abstract

For which unary predicates P1, . . . , Pm is the MSO theory of the structure
⟨N;<,P1, . . . , Pm⟩ decidable? We survey the state of the art, leading us to
investigate combinatorial properties of almost-periodic, morphic, and toric
words. In doing so, we show that if each Pi can be generated by a toric
dynamical system of a certain kind, then the attendant MSO theory is de-
cidable.
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1. Introduction

In 1962, Büchi proved in his seminal work [1] that the monadic second-
order (MSO) theory of the structure ⟨N;<⟩ is decidable. Shortly there-
after, in 1966, Elgot and Rabin [2] showed how to decide the MSO theory
of ⟨N;<,P ⟩ for various interesting unary predicates P . On the other hand,
it was known already in the 1960s that extending ⟨N;<⟩ with the addition
or even the doubling function yields a structure with an undecidable MSO
theory [3, 4]. In this paper, we focus on the following question: Which unary
predicates P1, . . . , Pm can one add to ⟨N;<⟩ whilst maintaining decidability
of the MSO theory? We give an overview of the state of the art and provide
some new answers. In particular, we identify a class of predicates generated
by rotations on a torus, any number of which can be adjoined to ⟨N;<⟩ and
still preserve decidability of the attendant monadic theory.
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By a predicate P we mean a function with type N → Σ, where Σ is a finite
alphabet. The characteristic word of P is the word α ∈ Σω whose nth letter
is P (n). Let us take the primes predicate as an example, defined by P (n) = 1
if n is prime and P (n) = 0 otherwise. Recall that in a monadic second-order
language we have access to the membership predicate ∈ and quantification
over elements (writtenQx for a quantifierQ) as well as subsets of the universe
(written QX), which is N in our case. Consider the sentence ψ given by

φ(X) := 1 ∈ X ∧ 0, 2 /∈ X ∧ ∀x. x ∈ X ⇔ s(s(s(x))) ∈ X

ψ := ∃X : φ(X) ∧ ∀y.∃z > y : z ∈ X ∧ P (z)

where s(·) is the successor function defined by s(x) = y if and only if

x < y ∧ ∀z. x < z ⇒ y ≤ z.

The formula φ defines the subset {n : n ≡ 1(mod 3)} of N, and ψ is the
sentence “there are infinitely many primes congruent to 1 modulo 3”, which
is true. Another example of a number-theoretic statement expressible in
our setting would be the Twin Primes Conjecture, which is given by the
first-order sentence

∀x.∃y > x : P (y) ∧ P (s(s(y))).

Unsurprisingly, decidability of the MSO theory of the structure ⟨N;<,P ⟩,
where P is the primes predicate, remains open. Conditional decidability is
known subject to Schinzel’s Hypothesis, a number-theoretic conjecture that
implies existence of infinitely many twin primes [5].

The MSO theory of N equipped with the order relation is intimately
connected to the theory of finite automata. The Acceptance Problem for a
word α ∈ Σω, denoted Accα, is to decide, given a deterministic (e.g. Muller)
automaton A over Σ, whether A accepts α. The previously mentioned result
of Büchi establishes that the MSO theory of ⟨N;<,P1, . . . , Pm⟩ is decidable if
and only if Accα is decidable for the word α = α1 × . . .× αm, where each αi is
the characteristic word of Pi.

1 Hence our central question can be reformulated
as follows: for which classes of words α1, . . . , αm is Accα decidable?

1The original formulation by Büchi was given in terms of non-deterministic Büchi
automata. The formulations involving deterministic automata with a Muller, Rabin, or
parity acceptance condition are equivalent.
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In this work we consider the classes of almost-periodic, morphic, and toric
words. Almost-periodic words were introduced by Semënov in [6]. He showed
that for an effectively almost-periodic word α, the MSO theory of the struc-
ture ⟨N;<,Pα⟩ is decidable, where Pα is the predicate whose characteristic
word is α. We discuss almost-periodic words in Section 3. We then move onto
morphic words (Section 4), focussing on the result [7] of Carton and Thomas
that for a morphic word α, the MSO theory of ⟨N;<,Pα⟩ is decidable. These
two works provide answers to our main question for a single predicate, i.e. in
the case of m = 1.

In Section 5, we introduce the class of toric words, which are codings of
a rotation with respect to target sets consisting of finitely many connected
components. In Theorem 5.12, we give a large class K of toric words such
that the MSO theory of the structure ⟨N;<,P1, . . . , Pm⟩ is decidable for any
number m of predicates with characteristic words belonging to K. We also
study almost periodicity and closure properties toric words (Section 5.3), and
give account of the overlap between toric words and various other well-known
families of words. The latter is summarised below.

(a) Sturmian words are toric. In Section 6.1 we use the theory of toric
words to show that for Sturmian words α1, . . . , αm that satisfy a certain
effectiveness assumption, the MSO theory of ⟨N;<,Pα1 , . . . , Pαm⟩ is
decidable. This answers a question of [7].

(b) One of the central problems in symbolic dynamics is to understand the
morphic words for which the associated shift space has a representation
as a geometric dynamical system [8]. A slightly different (but similar
in spirit) question is: Which morphic words are toric? The Pisot con-
jecture identifies a class of morphic words for which the answer to the
first question is expected to be positive. We discuss the conjecture and
its relation to the second question in Section 6.2.

(c) Toric words arise naturally in the study of linear recurrence sequences.
In fact, specialised classes of toric words have already been used in
the literature [9, 10, 11] to study sign patterns of linear recurrence
sequences, discussed in Section 6.3. We construct sign patterns of LRS
that prove that the product of an almost-periodic word with a toric
word that is almost-periodic need not be almost-periodic.

(d) Finally, in Section 6.4 we give an overview of how modelling sign pat-
terns of LRS using toric words yields decision procedures for the Model-
Checking Problem for linear dynamical systems.
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2. Mathematical background

By an alphabet Σ we mean a non-empty finite set. For a word α ∈ Σ+∪Σω

we denote by α(n) its nth letter. For α ∈ Σω we denote by Pα the predicate
defined by Pα(n) = α(n) for all n. We write α[n,m) for the finite word
u = α(n) · · ·α(m− 1). Such u is called a factor of α. We write α[n,∞) for
the infinite word α(n)α(n+ 1) · · · .

Let αi ∈ Σω
i for 0 ≤ i < L. The product α0 × . . .× αL−1 of α0, . . . , αL−1

is the word α over the product alphabet Σ0 × . . .× ΣL−1 defined by α(n) =
(α0(n), . . . , αL−1(n)). The merge (alternatively, the shuffling or the inter-
leaving) of α0, . . . , αL−1 is the word α defined by α(nL + r) = αr(n) for all
n ∈ N and 0 ≤ r < L. Let Σ1,Σ2 be two alphabets. A morphism τ : Σ∗

1 → Σ∗
2

is a map satisfying τ(a1, . . . al) = τ(a1) · · · τ(al) for all a1, . . . , al ∈ Σ1.
We write Log for the principal branch of the complex logarithm. That is,

Im(Log(z)) ∈ (−π, π] for all non-zero z ∈ C. For z = (z1, . . . , zd) ∈ Cd and
p ≥ 1, we denote by ∥z∥p the ℓp norm p

√
|z1|p + . . .+ |zd|p.

By a K-semialgebraic subset of Rd, where K ⊆ R, we mean a set that can
be defined by polynomial inequalities with coefficients belonging to K; Recall
that p(x) = 0 ⇔ p(x) ≥ 0 ∧ p(x) ≤ 0. A set X ⊆ Cd is K-semialgebraic if

{(x1, y1, . . . , xd, yd) : (x1 + y1i, . . . , xd + ydi) ∈ X}

is a K-semialgebraic subset of R2d.
A sequence (un)n∈N over ring R is a linear recurrence sequence over R if

there exist d > 0 and (a0, . . . , ad−1) ∈ Rd such that

un+d = a0un + . . .+ ad−1un+d−1

for all n ∈ N. The order of (un)n∈N is the smallest d such that (un)n∈N
satisfies a recurrence relation from Rd. An LRS (un)n∈N over R of order d
can be written in the form un = c⊤Mns, where c, s ∈ Rd and M ∈ Rd×d. If
R is an integral domain, then for any p ∈ R[x1, . . . , xd], un = p(Mns) defines
an LRS over R. This is a consequence of the Fatou Lemma [12, Chapter 7.2].

