
Efficient Verification of Sequential and Concurrent C

Programs ∗

S. Chaki (chaki@cs.cmu.edu)
E. Clarke (emc@cs.cmu.edu)
A. Groce (agroce@cs.cmu.edu)
J. Ouaknine (ouaknine@cs.cmu.edu)
Carnegie Mellon University, Pittsburgh, USA

O. Strichman (ofers@ie.technion.ac.il)
Technion, Haifa, Israel

K. Yorav (kareny@cs.cmu.edu)
Carnegie Mellon University, Pittsburgh, USA

Abstract. There has been considerable progress in the domain of software verifica-
tion over the last few years. This advancement has been driven, to a large extent, by
the emergence of powerful yet automated abstraction techniques such as predicate
abstraction. However, the state-space explosion problem in model checking remains
the chief obstacle to the practical verification of real-world distributed systems. Even
in the case of purely sequential programs, a crucial requirement to make predicate
abstraction effective is to use as few predicates as possible. This is because, in the
worst case, the state-space of the abstraction generated (and consequently the time
and memory complexity of the abstraction process) is exponential in the number of
predicates involved. In addition, for concurrent programs, the number of reachable
states could grow exponentially with the number of components.

We attempt to address these issues in the context of verifying concurrent
(message-passing) C programs against safety specifications. More specifically, we
present a fully automated compositional framework which combines two orthogonal
abstraction techniques (predicate abstraction for data and action-guided abstraction
for events) within a counterexample-guided abstraction refinement scheme. In this
way, our algorithm incrementally increases the granularity of the abstractions until
the specification is either established or refuted. Additionally, a key feature of our
approach is that if a property can be proved to hold or not hold based on a given
finite set of predicates P, the predicate refinement procedure we propose in this
article finds automatically a minimal subset of P that is sufficient for the proof.
This, along with our explicit use of compositionality, delays the onset of state-space
explosion for as long as possible. We describe our approach in detail, and report on
some very encouraging experimental results obtained with our tool magic.

Keywords: Software verification, Concurrency, Predicate abstraction, Process
algebra, Abstraction refinement

∗ This research was supported by the NRL-ONR under Grant No. N00014-01-1-
0796, by the NSF under Grant No. CCR-9803774, CCR-0121547 and CCR-0098072,
by the Army-ARO under Grant No. DAAD 19-01-1-0485, the Austrian Science Fund
Project NZ29-INF, the EU Research and Training Network GAMES and graduate
student fellowships from Microsoft and NSF. Any opinions, findings and conclusions

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd-04.tex; 2/02/2004; 14:23; p.1

2 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

1. Introduction

Critical infrastructures in several domains, such as medicine, power,
telecommunications, transportation and finance are highly dependent
on computers. Disruption or malfunction of services due to software
failures (accidental or malicious) can have catastrophic effects, includ-
ing loss of human life, disruption of commercial activities, and huge
financial losses. The increased reliance of critical services on software
infrastructure and the dire consequences of software failures have high-
lighted the importance of software reliability, and motivated systematic
approaches for asserting software correctness. While testing is very
successful for finding simple, relatively shallow errors, testing cannot
guarantee that a program conforms to its specification. Consequently,
testing by itself is inadequate for critical applications, and needs to be
complemented by automated verification.

Although software verification has been the subject of ambitious
projects for several decades, and this research tradition has provided
us with important fundamental notions of program semantics and
structure, software verification tools have, until recently, not attained
the level of practical applicability required by industry. Motivated by
urgent industrial need, the success and maturity of formal methods
in hardware verification, and by the arrival of new techniques such as
predicate abstraction [34], several research groups [1, 3, 5, 7, 32, 33, 35]
have started to develop a new generation of software verification tools.
A common feature of all these tools is that they operate directly on
programs written in a general purpose programming language such as C
or Java instead of those written in a more restricted modeling language
such as Promela [8]. In addition, all of them are characterized by an
extended model checking [22] algorithm which interacts with theorem
provers and decision procedures to reason about software abstractions,
in particular about abstractions of data types.

Our own tool magic, (Modular Analysis of proGrams In C), [6, 15–
17] also belongs to this family and focuses on modular verification of C
code. In general, C programs can be concurrent, i.e., consist of multiple
communicating processes and/or threads. Therefore, in order to avoid
confusion, we shall adopt the following terminology for the remainder
of this article. We shall refer to an arbitrary C program as simply
a program. Each process/thread of which the program is comprised
will be referred to as a component. Thus, in particular, for a purely
sequential C program, the two terms “program” and “component”

or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or the United States Government.

fmsd-04.tex; 2/02/2004; 14:23; p.2

Efficient Verification of Sequential and Concurrent C Programs 3

are synonymous. Also, we shall usually denote a program by Π and
a component by C (with appropriate subscripts where applicable).

The general architecture of the magic tool has been presented re-
cently [16] along with an in-depth description of its modular verification
approach. In magic, both components and programs are described by
labeled transition systems (LTSs), a form of state machines. The goal of
magic is to verify whether the implementation Π of a program conforms
to its specification Spec (which is again expressed using an LTS), i.e.,
whether all possible behaviors of the implementation are subsumed by
the specification.

Several notions of conformance have been proposed in the literature.
In the context of this article, we use trace containment (denoted by
�) as our notion of conformance. In the rest of this paper, we shall
use “conformance” and “trace containment” synonymously. magic can
accept non-deterministic LTSs as Spec. It checks trace containment by
the standard approach of determining whether the languages of the
implementation and the negation of Spec have a non-empty intersec-
tion. As usual, Spec must be determinized before it can be negated.
Language intersection is computed by a Boolean satisfiability based
symbolic exploration technique.

Since a program can, in general, give rise to an infinite-state system,
we will not directly check Π against Spec. Rather we will extract an
intermediate abstract model A(Π) such that Π is guaranteed by con-
struction to conform to A(Π), and then verify whether A(Π), in turn,
conforms to Spec, i.e.,

Π � A(Π) � Spec

The evident problem in this approach is to find a good abstraction
A(Π). If A(Π) is too close to the original system Π, then the computa-
tional cost for checking A(Π) � Spec may be prohibitively expensive.
On the other hand, if A(Π) is very coarse then it may well be that rele-
vant features of Π are abstracted away, i.e., A(Π) 6� Spec, even though
Π � Spec actually holds. However, an inspection of A(Π) 6� Spec pro-
vides a counterexample CE . In general though, this counterexample
may not be grounded on any real behavior of Π and consequently
could be spurious. This motivates the use of a framework known as
CounterExample Guided Abstraction Refinement (CEGAR) [23, 42],
which works as follows.

• Step 1 (Abstract). Create an abstraction A(Π) of the program
such that Π conforms to A(Π) by construction.

• Step 2 (Verify). Verify that A(Π) � Spec, i.e., A(Π) conforms to
the specification Spec. If this is the case, the verification is successful.

fmsd-04.tex; 2/02/2004; 14:23; p.3

4 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

Otherwise, i.e., if A(Π) does not conform to Spec, obtain a possibly
spurious counterexample CE . Determine whether CE is spurious. If
CE is not spurious, report the counterexample and stop; otherwise
go to the next step.

• Step 3 (Refine). Use the spurious counterexample CE to refine
the abstraction A(Π) so as to eliminate CE and go to step 1.

Despite the advent of automation via paradigms such as CEGAR,
the biggest challenge in making model checking effective remains the
problem of state-space explosion. In the context of magic, this prob-
lem manifests itself in two forms. First, even in the purely sequential
case, state explosion could occur during predicate abstraction. This is
because the process of predicate abstraction, in the worst case, requires
exponential time and memory in the number of predicates. Second, the
state-space size of a concurrent system increases exponentially with
the number of components. Hence there is an obvious possibility of
state-space explosion for concurrent programs. In this article we present
two orthogonal, yet smoothly integrated, techniques developed within
magic to tackle the state explosion problem that can occur due to these
factors while verifying both sequential and concurrent C programs.

1.1. Predicate Minimization

A fundamental underlying technique used in magic (as well as
slam [12] and blast [37]) is predicate abstraction [34]. Given a (pos-
sibly infinite-state) component C and a set of predicates P, verification
with predicate abstraction consists of constructing and analyzing an
automaton A, a conservative abstraction of C relative to P. However,
as mentioned before, the process of constructing A is in the worst case
exponential, both in time and space, in |P|. Therefore a crucial point in
deriving efficient algorithms based on predicate abstraction is the choice
of a small set of predicates. In other words, one of the main challenges
in making predicate abstraction effective is identifying a small set of
predicates that are sufficient for determining whether a property holds
or not. The first technique we present is aimed at finding automatically
such a minimal set from a given set of candidate predicates [15].

1.2. Compositional Two-level Abstraction Refinement

The second technique we consider is aimed at solving the state-space ex-
plosion problem resulting from concurrent systems. We propose a fully
automated compositional two-level CEGAR scheme to verify that a
parallel composition Π = C1|| . . . ||Cn of n sequential C components con-
forms to its specification Spec [17]. The basic idea is to extract as small

fmsd-04.tex; 2/02/2004; 14:23; p.4

Efficient Verification of Sequential and Concurrent C Programs 5

a model as possible from Π by employing two orthogonal abstraction
schemes. To this end we use predicate abstraction to handle data and
an action-guided abstraction to handle events. Each type of abstraction
is also associated with a corresponding refinement scheme. The action-
guided abstraction-refinement loop is embedded naturally within the
predicate abstraction-refinement cycle, yielding a two-level framework.
In addition, abstraction, counterexample validation and refinement can
each be carried out component-wise, making our scheme compositional
and scalable. More precisely, the steps involved in the two-level CEGAR
algorithm presented in this article can be summarized as follows:

• Step 1: Two-Level Model Construction. In this stage we use
a combination of two abstraction techniques for extracting an LTS
model from the concurrent C program Π = C1|| . . . ||Cn.

• Step 1.1: Predicate Abstraction. Initially, we use predicate ab-
straction to conservatively transform each (infinite-state) C com-
ponent Ci into a finite LTS MP i. In the rest of this article, first
level LTS models (obtained after predicate abstraction) will be
denoted by MP (model-predicate), with appropriate subscripts
where applicable.

• Step 1.2: Action-Guided Abstraction. Since the parallel composi-
tion of these MP i’s may well still have an unmanageably large
state-space, we further reduce each MP i by conservatively ag-
gregating states together, yielding a smaller LTSMAi; only then
is the model constructed by the much coarser parallel composi-
tion MA = MA1|| . . . ||MAn. In the rest of this article, second
level LTS models (obtained after action-guided abstraction) will
be denoted by MA (model-action), with appropriate subscripts
where applicable.

• Step 2 : Verification. By construction, the extracted model MA
exhibits all of the original system’s behaviors, and usually many
more. We now check whetherMA � Spec. If successful, we conclude
that our original system Π also conforms to its specification Spec.

• Step 3: Refinement. Otherwise, we must examine the counterex-
ample obtained to determine whether it is valid or not. This validity
check is again performed in two stages: first at the level of theMP i’s
and, if that succeeds, at the level of Ci’s. It is also important to note
that this validation can be carried out component-wise, without it
ever being necessary to construct in full the large state-spaces of
the lower-level parallel systems (either the MP i’s or the Ci’s). A
valid counterexample shows Spec to be violated and thus terminates

fmsd-04.tex; 2/02/2004; 14:23; p.5

6 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

the procedure. Otherwise, a (component-specific) refinement of the
appropriate abstracted system is carried out, eliminating the spu-
rious counterexample, and we proceed with a new iteration of the
verification cycle. Depending on the counterexample, the refinement
process could have two possible outcomes:

• Case 3.1: Predicate Refinement. It produces a new set of pred-
icates, leading to a refined MP i. In this case the new iteration
of the two-level CEGAR loop starts with step 1.1 above. It is
important to note that the predicate minimization algorithm
mentioned above is invoked each time a new set of predicates is
generated, leading to a smooth integration of the two techniques
we present in this article.

• Case 3.2: Action-Guided Refinement. The refinement yields a
finer state aggregation, leading to a refined MAi. In this case
the new iteration of the two-level CEGAR loop starts with step
1.2 above.

The verification procedure is fully automated, and requires no user
input beyond supplying the C programs, assumptions about the en-
vironment, and the specification to be verified. We have implemented
the algorithm within magic and have carried out a number of case
studies, which we report here. Restrictions on the nature of C programs
that magic can handle are discussed in Section 3. To our knowledge,
our algorithm is the first to invoke CEGAR over more than a sin-
gle abstraction refinement scheme (and in particular over action-based
abstractions), and also the first to combine CEGAR with fully auto-
mated compositional reasoning for concurrent systems. In summary,
the crucial features of our approach consist of the following:

• We leverage two very different kinds of abstraction to reduce a par-
allel composition of sequential C programs to a very coarse parallel
composition of finite-state processes. The first abstraction partitions
the (potentially infinite) state-space according to possible values
of predicates over state variables, whereas the second abstraction
lumps these resulting states together according to events that they
can communicate.

• We invoke a predicate minimization algorithm to compute a minimal
set of predicates sufficient to validate or invalidate the specification.

• A counterexample-guided abstraction refinement scheme incremen-
tally refines these abstractions until the right granularity is achieved
to decide whether the specification holds or not. We note that

fmsd-04.tex; 2/02/2004; 14:23; p.6

Efficient Verification of Sequential and Concurrent C Programs 7

while termination cannot be guaranteed, all of our experimental
benchmarks could be handled without requiring human intervention.

