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Abstract

We consider the following decision problem: given a finite Markov chain with
distinguished source and target states, and given a rational number r, does there
exist an integer n such that the probability to reach the target from the source
in n steps is r? This problem, which is not known to be decidable, lies at the
heart of many model checking questions on Markov chains. We provide evidence
of the hardness of the problem by giving a reduction from the Skolem Problem:
a number-theoretic decision problem whose decidability has been open for many
decades.

1. Introduction

By now there is a large body of work on model checking Markov chains; see
[3] for references. Most of this work focuses on verifying linear- and branching-
time properties of trajectories, typically by solving systems of linear equations
or by linear programming. An alternative approach [1, 2, 4, 5, 6] considers spec-
ifications on the state distribution of the Markov chain at each time step, e.g.,
whether the probability to be in a given state is always at least 1/3. With this
shift in view the associated algorithmic questions become surprisingly subtle,
with not even decidability assured. Strikingly the works [1, 2, 4] only present
incomplete or approximate verification algorithms. Similarly, in [5, 6], the au-
thors make additional assumptions (e.g., contraction properties, boundary as-
sumptions) to obtain model-checking procedures.

The paper [4] highlights the following fundamental decision problem on
Markov chains:

Markov Reachability. Given a finite stochastic matrix M with
rational entries and a rational number r, does there exist n ∈ N
such that (Mn)1,2 = r?

This problem asks whether there exists n such that the probability to go from
State 1 to State 2 in n steps is exactly r. This is quite different from asking for
the probability to go from State 1 to State 2 in any number of steps. Whereas
the latter quantity can be computed in polynomial time by solving a system
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of linear equations, the Markov Reachability Problem is not known even to be
decidable.

In Section 3 we observe that the Markov Reachability Problem can be en-
coded in the model checking frameworks of [1, 2, 4]. An inequality variant of
the problem, asking for n such that (Mn)1,2 > r, is essentially the threshold
problem for unary probabilistic automata [9], whose decidability is also open.

The paper [4] notes the close resemblance of the Markov Reachability Prob-
lem with the Skolem Problem in number theory and raises the question of
whether the latter can be reduced to the Markov Reachability Problem.

Skolem Problem. Given a k × k integer matrix M , does there
exist n such that (Mn)1,2 = 0?

The closely related Positivity Problem [8] asks whether there exists n such that
(Mn)1,2 > 0.1 There is a straightforward reduction of the Skolem Problem to
the Positivity Problem (which however does not preserve the dimension of the
matrices involved).

The Skolem and Positivity Problems have been the subject of much study,
and their decidability has been open for several decades. Currently the Skolem
Problem is only known to be decidable for matrices of dimension at most 4 (see,
e.g., [7, 11]) while the Positivity Problem is known only to be decidable up to
dimension 5 (cf. [8]). Moreover for matrices of dimension 6 a decision proce-
dure for the Positivity Problem would necessarily entail significant new results
in Diophantine approximation—specifically the computability of the Lagrange
constants of a general class of transcendental numbers [8].

While the Markov Reachability Problem and the Skolem Problem are very
similar in form, the well-behaved spectral theory of stochastic matrices might
lead one to conjecture that the former is more tractable. However in this note
we give a reduction of the Skolem Problem to the Markov Reachability Problem.
The same reduction transforms the Positivity Problem to the inequality version
of the Markov Reachability Problem. In conjunction with the above-mentioned
results of [8], this entails that the computability of some of the most basic
problems in probabilistic verification will require significant advances in number
theory.

2. Main Result

In this section we give a polynomial-time reduction of the Skolem Problem
to the Markov Reachability Problem. This is accomplished in two steps via the
following intermediate problem:

1Strictly speaking [8] defines the Positivity Problem to be the complement of the problem
stated here. Since we are interested in questions of decidability the difference is inconsequen-
tial.
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Problem A. Given a k×k stochastic matrix M and column vector
y ∈ {0, 1, 2}k, does there exist n such that eTMny = 1, where
e = (1, 0, . . . , 0)T .