The most famous problem about LRS is the Skolem Problem (over Q):
given an LRS (un)n∈N over Q, decide whether there exists n such that un = 0.
The Skolem Problem has been open for nearly ninety years, counting from the
seminal work [13] of Skolem, and is currently known to be decidable for LRS
(over Q) of order 4 or less [14, 15]. A related result is the celebrated Skolem-
Mahler-Lech theorem [13, 16, 17], which states that for any LRS over a field
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of characteristic zero, the set of zeros is a union of a finite set F and finitely
many arithmetic progressions a1 + b1N, . . . , ak + bkN, where 0 ≤ ai < bi
for all i. The values of k, ai, bi can all be effectively computed, whereas
determining whether F is empty is exactly the Skolem Problem. Berstel and
Mignotte showed in [18] that if an LRS (un)n∈N is not identically zero, then
there exists effectively computable L ≥ 1 such that for all 0 ≤ r < L, the
subsequence (unL+r)n∈N is either identically zero or has finitely many zeros.
Consequently, if we assume existence of an oracle for the Skolem Problem,
then we can effectively compute all elements of F in the Skolem-Mahler-
Lech theorem: take L subsequences and repeatedly apply the Skolem oracle
to each non-zero subsequence until all zeros have been found.

Other well-known open decision problems of LRS include the Positivity
Problem (given (un)n∈N, decide if un ≥ 0 for all n) and the Ultimate Positivity
Problem (given (un)n∈N, decide if un ≥ 0 for all sufficiently large n). These
decision problems were already encountered in the 1970s by Salomaa and
others when studying growth and related problems in formal languages [19,
20]. The Skolem Problem for LRS over Q can be reduced to the Positivity
Problem for LRS over Q, but the latter is also, independently from the
Skolem Problem, hard with respect to certain open problems in Diophantine
approximation [21].

3. Almost-periodic words

A word α ∈ Σω is almost-periodic if for every finite word u ∈ Σ∗, there
exists R(u) ∈ N with the following property.

(a) Either u does not occur in α[R(u),∞), or

(b) it occurs in every factor of α of length R(u).

The word α is effectively almost-periodic if (i) α(n) can be effectively com-
puted for every n, and (ii) given u, we can effectively compute a value R(u)
with the properties above. We represent an effectively almost-periodic word
with two programs that compute α(n) on n and R(u) on u, respectively.
The word α is strongly almost-periodic if it is almost-periodic and every fi-
nite word u either does not occur in α, or occurs infinitely often. Strongly
almost-periodic words are also known as uniformly recurrent words in the lit-
erature; see [22, 23]. For such words, R(u) is an upper bound on the return
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time of u. We will see that certain morphic words, sign patterns of linear re-
currence sequences, as well as large classes of toric words are almost-periodic.
The characteristic word αn! = 01100010000 · · · of the set {n! | n ∈ N} of all
factorial numbers, on the other hand, is an example of a word that is not
almost-periodic.

Remarkably, for an effectively almost-periodic word α the Acceptance
Problem Accα and hence the MSO theory of the structure ⟨N;<,Pα⟩ are
decidable. We refer to this result as Semënov’s theorem:

Theorem 3.1. Given a deterministic automaton A and an effectively almost-
periodic word α, it is decidable whether A accepts α.

See [24] for an elegant proof, showing that the sequence of states A(α) ob-
tained when a deterministic automatonA reads an effectively almost-periodic
word α is also effectively almost-periodic. It remains to determine which
states occur infinitely often in A(α). This can be done by computing R(q)
for every state q and then checking whether q occurs in A(α)[R(q), 2R(q)).

An infinite word β = τ(α), where α is (effectively) almost-periodic and
τ : Σ∗

1 → Σ∗
2 is a morphism, is (effectively) almost-periodic [24]. Furthermore,

the product of an almost-periodic word with an ultimately periodic word
is almost-periodic. However, by the result [6] of Semënov, the product of
two effectively almost-periodic words need not be effectively almost-periodic.
This tells us that we cannot immediately use Semënov’s theorem to show
decidability of the MSO theory of the structure ⟨N;<,Pα, Pβ⟩ for effectively
almost-periodic words α, β. In Section 6.3, we will give explicit words α, β
that are sign patterns of linear recurrences sequences and effectively almost-
periodic, whereas the product α × β is not almost-periodic. The proof of
[6], in comparison, is indirect: it constructs two effectively almost-periodic
words α, β that encode information about Turing machines such that the
MSO theory of ⟨N;<,Pα×β⟩ is undecidable. It follows that the word α × β
cannot be effectively almost-periodic.

4. Morphic words

By substitution we mean a non-erasing morphism τ : Σ∗ → Σ∗. That is,
τ(a) ∈ Σ+ for all a ∈ Σ. Let τ be a substitution and a ∈ Σ be a letter such
that τ(a) = aw for some w ∈ Σ∗. Iterating τ on a, we obtain a sequence
(xn)n∈N of words given by x0 = a and xn+1 = awτ(w) · · · τn(w). For every
k, n ∈ N, xn is a prefix of xn+k. If |τn(a)| → ∞ as n→ ∞, then (xn)n∈N
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Figure 1: Target sets for the Fibonacci and Tribonacci words. In (b), the pink, green, and
blue sets correspond to S1, S2, S3, respectively.

converges to an infinite word α ∈ Σω that is a fixed point of τ . Such α
is called a substitutive (alternatively, a pure morphic) word; see [23] for an
account of dynamics of these words. Substitutive words are similar to and
subsumed by words generated by D0L systems; the latter is obtained by
iteratively applying a morphism to a word w ∈ Σ∗, as opposed to a single
letter [25]. We next give a few well-known examples of substitutive words.

(a) The Thue-Morse sequence 0110100110 · · · is generated by the substitu-
tion 0 → 01 and 1 → 10, starting with the letter 0.

(b) The Fibonacci word αF = 01001010010 · · ·, generated by the substi-
tution 0 → 01 and 1 → 0. This famous sequence has many equivalent
definitions, one of them as the coding of a rotation (Figure 1 (a)). Let
T = {z ∈ C : |z| = 1}. Denote by φ ≈ 1.618 and Φ = φ− 1 the golden
ratio and its multiplicative inverse, respectively, and write γ = ei2π/φ.
The long-run ratio of zeros to ones in αF is equal to 1/Φ, and αF is
the coding of (γn)n∈N with respect to {S0, S1}, where S0, S1 are open
interval subsets of T with lengths 2πΦ and 2πΦ2, respectively. That
is, for all n ∈ N and a ∈ {0, 1}, α(n) = a ⇔ γn ∈ Sa. We will see in
Section 6 that αF is also a Sturmian and a Pisot word.

(c) The Tribonacci word αT = 121312112131 · · ·, generated by the sub-
stitution 1→ 12, 2 → 13, 3 → 1. Let β ≈ 1.839 be the real root of
x3 − x2 − x− 1 and Γ = (ei2π/β, ei2π/β

2
) ∈ T2. The word αT has a

representation as the coding of (Γn)n∈N with respect to three open
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subsets S1, S2, S3 of T2 with fractal boundaries [26]. For z ∈ T, let
f(z) = Log(z)

i2π
+ 1

2
. If we identify the multiplicative group T2 with the

additive group R2/Z2 = [0, 1)2 via (z1, z2) → (f(z1), f(z2)), the images
of S1, S2, S3 form the Rauzy fractal. See Figure 1 (b).

(d) (Carton and Thomas, [7].) Consider the substitution τ given by a→ ab,
b→ ccb, c→ c, and let xn = τn(a). We have that x1 = ab, x2 = abccb,
x3 = abccbccccb, and so on, with the fixed point α = abc2bc4bc6bc8 · · ·
that is not almost-periodic.

(e) (Salomaa, [27].) Consider the morphism a → aab, b → a. The fixed
point α = aabaabaaabaabaaab · · · is also a Sturmian (see Section 6.1)
and hence a toric word [28].