• Our use of compositional reasoning, grounded in standard process
algebraic techniques, enables us to perform most of our analysis
component by component, without ever having to construct global
state-spaces except at the highest (most abstract) level.

The experiments we have carried out range over a variety of sequen-
tial and concurrent examples, and indicate that both the techniques
we present, either combined or separately, increase the capacity of
magic to verify large C programs. For example, in some cases, pred-
icate minimization can improve the time consumption of magic by
over two orders of magnitude and the memory consumption by over an
order of magnitude. With the smaller examples we find that our two-
level approach constructs models that are 2 to 11 times smaller than
those generated by predicate abstraction alone. These ratios increase
dramatically as we consider larger and larger examples. In some of our
instances magic constructs models that are more than two orders of
magnitude smaller than those created by mere predicate abstraction.
Full details are presented in Section 9.

The rest of this article is organized as follows. In Section 2 we discuss
related work. In section 3 we present some preliminary definitions.
In Section 4 we formally define the two-level CEGAR algorithm. In
Section 5 we describe the process of constructing the LTS MP i from
the component Ci using predicate abstraction. In Section 6 we define the
process of checking if a counterexample is valid at the level of the Ci’s.
We also present our approach for refining the appropriate MP i if the
counterexample is found to be spurious. Recall that this is achieved by
constructing a minimal set of predicates sufficient to eliminate spurious
counterexamples. In Section 7 we present the action-guided abstraction
used to obtain MAi from MP i. In Section 8 we define the process of
checking if a counterexample is valid at the level of theMP i’s. We also
show how to refine the appropriate MAi by constructing a finer state
aggregation if the counterexample is found to be spurious. Finally, we
present experimental evaluation of our ideas in Section 9 and conclude
in Section 10.

2. Related Work

Predicate abstraction [34] was introduced as a means to conservatively
transform infinite-state systems into finite-state ones, so as to enable

fmsd-04.tex; 2/02/2004; 14:23; p.7

8 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

the use of finitary techniques such as model checking [18, 21]. It has
since been widely used [11, 12, 26, 27, 29, 30, 37, 46].

The formalization of the more general notion of abstraction was first
given by Cousot et al. [28]. We distinguish between exact abstractions,
which preserve all properties of interest of the system, and conserva-
tive abstractions—used in this paper—which are only guaranteed to
preserve ‘undesirable’ properties of the system [24, 41]. The advan-
tage of the latter is that they usually lead to much greater reductions
in the state-space than their exact counterparts. However, conserva-
tive abstractions in general require an iterated abstraction refinement
mechanism (such as CEGAR [23]) in order to establish specification
satisfaction.

The abstractions we use on finite-state processes essentially lump
together states that have the same set of enabled actions, and gradu-
ally refine these partitions according to reachable successor states. Our
refinement procedure can be seen as an atomic step of the Paige-Tarjan
algorithm [49], and therefore yields successive abstractions which con-
verge in a finite number of steps to the bisimulation quotient of the
original process.

Counterexample-guided abstraction refinement [23, 42], or CEGAR,
is an iterative procedure whereby spurious counterexamples for a spec-
ification are repeatedly eliminated through incremental refinements of
a conservative abstraction of the system. Both the abstraction and re-
finement techniques for such systems, as applied elsewhere [23, 42], are
essentially different than the predicate abstraction approach we follow.
For example, Kurshan [42] abstracts by assigning non-deterministic
values to selected sets of variables, while refinement corresponds to
gradually returning to the original definition of these variables. CEGAR
has been used in many cases, some non-automated [47], others at least
partly automated [12, 13, 37, 43, 50]. The problem of finding small
sets of predicates has also been investigated in the context of hardware
designs [19, 20].

Compositionality, which features crucially in our work, enables the
verification of a large system via the verification of its smaller compo-
nents. In other words, it allows us to decompose a complex verification
problem into a set of simpler, more tractable, sub-problems. Composi-
tionality has been most extensively studied in process algebra [40, 45,
51], particularly in conjunction with abstraction. Bensalem et al. [14]
have presented a compositional framework for (non-automated) CE-
GAR over data-based abstractions. Their approach differs from ours in
that communication takes place through shared variables (rather than
blocking message-passing), and abstractions are refined by eliminating
spurious transitions, rather than by splitting abstract states.

fmsd-04.tex; 2/02/2004; 14:23; p.8

Efficient Verification of Sequential and Concurrent C Programs 9

A technique closely related to compositionality is that of assume-
guarantee reasoning [38, 44]. It was originally developed to circumvent
the difficulties associated with generating exact abstractions, and has
recently been implemented as part of a fully automated and incremental
verification framework [25].

Among the works most closely resembling ours we note the following.
The Bandera project [27] offers tool support for the automated verifi-
cation of Java programs based on abstract interpretation; there is no
automated CEGAR and no explicit compositional support for concur-
rency.Păsăreanu et al. [50] have imported Bandera-derived abstractions
into an extension of Java PathFinder [35] which incorporates CEGAR.
However, once again no use is made of compositionality, and only a
single level of abstraction is considered. Stoller [52] has implemented
another tool in Java PathFinder which explicitly supports concurrency;
it uses datatype abstraction on the first level, and partial order reduc-
tion with aggregation of invisible transitions on the second level. Since
all abstractions are exact it does not require the use of CEGAR. The
slam project [7, 11, 12] has been very successful in analyzing interfaces
written in C. It is built around a single-level predicate abstraction and
automated CEGAR treatment, and offers no explicit compositional
support for concurrency. Lastly, the blast project [1, 36, 37] proposes a
single-level lazy (on-the-fly) predicate abstraction scheme together with
CEGAR and thread-modular assume-guarantee reasoning. The blast
framework is based on shared variables rather than message-passing as
the communication mechanism.

3. Background

This section gives background information about the magic framework
and our abstraction-refinement-based software verification algorithm.

DEFINITION 1 (Labeled Transition Systems). A labeled transi-
tion system (LTS) M is a quadruple (S, init ,Act , T), where (i) S is
a finite non-empty set of states, (ii) init ∈ S is the initial state, (iii)
Act is a finite set of actions (alphabet), and (iv) T ⊆ S × Act × S is
the transition relation.

We assume that there is a distinguished state STOP ∈ S which
has no outgoing transitions, i.e., ∀s′ ∈ S, ∀a ∈ Act , (STOP, a, s′) 6∈ T .
If (s, a, s′) ∈ T , then (s, s′) will be referred to as an a-transition and

will be denoted by s
a−→ s′. For a state s and action a, we define

Succ(s, a) = {s′ | s a−→ s′}. Action a is said to be enabled at state s iff
Succ(s, a) 6= ∅. For s ∈ S we write export(s) = {a ∈ Act | Succ(s, a) 6=
∅} to denote the set of actions enabled in state s.

fmsd-04.tex; 2/02/2004; 14:23; p.9

10 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

3.1. Actions

In accordance with existing practice, we use actions to denote exter-
nally visible behaviors of systems being analyzed, e.g., acquiring a lock.
Actions are atomic, and are distinguished simply by their names. Since
we are analyzing C, a procedural language, we model the termination
of a procedure (i.e., a return from the procedure) by a special class of
actions called return actions. Every return action r is associated with
a unique return value RetV al(r). Return values are either integers or
void. We denote the set of all return actions whose return values are
integers by IntRet and the special return action whose return value is
void by VoidRet . All actions which are not return actions are called
basic actions. A distinguished basic action τ denotes the occurrence of
an unobservable internal event.

DEFINITION 2 (Traces). A trace π is a finite (possibly empty) se-
quence of actions. We define the language L(M) of the LTS M to be the
set of all traces a1 . . . an ∈ Act∗ such that, for some sequence s0 . . . sn
of states of M (with s0 = init) we have s0

a1−→ s1
a2−→ . . .

an−→ sn.
We refer to the underlying sequence of states s0 . . . sn as the path in M
corresponding to the trace a1 . . . an.

DEFINITION 3 (Reachability). For a trace π = a1 . . . an ∈ Act∗

and s, t ∈ S two states of M , we write s
π

=⇒ t to indicate that t is
reachable from s through π, i.e., that there exist states s0 . . . sn with
s = s0 and t = sn, such that s0

a1−→ s1
a2−→ . . .

an−→ sn. Given a state
s ∈ S and a trace π ∈ Act∗, we let Reach(M, s, π) = {t ∈ S | s π

=⇒ t}
stand for the set of states reachable from s through π. We overload
this notation by setting, for a set of states Q ⊆ S, Reach(M,Q, π) =⋃
q∈Q Reach(M, q, π) ; this represents the set of states reachable through

π from some state in Q.

DEFINITION 4 (Projection). Let π ∈ Act∗ be a trace over Act, and
let Act ′ be another (not necessarily disjoint) alphabet. The projection
π�Act ′ of π on Act ′ is the sub-trace of π obtained by simply removing
all actions in π that are not in Act ′.

DEFINITION 5 (Parallel Composition). Let M1 =
〈S1, init1,Act1, T1〉 and M2 = 〈S2, init2,Act2, T2〉 be two LTSs.
Their parallel composition M1||M2 = 〈S1 × S2, (init1, init2),Act1 ∪
Act2, T1||T2〉 is defined so that ((s1, s2), a, (t1, t2)) ∈ T1||T2 iff one of
the following holds:

1. a ∈ Act1 \Act2 and s1
a−→ t1 and s2 = t2.

fmsd-04.tex; 2/02/2004; 14:23; p.10

Efficient Verification of Sequential and Concurrent C Programs 11

2. a ∈ Act2 \Act1 and s2
a−→ t2 and s1 = t1.

3. a ∈ Act1 ∩Act2 and s1
a−→ t1 and s2

a−→ t2.

In other words, components must synchronize on shared actions and
proceed independently on local actions. This notion of parallel compo-
sition originates from CSP. The following results are well-known [40, 51]
and we state them here without proof:

THEOREM 1.

1. Parallel composition is associative and commutative as far as the
accepted language is concerned. Thus, in particular, no bracketing
is required when combining more than two LTSs.

2. Let M1, . . . ,Mn and M ′1, . . . ,M
′
n be LTSs with every pair of LTSs

Mi, M ′i sharing the same alphabet Act i = Act ′i . If, for each
1 6 i 6 n, we have L(Mi) ⊆ L(M ′i), then L(M1|| . . . ||Mn) ⊆
L(M ′1|| . . . ||M ′n). In other words, parallel composition preserves
language containment.

3. Let M1, . . . ,Mn be LTSs with respective alphabets Act1, . . . ,Actn,
and let π ∈ (Act1 ∪ . . . ∪ Actn)∗ be any trace. Then π ∈
L(M1|| . . . ||Mn) iff, for each 1 6 i 6 n, we have π�Act i ∈ L(Mi).
In other words, whether a trace belongs to a parallel composition of
LTSs can be checked by projecting and examining the trace on each
individual component separately.

3.2. Restrictions on C Programs

We developed the C parser used by magic using the standard ANSI C
grammar. Hence magic can only analyze pure ANSI C programs. To
analyze a C program Π with GCC and MSVC extensions, we first use
the CIL [2] tool to translate Π into an equivalent pure ANSI C program
ΠANSI and subsequently use magic on ΠANSI . Also, magic can only
analyze non-recursive C programs and uses inlining to convert a set of
procedures with a DAG-like call graph into a single procedure.

Finally, before applying predicate abstraction, magic conservatively
eliminates two commonly used constructs in C programs: (i) indirect
function calls via function pointers and (ii) indirect assignments to
variables using pointer dereferences, i.e., pointer dereferences on the left
hand sides (LHS’s) of assignments. Therefore, without loss of generality,
we will assume that the C programs on which predicate abstraction is
used do not contain these two constructs. The details of the process by
which magic obtains and uses alias information are presented next.

fmsd-04.tex; 2/02/2004; 14:23; p.11

12 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

3.3. Using Alias Analysis

In essence, we rewrite Π to obtain a new program Π′ with two crucial
properties:

AL1. Π′ does not contain any indirect function calls or pointer
dereferences.

AL2. Π′ exhibits every behavior of Π (and possibly some more), i.e. it
is a safe abstraction of Π.

The obtained Π′ can then be subjected to the model construction al-
gorithm (to be presented later.) The resulting model will be a safe
abstraction of Π′, and hence a safe abstraction of Π. Π′ is obtained
from Π in two stages. First, Π is rewritten to eliminate all indirect
function calls to obtain Π′′. Next Π′′ is rewritten to eliminate pointer
dereferences on the LHS’s of assignments to obtain Π′. We now describe
these two stages in more detail.

3.3.1. Handling Function Pointers
Let x = ∗fp(. . .) be an arbitrary call-site of Π. Let {lib1, . . . , libk} be
the set of possible target procedures of fp obtained by alias analysis.
We rewrite the call-site to the following for statement.

if (fp == lib1) x = lib1(...);

.........

else if (fp == libk−1) x = libk−1(...);

else x = libk(...);

3.3.2. Handling Pointer Dereferences
Let ∗p = e be an arbitrary assignment in Π′′ and let {v1, . . . , vk} be
the set of possible target locations of p obtained by alias analysis. We
rewrite the assignment to the following for statement.

if (p == &v1) v1 = e;

.........

else if (p == &vk−1) vk−1 = e;

else vk = e;

It is easy to see that if the alias analysis used is conservative (com-
monly called a “may” alias analysis), then the resulting Π′ obeys both

fmsd-04.tex; 2/02/2004; 14:23; p.12

Efficient Verification of Sequential and Concurrent C Programs 13

conditions AL1 and AL2 mentioned above. We use PAM [4] to ob-
tain such “may” alias information from C programs1. PAM works in
two stages. In the first stage it performs a conservative alias analysis
based on Anderson’s [10] technique to create a points-to database. In
the second stage, it provides a C procedure based API for querying
the points-to database. This API can be used by external tools to
obtain alias information. We have integrated magic with PAM, al-
lowing magic to obtain the required alias information using PAM in a
completely automated manner.

