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Abstract

This paper presents a fundamental study of similarity and bisimilarity for labelled
Markov processes. The main results characterize similarity as a testing preorder and
bisimilarity as a testing equivalence. In general, labelled Markov processes are not
required to satisfy a finite-branching condition—indeed the state space may be a
continuum, with the transitions given by arbitrary probability measures. Neverthe-
less we show that to characterize bisimilarity it suffices to use finitely-branching
labelled trees as tests.

Our results involve an interaction between domain theory and measure theory.
One of the main technical contributions is to show that a final object in a suit-
able category of labelled Markov processes can be constructed by solving a domain
equation D ∼= V(D)Act, where V is the probabilistic powerdomain. Given a labelled
Markov process whose state space is an analytic space, bisimilarity arises as the ker-
nel of the unique map to the final labelled Markov process. We also show that the
metric for approximate bisimilarity introduced by Desharnais, Gupta, Jagadeesan
and Panangaden generates the Lawson topology on the domain D.
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1 Introduction

It is a notable feature of concurrency theory that there are many different no-
tions of process equivalence. These are often presented in an abstract manner,
e.g., using coinduction or domain theory. Ultimately, however, one would like
to know that any proposed notion of equivalence has some interpretation in
terms of the observable behaviour of a process. One way of formalizing this
is via a testing framework [1,5,20]. The idea is to specify an interaction be-
tween a tester and the process. The latter is seen as a black box, with hidden
internal state, and an interface consisting of buttons by which the tester may
control the execution of the process. If the tester cannot distinguish two pro-
cesses, then they are deemed equivalent. By varying the power of the tester one
recovers different equivalences and preorders, e.g., trace equivalence, failures
equivalence, simulation, bisimulation, etc. In some cases a testing framework
can be used to give a denotational semantics, where the meaning of a process
is a function from tests to observations.

This paper presents a testing framework characterizing similarity and bisim-
ilarity for labelled Markov processes (LMPs). One can view LMPs as prob-
abilistic versions of labelled transition systems from concurrency theory, or,
alternatively, as indexed collections of discrete-time Markov processes in the
sense of classical probability theory. More precisely, a labelled Markov process
consists of a measurable space (X, Σ) of states, a family Act of actions, and,
for each a ∈ Act, a transition probability function µ−,a that, given a state
x ∈ X, yields the probability µx,a(A) that the next state of the process will
be in the measurable set A ∈ Σ after performing action a.

Probabilistic models have been studied for quite a while in automata theory
and in formal verification, but, for understanding our concerns, the paper of
Larsen and Skou [20] is a good starting point. In particular, Larsen and Skou
adapted the notion of bisimilarity to discrete probabilistic labelled transition
systems. They defined an equivalence relation R on the states of a system
to be a bisimulation if related states have exactly matching probabilities of
making a transition into any given R-equivalence class. The two main results
of [20] characterize bisimilarity as, respectively, equivalence with respect to a
probabilistic version of Hennessy-Milner logic, and equivalence with respect
to a class of tests similar to those of Abramsky [1] and Bloom and Meyer [5].

Larsen and Skou’s probabilistic transition systems are LMPs with discrete
transition probabilities. Desharnais, Edalat and Panangaden [9] extended the
notion of bisimilarity to LMPs with arbitrary transition probabilities, and
gave a suite of examples motivating the more general model. The main re-
sult of [9] is an extension of the logical characterization of bisimilarity to the
general setting. In fact, they used a simpler logic than Larsen and Skou—a
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logic without disjunction. In another paper, Desharnais, Gupta, Jagadeesan
and Panangaden [12] gave a logical characterization of similarity of LMPs,
showing that, in this case, disjunction is essential.

In this paper we generalize the other main result of [20]—the characterization
of bisimilarity as a testing equivalence—to the LMP model. Our results follow
an intriguingly similar pattern to those of [9,12]. In particular, we find that we
can simplify the class of tests used by Larsen and Skou to characterize bisim-
ilarity. This validates an intuition of [9] that working with LMPs provides
the right level of generality for developing the basic theory of probabilistic
bisimilarity—even if ultimately one is only interested in discrete systems. Fur-
thermore, and similarly to [12], we find that to characterize similarity, we need
to enrich the set of tests with a kind of disjunction. We discuss the parallel
between our results and those of [9,12] at greater length in the conclusion.