Let τ be a substitution, and order the letters of the alphabet Σ as
a1, . . . , ak. The matrix Mτ , where (Mτ )i,j is the number of occurrences of aj
in τ(ai), is called the incidence matrix of τ . Observe that Mn

τ counts the
number of occurrences of each letter in τn(ai) for 1 ≤ i ≤ k. A substitution
is called primitive if there exists n such that all entries of Mn

τ are positive.
The factorial word αn! ∈ {0, 1}ω, i.e. the characteristic word of the set

{n! | n ∈ N}, is not substitutive. This can be shown by observing that every
fixed point of a substitution τ can be factorised as aτ 0(w)τ 1(w)τ 2(w) · · ·
where (|τn(w)|)n∈N grows at most exponentially. The blocks of zeros of αn!,
however, grow super-exponentially. Substitutive words need not be almost-
periodic (see example (d) above), but fixed points of primitive substitutions
are strongly and effectively almost-periodic [22, Chapter 10.9].

We say that a word β ∈ Σω
2 is morphic if there exist a substitutive word

α ∈ Σω
1 and a renaming of letters µ : Σ1 → Σ2 such that β = µ(α). As an ex-

ample, if we apply the morphism µ given by a→ 1, b→ 1, c→ 0 to the word
α = abc2bc4bc6 · · · above, the word β = µ(α) we obtain is the characteristic
word of the squares predicate: β(n) = 1 ⇔ n = k2 for some k ∈ N. Carton
and Thomas [7] showed that, in fact, for any integer m ≥ 1 and polynomial
p ∈ Z[x] satisfying p(n) ≥ 0 for n ∈ N, the characteristic word of the set
{p(n)mn : n ∈ N} is morphic. Morphic words moreover subsume the class of
automatic words [22, Chapter 6.3].

4.1. MSO decidability for morphic words

In this section we discuss the semigroup approach used in [7] to show
that, for a predicate P whose characteristic word is morphic, the MSO the-

8



ory of ⟨N;<,P ⟩ is decidable. Let A be a deterministic automaton over an
alphabet Σ with the set of states Q. We can associate a semigroup with A
as follows. Two words u1, u2 ∈ Σ∗ are equivalent with respect to A, writ-
ten u1 ≡A u2, if for any state q, there exist R ⊆ Q and t ∈ Q with the
following property. For i ∈ {1, 2}, when ui is read in the state q, the run
visits exactly the states in R and ends in the state t. Observe that Σ∗/ ≡A
consists of finitely many equivalence classes. Denote by [u]A the equivalence
class of u ∈ Σ∗, noting that u ≡A v implies uw ≡w vw and wu ≡A wv for
all finite words u, v, w. We define the semigroup GA = {[u]A : u ∈ Σ∗} with
[u]A · [v]A := [uv]A. The semigroup GA associated with A has been known
since the work of Büchi [1].

Carton and Thomas [7] define the class of profinitely ultimately periodic
words for which the Acceptance Problem is decidable. A word α is profinitely
ultimately periodic if it has a factorisation α = u0u1u2 · · · into finite words
(un)n∈N such that for every morphism σ : Σ → G into a finite semigroup G,
the sequence (σ(un))n∈N is ultimately periodic. This property is effective if
given σ, we can compute a, b ∈ G∗ such that σ(α) = σ(u0)σ(u1) · · · = abω.

Theorem 4.1. If α ∈ Σ∗ is effectively profinitely ultimately periodic, then
the MSO theory of ⟨N;<,Pα⟩ is decidable.

Proof. Recall that decidability of the MSO theory is equivalent to decidabil-
ity of the Acceptance Problem for α: given a deterministic automaton A,
decide if A accepts α. Take σ to be the morphism that maps each u ∈ Σ∗

to [u]A. By the assumption on α, we can effectively compute a, b ∈ (GA)
∗

such that σ(α) = abω. It remains to extract from a and b the set S of states
that are visited infinitely often when A reads α, and check S against the
acceptance condition of A.

All morphic words are effectively profinitely ultimately periodic [7]. Hence
the MSO theory of ⟨N;<,Pα⟩ for a morphic word α is decidable. Effectively
profinitely ultimately periodic words also subsume all words α for which El-
got and Rabin [2] showed decidability of the MSO theory of ⟨N;<,Pα⟩ using
their contraction method. The factorial word αn!, for example, is an effec-
tively profinitely ultimately periodic word that is amenable to the approach
of Elgot and Rabin. The factorisation of αn! that yields profinite ultimate pe-
riodicity is u0 = 0 and for n ≥ 1, u2n−1 = 1 and u2n = 0n!−(n−1)!. Rabinovich
([29], see also [30]) showed that, in fact, the MSO theory of ⟨N;<,P1, . . . , Pm⟩

9



is decidable if and and only if α = α1× . . .×αm, where each αi is the charac-
teristic word of Pi, is effectively profinitely ultimately periodic. However, if
we do not have any a priori information on the decidability of the MSO the-
ory, this characterisation does not give us any means to determine whether
the word α is effectively profinitely ultimately periodic or not.

Profinitely ultimately periodic words are not known to be closed under
products, which makes the approach of [7] inapplicable to the case of multiple
predicates. For k ≥ 1, let αk be the characteristic word of the predicate P
such that P (m) = 1 if and only if m = kn for some n ∈ N. As mentioned
earlier, for every k the word αk is morphic and hence the MSO theory of
⟨N;<,Pαk

⟩ is decidable. However, to the best of our knowledge, the following
is open.

Open Problem. Is the MSO theory of ⟨N;<,Pα2 , Pα3⟩ decidable?

Equivalently, is it possible to algorithmically verify all order-theoretic
statements (in the language of MSO) about the powers of 2 and 3?

5. Toric words

Recall that we denote by T the set {z ∈ C : |z| = 1}, viewed as an
abelian group under multiplication. A word α ∈ Σω is toric if there exist
d > 0, a collection S = {Sa : a ∈ Σ} of pairwise disjoint subsets of Td, and
Γ ∈ Td with the following properties. Each Sa has finitely many connected
components (in the Euclidean topology), and for all n ∈ N and a ∈ Σ,

α(n) = a⇔ Γn ∈ Sa.

In particular, Γn ∈
⋃

a∈Σ Sa for all n. We say that α is generated by (Γ,S).
In the symbolic dynamics literature, α is referred to as the coding of the orbit
(Γn)n∈N with respect to the collection of sets S. We denote the class of all
toric words by T .

The purpose of the topological restriction that each Sa must have finitely
many connected components is to avoid the situation where every word is
toric with d = 1. Below we define further special subclasses of toric words
that will help us better classify Sturmian words, certain morphic words, sign
patterns of linear recurrence sequences, and so on.

(a) We denote by TO the class of toric words that are generated by (Γ,S)
where each set in S is open in the Euclidean topology on Td.
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(b) The class TSA comprises all toric words generated by (Γ,S) where each
set in S is an R-semialgebraic subset of Td.

(c) Finally, we denote by TSA(Q) the set of all words generated by (Γ,S)
such that Γ ∈ (T ∩ Q)d, i.e. Γ has algebraic entries, and each set in S
is Q-semialgebraic.

Clearly, TSA ⊇ TSA(Q). A desirable property that the latter class has is that
all operations we will need to perform on α ∈ TSA(Q) are effective, although
TSA(Q) is not the only subclass of TSA with this property.

We have already seen that the Tribonacci word, which is generated by the
morphism 1 → 12, 2 → 13, 3 → 1 and the starting letter 1, belongs to TO: It
is generated by (Γ,S) where Γ ∈ T2 and the sets in S constitute the Rauzy
fractal. We will later show that Sturmian words belong to TSA, and the sign
patterns of various linear recurrence sequences belong to TSA(Q).

5.1. Orbits in Td

In order to understand toric words, we have to understand the time steps
at which the orbit O(Γ) := (Γn)n∈N of Γ ∈ Td visits a given subset of Td. In
this section we will show that unlike the discrete orbit O(Γ), its Euclidean
closure TΓ := Cl(O(Γ)) is Q-semialgebraic and effectively computable under
some assumptions on Γ. Moreover, O(Γ) visits every open subset of TΓ

infinitely often.
The key to proving these results is the notion of a multiplicative relation.

We say that (a1, . . . , ad) ∈ Zd is a multiplicative relation of z = (z1, . . . , zd),
z ∈ (C×)d if za11 · · · zadd = 1. For such z,

G(z) := {(a1, . . . , ad) ∈ Zd | za11 · · · zadd = 1}

is called the group of multiplicative relations of z. For all z, G(z) is a free
abelian group under addition with a basis containing at most d vectors
from Zd. If the entries of z are algebraic, then such a basis can be effec-
tively computed: By a theorem of Masser [31], G(z) has a basis v1, . . . , vm
of vectors satisfying ∥vi∥2 < B for all i, where B is a bound that can be
effectively computed from z. It remains to find by enumeration a maximally
linearly independent set of vectors of the form a = (a1, . . . , ad) ∈ Zd with the
property that za11 · · · zadd = 1 and ∥a∥2 < B.