3.4. Procedure Abstraction

Because of the specific restrictions discussed in the previous section
and magic’s use of inlining, we can assume that a software component
consists of a single (non-recursive) procedure. In other words, in our
approach, procedures and components are synonymous. As mentioned
before, magic allows specifications to be supplied for components (i.e.,
procedures), as well as for programs. As the goal of magic is to verify
whether a C program conforms to its specification, the need for program
specifications is obvious.

Procedure specifications serve another crucial purpose. They are
used as assumptions while constructing component models via pred-
icate abstraction. More precisely, suppose we are trying to construct
MP i from component Ci. In general Ci may invoke several library
routines and it is quite common for the actual implementation of
these routines to be unavailable during verification. In such situations,
a specification for these routines is used instead to construct MP i
conservatively.

In practice, it often happens that a procedure performs quite dif-
ferent tasks for various calling contexts, i.e., values of its parameters
and global variables. In our approach, this phenomenon is accounted
for by allowing multiple specification LTSs for a single procedure. The
selection among these LTSs is achieved by guards, i.e., formulas, which
describe the conditions on the procedure’s parameters and globals un-
der which a certain LTS is applicable. This gives rise to the notion of
procedure abstraction (PA). Formally, a PA for a procedure C is a tuple
〈d, l〉 where:

• d is the declaration for C, as it appears in a C header file.

• l is a finite list 〈g1,M1〉, . . . , 〈gk,Mk〉 where each gi is a guard formula
ranging over the parameters and globals of C, and each Mi is an LTS.

1 PAM produces may alias information modulo some reasonable assumptions. For
example it assumes that pointer values cannot arise as a result of bitwise operations.

fmsd-04.tex; 2/02/2004; 14:23; p.13

14 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

The procedure abstraction expresses that C conforms to one LTS chosen
among the Mi’s. More precisely, C conforms to Mi if the corresponding
guard gi evaluates to true over the actual arguments and globals passed
to C. We require that the guard formulas gi be mutually exclusive
and complete (i.e., cover all possibilities) so that the choice of Mi

is always unambiguously defined. Since PAs are used as assumptions
during model construction, they are often referred to as assumption
PAs. Note that both guards and LTSs of assumption PAs must be
completely specified by the user.

In this article we only consider procedures that terminate by return-
ing. In particular we do not handle constructs like setjmp and longjmp.
Furthermore, since LTSs are used to model procedures, any LTS
(S, init ,Act , T) must obey the following condition: ∀s ∈ S, s a−→ STOP
iff a is a return action.

3.5. Program Abstraction

Just as a PA encapsulates a component’s specification, a program’s
specification is expressed through a program abstraction. Program
abstractions are defined in a similar manner as PAs. Formally, let Π
be a program consisting of n components C1, . . . , Cn. Then a program
abstraction for Π is a tuple 〈d, l〉 where:

• d = 〈d1, . . . , dn〉 is the list of declarations for C1, . . . , Cn.

• l is a finite list 〈g1,M1〉, . . . , 〈gk,Mk〉 where each gi = 〈g1
i , . . . , g

n
i 〉

such that gji is a guard formula ranging over the parameters and
globals of Cj , and each Mi is an LTS.

Without loss of generality we will assume throughout this pa-
per that our target program abstraction contains only one guard
〈Guard1, . . . ,Guardn〉 and one LTS Spec. To achieve the result in full
generality, the described algorithm can be iterated over each element
of the target abstraction.

3.6. Concurrency and Communication

We consider a concurrent version of the C programming language in
which a fixed number of sequential components C1, . . . , Cn are run
concurrently on independent platforms. Each component Ci has an
associated alphabet of actions Act i, and can communicate a particular
event a in its alphabet only if all other programs having a in their
alphabets are willing to synchronize on this event. Actions are realized
using calls to library routines. Programs have local variables but no

fmsd-04.tex; 2/02/2004; 14:23; p.14

Efficient Verification of Sequential and Concurrent C Programs 15

shared variables. In other words, we are assuming blocking message-
passing (i.e., ‘send’ and ‘receive’ statements) as the sole communication
mechanism. When there is no communication, the components execute
asynchronously.

4. Two-Level Counterexample-Guided Abstraction
Refinement

Consider a concurrent C program Π = C1|| . . . ||Cn and a specifica-
tion Spec. Our goal is to verify that the concurrent C program Π
conforms to the LTS Spec. Since we use trace containment as our
notion of conformance, the concurrent program meets its specification
iff L(Π) ⊆ L(Spec).

Theorem 1 forms the basis of our compositional approach to verifi-
cation. We first invoke predicate abstraction to reduce each (infinite-
state) program Ci into a finite LTS (or process) MP i having the same
alphabet as Ci. The initial abstraction is created with a relatively small
set of predicates, and further predicates are then added as required to
refine the MP i’s and eliminate spurious counterexamples. This proce-
dure may add a large number of predicates, yielding an abstract model
with a potentially huge state-space. We therefore seek to further reduce
each MP i into a smaller LTS MAi, again having the same alphabet
as Ci. Both abstractions are such that they maintain the language con-
tainment L(Ci) ⊆ L(MP i) ⊆ L(MAi). Theorem 1 then immediately
yields the rule:

L(MA1|| . . . ||MAn) ⊆ L(Spec)⇒ L(C1|| . . . ||Cn) ⊆ L(Spec)

The converse need not hold: it is possible for a trace π /∈ L(Spec)
to belong to L(MA1|| . . . ||MAn) but not to L(C1|| . . . ||Cn). Such a
spurious counterexample is then eliminated, either by suitably refining
the MAi’s (if π /∈ L(MP1|| . . . ||MPn)), or by refining the MP i’s
(and subsequently adjusting the MAi’s to reflect this change). The
chief property of our refinement procedure (whether at the MAi or
the MP i level) is that it purges the spurious counterexample by re-
stricting the accepted language yet maintains the invariant L(Ci) ⊆
L(P ′i) ⊆ L(MA′i) ⊂ L(MAi), where primed terms denote refined
processes. Note that, according to Theorem 1, we can check whether
π ∈ L(MP1|| . . . ||MPn) and whether π ∈ L(Π) one component at a
time, without it ever being necessary to construct the full state-spaces
of the parallel compositions. This iterated process forms the basis of
our two-level CEGAR algorithm.

fmsd-04.tex; 2/02/2004; 14:23; p.15

16 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

We describe this algorithm in Figure 1. The predicate abstraction
and refinement procedures are detailed in Section 5 and Section 6. We
present our action-guided abstraction and refinement steps (marked †
and ‡ respectively) in Section 7 and Section 8.

Input: C components C1, . . . , Cn and specification Spec
Output: ‘C1|| . . . ||Cn satisfies Spec’ or

counterexample π ∈ L(C1|| . . . ||Cn) \ L(Spec)

predicate abstraction: create LTSs MP1, . . . ,MPn with

L(Ci) ⊆ L(MP i)
† action-guided abstraction: create LTSs MA1, . . . ,MAn with

L(MP i) ⊆ L(MAi)
for 1 ≤ i ≤ n, let Act i be the alphabet of MP i and MAi
repeat

if L(MA1|| . . . ||MAn) ⊆ L(Spec)
return ‘C1|| . . . ||Cn satisfies Spec’

else

extract counterexample π ∈ L(MA1|| . . . ||MAn) \ L(Spec)
if for 1 ≤ i ≤ n, π � Act i ∈ L(MP i)

if for 1 ≤ i ≤ n, π � Act i ∈ L(Ci) return π
else

let 1 ≤ j ≤ n be an index such that π � Act j 6∈ L(Cj)
do predicate abstraction refinement of MP j

to eliminate π
† adjust or create new abstraction MAj

else

‡ let 1 ≤ j ≤ n be an index such that π � Act j 6∈ L(MPj)
do action-guided refinement of MAj to eliminate π

endrepeat.

Figure 1. Two-level CEGAR algorithm.

5. Predicate Abstraction

Let Spec = (SS , initS ,ActS , TS) and the assumption PAs be
{PA1, . . . ,PAk}. In this section we show how to extract MP i from
Ci using the assumption PAs, the guard Guard i and the predicates
(in the first abstraction, the set of predicates used in empty). This is
a brief description of the model construction technique described by
Chaki et al. [16]. Since in this section we shall be dealing with a single
component, we shall refer to Ci,MP i and Guard i as simply C,MP and
Guard respectively. The extraction of MP relies on several principles:

fmsd-04.tex; 2/02/2004; 14:23; p.16

Efficient Verification of Sequential and Concurrent C Programs 17

• Every state ofMP models a state during the execution of C; conse-
quently every state is composed of a control component and a data
component.

• The control components intuitively represent values of the program
counter, and are formally obtained from the control flow graph
(CFG) of C.

• The data components are abstract representations of the mem-
ory state of C. These abstract representations are obtained using
predicate abstraction.

• The transitions between states in MP are derived from the tran-
sitions in the CFG, taking into account the assumption PAs and
the predicate abstraction. This process involves reasoning about C
expressions, and will therefore require the use of a theorem prover.

Without loss of generality, we can assume that there are only
five kinds of statements in C: assignments, call-sites, if-then-else

branches, goto and return. Note that call-sites correspond to library
routines called by C whose code is unavailable and therefore cannot be
inlined. We can also assume, without loss of generality, that all expres-
sions in C are side-effect free. Recall, from Section 3.2, that we have
assumed the absence of indirect function calls and pointer dereferences
on the LHS’s of assignments. We denote by Stmt the set of statements
of C and by Expr the set of all C expressions over the variables of C.

S0: int x,y=8;

S1: if(x == 0) {
S2: do a();

S4: if (y < 10) { S6: return 0; }
else { S7: return 1; }

} else {
S3: do b();

S5: if(y > 5) { S8: return 2; }
else { S9: return 3; }

}

Figure 2. The example C component C.

As a running example of C, we use the C procedure shown in Fig-
ure 2. It invokes two library routines do a and do b. Let the guard and
LTS list in the assumption PA for do a be 〈true, Do A〉. This means
that under all invocation conditions, do a conforms to the LTS Do A.
Similarly the guard and LTS list in the assumption PA for do b is

fmsd-04.tex; 2/02/2004; 14:23; p.17

18 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

〈true, Do B〉. The LTSs Do A and Do B are described in Figure 3. We
also use Guard = true and Spec = Spec (shown in Figure 3).

C3
C5

C4

C7

C6

C9

C8

C11

C10

C13

C12

STOP

Do_B

STOP
b return{}

B1 B2STOP

Do_A

a return{}
A1 A2

C1 C2
τ

τ

τ

τ

a τ

τ

τ

τ return{2}

return{0}

b

τ τ

Spec

Figure 3. The LTSs in the assumption PAs for do a and do b. The return action
with return value void is denoted by return{}.

5.1. Control Flow Automata

The construction of MP begins with the construction of the control
flow automaton (CFA) of C. The states of a CFA correspond to control
points in the program. The transitions between states in the CFA cor-
respond to the control flow between their associated control points in
the program. Intuitively, the CFA can be obtained by viewing the CFG
of C as an automata. Therefore, the CFA is a conservative abstraction
of C’s control flow, i.e., it allows a superset of the possible traces of C.
Formally the CFA is a 4-tuple 〈SCF , ICF , TCF ,L〉 where:

− SCF is a set of states.

− ICF ∈ SCF is an initial state.

− TCF ⊆ SCF × SCF is a set of transitions.

− L : SCF \ {FINAL} → Stmt is a labeling function.

SCF contains a distinguished FINAL state. The transitions between
states reflect the flow of control between their labeling statements:
L(ICF) is the initial statement of C and (s1, s2) ∈ TCF iff one of the
following conditions hold:

− L(s1) is an assignment or call-site with L(s2) as its unique
successor.

− L(s1) is a goto with L(s2) as its target.

− L(s1) is a branch with L(s2) as its then or else successor.

fmsd-04.tex; 2/02/2004; 14:23; p.18

Efficient Verification of Sequential and Concurrent C Programs 19

− L(s1) is a return statement and s2 = FINAL.

EXAMPLE 1. The CFA of our example program is shown in Figure 4.
Each non-final state is labeled by the corresponding statement label (the
FINAL state is labeled by FINAL). Henceforth we will refer to each
CFA state by its label. Therefore the states of the CFA in Figure 4 are
S0, ..., S9, FINAL with S0 being the initial state.

y = 8

x == 0

return 0

a()

y < 10 y > 5

b()

1
{p , p }

2

1
{p }

1
{p } {p }

2

{p }
2

return 1 return 2 return 3{ }

{ } { }

{ }

{ }

S1

S2 S3

S4 S5

S6 S8 S9S7

FINALFINAL

{ } S0

Figure 4. The CFA for our example program. Each non-FINAL state is labeled
the same as its corresponding statement. The initial state is labeled S0. The states
are also labeled with inferred predicates when P = {p1, p2} where p1 = (y < 10)
and p2 = (y > 5). Note that, in general, the set of inferred predicates are not
necessarily equal at all states of the CFA. Rather they are computed as the weakest
preconditions of the inferred predicates at their successor states.