Thinking of M as the transition matrix of a Markov chain, Problem A asks if
there exists n such that, starting from state 1, the state distribution w after n
steps satisfies wTy = 1.

Proposition 1. The Skolem Problem can be reduced in polynomial time to
Problem A.

Proof. Given a k × k integer matrix M = (mij), we construct a stochastic

(2k + 1) × (2k + 1) matrix P̃ and a vector ṽ ∈ {0, 1, 2}2k+1, such that for all

n ∈ N, (Mn)1,2 = 0 if and only if ẽT P̃nṽ = 1, where ẽ is the (2k+1)-dimensional
coordinate vector (1, 0, . . . , 0)T .

Let P be a 2k×2k matrix of non-negative integers obtained by replacing each

entry mij of M by the symmetric matrix

(
pij qij
qij pij

)
, where pij := max(mij , 0)

and qij := max(−mij , 0) satisfy pij − qij = mi,j .

The map ϕ sending

(
a b
b a

)
to a − b is a homomorphism from the ring

of 2 × 2 symmetric integer matrices to Z. By definition of P , partitioning P
into 2 × 2 blocks and applying ϕ to each block one obtains M . Since matrix
products can be computed block-wise and ϕ is a homomorphism, it follows that
applying ϕ to each 2 × 2 sub-block of Pn one obtains the matrix Mn. Thus
(Mn)1,2 = eTPnv, where e = (1, 0, . . . , 0)T and v = (0, 0, 1,−1, 0, . . . , 0)T are
2k-dimensional vectors.

Since P is non-negative, there exists a non-negative scalar s ∈ Q such that
sP is sub-stochastic, i.e., the sum of the entries in each row is at most one. Now
define a (2k + 1)-dimensional matrix P̃ and vectors ẽ, ṽ by

ẽ =

(
e
0

)
P̃ =

(
sP 1− sP1
0 1

)
ṽ =

(
v
0

)
+ 1 ,

where 1 = (1, . . . , 1)T denotes a column vector of 1’s of the appropriate dimen-

sion. The rightmost column of P̃ is defined to make P̃ a stochastic matrix.
Since P̃n is stochastic for each n ∈ N, we have that

ẽT P̃nṽ = ẽT P̃n

(
v
0

)
+ ẽT P̃n1 = eT (sP )nv + 1 = sn(Mn)1,2 + 1 .

From this we conclude that (Mn)1,2 = 0 iff ẽT P̃nṽ = 1. 2

The next step shows how the vector ṽ can be made into a coordinate vector.

Proposition 2. Problem A can be reduced in polynomial time to the Markov
Reachability Problem.
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Figure 1: The chains Q and Q̃.

Proof. Given k-dimensional vectors e = (1, 0, . . . , 0)T and y ∈ {0, 1, 2}k, and a
k× k stochastic matrix Q, we construct a 2k+ 3-dimensional stochastic matrix
Q̃ such that eTQny = 1 if and only if (Q̃2n+1)1,2k+1 = 1

4 for all n ∈ N. In

addition, the construction of Q̃ is such that for all n, (Q̃2n)1,2k+1 = 0, and thus

by rearranging the rows and columns of Q̃ we get an instance of the Markov
Reachability Problem.

We first give an informal description of Q̃, making reference to the example
in Figure 1. Thinking of Q as the transition matrix of a Markov chain, the idea
is that Q̃ contains two copies of each state of Q (the circle and square states in

Figure 1). Each transition of Q is split into a length-two path in Q̃ connecting
two circle states via an intermediate square state. Thus the underlying transi-
tion graph of Q̃ is bipartite. We also create a new bottom strongly connected
component in Q̃ with three states (states a, b and c in Figure 1). The transi-

tion weights from Q are halved in Q̃, with half of the mass in each transition
redirected to the new bottom strongly connected component according to the
final-state vector y. Looking at Figure 1, the total mass entering state a from
the shaded region in the (2n + 1)-th transition step is proportional to eTQny.
The new bottom strongly connected component has period 2. After an even
number of steps all the mass in this component is concentrated in state c, while
in the next step this mass is redistributed to states a and b in fixed proportion.
The overall effect of this construction is to establish Equation (1) below.