The tests that we use to characterize bisimilarity are technically just finite
trees whose edges are labelled by actions—in other words, traces with branch
points. Two states of an LMP are bisimilar just in case they pass each test
with the same probability. In order to capture similarity, we need to consider a
more structured class of trees, where the nodes are labelled with propositional
formulas. This provides both a conjunctive and disjunctive mode of combining
tests. We show that one state of a process simulates another state just in case
it passes each test with a higher probability.

Although we regard the testing results as the highlight of the present paper,
they do not appear until Section 8. The main body of this work is concerned
with a domain-theoretic analysis of LMPs, upon which the results of Sec-
tion 8 ultimately depend. The central mathematical construction here is the
derivation of a final LMP as the solution of a domain equation involving the
probabilistic powerdomain. The same domain equation was studied in [12],
where its status as a universal LMP was also described. However, while the
construction is the same, we a give a different, functorial justification of the
universal property. We also contribute a new result by relating the Lawson
topology on the universal LMP with the metric for approximate bisimilarity
of LMPs from [6,10]. In particular, this shows that the class of all LMPs is
compact with respect to this metric.

Next we give, section by section, a summary of the contents of the paper.

Section 2 presents some preliminary notions from domain theory and measure
theory.

In Section 3 we formally introduce LMPs and the appropriate morphisms
between them: zig-zag maps. While bisimulations could simply be defined to
be the kernels of zig-zag maps, following [12] we show that for an LMP whose
state space is analytic there is a less abstract relational characterization.
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After introducing the probabilistic powerdomain V(D) in Section 4, in Section
5 we investigate the Lawson topology on V(D), characterizing it as a weak
topology in the sense of measure theory. This yields another proof of the result
of Jung and Tix [19] that the probabilistic powerdomain of a coherent domain
is itself coherent.

In Section 6 we show that the canonical solution of the domain equation
D ∼= V(D)Act can be given the structure of a final LMP. The significance of
this construction is that we can reduce questions about LMPs in general to
questions about the domain D—and so take advantage of certain nice prop-
erties of D, like Lawson compactness.

In order to study bisimilarity on an LMP, Desharnais, Gupta, Jagadeesan
and Panangaden [10] introduce a kind of dual space: a certain lattice of mea-
surable functions on the state space. In Section 7, applying the reduction
technique alluded to above, we study this class of functions in the case of the
final LMP. In this case the given functions are all Lawson continuous. Using
this observation we show that two states of an LMP are bisimilar iff they
are indistinguishable by functions in the dual space. This result is the foun-
dation for our main theorems concerning testing. These theorems are proven
in Section 8.

2 Preliminaries

In this section we outline some basic definitions and results from domain
theory and from measure theory. This is intended as a convenient summary
for the reader. A more detailed treatment of the relevant domain theory and
measure theory can be found respectively in Gierz et al. [15] and Arveson [4].

2.1 Domain Theory

Let (P,v) be a poset. Given A ⊆ P , we write ↑A for the set {x ∈ P | (∃a ∈
A) a v x}; similarly, ↓A denotes {x ∈ P | (∃a ∈ A) x v a}. A directed
complete partial order (dcpo) is a poset P in which each directed set A has a
least upper bound, denoted tA. If P is a dcpo, and x, y ∈ P , then we write
x � y if each directed subset A ⊆ D with y v tA satisfies ↑x ∩ A 6= ∅.
We then say x is way-below y. Let ↓↓y = {x ∈ D | x � y}; we say that P is
continuous if it has a basis, i.e., a subset B ⊆ P such that for each y ∈ P ,

↓↓y ∩ B is directed with supremum y. We use the term domain to mean a
continuous dcpo. If a continuous dcpo has a countable basis we say that it is
ω-continuous.