To describe TΓ we will employ Kronecker’s theorem in simultaneous Dio-
phantine approximation. For x, y ∈ R, denote by [[x]]y the distance from x
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to a nearest integer multiple of y. Further write [[x]] for [[x]]1. The following
is a classical version of Kronecker’s theorem [32].

Theorem 5.1. Let x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd be such
that for all b ∈ Zd,

b · x ∈ Z ⇒ b · y ∈ Z.

For every ϵ > 0 there exist infinitely many values n ∈ N satisfying

d∑
j=1

[[nxj − yj]] < ϵ.

WritingX = (ei2πx1 , . . . , ei2πxd) and Y = (ei2πy1 , . . . , ei2πyd), the condition
that for all b ∈ Zd, b ·x ∈ Z ⇒ b · y ∈ Z is equivalent to G(X) ⊆ G(Y ). That
is, “every multiplicative relation of X is also a multiplicative relation of Y ”.
We can now prove the main result of this section.

Lemma 5.2. Let Γ = (γ1, . . . , γd) ∈ Td.

(a) If z ∈ Td is such that G(Γ) ⊆ G(z), then for any open O ⊂ TΓ con-
taining z there exist infinitely many values n ∈ N such that Γn ∈ O.

(b) TΓ is equal to {z ∈ Td : G(Γ) ⊆ G(z)}, Q-semialgebraic, and effectively
computable given a basis of G(Γ).

Proof. Consider z = (z1, . . . , zd) ∈ Td with G(Γ) ⊆ G(z). Define xj =
Log(γj)

i2π

and yj =
Log(zj)

i2π
for 1 ≤ j ≤ d. We have xj, yj ∈ (−1/2, 1/2]. For all n ∈ N,

∥Γn − z∥1 =
d∑

j=1

|γnj − zj|

≤
d∑

j=1

|Log(γnj /zj)|

=
d∑

j=1

[[nLog(γj)/i− Log(zj)/i]]2π

= 2π
d∑

j=1

[[nxj − yj]]

12



where the last equality follows from the fact that [[x]]2π = 2π[[x/(2π)]] for all
x ∈ R. Applying Kronecker’s theorem, for each ϵ > 0 there exist infinitely
many values n such that ∥Γn − z∥1 < ϵ. This proves (a).

To prove (b), let V = {v1, . . . , vm} be a basis of G(Γ), where for all
1 ≤ k ≤ m, vk = (vk,1, . . . , vk,d). Since for z = (z1, . . . , zd),

G(Γ) ⊆ G(z) ⇔
m∧
k=1

z
vk,1
1 · · · zvk,dd = 1,

the set {z ∈ Td : G(Γ) ⊆ G(z)} is closed and Q-semialgebraic. It moreover
contains the orbit O(Γ) as G(Γ) ⊆ G(Γn) for all n ∈ N. Invoking (a), the
orbit O(Γ) is dense in {z ∈ Td : G(Γ) ⊆ G(z)}. Hence the latter must be
exactly the closure of O(Γ).

5.2. Closure properties of toric words

We now investigate closure properties of toric words under various word
operations. First we will show that unlike the class of almost-periodic words,
all classes of toric words that we have defined are closed under products.

Theorem 5.3. Let α0, . . . , αL−1 ∈ K, where K is one of T , TO, TSA, TSA(Q).
The product word α = α0 × . . .× αL−1 also belongs to K.

Proof. Suppose each αi ∈ Σω
i and is generated by (Γi, {S(i)

a : a ∈ Σi}), where
Γi ∈ Tdi . Let Σ be the product alphabet Σ0 × . . . × ΣL−1, noting that
α ∈ Σω. Further let d = d0 + . . . + dL−1 and Γ =

∏L−1
r=0 Γi ∈ Td. For each

letter b = (a0, . . . , aL−1) ∈ Σ, define Sb =
∏L−1

r=0 S
(r)
ar . The word α is toric

and generated by (Γ, {Sb : b ∈ Σ}). It remains to observe that if every S
(i)
a is

open, or K-semialgebraic for K = Q or K = R, then the same applies to Sb

for every b ∈ Σ.

The classes of toric words we consider are also closed under applications
of uniform morphisms.

Theorem 5.4. Let α ∈ K, where K is one of T , TO, TSA, TSA(Q). Suppose
α ∈ Σω

1 , and let τ : Σ1 → Σ2 be a k-uniform morphism, i.e. |τ(a)| = k for all
a ∈ Σ1. The word β := τ(α) also belongs to K.

Proof. Suppose α is generated by (Γ, {Sa : a ∈ Σ1}). The idea is to “slow
down Γ by a factor of k” and “add a counter modulo k”. Let Γ = (γ1, . . . , γd),

13



λj = eiLog(γj)/k for 1 ≤ j ≤ d, and Λ = (λ1, . . . , λd). Observe that γj = λkj
for all j. Further let ω = ei2π/k and Bj = {z ∈ C : |z − ωj| < 1/k}. The
sets B0, . . . , Bk−1 are open, Q-semialgebraic and pairwise disjoint. Moreover,
ωn ∈ Bj if and only if n ≡ j(mod k).

For a letter b ∈ Σ2, define

Sb =
⋃

a∈Σ1, 0≤j<|τ(a)|
τ(a)(j)=b

ΓjSa ×Bj.

We will show that for all n ∈ N and b ∈ Σ2, β(n) = b if and only if Λn
1 ∈ Sb,

where Λ1 = (λ1, . . . , λd, ω). Fix n = qk+r where 0 ≤ r < k. By construction,

Λn
1 ∈ Sb ⇔ ∃a, j : τ(a)(j) = b, Λn ∈ ΓjSa, and ω

n ∈ Bj.

Recall that ωn ∈ Bj is equivalent to j = r. Hence

Λn ∈ ΓjSa ⇔ Γ−jΛn ∈ Sa ⇔ Γq ∈ Sa ⇔ α(q) = a.

Above we used the fact that Γ = Λk. We have thus shown that Λn
1 ∈ Sb

if and only if α(q) = a for some a ∈ Σ1 satisfying τ(a)(r) = b. Since
β(n) = τ(α(q))(r), it follows that Γn ∈ Sb if and only if β(n) = b. That is, β
is the toric word generated by (Λ1, {Sb : b ∈ Σ2}).

Corollary 5.5. The merge α of α0, . . . , αL−1 ∈ K, where K is one of the
classes of toric words as above, also belongs to K.

Proof. Suppose αi ∈ Σi. Denote by τ the L-uniform morphism that maps
each (a0, . . . , aL−1) ∈ Σ0 × . . . × ΣL−1 to the concatenation of a0, . . . , aL−1.
Observe that α = τ(α0 × . . .× αL−1).

Finally, we show that our classes of toric words are closed under taking
suffixes. This property is shared with the classes of almost-periodic words.

Theorem 5.6. All four classes of toric words are closed under taking suffixes.

Proof. If α is generated by (Γ, {Sa : a ∈ Σ}), then α[N,∞) is generated by
(Γ, {Γ−NSa : a ∈ Σ}).

14



5.3. Almost-periodicity of toric words

We will now show that toric words belonging to the classes TO and
TSA are almost-periodic, albeit for somewhat different reasons. The proof
for the former class is topological, whereas the proof for TSA relies on the
Skolem-Mahler-Lech theorem for linear recurrence sequences. Combined with
closure under products, almost periodicity of toric words will allow us to
apply Semënov’s theorem to the problem of deciding the MSO theory of
⟨N;<,P1, . . . , Pm⟩, where each Pi is a predicate associated with a toric word.

Theorem 5.7. Every α ∈ TO is strongly almost-periodic.

Proof. Consider α ∈ TO that is generated by (Γ, {Sa : a ∈ Σ}) where Γ =
(γ1, . . . , γd) ∈ Td and each Sa is an open subset of Td. Let TΓ denote the
closure of (Γn)n∈N, and consider a finite word w = w(0) . . . w(l − 1) ∈ Σl.
The latter occurs at the position n in α if and only if

l−1∧
i=0

Γn+i ∈ Sw(i)

which is equivalent to Γn ∈ Sw where

Sw := TΓ ∩
l−1⋂
i=0

Γ−iSw(i).