Formally, define Q̃ to be the following stochastic matrix, where Ik×k denotes
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that k × k identity matrix and 0k×l the k × l zero matrix.

1

4
·


0k×k 2Q y 2− y 0k×1
4Ik×k 0k×k 0k×1 0k×1 0k×1
01×k 01×k 0 0 4
01×k 01×k 0 0 4
01×k 01×k 1 3 0


It is straightforward to verify by induction on n ≥ 0 that Q̃2n+1 is equal to

1

2n+2


0k×k 2Qn+1 2n − 1 +Qny 3 · 2n − 1−Qny 0k×1
4Qn 0k×k 0k×1 0k×1 2n+2 − 4
01×k 01×k 0 0 2n+2

01×k 01×k 0 0 2n+2

01×k 01×k 2n 3 · 2n 0


The base case is immediate. The induction step follows by routine calculations,
relying on the fact that Q1 = 1 since Q is stochastic. We omit details.

It now follows that

(Q̃2n+1)1,2k+1 =
1

2n+2
(2n − 1 + eTQny) (1)

and we conclude that eTQny = 1 if and only if (Q̃2n+1)1,2k+1 = 1
4 . 2

Composing the two reductions in Propositions 1 and 2, we have our main
result.

Theorem 3. The Skolem Problem can be reduced in polynomial time to the
Markov Reachability Problem.

The above reduction can be applied mutatis mutandis to transform an in-
stance of the Positivity Problem to an instance of the inequality version of the
Markov Reachability Problem. (One applies the same transformation on matri-
ces, just changing equalities to inequalities where necessary.)

Corollary 4. The Positivity Problem can be reduced in polynomial time to the
inequality version of the Markov Reachability Problem.

Theorem 3 is related to the main result of Turakainen [10], which shows
that for any generalized stochastic language L there is a generalized probabilistic
automaton and a cut-point that accepts this language. In particular, Theorem 3
is a sharpening of [10] in the special case of languages over a unary alphabet.
The result in [10] can be used to reduce the Skolem problem to the question
of, given a stochastic vector v ∈ Rk a stochastic matrix M ∈ Rk×k, a vector
w ∈ {0, 1}k and r ∈ R, whether there exists n such that vTMnw = r. Here
we strengthen to the case that w is a coordinate vector, with most of the work
being in Proposition 2.

If the scaling factor s in the definition of P̃ in the proof of Proposition 1 is
chosen to be a power of 2, then the above reduction will produce a stochastic
matrix all of whose entries are dyadic rationals. It is not difficult to see that by
padding with extra states we can arrange that the target of the reduction be a
stochastic matrix with all entries either 0 or 1

2 .
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3. Applications to Model Checking

In this section we apply Theorem 3 to show that two previously studied
model checking problems on Markov chains are both at least as hard as the
Skolem and Positivity problems.

3.1. PMLO

In [4], Beauquier et al. introduce PMLO (probabilistic monadic logic of or-
der), which extends the monadic logic of order with a probability quantifier
Prob>q. PMLO formulas are evaluated over infinite runs of a finite state-
labelled Markov chain. A formula Prob>q(ϕ) is satisfied by a run ρ if the
probability measure of all runs with the same initial state as ρ and which sat-
isfy ϕ is at least q. We refer the reader to [4] for full details of the syntax and
semantics of PMLO.

The paper [4] gives a partial decision procedure for model checking a subclass
of PMLO formulas on Markov chains. The authors also propose to consider
the relationship between PMLO model checking and the Skolem Problem as
a subject for further research. Here we will show that model checking for a
very restricted class of PMLO formulas is at least as hard as both the Skolem
Problem and the Positivity Problem.