4



A subset U of a domain D is Scott open if it is an upper set (i.e., U = ↑U)
and for each directed set A ⊆ D, if tA ∈ U then A ∩ U 6= ∅. The collection
σD of all Scott-open subsets of D is called the Scott topology on D. If D is
continuous, then the Scott topology on D is locally compact, and the sets
↑↑x where x ∈ D form a basis for this topology. Given domains D and E, a
function f : D → E is continuous with respect to the Scott topologies on D
and E iff it is monotone and preserves directed suprema: for each directed
A ⊆ D, f(tA) = tf(A).

In fact the topological and order-theoretic views of a domain are interchange-
able. The order on a domain can be recovered from the Scott topology as the
specialization preorder. Recall that for a topological space X the specialization
preorder 6⊆ X ×X is defined by x 6 y iff x ∈ Cl(y).

Another topology of interest on a domain D is the Lawson topology. This is
the join of the Scott topology and the lower interval topology, where the latter
is generated by sub-basic open sets of the form D \ ↑x. Thus, the Lawson
topology has the family {↑↑x \ ↑F | x ∈ D,F ⊆ D finite} as a basis. The
Lawson topology on a domain is always Hausdorff. A domain that is compact
in its Lawson topology is called coherent.

2.2 Measure Theory

Recall that a σ-field Σ on a set X is a collection of subsets of X containing ∅
and closed under complements and countable unions. The pair 〈X, Σ〉 is called
a measurable space. For any collection C of subsets on X there is a smallest
σ-field containing C, written σ(C). In case X is a topological space and C is
the class of open subsets, then σ(C) is called the Borel σ-field on X. One can
split the definition of a σ-field into two steps. A collection of subsets of X is
called a π-system if it closed under finite intersections. A collection of subsets
of X closed under countable disjoint unions, complements, and containing the
empty set is called a λ-system. The π − λ theorem [14] states that if P is a
π-system, L is a λ-system, and P ⊆ L, then σ(P) ⊆ L.

If Σ = σ(C) for some countable set C, then we say that Σ is countably generated.
We say that (X, Σ) is countably separated if there is a countable subset C ⊆ Σ
such that no two distinct elements of X lie in precisely the same members
of C. A topological space is a Polish space if it is separable and completely
metrizable.

Given a measurable space 〈X, Σ〉, we say that A ⊆ X is (Σ-)measurable if
A ∈ Σ. If 〈X ′, Σ′〉 is another measurable space, a function f : X → X ′ is said
to be measurable if f−1(A) ∈ Σ for each A ∈ Σ′. Measurable spaces and
functions form a category Mes. The limit of a diagram in Mes in obtained by
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equipping the limit of the underlying diagram in the category of sets with the
smallest σ-field structure making all the projections measurable.

A function µ : Σ→ [0, 1] is a sub-probability measure on 〈X, Σ〉 if µ(
⋃

n An) =
∑

n µ(An) for any countable family of pairwise disjoint measurable sets {An}.

3 Labelled Markov Processes

Assume a fixed countable set Act of actions or labels. A labelled Markov
process is just an Act-indexed family of Markov processes on the same state
space.

Definition 1 A labelled Markov process (LMP) is a triple 〈X, Σ, µ〉 consist-
ing of a set X of states, a σ-field Σ on X, and a transition probability function
µ : X × Act× Σ→ [0, 1] such that

(1) for all x ∈ X and a ∈ Act, the function µx,a(·) : Σ → [0, 1] is a sub-
probability measure, and

(2) for all a ∈ Act and A ∈ Σ, the function µ−,a (A) : X → [0, 1] is measur-
able.

This is the so-called reactive model of probabilistic processes. The function
µ−,a describes the reaction of the process to the action a selected by the
environment. Given that the process is in state x and action a is selected,
µx,a(A) is the probability that the process makes a transition to a state in A.
Note that we consider subprobability measures, i.e., positive measures with
total mass no greater than 1. We interpret 1 − µx,a(X) as the probability of
refusing action a in state x. In fact, if every transition measure had mass 1,
then all processes would be bisimilar (cf. Definition 3).