5.2. Predicate Inference

Since the construction of MP from C involves predicate abstraction,
it is parameterized by a set of predicates P. We will often indicate
this explicitly by referring to MP as MP(P). In particular we will
write MP(P1) and MP(P2) to denote the LTSs obtained via predi-
cate abstraction from C using two sets of predicates P1 and P2. The
main challenge in predicate abstraction is to identify the set P that is
necessary for proving the given property. In our framework we require
P to be a subset of the branch statements in C. Therefore we sometimes
refer to P or subsets of P simply as a set of branches. The construction
of MP associates with each state s of the CFA a finite subset of Expr
derived from P, denoted by Ps. The process of constructing the Ps’s
from P is known as predicate inference and is described by the algorithm
PredInfer in Figure 5. Note that PFINAL is always ∅.

The algorithm uses a procedure for computing the weakest precon-
dition WP [12, 31, 39] of a predicate p relative to a given statement.

fmsd-04.tex; 2/02/2004; 14:23; p.19

20 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

Consider a C assignment statement a of the form v = e. Let ϕ be a
C expression. Then the weakest precondition of ϕ with respect to a,
denoted byWP[a]{ϕ}, is obtained from ϕ by replacing every occurrence
of v in ϕ with e. Note that we need not consider the case where a pointer
appears on the LHS of a since we have disallowed such constructs from
appearing in C (see Section 3.2).

Input: Set of branch statements P
Output: Set of Ps’s associated with each CFA state

Initialize: ∀s ∈ SCF ,Ps := ∅
Forever do

For each s ∈ SCF do

If L(s) is an assignment statement and L(s′) is its successor

For each p′ ∈ Ps′ add WP [L(s)]{p′} to Ps
Else if L(s) is a branch statement with condition c

If L(s) ∈ P, add c to Ps
If L(s′) is a ‘then’ or ‘else’ successor of L(s)

Ps := Ps ∪ Ps′
Else If L(s) is a call-site or a ‘goto’ statement

with successor L(s′)
Ps := Ps ∪ Ps′

Else If L(s) returns expression e and r ∈ Act S ∩ IntRet

Add the expression (e == RetV al(r)) to Ps
If no Ps was modified in the ‘for’ loop, exit

Figure 5. Algorithm PredInfer for predicate inference.

The weakest precondition is clearly an element of Expr as well. The
purpose of predicate inference is to create Ps’s that lead to a very
precise abstraction of the program relative to the predicates in P.
Intuitively, this is how it works. Let s, t ∈ SCF be such that L(s) is
an assignment statement and (s, t) ∈ TCF . Suppose a predicate pt gets
inserted in Pt at some point during the execution of PredInfer and
suppose ps = WP[L(s)]{pt}. Now consider any execution state of C
where the control has reached L(t) after the execution of L(s). It is
obvious that pt will be true in this state iff ps was true before the
execution of L(s). In terms of the CFA, this means that the value of pt
after a transition from s to t can be determined precisely on the basis
of the value of ps before the transition. This motivates the inclusion of
ps in Ps. The cases in which L(s) is not an assignment statement can
be explained analogously.

Note that PredInfer may not terminate in the presence of loops in
the CFA. However, this does not mean that our approach is incapable
of handling C programs containing loops. In practice, we force termi-

fmsd-04.tex; 2/02/2004; 14:23; p.20

Efficient Verification of Sequential and Concurrent C Programs 21

nation of PredInfer by limiting the maximum size of any Ps. Using
the resulting Ps’s, we can compute the states and transitions of the
abstract model as described in the next section. Irrespective of whether
PredInfer was terminated forcefully or not, C is guaranteed to conform
to MP. We have found this approach to be very effective in practice.
Similar algorithms have been proposed by Namjoshi et al. [29, 46].

EXAMPLE 2. Consider the CFA described in Example 1. Suppose P
contains the two branches S4 and S5. Then PredInfer begins with PS4 =
{(y < 10)} and PS5 = {(y > 5)}. From this it obtains PS2 = {(y <
10)} and PS3 = {(y > 5)}. This leads to PS1 = {(y < 10), (y > 5)}.
Then PS0 = {WP[y = 8]{y < 10},WP[y = 8]{y > 5}} = {(8 <
10), (8 > 5)}. Since we ignore predicates that are trivially true or
false, PS0 = ∅. Since the return actions in Spec have return values
{0, 2}, PS6 = {(0 == 0), (0 == 2)}, which is again ∅. Similarly, PS7 =
PS8 = PS9 = PFINAL = ∅. Figure 4 shows the CFA with each state s
labeled by Ps.

So far we have described a method for computing the CFA and a set
of predicates associated with each state of the CFA. The states ofMP
correspond to the different states of the CFA along with various possible
valuations of the predicates inferred at these states. We now define the
notions of a predicate valuation and its concretization formally.

DEFINITION 6 (Predicate valuation and concretization). For a
CFA node s suppose Ps = {p1, . . . , pk}. Then a valuation of Ps is a
Boolean vector v1, . . . , vk. Let Vs be the set of all valuations of Ps. The
predicate concretization function Γs : Vs → Expr is defined as follows.
Given a valuation V = {v1, . . . , vk} ∈ Vs, Γs(V) =

∧k
i=1 p

vi
i where

ptrue
i = pi and pfalse

i = ¬pi. As a special case, if Ps = ∅, then
Vs = {⊥} and Γs(⊥) = true.

EXAMPLE 3. Consider the CFA described in Example 1 and the in-
ferred predicates as explained in Example 2. Recall that PS1 = {(y <
10), (y > 5)}. Suppose V1 = {0, 1} and V2 = {1, 0}. Then ΓS1(V1) =
(¬(y < 10)) ∧ (y > 5) and ΓS1(V2) = (y < 10) ∧ (¬(y > 5)).

As mentioned before, the states of MP correspond to the states
of the CFA and possible valuations of the predicates associated with
these states. In other words, one can view the states of MP as being
obtained by splitting up each state s of the CFA in accordance with
various valuations of the predicate set Ps inferred at s. We now define
this process more formally.

fmsd-04.tex; 2/02/2004; 14:23; p.21

22 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

DEFINITION 7 (Splitting up states of the CFA). Each state s ∈
SCF gives rise to a set of states of MP, denoted by Ss. In addition,
MP has a unique initial state INIT. The definition of Ss consists of
the following sub-cases:

• SFINAL = {STOP}.

• If L(s) is an assignment, branch, goto or return statement, then
Ss = {s} × Vs.

• Suppose L(s) is a call-site for a library routine lib and
〈g1, P1〉, . . . , 〈gn, Pn〉 is the guard and LTS list in the assumption
PA for lib. For 1 ≤ i ≤ n, let Pi = (Si, init i,Act i, Ti). Then
Ss = (∪ni=1{s} × Vs × Si) ∪ ({s} × Vs).

In the rest of this article we shall refer to states of MP of the form
(s, V) as normal states. Also we shall call states of MP of the form
(s, V, c) as inlined states since these states can be thought of as arising
due to inlining of assumed PAs at call-sites. We are now ready to define
MP precisely.

DEFINITION 8 (MP). Formally,MP is an LTS 〈SI , init I ,Act I , TI 〉
where:

− SI = ∪s∈SCF
Ss ∪ {INIT} is the set of states.

− init I = INIT is the initial state.

− Act I is the alphabet.

− TI ⊆ SI ×Act I × SI is the transition relation.

5.3. Alphabet of MP

So far we have defined every component ofMP except Act I and TI . In
this section we shall describe Act I and in the next section present how
TI can be computed. Intuitively the alphabet of MP contains every
event in the alphabet of Spec along with the events in the alphabets of
inlined LTSs.

Formally, let CallSites ⊆ SCF be the set of states of the CFA
that are labeled by call-sites. Let cs be an arbitrary element of Call-
Sites such that L(cs) is a call-site for library routine lib. Suppose
〈g1, P1〉, . . . , 〈gn, Pn〉 is the guard and LTS list in the assumption PA
for lib. For 1 ≤ i ≤ n, let Pi = (Si, init i,Act i, Ti). Then we define the
function CallAct as: CallAct(cs) = ∪ni=1Act i. Once we have defined the

fmsd-04.tex; 2/02/2004; 14:23; p.22

Efficient Verification of Sequential and Concurrent C Programs 23

function CallAct , Act I is simply equal to (∪cs∈CallSitesCallAct(cs)) ∪
ActS .

5.4. Computing TI

We now describe how to compute TI . Intuitively, we add a transition
between two abstract states unless we can prove that there is no tran-
sition between their corresponding concrete states. If we cannot prove
this, we say that the two states (or the two formulas representing them)
are admissible. As we shall soon see, this problem can be reduced to
the problem of deciding whether ¬(ψ1 ∧ ψ2) is valid, where ψ1 and ψ2

are first order formulas over the integers. Solving it, therefore, requires
the use of a theorem prover. In general the problem is known to be
undecidable. However, for our purposes it is sufficient that the theo-
rem prover be sound and always terminate. Several publicly available
theorem provers (such as Simplify [48]) have this characteristic.

Formally, given arbitrary formulas ψ1 and ψ2, we say that the for-
mulas are admissible if the theorem prover returns false or unknown
on ¬(ψ1∧ψ2). We denote this by Adm(ψ1, ψ2). Otherwise the formulas
are inadmissible, denoted by ¬Adm(ψ1, ψ2). The computation of TI

consists of several sub-cases and we shall consider each separately.

• Transitions from INIT. Recall that Guard represents guard quali-
fying the initial states. First, we add a transition (INIT, τ, (ICF , V))
to TI iff Adm(ΓICF

(V),Guard).

• Assignments, gotos and branches. Next, ((s1, V1), τ, (s2, V2)) ∈
TI iff (s1, s2) ∈ TCF and one of the following conditions hold:

1. L(s1) is an assignment statement and
Adm(Γs1(V1),WP[L(s1)]{Γs2(V2)}).

2. L(s1) is a branch statement with a branch condition c, and:

1. Either L(s2) is its then successor, Adm(Γs1(V1),Γs2(V2)) and
Adm(Γs1(V1), c).

2. Or L(s2) is its else successor, Adm(Γs1(V1),Γs2(V2)) and
Adm(Γs1(V1),¬c).

3. L(s1) is a goto statement and Adm(Γs1(V1),Γs2(V2)).

• Handling return statements. ((s, V), a, STOP) ∈ TI iff L(s) is a
return statement, a is a return action, and either (i) L(s) returns
the expression e, a ∈ IntRet and Adm(Γs(V), (e == RetV al(a))), or
(ii) L(s) returns void and a = VoidRet . If L(s) returns the expres-
sion e but condition (i) above is not applicable for any a ∈ IntRet ,

fmsd-04.tex; 2/02/2004; 14:23; p.23

24 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

we add ((s, V),VoidRet , STOP) to TI . This ensures that from every
“return” state there is at least one return action to STOP, and if
an applicable return action cannot be determined, VoidRet is used
as the default2.

• Handling call-sites. Suppose L(s1) is a call-site for a library rou-
tine lib and 〈g1, P1〉, . . . , 〈gn, Pn〉 is the guard and LTS list in the
assumption PA for lib. Also, let (s1, s2) ∈ TCF , V1 ∈ Vs1 and
V2 ∈ Vs2 . Then for 1 ≤ i ≤ n, we do the following:

1. Let g′i be the guard obtained from gi by replacing every parameter
of lib by the corresponding argument passed to it at L(s1). If
Adm(g′i,Γs1(V1)), then let Pi = (Si, init i,Act i, Ti) and proceed
to step 2, otherwise move on to the next i.

2. Add a transition ((s1, V1), τ, (s1, V1, init i)) into TI .

3. For each transition (s, a, t) ∈ Ti where t 6= STOP, add a
transition ((s1, V1, s), a, (s1, V1, t)) into TI .

4. If L(s1) is a call-site with an assignment, i.e., of the form x =

lib(...), then:

− For each transition (s,VoidRet , STOP) ∈ Ti such that
Adm(Γs1(V1),Γs2(V2)), add ((S1, V1, s), τ, (s2, V2)) into TI .

− For each transition (s, a, STOP) ∈ Ti such that a ∈
IntRet and Adm(Γs1(V1),WP[x = RetV al(a)]{Γs2(V2)}),
add ((S1, V1, s), τ, (s2, V2)) into TI .

5. If L(s1) is a call-site without an assignment, i.e., of the form
lib(...), then for each transition (s, a, STOP) ∈ Ti such that
Adm(Γs1(V1),Γs2(V2)), add ((S1, V1, s), τ, (s2, V2)) into TI .

Clearly, |SI | is exponential in |P|, as are the worst case space and
time complexities of constructing MP.

EXAMPLE 4. Recall the CFA from Example 1 and the predicates cor-
responding to CFA nodes discussed in Example 2. The MP’s obtained
with P = ∅ and P = {(y < 10), (y > 5)} are shown in Figure 6(a) and
6(b) respectively.

2 In reality magic uses a special non-simulatable action in such situations to
maintain soundness. We use VoidRet in this article for the sake of simplicity

fmsd-04.tex; 2/02/2004; 14:23; p.24

Efficient Verification of Sequential and Concurrent C Programs 25

S0,< >

STOP

S0,< >

S6,< > S8,< >

STOP

INIT

b

τ

τ

τ

τ

τ τ

τ

τ

a

S1,< >

S2,< > S3,< >

S3,< >,B1

S2,< >,A2 S3,< >,B2

S4,< > S5,< >

return{0} return{1} return{2} return{3}

τ τ τ τ

S2,< >,A1

S7,< > S9,< >S6,< > S8,< >

INIT

return{0} return{2}

τ

τ

S2,< p1 =T > S3,< p2 = T >

S3,< p2=T >,B1S2,< p1=T >,A1

S2,< p1=T >,A2 S3,< p2=T >,B2

S4,< p1=T > S5,< p2=T >

ττ

a b

τ τ

τ τ

S1,< p1=T,p2=T >

ττ

(a) (b)

Figure 6. (a) example MP with P = ∅; (b) example MP with P = {p1, p2} where
p1 = (y < 10) and p2 = (y > 5).