Since each Sw(i) ⊆ Td is open, Sw is an open subset of TΓ. If Sw is empty,
then w does not occur in α. Suppose therefore Sw is not empty.

For k ∈ N, let Xk = {z ∈ TΓ : Γ
kz ∈ Sw}. Each Xk is an open sub-

set of TΓ, and since (Γn)n∈N visits every open subset of TΓ infinitely often,
{Xk : k ∈ N} is an open cover of TΓ. By compactness of TΓ, there exists
K ∈ N such that

⋃K
k=0Xk covers TΓ. That is, the orbit of any point in TΓ

under the action of z → Γz visits Sw in at most K steps. Hence for every
n ∈ N there exists 0 ≤ k ≤ K such that Γn+k ∈ Sw. Therefore, the word w
is guaranteed to occur in α[n, n+K + l) for every n.

Corollary 5.8. If α ∈ TO ∩TSA(Q), then α is strongly and effectively almost-
periodic.

Proof. Suppose α is generated by (Γ, {Sa : a ∈ Σ}) where Γ ∈ (T ∩ Q)d

and each Sa is open and Q-semialgebraic. As discussed in Section 5.1, we
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can compute the Q-semialgebraic set TΓ effectively. Hence, given w, we can
effectively compute a representation of Xk (see the proof of Theorem 5.7) as
a Q-semialgebraic set using tools of semialgebraic geometry. We can then
determine K by checking for increasing values of m, starting with m = 0,
whether

⋃m
k=0Xk covers TΓ. Hence given w, we can effectively compute K+ l

as a bound on consecutive occurrences of w in α.

We now move onto the classes TSA and TSA(Q).

Theorem 5.9. Let α ∈ K, where K is either TSA or TSA(Q).

(a) There exists a suffix β := α[N,∞) of α such that β ∈ TO ∩ K.

(b) The word α is almost-periodic.

Proof. Suppose α is generated by ((γ1, . . . , γd), {Sa : a ∈ Σ}) where each Sa

is a K-semialgebraic subset of Td; if K = TSA, then K = R, and K = Q
otherwise. Recall the definition of a semialgebraic subset of Cd. For each
letter a and z = (z1, . . . , zd) ∈ Td it holds that z ∈ Sa if and only if∨

i∈Ia

∧
j∈Ja

pi,j(Re(z1), Im(z1), . . . ,Re(zd), Im(zd)) ∆i,j 0

where each pi,j is a polynomial with real coefficients and ∆i,j ∈ {≥, >}.
Define

ua,i,jn = pi,j(Re(γ
n
1 ), Im(γn1 ), . . . ,Re(γ

n
d ), Im(γnd )).

Observe that each (ua,i,jn )n∈N is a linear recurrence sequence over R. Applying
the Skolem-Mahler-Lech theorem, for each a, i, j there exist ν := Na,i,j and
λ := La,i,j such that for each 0 ≤ r < λ, the subsequence (ua,i,jnλ+ν)n∈N is either
identically zero or does not have any zero terms. Take N = maxa,i,j Na,i,j and
L =

∏
a,i,j La,i,j. It holds that for every a, i, j and 0 ≤ r < L, the subsequence

(va,i,j,rn )n∈N of (ua,i,jn )n∈N given by

va,i,j,rn = ua,i,jN+nL+r

is either identically zero or is never zero.
Consider β = α[N,∞) and for 0 ≤ r < L, define βr by

βr(n) := β(nL+ r) = α(N + nL+ r)
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for all n ∈ N. We will show that βr ∈ TO ∩ K for all r. Thereafter, from
Theorem 5.4 it follows that β ∈ TO ∩K, proving (a). Invoking Theorem 5.7,
β is strongly almost-periodic. Since β is a suffix of α, we conclude that α is
almost-periodic.

Fix 0 ≤ r < L. For every a ∈ Σ and n ∈ N we have that βr(n) = a if and
only if ∨

i∈Ia

∧
j∈Ja

va,i,j,rn ∆i,j 0

where ∆i,j ∈ {≥, >}. By construction of N,L, for each i ∈ Ia and j ∈ Ja,
the (i, j)th inequality above either holds for all n (in case va,i,j,rn is identically
zero and ∆i,j is equality), or holds if and only if va,i,j,rn > 0. Hence there exist
Ka ⊆ Ia and Ma ⊆ Ja such that for all n, βr(n) = a if and only if∨

i∈Ka

∧
j∈Ma

va,i,j,rn > 0.

Let λk = γLk for 1 ≤ k ≤ d, and observe that we can write va,i,j,rn > 0 as

qa,i,j,r(Re(λ
n
1 ), Im(λn1 ), . . . ,Re(λ

n
d), Im(λnd)) > 0

for a polynomial qa,i,j with real coefficients. For each a, define S
(r)
a ⊆ Td by

(z1, . . . , zd) ∈ S(r)
a ⇔

∨
i∈Ka

∧
j∈Ma

qa,i,j(Re(z1), Im(z1), . . . ,Re(zd), Im(zd)).

We have that βr is the toric word generated by ((λ1, . . . , λd), {S(r)
a : a ∈ Σ}).

Since each S
(r)
a is open, βr ∈ TO. As discussed above, it follows that β is

strongly almost-periodic and α is almost-periodic.

Corollary 5.10. Assuming decidability of the Skolem Problem for LRS over
R ∩Q, every α ∈ TSA(Q) is effectively almost-periodic.

Proof. Suppose α is generated by (Γ, {Sa : a ∈ Σ}), where Γ ∈ (T ∩Q)d and
each Sa is Q-semialgebraic. In this case, in the proof of Theorem 5.9 each
(ua,i,jn )n∈N is an LRS over R ∩ Q. If we assume decidability of the Skolem
Problem for LRS over R ∩ Q, then using the Skolem-Mahler-Lech theorem
(see Section 2) we can effectively compute the values of Na,i,j, La,i,j and hence
N,L in the proof above. We can therefore effectively compute (Γ1,S1) that
generates the toric word β = α[N,∞), where Γ1 ∈ (T ∩Q)d and each set in
S1 is open and Q-semialgebraic. Invoking Corollary 5.8, β is strongly and
effectively almost-periodic. Hence α is effectively almost-periodic.
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Theorem 5.7 tells us that words belonging to the class TSA are, in a
sense, not too different from words in the class TO. In fact, we can combine
words across the two classes by taking a product, while maintaining almost
periodicity.

Theorem 5.11. Let α0, . . . , αL−1 ∈ TO and β0, . . . , βM−1 ∈ TSA. The word
δ :=

∏L−1
i=0 αi ×

∏M−1
j=0 βj is almost-periodic.

Proof. Let α :=
∏L−1

i=0 αi and β :=
∏M−1

j=0 βj. The word δ, up to a renam-
ing of letters, is equal to α × β. By Theorem 5.4, α ∈ TO and β ∈ TSA.
By Corollary 5.8, there exists N such that β[N,∞) ∈ TO. By closure un-
der taking suffixes (Theorem 5.6), α[N,∞) ∈ TO. Applying Theorem 5.4,
δ[N,∞) = α[N,∞) × β[N,∞) belongs to TO and hence is strongly almost-
periodic. It follows that δ is almost-periodic.

We have thus uncovered a myriad of structures with potentially decidable
MSO theories: Suppose P1, . . . Pm are predicates with characteristic words
α1, . . . , αm that belong to TO ∪ TSA. Then the word α := α1 × . . . × αm

is almost-periodic by Theorem 5.11. Recall that by Semënov’s theorem, a
sufficient condition for decidability of the MSO theory of ⟨N;<,P1, . . . , Pm⟩
is effective almost periodicity of α. Hence the questions arises: For which
toric predicates P1, . . . , Pm is it possible to prove effective almost periodicity
of the product word? As a concrete example, let α1 be the sign pattern of
LRS un = sin(nθ), where eiθ ∈ Q ∩ T is not a root of unity, and α2 be the
Tribonacci word generated by the morphism 1 → 12, 2 → 23, 3 → 1 and the
starting letter 1. As discussed earlier, α1 ∈ TSA(Q) and α2 ∈ TO, and both
words are effectively almost-periodic. Hence we can separately decide the
MSO theories of ⟨N;<,P1⟩ and ⟨N;<,P2⟩, but at the moment do not have a
solution to the following.

Open Problem. Is the word α := α1×α2 effectively almost-periodic? Is the
MSO theory of ⟨N;<,P1, P2⟩ decidable?