An important special case is when the σ-field Σ is taken to be the powerset
of X. Then, for all actions a and states x, the sub-probability measure µx,a(·)
is completely determined by a discrete sub-probability distribution. This case
corresponds to the original probabilistic transition system model of Larsen
and Skou [20].

A natural notion of a map between labelled Markov processes is given in:

Definition 2 Given labelled Markov processes 〈X, Σ, µ〉 and 〈X ′, Σ′, µ′〉, a
measurable function f : X → X ′ is called a zig-zag map if whenever A′ ∈
Σ′, x ∈ X, and a ∈ Act, then µx,a(f

−1(A′)) = µ′
f(x),a(A

′).

Probabilistic bisimulations (henceforth just bisimulations) are the relational
counterparts of zig-zag maps, and can also be seen, in a very precise way,
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as the probabilistic analogues of the strong bisimulations of Park and Milner
[21]. They were first introduced in the discrete case by Larsen and Skou [20].
The notion of bisimulation was extended to LMPs in [9,12]. (Though our
formulation is slightly different as we explain below.)

Definition 3 Let 〈X, Σ, µ〉 be a labelled Markov process and R a reflexive
relation on X. For A ⊆ X, write R(A) for the image of A under R. We say
that R is a simulation if it satisfies condition (i) below, and we say that R is
a bisimulation if it satisfies both conditions (i) and (ii).

(i) xRy ⇒ (∀a ∈ Act)(∀A ∈ Σ)(A = R(A)⇒ µx,a(A) 6 µy,a(A)).
(ii) xRy ⇒ (∀a ∈ Act)(µx,a(X) = µy,a(X)).

We say that two states are (bi)similar if they are related by some (bi)simulation.

The notions of simulation and bisimulation are very close, reflecting the fact
that LMPs are like deterministic systems. The extra condition µx,a(X) =
µy,a(X) in the definition of bisimulation can be seen as a ‘readiness’ condition:
related states perform given actions with the same probability. It may not be
immediately apparent that the notion of bisimulation is symmetric, however
this fact is straightforward, as we now show.

Proposition 4 Suppose R is a bisimulation on a labelled Markov process
〈X, Σ, µ〉. Then the inverse R−1 is also a bisimulation.

PROOF. Given x, y ∈ X, A ∈ Σ and a ∈ Act, we have the following chain
of implications.

xR−1y and A = R−1(A)⇒ yRx and X \ A = R(X \ A)

⇒µy,a(X \ A) 6 µx,a(X \ A)

⇒µx,a(X)− µx,a(X \ A) 6 µy,a(X)− µy,a(X \ A)

⇒µx,a(A) 6 µy,a(A).

2

It is straightforward that the relational composition of two bisimulations on
〈X, Σ, µ〉 is again a bisimulation and that the union of any family of bisim-
ulations is a bisimulation. In particular, there is a largest bisimulation on
〈X, Σ, µ〉 and it is an equivalence relation. For an equivalence relation R the
two criteria in Definition 3 can be compressed into the following more intuitive
condition:

xRy ⇒ (∀a ∈ Act)(∀A ∈ Σ)(A = R(A)⇒ µx,a(A) = µy,a(A)) .
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In words: related states have matching probabilities of jumping into any mea-
surable block of equivalence classes. This is actually the definition of bisimu-
lation in [9].

Propositions 5 and 8 below make precise the connection between bisimulations
and zig-zag maps. These results are implicit in [9], and our proofs recapitulate
arguments from there. The one novelty below is in our use of the existence
of a final LMP whose state space is a Polish space. This plays a similar role
to the countable logic characterizing bisimilarity from [9]. We spell out this
small variation in order to make our paper more self-contained.

Proposition 5 Every bisimulation equivalence is the kernel of a zig-zag map.

PROOF. Given a measurable space 〈X, Σ〉 and an equivalence relation R on
X, let ΣR be the greatest σ-field on the set of R-equivalence classes X/R such
that the quotient map q : X → X/R is measurable. Thus ΣR = {E | q−1(E) ∈
Σ}. Now if 〈X, Σ, µ〉 is an LMP and R is a bisimulation, it is easy to see that

µR : X/R× Act× ΣR → [0, 1]

defined by (µR)[x],a(E) = µx,a(q
−1(E)) is well-defined and is the unique tran-

sition probability function making q a zig-zag map. 2

To prove a converse to Proposition 5 we need to use the following two results
about analytic measurable spaces. A measurable space is said to be analytic
if it is the image of a measurable map from one Polish space to another.