6. Predicate Minimization

Given a counterexample CE to the trace containment check, i.e., a trace
of MP that is not a trace of Spec, we have to perform the following
steps: (i) check if CE is a real counterexample, i.e., whether it is a con-
crete trace of C, and (ii) if CE is not a real counterexample, construct
a minimal set of predicates that will prevent CE , along with every
other spurious counterexample discovered so far, from arising in future
iterations of the two-level CEGAR loop. In this section, we present
precisely how these two steps are performed by magic [15]. We begin
with the definition of a counterexample.

DEFINITION 9 (Counterexample). A counterexample is a finite
sequence 〈ŝ1, a1, ŝ2, a2, . . . , an−1, ŝn〉 such that:

− For 1 ≤ i ≤ n, ŝi ∈ SI

− For 1 ≤ i < n, ai ∈ Act I

− ŝ1 = INIT

− For 1 < i < n, ŝi is of the form (si, Vi) or (si, Vi, ci)

− ŝn is of the form (si, Vi) or (si, Vi, ci) or ŝn = STOP

fmsd-04.tex; 2/02/2004; 14:23; p.25

26 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

− For 1 ≤ i < n, ŝi
ai−→ ŝi+1

6.1. Counterexample Checking

The CECheck algorithm, described in Figure 7, takes C and a coun-
terexample CE as inputs and returns true if CE is a valid counterex-
ample of C. Intuitively it computes the weakest precondition of CE and
then checks if this weakest precondition is satisfiable. This is a backward
traversal based algorithm. There is an equivalent algorithm [13] that is
based on a forward traversal and uses strongest postconditions instead
of weakest preconditions.

Input: A counterexample CE = 〈ŝ1, a1, ŝ2, a2, . . . , an−1, ŝn〉 of MP
Output: true iff CE is valid (can be simulated

on the concrete system)

Variable: X of type formula

Initialize: X := true

For i = n− 1 to 1

If ŝi is of the form (s, V)

If L(s) is an assignment

X := WP[L(s)]{X}
Else If L(s) is a branch with condition c

If (i < n)

//At this point, we know that ŝi+1 must be of the form

//(s′, V ′) and further that L(s′) must be the ‘then’ or

//‘else’ successor of L(s)

If L(s′) is the ‘then’ successor of L(s), X := X ∧ c
Else X := X ∧ ¬c

Else If ŝi is of the form (s, V, c)

//At this point, we know that L(s) is a call-site

If L(s) is of the form x = lib(...)

If ((i < n) and (ŝi+1 is of the form (s′, V ′)))
//At this point we know that some return action was

//inlined at ŝi
Let R = {r ∈ ActS ∩ IntRet | ∃c′ s.t. c

r−→ c′}
X = ∨r∈R WP[x = RetV al(r)]{X}

If (X ≡ false) return false

Return true
Figure 7. Algorithm CECheck to check the validity of a counterexample of C.

fmsd-04.tex; 2/02/2004; 14:23; p.26

Efficient Verification of Sequential and Concurrent C Programs 27

6.2. Counterexample Elimination

As we shall see in the next section, the process of predicate mini-
mization requires us to solve the following problem: given a spurious
counterexample CE and a set of branches P, determine if P eliminates
CE . This can be achieved in two broad steps: (i) construct MP(P)
and (ii) determine if there exists a counterexample CE ′ ofMP(P) such
that CE is consistent with CE ′. Algorithm CEEliminate, described in
Figure 8, formally presents how these two steps can be performed. Note
that, in practice, CEEliminate can proceed in an on-the-fly manner
without constructing the full MP(P) upfront.

To understand CEEliminate we need to understand the concept of
consistency between states. Let P1 and P2 be two sets of branches of C.
LetMP(P1) = 〈S1, init1,Act I , T1〉 andMP(P2) = 〈S2, init2,Act I , T2〉
be the two LTSs obtained by predicate abstraction using P1 and P2

respectively. Let s1 ∈ S1 and s2 ∈ S2 be two arbitrary states ofMP(P1)
and MP(P2) respectively. Recall that either s1 = INIT or s1 = STOP
or s1 is of the form (s, V) or of the form (s, V, c) where s is a state of
the CFA, V ∈ Vs is a predicate valuation and c is an inlined LTS state.
The same holds true for s2 as well.

Intuitively s1 and s2 are consistent if they differ at most in their
predicate valuations. Formally, s1 and s2 are said to be consistent
(denoted by Cons(s1, s2)) iff one of the conditions hold:

− s1 = s2 = INIT

− s1 = s2 = STOP

− s1 = (s, V1) and s2 = (s, V2) for some V1 and V2

− s1 = (s, V1, c) and s2 = (s, V2, c) for some V1 and V2

6.3. Minimizing the Eliminating Set

In this section we solve the following problem: given a set of spurious
counterexamples T and a set of candidate predicates P̂, find a minimal
set P̂min ⊆ P̂ which eliminates all the counterexamples in T . Note
that, in our context, T will contain every spurious counterexample
encountered so far in the CEGAR loop, while P̂ will be all the branches
of C. We present a three step algorithm for solving this problem. First,

find a mapping T 7→ 22P̂ between each counterexample in T and the
set of subsets P̂ that eliminate it. This can be achieved by iterating
through every P̂sub ⊆ P̂ and CE ∈ T , using CEEliminate to determine

fmsd-04.tex; 2/02/2004; 14:23; p.27

28 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

Input: Spurious counterexample CE = 〈ŝ1, a1, ŝ2, a2, . . . , an−1, ŝn〉,
set of predicates P

Output: true if CE is eliminated by P and false otherwise

Compute MP(P) = 〈SP , IP ,ActP , TP〉
Variable: X,Y of type subset of SP
Initialize: X := {INIT}
If (X = ∅) return true

For i = 2 to n do

Y := {ŝ′ ∈ SP | Cons(ŝi, ŝ
′) ∧ ∃ŝ ∈ X s.t. ŝ

ai−1−→ ŝ′}
If (Y = ∅) return true

X := Y

Return false
Figure 8. Algorithm CEEliminate to check if a spurious counterexample can be
eliminated.

if P̂sub can eliminate CE . This approach is exponential in |P̂| but below
we list several ways to reduce the number of attempted combinations3:

− Limit the size of attempted combinations to a small constant, e.g.
5, assuming that most counterexamples can be eliminated by a
small set of predicates.

− Stop after reaching a certain size of combinations if any eliminating
solutions have been found.

− Break up the CFG into blocks and only consider combinations
of predicates within blocks (keeping combinations in other blocks
fixed).

− For any CE ∈ T , if a set P̂ ′sub eliminates CE , ignore all supersets

of P̂ ′sub with respect to CE (as we are seeking a minimal solution).
This last optimization preserves optimality in all cases.

Second, encode each predicate pi ∈ P̂ with a new Boolean variable
pbi . We use the terms ‘predicate’ and ‘the Boolean encoding of the
predicate’ interchangeably. Third, derive a Boolean formula σ, based
on the predicate encoding, that represents all the possible combinations
of predicates that eliminate the elements of T . We use the following
notation in the description of σ. Let CE ∈ T be a counterexample:

− kCE denotes the number of sets of predicates that eliminate CE

(1 ≤ kCE ≤ 2|P̂|).
3 While some of these reductions may cause sub-optimality, our experimental

results indicate that this seldom occurs in practice.

fmsd-04.tex; 2/02/2004; 14:23; p.28

Efficient Verification of Sequential and Concurrent C Programs 29

− s(CE , i) denotes the i-th set (1 ≤ i ≤ kCE) of predicates that
eliminates CE . We use the same notation for the conjunction of
the predicates in this set.

The formula σ is defined as follows:

σ
def
=

∧

CE∈T

kCE∨

i=1

s(CE , i) (1)

For any satisfying assignment to σ, the predicates whose Boolean en-
codings are assigned true are sufficient for eliminating all elements of
T . Note that the above described process requires us to store all coun-
terexamples found so far. This is potentially expensive memory-wise,
especially if the verification takes a large number of iterations and the
counterexamples are large. However our experiments (see Figures 11, 12
and 13) indicate that the memory needed to store the counterexamples
does not become a bottleneck in practical scenarios.

From the various possible satisfying assignments to σ, we look for
the one with the smallest number of positive assignments. This assign-
ment represents the minimal number of predicates that are sufficient
for eliminating T . One is initially inclined to solve σ via 0-1 Integer
Linear Programming (ILP) since we are essentially trying to optimize
a function given some constraints over Boolean variables. However this
is not directly possible because ILP only allows constraints that are
implicitly conjuncted while σ includes disjunctions. If we attempt to
expand out σ into a conjuncted form using standard distributive laws,
we could face an exponential blowup in the size of σ. We therefore use
PBS [9], a solver for Pseudo Boolean Formulas, to solve σ directly.

A pseudo-Boolean formula is of the form
∑n
i=1 ci · bi ./ k, where bi

is a Boolean variable, ci is a rational constant for 1 ≤ i ≤ n, k is a
rational constant and ./ represents one of the inequality or equality
relations ({<,≤, >,≥,=}). Each such constraint can be expanded to a
CNF formula (hence the name pseudo-Boolean), but this expansion can
be exponential in n. PBS does not perform this expansion, but rather
uses an algorithm designed in the spirit of the Davis-Putnam-Loveland
algorithm that handles these constraints directly. PBS accepts as input
standard CNF formulas augmented with pseudo-Boolean constraints.
Given an objective function in the form of a pseudo-Boolean formula,
PBS finds an optimal solution by repeatedly tightening the constraint
over the value of this function until it becomes unsatisfiable. That
is, it first finds a satisfying solution and calculates the value of the
objective function according to this solution. It then adds a constraint

fmsd-04.tex; 2/02/2004; 14:23; p.29

30 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

that the value of the objective function should be smaller by one4.
This process is repeated until the formula becomes unsatisfiable. The
objective function in our case is to minimize the number of chosen
predicates (by minimizing the number of variables that are assigned
true):

min
n∑

i=1

pbi (2)

EXAMPLE 5. Suppose that the counterexample CE 1 is eliminated by
either {p1, p3, p5} or {p2, p5} and that the counterexample CE 2 can
be eliminated by either {p2, p3} or {p4}. The objective function is
min

∑5
i=1 p

b
i and is subject to the constraint:

σ = ((pb1 ∧ pb3 ∧ pb5) ∨ (pb2 ∧ pb5))∧
((pb2 ∧ pb3) ∨ (pb4))

The minimal satisfying assignment in this case is pb2 = pb5 = pb4 =
true. 2

Other techniques for solving this optimization problem are possible,
including minimal hitting sets and logic minimization. The PBS step,
however, has not been a bottleneck in any of our experiments.

7. Action-Guided Abstraction

We now present a CEGAR on LTSs [17]. LetMP = 〈SI , init I ,Act I , TI 〉
be an LTS obtained via predicate abstraction from a component
C, as described in Section 5. We first create an LTS MA0 =
〈S0
A, init0

A,Act I , T
0
A〉 such that (i) L(MP) ⊆ L(MA0) and (ii) MA0

contains at most as many states as MP (and typically many fewer).
Given an abstraction MA = 〈SA, initA,Act I , TA〉 of MP and a
spurious trace π ∈ L(MA) \ L(MP), our refinement procedure pro-
duces a refined abstraction MA′ = 〈S′A, init ′A,Act I , T

′
A〉 such that

(i) L(MP) ⊆ L(MA′) ⊂ L(MA), (ii) π /∈ L(MA′), and (iii) MA′
contains at most as many states as MP. It is important to note that
we require throughout that MP, MA0, MA, and MA′ all share the
same alphabet. We also remark that iterating this refinement procedure
must converge in a finite number of steps to an LTS that accepts the
same language as MP.

Let us write B = 〈SB, initB,Act I , TB〉 to denote a generic abstrac-
tion of MP. States of B are called abstract states, whereas states of

4 A possible improvement is to do a binary search. In none of our experiments,
however, was this stage a bottleneck.

fmsd-04.tex; 2/02/2004; 14:23; p.30

Efficient Verification of Sequential and Concurrent C Programs 31

MP are called concrete states. In the context of action-guided abstrac-
tion, abstract states are always disjoint sets of concrete states that
partition SI , and our abstraction refinement step corresponds precisely
to a refinement of the partition. For s ∈ SI a concrete state, the unique
abstract state of B to which s belongs is denoted by [s]B.

In any abstraction B that we generate, a partition SB of the concrete
states of MP uniquely determines the abstract model B: the initial
state initB of B is simply [init I]B, and for any pair of abstract states

u, v ∈ SB and any action a ∈ Act I , we include a transition u
a−→ v ∈ TB

iff there exist concrete states s ∈ u and t ∈ v such that s
a−→ t.

This construction is an instance of an existential abstraction [24]. It
is straightforward to show that it is sound, i.e., that L(MP) ⊆ L(B)
holds for any abstraction B.

The initial partition S0
A of concrete states identifies two states s, t ∈

SI if they share the same set of immediately enabled actions: t ∈ [s]0A
iff export(t) = export(s). We then let S0

A = {[s]0A | s ∈ SI }. Again, this
uniquely defines our initial abstractionMA0, the construction marked
† in Figure 1 (c.f. Section 4).