Note that it is possible that the latter theory be decidable while at the
same time α not being effectively almost-periodic. A similar open problem is
decidability of the MSO theory of ⟨N;<⟩ extended with a morphic predicate
P3 and the predicate P2 above. In this case once again we can separately
decide the MSO theories of ⟨N;<,P2⟩ and ⟨N;<,P3⟩ by [7] and Semënov’s
theorem, respectively.
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We conclude by isolating a class of toric words which we can combine while
maintaining effective almost periodicity of the product word and decidability
of the resulting MSO theory. It turns out that this family of toric words is
powerful enough for proving decidability of various subclasses of the Model-
Checking Problem for linear dynamical systems, discussed in Section 6.4.

Theorem 5.12. Let α1, . . . , αm ∈ TO ∩ TSA(Q).

(a) The product α = α1 × . . .× αm is effectively almost-periodic.

(b) The MSO theory of the structure ⟨N;<,Pα1 , . . . , Pαm⟩ is decidable.

Proof. Apply Theorem 5.4 and corollary 5.8 to prove (a). To prove (b), recall
that by Büchi’s construction, the decision problem for the MSO theory of
the structure above reduces to the Acceptance Problem for α. The latter is
decidable by Corollary 5.8 and Semënov’s theorem.

We can do better if we assume existence of a Skolem oracle.

Theorem 5.13. Let α1, . . . , αm ∈ TSA(Q). Assuming decidability of the

Skolem Problem for LRS over R∩Q, the MSO theory of ⟨N;<,Pα1 , . . . , Pαm⟩
is decidable.

Proof. Let α = α1 × . . . × αm. By theorem 5.4, α ∈ TSA, and by Corol-
lary 5.10, α is effectively almost-periodic under the assumption that the
Skolem Problem is decidable for real algebraic LRS. It remains to invoke
Semënov’s theorem.

6. Applications

In this section we discuss MSO decidability and almost periodicity prop-
erties of Sturmian words, Pisot words, sign patterns of linear recurrence
sequences, and words arising from linear dynamical systems.

6.1. Sturmian words

An infinite word over the alphabet Σ = {0, 1} is Sturmian if the number
of its distinct factors of length n is equal to n + 1 for all n ∈ N. We refer
the reader to [22, Chapter 10.5] for a detailed discussion of Sturmian words.
It is known that if a word has at most n distinct factors of length n for
some n > 0, then it is eventually periodic. Hence Sturmian words have the
smallest factor complexity among words that are not ultimately periodic.
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Sturmian words have many equivalent characterisations, including one as
a family of toric word. For z ∈ T and x ∈ R>0, denote by I(z, x) the open
interval subset of the unit circle T generated by starting at z and rotating
counter-clockwise until zeix is reached. Further define I[z, x) := {z}∪I(z, x)
and I(z, x] := I(z, x)∪{zeix}. A word α is Sturmian if and only if there exist
γ ∈ T not a root of unity and ξ ∈ T such that for all n, α(n) = 1 if and only
if γn ∈ I[ξ, θ), where θ = |Log(γ)|. That is, a Sturmian word is the coding
of (γn)n∈N for some γ that is not a root of unity with respect to a partition
{S0, S1} of T where S1 is a semi-open interval of length exactly θ.2 Hence all
Sturmian words belong to TSA, and are almost-periodic by Theorem 5.9. In
fact, they are strongly almost-periodic [22].

Carton and Thomas [7] asked: Is the MSO theory of ⟨N;<,Pα⟩, where
α is a Sturmian word, decidable? Call the Sturmian word with parameters
γ and ξ effective if there exists an algorithm for approximating Log(ξ) and
θ := |Log(γ)| to arbitrary precision. We will show that such α is effectively
almost-periodic and hence the MSO theory of ⟨N;<,Pα⟩ is decidable. Note
that by the assumption that γ is not a root of unity, the equation γn = ξ can
have at most one solution in n. Moreover, γn = ξeiθ if and only if γn+1 = ξ or
γn−1 = ξ. Hence for every effective Sturmian word α there exists an algorithm
that computes α(n) given n. The algorithm simply stores the value N (if
any) such that γN = ξ, as well as the values of α(N − 1), α(N), α(N + 1).3

On n /∈ {N − 1, N,N + 1}, it determines α(n) by approximating Log(γn)
to sufficient precision and comparing it to approximations of Log(ξ) and
Log(ξeiθ).

Theorem 6.1. An effective Sturmian word α is effectively almost-periodic.

Proof. Suppose α is generated by γ and ξ. Define θ, S0 and S1 as above. As
mentioned earlier, all Sturmian words are strongly almost-periodic. More-
over, under the assumption on α, there exists a program that computes α(n)
given n. Hence we have to show existence of a program that, given a finite
word u, determines whether u occurs in α, and in case it does, computes
an upper bound on the gaps between consecutive occurrences. If γN = ξ

2Note that θ = |Log(γ)| and γn ∈ I(ξ, θ] if and only if γn ∈ I[ ξγ, θ). Hence it suffices
to only consider closed-open intervals when defining Sturmian words.

3Here we only show existence of the desired algorithm. If we want to write such
an algorithm down, we have to first determine, if any, the value of N . Techniques for
accomplishing this depend on the values of ξ, γ and how they are presented.
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for some N , then let M = N + 2. Otherwise, let M = 0. For n ≥ M ,
γn ̸= ξ, ξeiθ. That is, γn does not hit the endpoints of S0, S1. It suffices
to prove effective almost periodicity of β := α[M,∞). As in the proof of
Theorem 5.7, a word w = w(0) · · ·w(l − 1) occurs at a position n ≥ M in α
if and only if γn ∈ Sw, where

Sw =
l−1⋂
i=0

γ−iSw(i)

and each Sw(i) is the open interval I(ξ, ξeiθ) if w(i) = 1 and Sw(i) = I(ξeiθ, ξ)
otherwise. Since γ is not a root of unity, no two distinct intervals γ−iSw(i)

and γ−jSw(j) share an endpoint. Hence by approximating Log(z) to sufficient
precision for every endpoint z of γ−iSw(i) for 0 ≤ i < l, we can decide whether
Sw is empty. If S(w) = ∅, then w does not occur in β. If Sw ̸= ∅, then we
can compute, using the approximate positions of the endpoints, an open
semialgebraic interval subset J of T that is contained in Sw. Similarly to
the proofs of Theorem 5.7 and corollary 5.8, let K be such that

⋃K
i=0 γ

−iJ
covers T; Such K can be computed using a trial-and-error method and tools
of semialgebraic geometry. Thus for every m ∈ N there exists n ∈ [m,m+K]
such that γn ∈ J , which implies γn ∈ Sw. It follows that for every m ∈ N
the word w occurs in β[m,m+K + l).

What about decidability of the MSO theory of ⟨N;<,Pα1 , . . . , Pαm⟩, where
each αi is Sturmian? Suppose each αi is the effective Sturmian word with
parameters γi, ξi and θi = |Log(γi)|. Further suppose that γ1, . . . , γm are
multiplicatively independent. Importantly, under this assumption, TΓ = Td

for Γ = (γ1, . . . , γd).

Theorem 6.2. Under the assumptions above, α := α1 × . . . × αm is effec-
tively almost-periodic and hence the MSO theory of ⟨N;<,Pα1 , . . . , Pαm⟩ is
decidable.

Proof sketch. Let Σ = {0, 1}m and M be such that for all n ≥ M and
1 ≤ j ≤ m, γnj ̸= ξj and γnj ̸= ξje

iθj . For each a ∈ Σ, there exists Sa ⊂ Tm

that is a product of open interval subsets of T (henceforth called a box ) such
that for all n ∈ N, α(n) = a if and only if Γn ∈ Sa. Let w ∈ Σl. For n ≥M ,
the word w occurs at the position n in α if and only if Γn ∈ Sw, where
Sw =

⋂l−1
i=0 Γ

−iSw(i) and each Sw(i) is of the form
∏m

j=1 T
(i)
j for open intervals
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T
(i)
1 , . . . , T

(i)
m ⊂ T. Therefore,

Sw =
m∏
j=1

l−1⋂
i=0

γ−i
j T

(i)
j

itself is an open box. As argued in the proof of Theorem 6.1, using the ora-
cles for approximating Log(γi),Log(ξi) to sufficient precision we can decide

whether each
⋂l−1

i=0 γ
−i
j T

(i)
j is empty. In case Sw is non-empty, we compute an

open semialgebraic box J such that J ⊂ Sw. It remains to bound the return
time of (Γn)n∈N in J by computing K such that

⋃K
i=0 Γ

−iJ covers TΓ, which
is the whole of Td by the multiplicative independence assumption.