For our purposes it suffices to consider two simple formulas:

∃x Prob=q(Q(x)) and ∃x Prob>q(Q(x)) ,

where Q is a monadic predicate. These formulas are interpreted on a Markov
chain whose states are labelled by the set of monadic predicates (such as Q
above) they satisfy. The formula ∃x Prob=q(Q(x)) is satisfied by the Markov
chain if there exists n ∈ N such that the probability to be in a Q-labelled state
after n steps is exactly q. Likewise the formula ∃x Prob>q(Q(x)) is satisfied
by the Markov chain if there exists n ∈ N such that the probability to be in
a Q-labelled state after n steps is strictly greater than n. Thus the Markov
Reachability Problem (both the equality and inequality versions) can easily
be reduced to the model checking problem for PMLO. From Theorem 3 and
Corollary 4, we conclude that:

Corollary 5. The Skolem and Positivity Problems can be reduced to the model
checking problem for PMLO on finite Markov chains.

3.2. LTLI

In [1], the authors view a Markov chain M over nodes {1, . . . , k} as a lin-
ear transformer of probability distributions and define a logic interpreted over
symbolic dynamics of M . This is done by discretizing the probability value
space [0, 1] into a finite disjoint set of intervals I = {[0, p1), . . . [pm, 1]}. Then,
any distribution µ can be associated with a tuple of intervals from I, whose ith

component is the interval in which the probability µ(i) falls. Thus any run, i.e.,
an infinite sequence of distributions over the nodes of M , induces an infinite
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sequence of tuples of intervals from I, called a symbolic trajectory. The set
of all such symbolic trajectories generated from an initial tuple of intervals IN
defines the symbolic dynamics LM,IN of M .

The linear temporal logic LTLI , interpreted over symbolic trajectories, is de-
fined over the set of atomic propositions AP = {〈i, d〉 | 1 ≤ i ≤ k, d ∈ I}, where
〈i, d〉 asserts that “the current probability of node i of the Markov chain lies in
the interval d”. The formulas of LTLI comprise these atomic propositions and
their closure under boolean and temporal (next, until) operators. We refer the
reader to [2] for the formal semantics, and the proof that LTLI is incomparable
with PMLO, as well as the usual PCTL,PCTL∗ logics.

The model checking problem for LTLI is to determine, given M, IN and
ϕ, if each word in the symbolic dynamics LM,IN is a model of ϕ. In [1], an
approximate variant of this problem was solved but the general problem was
left open. In [2] it was shown that LM,IN is not always regular and the authors
commented that therefore the decidability of the model checking problem seems
hard. We now show that this problem is as hard as the Skolem and the Positivity
Problems.

Given an instance of the Markov Reachability Problem, i.e., a stochastic ma-
trix M and r ∈ Q∩ [0, 1], we fix the discretization I = {[0, 0], (0, r), [r, r], (r, 1),
[1, 1]} and consider:

ϕ = 3
(
〈2, [r, r]〉

)
and ψ = 3

(
〈2, (r, 1)〉 ∨ 〈2, [1, 1]〉

)
.

Intuitively, ϕ (resp. ψ) expresses the property that we eventually reach a tuple
of intervals D whose 2nd component is the interval [r, r] (resp. (r, 1) or [1, 1]).
Let IN = {(I1, . . . , Ik)} where I1 = [1, 1] and I` = [0, 0] for all ` 6= 1. Then,
there exists n ∈ N such that (Mn)1,2 = r (resp. (Mn)1,2 > r) if and only if
M, IN |= ϕ (resp. M, IN |= ψ). Thus, by Theorem 3 and Corollary 4 we have
the following corollary.

Corollary 6. The Skolem and Positivity Problems can be reduced to the model
checking problem for the logic LTLI .
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