8. Action-Guided Refinement

In order to describe the refinement step, we need an auxiliary definition.
Given an abstract state u ∈ SB and an action a ∈ Act I , we construct
a refined partition S ′B = Split(SB, u, a) of SI which agrees with SB
outside of u, but distinguishes concrete states in u if they have different
abstract a-successors in SB. More precisely, for any s ∈ SI , if s /∈ u,
we let [s]B′ = [s]B. Otherwise, for s, t ∈ u, we let [s]B′ = [t]B′ iff⋃{[s′]B | s′ ∈ Reach(MP, s, a)} =

⋃{[t′]B | t′ ∈ Reach(MP, t, a)}. We
then let Split(SB, u, a) = {[s]B′ |s ∈ SI }. This refined partition uniquely
defines a new abstraction, which we write Abs(Split(SB, u, a)). Note
that in order to compute the transition relation of Abs(Split(SB, u, a))
it suffices to adjust only those transitions in TB that have u either as
a source or a target.

The refinement step takes as input a spurious counterexample π ∈
L(MA)\L(MP) and returns a refined abstractionMA′ which does not
accept π. This is achieved by repeatedly splitting states of MA along
abstract paths which accept π. The algorithm in Figure 9 (marked ‡ in
Figure 1) describes this procedure in detail.

THEOREM 2. The algorithm described in Figure 9 is correct and
always terminates.

fmsd-04.tex; 2/02/2004; 14:23; p.31

32 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

Input: abstraction MA of MP (with L(MP) ⊆ L(MA)) and

trace π = a1 . . . am ∈ L(MA) \ L(MP)
Output: refined abstraction MA′

(with L(MP) ⊆ L(MA′) ⊂ L(MA)) and π /∈ L(MA′)

while there exists some abstract path u0
a1−→ . . .

am−→ um in MA do

let reachable states = {init} //init = initial state of MP
let j = 1
while reachable states 6= ∅ do

let reachable states = Reach(MP , reachable states, aj) ∩ uj
let j = j + 1

endwhile

let MA = Abs(Split(SA, uj−2, aj−1)) //SA = states of MA
endwhile

let MA′ =MA
return MA′.
Figure 9. Action-guided CEGAR algorithm on LTS.

PROOF 1. We first note that it is obvious that whenever the algo-
rithm terminates it returns an abstraction MA′ with π /∈ L(MA′).
It is equally clear, since MA′ is obtained via successive refinements
of MA, that L(MP) ⊆ L(MA′) ⊂ L(MA). It remains to show that
every splitting operation performed by the algorithm results in a proper
partition refinement; termination then follows from the fact that the set
of states of MP is finite.

Observe that, since π /∈ L(MP), Reach(MP, init , π) = ∅, and there-
fore the inner while loop always terminates. At that point, we claim that

(i) there is an abstract transition uj−2
aj−1−→ uj−1; (ii) there are some

concrete states in uj−2 reachable (in MP) from init; and (iii) none of
these reachable concrete states have concrete aj−1-successors in uj−1.
Note that (ii) follows from the fact that the inner loop is entered with
reachable states = {init}, whereas (i) and (iii) are immediate. Be-
cause of the existential definition of the abstract transition relation, we
conclude that uj−2 contains two kinds of concrete states: some having
concrete aj−1-successors in uj−1, and some not. Splitting the state uj−2

according to action aj−1 therefore produces a proper refinement. 2

We remark again that each splitting operation corresponds to a unit
step of the Paige-Tarjan algorithm [49]. Iterating our refinement pro-
cedure therefore converges to the bisimulation quotient of MP. Note
however that, unlike the Paige-Tarjan algorithm, our refinement process
is counterexample driven and not aimed at computing the bisimulation
quotient. In practical verification instances, we usually stop well before
reaching this quotient.

fmsd-04.tex; 2/02/2004; 14:23; p.32

Efficient Verification of Sequential and Concurrent C Programs 33

We stress that the CEGAR algorithm described in Figure 1 never
invokes the above abstraction refinement routine with the full par-
allel composition MA = MA1|| . . . ||MAn as input. Indeed, this
would be very expensive, since the size of the global state-space
grows exponentially with the number of concurrent processes. It
is much cheaper to take advantage of compositionality: by Theo-
rem 1, π ∈ L(MA1|| . . . ||MAn) \ L(MP1|| . . . ||MPn) iff, for some i,
π�Acti ∈ L(MAi) \ L(MP i). It then suffices to apply abstraction re-
finement to this particular MAi, since π�Acti /∈ L(MA′i) implies that
π /∈ L(MA1|| . . . ||MA′i|| . . . ||MAn). The advantage of this approach
follows from the fact that the computational effort required to identify
MAi grows only linearly with the number of concurrent components.

9. Experimental Evaluation

We implemented our technique inside magic and experimented with
three broad goals in mind. The first goal was to check the effectiveness
of predicate minimization by itself on purely sequential benchmarks.
The second goal was to compare the overall effectiveness of the proposed
two-level CEGAR approach, particularly insofar as memory usage is
concerned. The third goal was to verify the effectiveness of our action-
guided abstraction scheme by itself. We carried out experiments with a
wide range of benchmarks, both sequential and concurrent. Each bench-
mark consisted of an implementation (a C program) and a specification
(provided separately as an LTS). All of the experiments were carried
out on an AMD Athlon 1600 XP machine with 900 MB RAM running
RedHat 7.1.

Input: Set of predicates P
Output: Subset of P that eliminates all spurious

counterexamples so far

Variable: X of type set of predicates

LOOP: Create a random ordering 〈p1, . . . , pk〉 of P
For i = 1 to k do

X := P \ {pi}
If X can eliminate every spurious counterexample seen so far

P := X

Goto LOOP

Return P
Figure 10. Greedy predicate minimization algorithm.

fmsd-04.tex; 2/02/2004; 14:23; p.33

34 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

9.1. Predicate Minimization Results

In this section we describe our results in the context of the first of the
three goals mentioned above, i.e., checking the effectiveness of predicate
minimization by itself. We also present results comparing our predicate
minimization scheme with a greedy predicate minimization strategy
implemented on top of magic. In each iteration, this greedy strategy
first adds predicates sufficient to eliminate the spurious counterexample
to the predicate set P. Then it attempts to reduce the size of the re-
sulting P by using the algorithm described in Figure 10. The advantage
of this approach is that it requires only a small overhead (polynomial)
compared to Sample-and-Eliminate, but on the other hand it does not
guarantee an optimal result. Further, we performed experiments with
Berkeley’s blast [37] tool. blast also takes C programs as input, and
uses a variation of the standard CEGAR loop based on lazy abstraction,
but without minimization. Lazy abstraction refines an abstract model
while allowing different degrees of abstraction in different parts of a
program, without requiring recomputation of the entire abstract model
in each iteration. Laziness and predicate minimization are, for the most
part, orthogonal techniques. In principle a combination of the two might
produce better results than either in isolation.

9.1.1. Benchmarks
We used two kinds of benchmarks. A small set of relatively simple
benchmarks were derived from the examples supplied with the blast
distribution and regression tests for magic. The difficult benchmarks
were derived from the C source code of OpenSSL-0.9.6c, several thou-
sand lines of code implementing the SSL protocol used for secure
transfer of information over the Internet. A critical component of
this protocol is the initial handshake between a server and a client.
We verified different properties of the main routines that implement
the handshake. The names of benchmarks that are derived from the
server routine and client routine begin with ssl-srvr and ssl-clnt

respectively. In all our benchmarks, the properties are satisfied by the
implementation. The server and client routines have roughly 350 lines
each but, as our results indicate, are non-trivial to verify. Note that all
these benchmarks involved purely sequential C code.

9.1.2. Results Summary
Figure 11 summarizes the comparison of our predicate minimization
strategy with the greedy approach. Time consumptions are given
in seconds. For predicate minimization, instead of solving the full
optimization problem, we simplified the problem as described in sec-

fmsd-04.tex; 2/02/2004; 14:23; p.34

Efficient Verification of Sequential and Concurrent C Programs 35

magic + GREEDY magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 6 2 10/9/1 × 5 2 10/9/1 ×
fun lock 5 5 8/3/3 × 6 4 8/3/3 ×
driver.c 5 5 6/2/4 × 5 5 6/2/4 ×
read.c 6 3 15/5/1 × 5 2 15/5/1 ×

socket-y-01 5 3 12/4/2 × 6 3 12/4/2 ×
opttest.c 150 5 4/4/4 63 247 25 4/4/4 63
ssl-srvr-1 * 103 16/3/5 51 226 14 5/4/2 38
ssl-srvr-2 2106 62 8/4/3 34 216 14 5/4/2 38
ssl-srvr-3 * 100 22/3/7 53 200 12 5/4/2 38
ssl-srvr-4 8465 69 14/4/5 56 170 9 5/4/2 38
ssl-srvr-5 * 117 23/5/9 56 205 13 5/4/2 36
ssl-srvr-6 * 84 22/4/8 337 359 14 8/4/3 89
ssl-srvr-7 * 99 19/3/6 62 196 11 5/4/2 S 38
ssl-srvr-8 * 97 19/4/7 142 211 10 8/4/3 40
ssl-srvr-9 8133 99 11/4/4 69 316 20 11/4/4 38
ssl-srvr-10 * 97 12/3/4 77 241 14 8/4/3 38
ssl-srvr-11 * 87 26/4/9 65 356 24 8/4/3 38
ssl-srvr-12 * 122 23/4/8 180 301 17 8/4/3 42
ssl-srvr-13 * 106 19/4/7 69 436 29 11/4/4 38
ssl-srvr-14 * 115 18/3/6 254 406 20 8/4/3 52
ssl-srvr-15 2112 37 8/4/3 118 179 7 8/4/3 40
ssl-srvr-16 * 103 22/3/7 405 356 17 8/4/3 58
ssl-clnt-1 225 27 5/4/2 20 156 12 5/4/2 31
ssl-clnt-2 1393 63 5/4/2 23 185 18 5/4/2 29
ssl-clnt-3 * 136 29/4/10 28 195 21 5/4/2 29
ssl-clnt-4 152 29 5/4/2 20 191 19 5/4/2 29

TOTAL 163163 1775 381/102 2182 5375 356 191/107 880
/129 /67

AVERAGE 6276 68 15/4/5 104 207 14 7/4/3 42

Figure 11. Comparison of magic with the greedy approach. ‘*’ indicates run-time
longer than 3 hours. ‘×’ indicates negligible values. Best results are emphasized.

tion 6. In particular, for each trace we only considered the first 1,000
combinations and only generated 20 eliminating combinations. The
combinations were considered in increasing order of size. After all com-
binations of a particular size had been tried, we checked whether at
least one eliminating combination had been found. If so, no further
combinations were tried. In the smaller examples we observed no loss
of optimality due to these restrictions. We also studied the effect of
altering these restrictions on the larger benchmarks and we report our
findings later.

Figure 12 shows the improvement observed in magic upon using
predicate minimization while Figure 13 shows the comparison between
predicate minimization and BLAST. Once again, time consumptions
are reported in seconds. The column Iter reports the number of it-
erations through the CEGAR loop necessary to complete the proof.
Predicates are listed differently for the two tools. For blast, the first

fmsd-04.tex; 2/02/2004; 14:23; p.35

36 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

magic magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 5 2 10/9/1 × 5 2 10/9/1 ×
fun lock 5 4 8/3/3 × 6 4 8/3/3 ×
driver.c 6 5 6/2/4 × 5 5 6/2/4 ×
read.c 5 2 15/5/2 × 5 2 15/5/1 ×

socket-y-01 5 3 12/4/2 × 6 3 12/4/2 ×
opttest.c 145 5 7/7/8 63 247 25 4/4/4 63
ssl-srvr-1 250 12 56/5/22 43 226 14 5/4/2 38
ssl-srvr-2 752 16 72/6/30 72 216 14 5/4/2 38
ssl-srvr-3 331 12 56/5/22 47 200 12 5/4/2 38
ssl-srvr-4 677 14 63/6/26 72 170 9 5/4/2 38
ssl-srvr-5 71 5 22/4/8 24 205 13 5/4/2 36
ssl-srvr-6 11840 23 105/11/44 1187 359 14 8/4/3 89
ssl-srvr-7 2575 20 94/7/38 192 196 11 5/4/2 S 38
ssl-srvr-8 130 8 32/5/14 58 211 10 8/4/3 40
ssl-srvr-9 2621 15 65/8/28 183 316 20 11/4/4 38
ssl-srvr-10 561 16 75/6/30 73 241 14 8/4/3 38
ssl-srvr-11 4014 19 89/8/36 287 356 24 8/4/3 38
ssl-srvr-12 7627 22 102/9/42 536 301 17 8/4/3 42
ssl-srvr-13 3127 17 75/9/32 498 436 29 11/4/4 38
ssl-srvr-14 7317 22 102/9/42 721 406 20 8/4/3 52
ssl-srvr-15 615 15 81/28/5 188 179 7 8/4/3 40
ssl-srvr-16 3413 21 98/8/40 557 356 17 8/4/3 58
ssl-clnt-1 110 10 43/4/18 25 156 12 5/4/2 31
ssl-clnt-2 156 11 53/5/20 31 185 18 5/4/2 29
ssl-clnt-3 421 13 52/7/24 58 195 21 5/4/2 29
ssl-clnt-4 125 10 35/5/18 27 191 19 5/4/2 29

TOTAL 46904 322 1428/185 4942 5375 356 191/107 880
/559 /67

AVERAGE 1804 12 55/7/22 235 207 14 7/4/3 42

Figure 12. Results for magic with and without minimization. ‘*’ indicates run-time
longer than 3 hours. ‘×’ indicates negligible values. Best results are emphasized.

number is the total number of predicates discovered and used and the
second number is the number of predicates active at any one point in
the program (due to lazy abstraction this may be smaller). In order
to force termination we imposed a limit of three hours on the running
time. We denote by ‘*’ in the Time column examples that could not
be solved in this time limit. In these cases the other columns indicate
relevant measurements made at the point of forceful termination.