Since J is Q-semialgebraic, such K can be computed effectively by trial-
and-error. In the end it holds that for every m ≥ M , the word w occurs in
α[m,m+K + l).

6.2. Pisot words

We now discuss a class of morphic words called Pisot words and the
related Pisot conjecture. The conjecture identifies a class of morphic words
that are expected to have, in a specific sense, a toric representation.

A Pisot–Vijayaraghavan number, also called a Pisot number, is a real
algebraic integer greater than 1 whose Galois conjugates all have absolute
value less than 1. A Pisot substitution τ : Σ∗ → Σ∗ has the property that
the incidence matrix Mτ of τ has a single real dominant eigenvalue that is
a Pisot number. A morphic word generated by a Pisot substitution is called
a Pisot word. The Fibonacci and Tribonacci words we encountered are both
Pisot words that also belong to TO. The Fibonacci word is the coding of a
rotation with respect to two interval subsets of T, whereas the Tribonacci

word is the coding of (Γn)n∈N, where Γ = (ei
2π
x , ei

2π
x2 ) and x ≈ 1.839 is the

largest root of the polynomial x3−x2−x−1, with respect to S = {S1, S2, S3}
with fractal boundaries (see Section 4).

To state the Pisot conjecture, we first need a few definitions. The language
L(α) of α ∈ Σω is the set of all factors of α. Recall that a substitution
τ : Σ∗ → Σ∗ is primitive if there exists k ∈ N such that starting from any
letter a, τ k(a) contains all possible letters. Further recall that a fixed point
of a primitive substitution is strongly and effectively almost-periodic. A
substitution τ is unimodular if det(Mτ ) = ±1. Finally, τ is irreducible if
the characteristic polynomial of Mτ is irreducible. The Pisot conjecture
states that if α is a fixed point of a unimodular, primitive and irreducible
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Pisot substitution over a k-letter alphabet, then there exists a word β with
the following properties.

(a) L(β) = L(α), and

(b) β is the toric word generated by (Γ,S) where Γ ∈ Tk−1 and each set in
S is open.

Statement (b) implies β ∈ TO. Note that by (a), the word β is also strongly
and effectively almost-periodic. The Pisot conjecture is widely believed to
be true but has only been proven for k = 2; see [8] for a detailed account.

6.3. Sign patterns of linear recurrence sequences

The sign pattern of a real-valued LRS (un)n∈N is the word α ∈ {+, 0,−}ω
such that α(n) is defined by sign(un) for all n ∈ N. The Skolem, Positivity
and Ultimate Positivity problems introduced in Section 2 are all decision
problems about such sign patterns. We will see that sign patterns of LRS can
have distinctive combinations of toricity and almost periodicity properties.

We start with diagonalisable (also known as simple) sequences. An LRS
(un)n∈N over R is called diagonalisable if it can be expressed in the form
un = c⊤Mns where c, s ∈ Rd and M ∈ Rd×d is diagonalisable. Using a
deep result [33] of Evertse on the sums of S-units, we can show that the sign
pattern α of a diagonalisable LRS (un)n∈N has a suffix that belongs to TO.

Theorem 6.3 (Theorem 11 in [9]). Let (un)n∈N be a diagonalisable LRS over
R ∩Q with the sign pattern α ∈ {+, 0,−}ω.

(a) There exist integers d,N , open semialgebraic subsets S+, S0, S− of Td,
and Γ ∈ (T∩Q)d such that α[N,∞) ∈ TO ∩ TSA(Q) and is generated by
(Γ, {S+, S0, S−}).

(b) The value of N and representations of S+, S0, S− can be effectively com-
puted assuming decidability of the Positivity Problem for LRS over Q.

Sign patterns of non-diagonalisable LRS, however, do not have such prop-
erties. We next give an example of a sign pattern of a non-diagonalisable
LRS that is almost-periodic but provably does not belong to TO nor to TSA.
Let γ = 0.6 + 0.8i ∈ T ∩ Q and θ = Log(γ)/i, noting that γ is not a
root of unity. Consider the linear recurrence sequences un = sin(nθ) and
vn = n sin(nθ) − 7 cos(nθ). Write α, β ∈ {+, 0,−}ω for their sign patterns,
respectively.
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S+

S−

γ

θ S0

(a)

S+(n)

S−(n)

γ

(b)

Figure 2: Target intervals for (un)n∈N and (vn)n∈N in the proof of Lemma 6.4

Lemma 6.4. Both α and β are effectively almost-periodic.

Proof. Sequences (un)n∈N and (vn)n∈N are non-degenerate LRS of order 2
and 4, respectively. Hence by [18] both sequences have finitely many zeros.
In fact, we can identify all of them. Our sequences satisfy recurrence relations
un+2 = 1.2un+1 + un and

vn+4 = 2.4vn+3 − 3.44vn+2 + 2.4vn+1 − vn.

Since γ is not a root of unity, it is immediate that un = 0 only for n = 0.
We can determine all zeros of (vn)n∈N either using the general algorithm for
solving the Skolem Problem for LRS over R ∩ Q of order four [14, 15], or a
simple approach based on the (absolute logarithmic) Weil height. The Weil
height h(z) of an algebraic number has the following properties.

(a) h(z) > 0 for every non-zero z that is not a root of unity;

(b) h(k) = log(|k|) for k ∈ Z;

(c) h(zn) = nh(z) for every z ∈ Q and n ∈ Z;

(d) h(z · y), h(z + y) ≤ h(z) + h(y) + log(2) for all z, y ∈ Q.
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See [34] for a detailed discussion of the Weil height. We have that vn = 0 if
and only if zn = yn, where z = γ/γ and yn = 7−ni

7+ni
. Both z and yn for all n are

algebraic numbers of degree at most 2. From (c) and (d), h(yn) < C log n for
an effectively computable constant C, whereas h(zn) = nh(z) by (b). Since
γ is non-zero and not a root of unity, h(γ) ̸= 0. Therefore, h(zn) grows
linearly, whereas h(yn) grows logarithmically in n. Equating h(zn) to h(yn),
we conclude that vn ̸= 0 for all n ≥ N , where N is effectively computable.
Checking all n ≤ N individually, we find that for n ≥ 1, vn ̸= 0. Therefore,
z(n), y(n) ∈ {+,−} for all n ≥ 1.

Figure 2 (a) describes how α ∈ TSA is generated. Both S+ and S− are
open subsets of T, and S0 = {1}. For all n ∈ N, α(n) is + if and only if
γn ∈ S+ and α(n) is − if and only if γn ∈ S−. Since α(n) ∈ {+,−} for n ≥ 1,
α[1,∞) ∈ TO ∩ TSA, and is generated by (γ, {γ−1S+, γ

−1S−}). Applying
Corollary 5.8, α[1,∞) and hence α are both effectively almost-periodic.

Let us consider β next. Let δn = arctan(7/n) ∈ (0, π/2), S+(n) = eiδnS+,
and S−(n) = eiδnS−. We have that for n ≥ 1, vn > 0 if and only if γn ∈ S+(n)
and vn < 0 if and only if γn ∈ S−(n). Figure 2 (b) depicts S+(n) and S−(n)
for n = 30. Since (e−iδn)n∈N converges to 1, as n → ∞, S+(n) uniformly
approaches the upper half S+ of the unit circle, whereas S−(n) approaches S−.

To prove effective almost periodicity of β, consider a finite word

w = w(0) · · ·w(l − 1) ∈ {+,−}l.

It occurs at the position n ≥ 1 in β if and only if

l−1∧
j=0

γn+j ∈ Sw(j)(n+ j) ⇔ γn ∈
l−1⋂
j=0

γ−jSw(j)(n+ j).

Define Sw(n) =
⋂l−1

j=0 γ
−jSw(j)(n+ j). We will argue that either w occurs

finitely often in β, or there exists an open interval subset K of T such that
K ⊂ Sw(n) for all sufficiently large n.