For magic, the first number is the total number of expressions used
to prove the property, i.e., | ∪s∈SCF

Ps|. The number of predicates (the
second number) may be smaller, as magic combines multiple mutually
exclusive expressions (e.g., x == 1, x < 1, and x > 1) into a single,
possibly non-binary predicate, having a number of values equal to the
number of expressions (plus one, if the expressions do not cover all
possibilities.) The final number for magic is the size of the final P. For

fmsd-04.tex; 2/02/2004; 14:23; p.36

Efficient Verification of Sequential and Concurrent C Programs 37

blast magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 1 3 13/10 × 5 2 10/9/1 ×
fun lock 5 7 7/7 × 6 4 8/3/3 ×
driver.c 1 4 3/2 × 5 5 6/2/4 ×
read.c 6 11 20/11 × 5 2 15/5/1 ×

socket-y-01 5 13 16/6 × 6 3 12/4/2 ×
opttest.c 7499 38 37/37 231 247 25 4/4/4 63
ssl-srvr-1 2398 16 33/8 175 226 14 5/4/2 38
ssl-srvr-2 691 13 68/8 60 216 14 5/4/2 38
ssl-srvr-3 1162 14 32/7 103 200 12 5/4/2 38
ssl-srvr-4 284 11 27/5 44 170 9 5/4/2 38
ssl-srvr-5 1804 19 52/5 71 205 13 5/4/2 36
ssl-srvr-6 * 39 90/10 805 359 14 8/4/3 89
ssl-srvr-7 359 11 76/9 37 196 11 5/4/2 S 38
ssl-srvr-8 * 25 35/5 266 211 10 8/4/3 40
ssl-srvr-9 337 10 76/9 36 316 20 11/4/4 38
ssl-srvr-10 8289 20 35/8 148 241 14 8/4/3 38
ssl-srvr-11 547 11 78/11 51 356 24 8/4/3 38
ssl-srvr-12 2434 21 80/8 120 301 17 8/4/3 42
ssl-srvr-13 608 12 79/12 54 436 29 11/4/4 38
ssl-srvr-14 10444 27 84/10 278 406 20 8/4/3 52
ssl-srvr-15 * 31 38/5 436 179 7 8/4/3 40
ssl-srvr-16 * 33 87/10 480 356 17 8/4/3 58
ssl-clnt-1 348 16 28/5 43 156 12 5/4/2 31
ssl-clnt-2 523 15 28/4 52 185 18 5/4/2 29
ssl-clnt-3 469 14 29/5 49 195 21 5/4/2 29
ssl-clnt-4 380 13 27/4 45 191 19 5/4/2 29

TOTAL 81794 447 1178/221 3584 5375 356 191/107 880
/67

AVERAGE 3146 17 45/9 171 207 14 7/4/3 42

Figure 13. Results for blast and magic with predicate minimization. ‘*’ indi-
cates run-time longer than 3 hours. ‘×’ indicates negligible values. Best results are
emphasized.

experiments in which memory usage was large enough to be a measure
of state-space size rather than overhead, we also report memory usage
(in megabytes).

For the smaller benchmarks, the various abstraction refinement
strategies do not differ markedly. However, for our larger exam-
ples, taken from the SSL source code, the refinement strategy is of
considerable importance. Predicate minimization, in general, reduced
verification time (though there were a few exceptions to this rule, the
average running time was considerably lower than for the other tech-
niques, even with the cutoff on the running time). Moreover, predicate
minimization reduced the memory needed for verification, which is an
even more important bottleneck. Given that the memory was cutoff in
some cases for other techniques before verification was complete, the
results are even more compelling.

fmsd-04.tex; 2/02/2004; 14:23; p.37

38 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

The greedy approach kept memory use fairly low, but almost al-
ways failed to find near-optimal predicate sets and converged much
more slowly than the usual monotonic refinement or predicate mini-
mization approaches. Further, it is not clear how much final memory
usage would be improved by the greedy strategy if it were allowed to
run to completion. Another major drawback of the greedy approach
is its unpredictability. We observed that on any particular example,
the greedy strategy might or might not complete within the time limit
in different executions. Clearly, the order in which this strategy tries
to eliminate predicates in each iteration is very critical to its success.
Given that the strategy performs poorly on most of our benchmarks
using a random ordering, more sophisticated ordering techniques may
perform better. We leave this issue for future research.

ssl-srvr-4 ssl-srvr-15
ELM SUB Ti It |P| M T G Ti It |P| M T G

50 250 656 8 2 64 34 1 1170 15 3 72 86 1
100 250 656 8 2 64 34 1 1169 15 3 72 86 1
150 250 657 8 2 64 34 1 1169 15 3 72 86 1
200 250 656 8 2 64 34 1 1170 15 3 72 86 1
250 250 656 8 2 64 34 1 1168 15 3 72 86 1

ssl-clnt-1
ELM SUB Ti It |P| M T G

50 250 1089 13 2 67 66 1
100 250 1089 13 2 67 66 1
150 250 1090 13 2 67 66 1
200 250 1089 13 2 67 66 1
250 250 1090 13 2 67 66 1

Figure 14. Results for optimality. ELM = MAXELM, SUB = MAXSUB, Ti = Time
in seconds, It = number of iterations, M = Memory, T = total number of eliminating
subsets generated, and G = maximum size of any eliminating subset generated.

9.1.3. Optimality
We experimented with two of the parameters that affect the optimality
of our predicate minimization algorithm: (i) the maximum number of
examined subsets (MAXSUB) and (ii) the maximum number of elim-
inating subsets generated (MAXELM) (that is, the procedure stops
the search if MAXELM eliminating subsets were found, even if less
than MAXSUB combinations were tried). We first kept MAXSUB fixed
and took measurements for different values of MAXELM on a subset
of our benchmarks viz. ssl-srvr-4, ssl-srvr-15 and ssl-clnt-1.
Our results, shown in Figure 14, clearly indicate that the optimality is
practically unaffected by the value of MAXELM.

fmsd-04.tex; 2/02/2004; 14:23; p.38

Efficient Verification of Sequential and Concurrent C Programs 39

ssl-srvr-4 ssl-srvr-15
SUB Time It |P| Mem T/M/G Time It |P| Mem T/M/G
100 262 8 2 44 34/2/1 396 12 3 50 62/2/1
200 474 7 2 57 27/2/1 917 14 3 65 81/2/1
400 1039 9 2 71 38/2/1 1110 8 3 76 45/2/1
800 2182 7 2 165 25/2/1 2797 9 3 148 51/2/1
1600 6718 9 2 410 35/3/1 10361 11 3 410 76/3/1
3200 13656 9 2 461 40/3/1 14780 9 3 436 50/3/1
6400 26203 9 2 947 31/3/1 33781 10 3 792 51/3/1

ssl-clnt-1
SUB Time It |P| Mem T/M/G
100 310 11 2 40 58/2/1
200 683 12 2 51 63/2/1
400 2731 13 2 208 67/3/1
800 5843 14 2 296 75/3/1
1600 13169 12 2 633 61/3/1
3200 36155 12 2 1155 67/4/1
6400 > 57528 4 1 2110 22/4/1

Figure 15. Results for optimality. SUB = MAXSUB, Time is in seconds, It = number
of iterations, T = total number of eliminating subsets generated, M = maximum
size of subsets tried, and G = maximum size of eliminating subsets generated.

Next we experimented with different values of MAXSUB (the value
of MAXELM was set equal to MAXSUB). The results we obtained are
summarized in Figure 15. It appears that, at least for our benchmarks,
increasing MAXSUB leads only to increased execution time without
reduced memory consumption or number of predicates. The additional
number of combinations attempted or constraints allowed does not lead
to improved optimality. The most probable reason is that, as shown by
our results, even though we are trying more combinations, the actual
number or maximum size of eliminating combinations generated does
not increase significantly. It would be interesting to investigate whether
this is a feature of most real-life programs. If so, it would allow us,
in most cases, to achieve near optimality by trying out only a small
number of combinations or only combinations of small size.

9.2. Two-Level CEGAR Results

In this section we present our results with regard to the effectiveness
of our proposed two-level and only action-guided CEGAR schemes.
To this end, we carried out experiments on 36 benchmarks, of which
26 were sequential programs and 10 were concurrent programs. Each
example was verified twice, once with only the low-level abstraction,
and once with the full two-level algorithm. Tests that used only the low-
level predicate abstraction refinement scheme are marked by PredOnly
in our results tables, whereas tests that also incorporated our LTS

fmsd-04.tex; 2/02/2004; 14:23; p.39

40 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

action-guided abstraction refinement procedure are marked by Both-
Abst. Both schemes started out with the same initial sets of predicates.
For each experiment we measured several quantities: (i) the size of
the final state-space on which the property was proved/disproved,5

(ii) the number of predicate refinement iterations required, (iii) the
number of LTS refinement iterations required, (iv) the total number of
refinement iterations required, and (v) the total time required. In the
tables summarizing our results, these measurements are reported in
columns named respectively St, PIt, LIt, It and T. Note that predicate
minimization was turned on during all the experiments described in
this section.

LOC Description PredOnly BothAbst

St It T St It T

27 pthread mutex lock (pthread) 26 1 52 16 3 54

24 pthread mutex unlock (pthread) 27 1 51 13 2 56

60 socket (socket) 187 3 1752 44 25 2009

24 sock alloc (socket) 50 2 141 14 4 154

4 sys send (socket) 7 1 92 6 1 93

11 sock sendmsg (socket) 23 1 108 14 3 113

27 modified pthread mutex lock 23 1 59 14 2 61

24 modified pthread mutex unlock 27 1 61 12 2 66

24 modified sock alloc 47 1 103 9 1 106

11 modified sock sendmsg 21 1 96 10 1 97

Figure 16. Summary of results for Linux Kernel code. LOC and Description de-
note the number of lines of code and a brief description of the benchmark source
code. The measurements for PIter and LIter have been omitted because they are
insignificant. All times are in milliseconds.

9.2.1. Unix Kernel Benchmarks
The first set of examples was designed to examine how our approach
works on a wide spectrum of implementations. The summary of our
results on these examples is presented in Figure 16. We chose ten code
fragments from the Linux Kernel 2.4.0. Corresponding to each code
fragment we constructed a specification from the Linux manual pages.
For example, the specification in the third benchmark6 states that the
socket system call either properly allocates internal data structures for

5 Note that, since our abstraction-refinement scheme produces increasingly re-
fined models, and since we reuse memory from one iteration to the next, the size of
the final state-space represents the total memory used.

6 This benchmark was also used as socket-y in the predicate minimization
experiments described in the previous section.

fmsd-04.tex; 2/02/2004; 14:23; p.40

Efficient Verification of Sequential and Concurrent C Programs 41

a new socket and returns 1, or fails to do so and returns an appropriate
negative error value.

9.2.2. OpenSSL Benchmarks
The next set of examples was aimed at verifying larger pieces of code.
Once again we used OpenSSL handshake implementation to design a set
of 26 benchmarks. However, unlike the previous OpenSSL benchmarks,
some of these benchmarks were concurrent and comprised of both a
client and a server component executing in parallel. The specifications
were derived from the official SSL design documents. For example,
the specification for the first concurrent benchmark states that the
handshake is always initiated by the client.

PredOnly BothAbst Gain

St(S1) It T St(S2) PIt LIt It T S1/S2

563 7 127 151 7 191 198 142 3.73

323 9 134 172 9 307 316 156 1.89

362 21 212 214 20 850 870 263 1.69

227 1 25 19 1 0 1 23 11.94

3204 98 1284 878 53 6014 6067 6292 3.65

2614 121 1418 559 113 9443 9556 6144 4.68

2471 40 517 662 34 3281 3315 2713 3.73

2614 60 750 455 37 3158 3195 1992 5.75

402 18 174 176 19 506 525 209 2.28

408 18 194 185 16 651 667 217 2.21

633 51 405 263 58 3078 3136 688 2.41

369 28 232 193 33 987 1020 306 1.91

318 15 166 172 13 398 411 182 1.85

323 20 190 236 21 644 665 242 1.37

323 20 188 160 20 556 576 221 2.02

314 16 168 264 16 570 586 215 1.19

Figure 17. Summary of results for sequential OpenSSL examples. The first eight
are server benchmarks while the last eight are client benchmarks. Note that for the
PredOnly case, LIt is always zero and PIt = It. All times are in seconds.

The first 16 examples are sequential implementations, examining
different properties of SrvrCode and ClntCode separately. Each of these
examples contains about 350 comment-free LOC. The results for these
are summarized in Figure 17. The remaining 10 examples test various
properties of SrvrCode and ClntCode when executed together. These
examples are concurrent and consist of about 700 LOC. The results
for them are summarized in Figure 18. All OpenSSL benchmarks other
than the seventh server benchmark passed the property. In terms of
state-space size, the two-level refinement scheme outperforms the one-
level scheme by factors ranging from 2 to 136. The savings for the

fmsd-04.tex; 2/02/2004; 14:23; p.41

42 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

PredOnly BothAbst Gain

St(S1) It T St(S2) PIt LIt It T S1/S2

108659 8 243 16960 8 268 276 529 6.41

95535 9 226 15698 9 331 340 608 6.09

69866 24 449 23865 19 828 847 1831 2.93

43811 1 51 323 1 0 1 55 135.64

108659 7 217 16006 6 186 192 384 6.79

162699 12 366 18297 9 375 384 792 8.89

167524 23 599 31250 24 1441 1465 4492 5.36

60602 9 227 17922 10 434 444 852 3.38

313432 115 3431 50274 63 3660 3723 15860 6.23

123520 23 430 23460 21 926 947 2139 5.27

Figure 18. Summary of results for concurrent OpenSSL examples. Note that for the
PredOnly case, LIt is always zero and PIt = It. All times are in seconds.

concurrent examples are significantly higher than for the sequential
ones. We expect these savings to increase with the number of concurrent
components in the implementation. The fourth server and the fourth
concurrent benchmarks show particular improvement with the two-
level approach. In these two benchmarks, the property holds on the
very initial abstraction, thereby requiring no refinement and letting us
achieve maximum reduction in state-space.

Although our goal of reducing the size of the state-space was
achieved, our implementation of the two-level algorithm shows an in-
crease in time over that of the one-level scheme. However, we believe
that this situation can be redressed through engineering optimizations
of magic. For instance, not only is magic currently based on explicit
state enumeration, but also in each iteration it performs the entire
verification from scratch. As is evident from our results, the majority
of iterations involve LTS refinement. Since the latter only induces a
local change in the transition system, the refined model is likely to
differ marginally from the previous one. Therefore much of the work
done during verification in the previous iteration could be reused.

10. Conclusions and Future Work

Despite significant recent advancement, automated verification of con-
current programs remains an elusive goal. In this paper we presented
an approach to automatically and compositionally verify concurrent
C programs against safety specifications. These concurrent implemen-
tations consist of several sequential C programs which communicate
via blocking message-passing. Our approach is an instantiation of the

fmsd-04.tex; 2/02/2004; 14:23; p.42

Efficient Verification of Sequential and Concurrent C Programs 43

CEGAR paradigm, and incorporates two levels of abstraction. The
first level uses predicate abstraction to handle data while the second
level aggregates states according to the values of observable events. In
addition, our predicate refinement scheme is aimed at discovering a
minimal set of predicates that suffice to prove/disprove the property of
interest.

Experimental results with our tool magic suggest that this scheme
effectively combats the state-space explosion problem. In all our
benchmarks, the two-level algorithm achieved significant reductions in
state-space (in one case by over two orders of magnitude) compared
to the single-level predicate abstraction scheme. The reductions in the
number of predicates required (and thereby in the time and memory
consumption) due to our predicate minimization technique were also
very encouraging.

We are currently engaged in extending magic to handle the propri-
etary implementation of a large industrial controller for a metal casting
plant. This code consists of over 30,000 lines of C and incorporates up
to 25 concurrent threads which communicate through shared variables.
Adapting magic to handle shared memory, without sacrificing composi-
tionality, is therefore one of our priorities. Not only will this enable us to
test our tool on the many available shared-memory-based benchmarks,
but it will also allow us to compare magic with other similar tools
(such as blast) which also use shared memory for communication.

We also wish to investigate the possibility of performing incremen-
tal verification in the context of action-guided abstraction refinement.
Since the successive MAi’s obtained during this process can be ex-
pected to differ only marginally from each other, we expect incremental
model checking to speed up the verification process by a significant
factor. In addition, we are working on extending magic to handle
state/event based LTL-like specifications. Lastly, we intend to explore
the possibility of adapting the two-level CEGAR scheme to different
types of conformance relations such as simulation and bisimulation, so
as to handle a wider range of specifications.

Acknowledgements

We thank Rupak Majumdar and Ranjit Jhala for their help with blast.

References

1. ‘BLAST website’. http://www-cad.eecs.berkeley.edu/∼rupak/blast.

fmsd-04.tex; 2/02/2004; 14:23; p.43

44 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

2. ‘CIL website’. http://manju.cs.berkeley.edu/cil.
3. ‘ESC-Java website’. http://www.research.compaq.com/SRC/esc.
4. ‘Grammatech, Inc.’. http://www.grammatech.com.
5. ‘Java PathFinder website’. http://ase.arc.nasa.gov/visser/jpf.
6. ‘MAGIC website’. http://www.cs.cmu.edu/∼chaki/magic.
7. ‘SLAM website’. http://research.microsoft.com/slam.
8. ‘SPIN website’. http://spinroot.com/spin/whatispin.html.
9. Aloul, F., A. Ramani, I. Markov, and K. Sakallah: 2002, ‘PBS: A backtrack

search pseudo Boolean solver’. In: Symposium on the theory and applications
os satisfiability testing (SAT). pp. 346–353.

10. Anderson, L.: 1994, ‘Program analysis and specialization for the C pro-
gramming language’. Ph.D. thesis, Datalogisk Intitut, Univ. of Copenhagen,
Copenhagen, Denmark.

11. Ball, T., R. Majumdar, T. D. Millstein, and S. K. Rajamani: 2001, ‘Auto-
matic Predicate Abstraction of C Programs’. In: SIGPLAN Conference on
Programming Language Design and Implementation. pp. 203–213.

12. Ball, T. and S. K. Rajamani: 2001, ‘Automatically Validating Temporal Safety
Properties of Interfaces’. In: Proceedings of SPIN, Vol. 2057. pp. 103–122.

13. Ball, T. and S. K. Rajamani: 2002, ‘Generating Abstract Explanations of Spu-
rious Counterexamples in C Programs’. Technical Report MSR-TR-2002-09,
Microsoft Research, Redmond.

14. Bensalem, S., Y. Lakhnech, and S. Owre: 1998, ‘Computing Abstractions of
Infinite State Systems Compositionally and Automatically’. In: Proceedings of
CAV, Vol. 1427. pp. 319–331.

15. Chaki, S., E. Clarke, A. Groce, and O. Strichman: 2003a, ‘Predicate Ab-
straction with Minimum Predicates’. In: Proceedings of CHARME. To
appear.

16. Chaki, S., E. M. Clarke, A. Groce, S. Jha, and H. Veith: 2003b, ‘Modular
Verification of Software Components in C’. In: Proceedings of ICSE. pp. 385–
395.

17. Chaki, S., J. Ouaknine, K. Yorav, and E. Clarke: 2003c, ‘Automated composi-
tional abstraction refinement for concurrent C programs: A two-level approach’.
In: Proceedings of SoftMC.

18. Clarke, E., O. Grumberg, and D. Peled: 1999, Model Checking. MIT Press.
19. Clarke, E., O. Grumberg, M. Talupur, and D. Wang: 2003, ‘Making predi-

cate abstraction efficient: eliminating redundant predicates’. In: Proceedings of
Computer Aided Verification (CAV).

20. Clarke, E., A. Gupta, J. Kukula, and O. Strichman: 2002, ‘SAT based Ab-
straction - Refinement using ILP and Machine Learning Techniques’. In:
E. Brinksma and K. Larsen (eds.): Proceedings of CAV, Vol. 2404 of LNCS.
Copenhagen, Denmark, pp. 265–279.

21. Clarke, E. M. and E. A. Emerson: 1982, ‘Synthesis of Synchronization Skeletons
from Branching Time Temporal Logic’. In: Proceedings of the Workshop on
Logics of Programs, Vol. 131. pp. 52–71.

22. Clarke, E. M., E. A. Emerson, and A. P. Sistla: 1986, ‘Automatic verification
of finite-state concurrent systems using temporal logic specifications’. ACM
Transactions on Programming Languages and System (TOPLAS) 8(2), 244–
263.

23. Clarke, E. M., O. Grumberg, S. Jha, Y. Lu, and H. Veith: 2000,
‘Counterexample-Guided Abstraction Refinement’. In: Proceedings of CAV,
Vol. 1855. pp. 154–169.

fmsd-04.tex; 2/02/2004; 14:23; p.44

Efficient Verification of Sequential and Concurrent C Programs 45

24. Clarke, E. M., O. Grumberg, and D. E. Long: 1994, ‘Model Checking and
Abstraction’. Proceedings of TOPLAS pp. 1512–1542.

25. Cobleigh, J. M., D. Giannakopoulou, and C. S. Păsăreanu: 2003, ‘Learning
Assumptions for Compositional Verification’. In: Proceedings of TACAS, Vol.
2619. pp. 331–346.

26. Colón, M. and T. E. Uribe: 1998, ‘Generating Finite-State Abstractions of
Reactive Systems Using Decision Procedures’. In: Proceedings of CAV. pp.
293–304.

27. Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby,
and H. Zheng: 2000, ‘Bandera: extracting finite-state models from Java source
code’. In: Proceedings of ICSE. pp. 439–448.

28. Cousot, P. and R. Cousot: 1977, ‘Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints’. In: Proceedings of the SIGPLAN Conference on Programming
Languages. pp. 238–252.

29. Dams, D. and K. S. Namjoshi: 2003, ‘Shape Analysis through Predicate
Abstraction and Model Checking’. In: Proceedings of VMCAI, Vol. 2575.

30. Das, S., D. L. Dill, and S. Park: 1999, ‘Experience with Predicate Abstraction’.
In: Computer Aided Verification. pp. 160–171.

31. Dijkstra, E. W.: 1973, ‘A simple axiomatic basis for programming language
constructs’. Lecture notes from the International Summer School on Structured
Programming and Programmed Structures.

32. Dwyer, M. B., J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, H.
Zheng, and W. Visser: 2001, ‘Tool-supported program abstraction for finite-
state verification’. In: International Conference on Software engineering. pp.
177–187.

33. Engler, D., B. Chelf, A. Chou, and S. Hallem: 2000, ‘Checking System
Rules Using System-Specific, Programmer-Written Compiler Extensions’. In:
Symposium on Operating Systems Design and Implementation.

34. Graf, S. and H. Saidi: 1997, ‘Construction of Abstract State Graphs with PVS’.
In: O. Grumberg (ed.): Computer Aided Verification, Vol. 1254. pp. 72–83.

35. Havelund, K. and T. Pressburger: 2000, ‘Model Checking JAVA Programs using
JAVA PathFinder’. International Journal on Software Tools for Technology
Transfer 2(4), 366–381.

36. Henzinger, T. A., R. Jhala, R. Majumdar, and S. Qadeer: 2003, ‘Thread-
Modular Abstraction Refinement’. In: Proceedings of CAV (to appear).

37. Henzinger, T. A., R. Jhala, R. Majumdar, and G. Sutre: 2002, ‘Lazy
abstraction’. In: Proceedings of POPL. pp. 58–70.

38. Henzinger, T. A., S. Qadeer, and S. K. Rajamani: 2000, ‘Decomposing Refine-
ment Proofs using Assume-guarantee Reasoning’. In: Proceedings of ICCAD.
pp. 245–252.

39. Hoare, C. A. R.: 1969, ‘An axiomatic basis for computer programming’.
Communications of the ACM 12(10), 576–580.

40. Hoare, C. A. R.: 1985, Communicating Sequential Processes. Prentice Hall.
41. Kurshan, R. P.: 1989, ‘Analysis of Discrete Event Coordination’. In: Proceed-

ings REX Workshop 89, Vol. 430. pp. 414–453.
42. Kurshan, R. P.: 1994, Computer-aided verification of coordinating processes:

the automata-theoretic approach. Princeton University Press.
43. Lakhnech, Y., S. Bensalem, S. Berezin, and S. Owre: 2001, ‘Incremental

Verification by Abstraction’. In: Proceedings of TACAS, Vol. 2031. pp. 98–112.

fmsd-04.tex; 2/02/2004; 14:23; p.45

46 Chaki, Clarke, Groce, Ouaknine, Strichman, Yorav

44. McMillan, K. L.: 1997, ‘A Compositional Rule for Hardware Design Refine-
ment’. In: Proceedings of CAV, Vol. 1254. pp. 24–35.

45. Milner, R.: 1989, Communication and Concurrency. London: Prentice-Hall
International.

46. Namjoshi, K. S. and R. P. Kurshan: 2000, ‘Syntactic Program Transformations
for Automatic Abstraction’. In: Proceedings of CAV, Vol. 1855. pp. 435–449.

47. Naumovich, G., L. A. Clarke, L. J. Osterweil, and M. B. Dwyer: 1997, ‘Veri-
fication of concurrent software with FLAVERS’. In: Proceedings of ICSE. pp.
594–595.

48. Nelson, G.: 1980, ‘Techniques for Program Verification’. Ph.D. thesis, Stanford
University.

49. Paige, R. and R. E. Tarjan: 1987, ‘Three Partition Refinement Algorithms’.
SIAM Journal of Computing 16(6), 973–989.

50. Păsăreanu, C. S., M. B. Dwyer, and W. Visser: 2001, ‘Finding Feasible Counter-
examples when Model Checking Abstracted Java Programs’. In: Proceedings
of TACAS, Vol. 2031. pp. 284–298.

51. Roscoe, A. W.: 1997, The Theory and Practice of Concurrency. London:
Prentice-Hall International.

52. Stoller, S. D.: 2002, ‘Model-checking multi-threaded distributed Java pro-
grams’. International Journal on Software Tools for Technology Transfer 4(1),
71–91.

fmsd-04.tex; 2/02/2004; 14:23; p.46