Recall that for distinct z1, z2 ∈ TΓ we denote by I(z1, z2) the open interval
subset of T with endpoints z1 and z2, generated by rotating counter-clockwise
starting at z1. Each γ−jSw(j)(n+ j) is of the form eiδ(n+j)γ−jIj, where Ij is
S+ if w(j) is the letter + and Ij = S− otherwise. Since δ(n) = Θ(1/n),
γ−jSw(j)(n+ j) uniformly approaches the interval γ−jIj as n→ ∞.

The endpoints of γ−jIj are γ
−j and −γ−j. As γ is not a root of unity, for

every j1 ̸= j2, γ
−j1 is not equal to γ−j2 and −γ−j2 . Hence the limit intervals

γ−jIj for 0 ≤ j < l have 2l distinct endpoints in total. Therefore,

25



(a) either there exists N such that Sw(n) is empty for all n ≥ N (which
happens if and only if the “limit shape”

⋂l−1
j=0 γ

−jIj is empty), or

(b) there exists N such that for all n ≥ N , Sw(n) = I(z1eiδ1(n), z2eiδ2(n))
is non-empty, where z1, z2 are distinct and of the form ±γ−j for some
0 ≤ j < l and δ1(n), δ2(n) = Θ(1/n).

Since all steps above are effective, we can effectively compute N in both
cases, and in case (b), construct a Q-semialgebraic interval J such that for
all n ≥ N , J ⊂ Sw(n). In case (a) the word w does not occur in β[N,∞) and
we are done. Otherwise, observe that for n ≥ N , γn ∈ J ⇒ β[n, n+ l) = w.
Since the endpoints of J are algebraic, we can compute K such that for all
m ∈ N, γn ∈ J for some m ≤ n ≤ m +K; see the proof of Theorem 5.7 for
the usual topological construction, or [35, Lemma 2] for a direct formula. We
conclude that the word w occurs in every subword of β of lengthN+K+l.

The discussion above suggests to think of β as being “toric with moving
targets”. We next show that α× β is radically different from both α and β,
and far from belonging to TO or TSA.

Theorem 6.5. For α, β as in Lemma 6.4, the word δ = α×β is not almost-
periodic and hence does not belong to TO ∪ TSA.

Proof. Recall from Theorems 5.7 and 5.9 that all words belonging to TO or
TSA are almost-periodic. We thus have to only prove the first statement. We
will show that (a) the letter (+,−) occurs infinitely often in δ, and (b) the
length of the gaps between its consecutive occurrences is not bounded.

We start with (a). The letter (+,−) occurs at a position n > 0 if and
only if sin(nθ) > 0 and n sin(nθ) − 7 cos(nθ) < 0, which is equivalent to
0 < Log(γn) < arctan(7/n). We will show that 0 < Log(γn) < 2π/n is
satisfied for infinitely many n ∈ N. Since arctan(7/n) > 2π/n for n > 11,
this proves that (+,−) occurs infinitely often in δ.

Let t = 1
2
+Log(γ)/(2πi), which is an irrational number between 0 and 1.

For n ≥ 1, Log(γn) ∈ (0, 2π/n) if and only if nt − ⌊nt⌋ < 1/n. We find
infinitely many values of n satisfying the latter inequality using the continued
fraction expansion of t:

t =
1

a1 +
1

a2 +
1

a3 + . . .
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where each ai is a positive integer; see [36]. Let pn/qn be the rational ap-
proximation of t obtained by truncating the expansion at the nth level. For
all n, it holds that

qn+1t− pn+1 =
(−1)n+1

an+2qn+1 + qn
.

In particular, truncations with odd n are over-approximations, and trunca-
tions with even n are under-approximations of t. Moreover, for every n,
|pn/qn − t| < 1/qn, and (qn)n∈N is strictly increasing. Therefore, for every
even n ≥ 1,

0 < t− pn
qn

<
1

q2n

and hence nt− ⌊nt⌋ < 1/qn.
We move on to proving (b). Let Jn = S+ ∩ S−(n). Recall that the

letter (+,−) occurs at the position n in β if and only if γn ∈ Jn, and the
length of Jn is Θ(1/n). Let B ∈ N. We show how to construct n such that
letter (+,−) does not occur in β[n, n + B). Let m be sufficiently large that
T \

⋃B
i=0 γ

−iJm contains a non-empty open subset O of T. Further let n ≥ m
be such that γn ∈ O. By construction, for every 0 ≤ i ≤ B, γn+i /∈ Jm. Since
Jm+i ⊂ Jm for all i ∈ N, it holds that for all 0 ≤ i < B, γn+i /∈ Jn+i. That
is, for all 0 ≤ i < B, δ(n+ i) is not the letter (+,−).

Corollary 6.6. The word δ does not belong to TO ∪ TSA.

Proof. Recall that α belongs to both TO and TSA, and both classes are closed
under products. Since α×β does not belong to TO∪TSA, neither does β.

6.4. Characteristic words of linear dynamical systems

One application of toric words and MSO decidability that has recently re-
ceived significant attention is the Model-Checking Problem (MCP) for Linear
Dynamical Systems [10]. An LDS is given by a pair (M, s) where M ∈ Qd×d

is the update matrix and s ∈ Qd is the starting configuration. The orbit
of (M, s) is the infinite sequence (Mns)n∈N. Let S = {S1, . . . , Sm} be a
collection of Q-semialgebraic subsets of Rd. Writing Σ = 2S , the charac-
teristic word of (M, s) with respect to S is the word α ∈ Σω defined by
Si ∈ α(n) ⇔ Mns ∈ Si for all 1 ≤ i ≤ m and n ∈ N. The Model-Checking
Problem is to decide, given (M, s) and a deterministic automaton A, whether
A accepts α. If we fix M, s,S, and only let A vary, by Büchi’s result [1],
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the resulting problem is Turing-equivalent to the decision problem for the
MSO theory of ⟨N;<,P1, . . . , Pm⟩, where each Pi : N → {0, 1} is the binary
predicate defined by Pi(n) = 1 if and only if Mns ∈ Si for all n ∈ N.

Let p1, . . . , pK be all polynomials (with rational coefficients) appearing
in the definition of S. For each 1 ≤ j ≤ K, the sequence un = pj(M

ns) is
an LRS over Q. Denote its sign patter by αj ∈ {+, 0,−}ω. Since each Si is
generated by a Boolean combination of polynomial inequalities, we have that
α = σ(α1×. . .×αK), where σ is a 1-uniform morphism. Hence understanding
the characteristic word of an LDS with respect to a collection of semialgebraic
sets S boils down to understanding sign patterns of a collection of linear
recurrence sequences.

The Model-Checking Problem for LDS subsumes, among many others,
the Skolem Problem, the Positivity Problem, and the Ultimate Positivity
Problem for LRS over Q. Unsurprisingly, decidability of the full Model-
Checking Problem is currently open. However, decidability can be proven if
we place certain restrictions on M,A and S.

(A) Call a Q-semialgebraic set T low-dimensional if it either has intrinsic
(i.e. semialgebraic) dimension 1, or is contained in a three-dimensional
linear subspace. The set T is tame if it can be generated from a col-
lection of low-dimensional sets through the usual set operations. If all
targets in S are tame, then the characteristic word α of any LDS (M, s)
with respect to S is effectively almost-periodic [37, 10]. In particular,
α has a suffix belonging to the class TO ∩ TSA(Q) that is fully effec-
tive. Hence the MCP with tame targets (but arbitrary (M, s) and A)
is decidable.

(B) An automatonA is prefix-independent if for any infinite word β, whether
it is accepted does not change if we perform finitely many insertions and
deletions on β. It is shown in [11] that the Model-Checking Problem is
decidable if we assumeM is diagonalisable andA is prefix-independent.

From (A) it follows that the MCP is decidable in dimension at most 3. The
result (B), on the other hand, is closely related to Theorem 6.3. Too see this,
suppose M is diagonalisable. Then un = p(Mns) is a diagonalisable LRS for
every polynomial p. From the connection between the characteristic word α
and the sign patterns of LRS defining S discussed above, the closure proper-
ties of toric words, as well as Theorem 6.3 (a), it follows that α has a suffix
that belongs to TO ∩ TSA. Unfortunately, it is not known how to determine
the starting position of such a suffix in α, which is the reason why in (B)
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we impose the prefix-independence restriction. However, similarly to Theo-
rem 6.3 (b), it is shown in [9] that the MCP is decidable for diagonalisable
LDS if we assume decidability of the Positivity Problem for diagonalisable
LRS over Q.
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