Theorem 6 (Corollary 3.3.1[4]) Let f : 〈X, Σ〉 → 〈X ′, Σ′〉 be a surjective
measurable map, where 〈X, Σ〉 is analytic and 〈X ′, Σ′〉 is countably separated.
Then 〈X ′, Σ′〉 is also analytic.

Theorem 7 (Theorem 3.3.5[4]) If 〈X, Σ〉 is an analytic measurable space
and Σ0 a countably generated sub-σ-field of Σ that separates points in X (given
x, y ∈ X with x 6= y, there exists A ∈ Σ0 with x ∈ A and y 6∈ A), then Σ0 = Σ.

The importance of analycity in the present context was first realized in [9].
We do not know if the result below is true without such an assumption.

Proposition 8 Given a zig-zag map f : 〈X, Σ, µ〉 → 〈X ′, Σ′, µ′〉 with 〈X, Σ〉
an analytic measurable space, the kernel of f is contained in a bisimulation.

PROOF. By Theorem 22 there is a final LMP whose state space is a Polish
space. Since the kernel of f is contained in the kernel of the unique zig-zag map
from 〈X, Σ, µ〉 to this final LMP we may, without loss of generality, assume
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that 〈X ′, Σ′〉 is a Polish space. Let R ⊆ X × X denote the kernel of f , and
q : 〈X, Σ〉 → 〈X/R, ΣR〉 the quotient map in Mes. It remains to show that R
is a bisimulation.

Consider the following two sub-σ-fields Σ1, Σ2 ⊆ Σ.

Σ1 = {f−1(A) | A ∈ Σ′}

Σ2 = {A ∈ Σ | A = R(A)}

It is straightforward that Σ1 ⊆ Σ2 ⊆ Σ. Observe also that q(Σ1) := {q(A) |
A ∈ Σ1} and q(Σ2) := {q(A) | A ∈ Σ2} are both σ-fields on X/R with

q(Σ1) ⊆ q(Σ2) ⊆ ΣR .

But X/R is countably separated, being a subobject of the Polish space X ′,
and so it is an analytic space by Theorem 6. From the fact that Σ′ is count-
ably generated and separates points it is readily seen that q(Σ1) is count-
ably generated and separates points in X/R. It follows from Theorem 7 that
q(Σ1) = q(Σ2) = ΣR and thence that Σ1 = Σ2.

Suppose x, y ∈ X are chosen such that xRy and E ⊆ X is an R-closed Σ-
measurable set. Then E ∈ Σ2 by definition of Σ2, and so E ∈ Σ1, i.e., there
exists A ∈ Σ′ with E = f−1(A). Now given a ∈ Act,

µx,a(E) = µ′
f(x),a(A) = µ′

f(y),a(A) = µy,a(E) .

2

4 The Probabilistic Powerdomain

We briefly recall some basic definitions and results about valuations and the
probabilistic powerdomain. For more details see Jones [18].

Definition 9 Let (X, τ) be a topological space. A valuation on X is a mapping
µ : τ → [0, 1] satisfying:

• strictness
µ∅ = 0

• monotonicity
U ⊆ V implies µU ⊆ µV

• modularity
µ(U ∪ V ) + µ(U ∩ V ) = µU + µV for all U, V .

• Scott continuity
µ(

⋃

i∈I Ui) = supi∈I µUi for every directed family {Ui}i∈I .
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Each element x ∈ X gives rise to a valuation δx defined by δx(U) = 1 if x ∈ U ,
and δx(U) = 0 otherwise. A simple valuation has the form

∑

a∈A raδa where A
is a finite subset of X, ra ∈ [0, 1], and

∑

a∈A ra 6 1.

We write VX for the space whose points are valuations on X, and whose
topology is generated by sub-basic open sets of the form {µ | µU > r}, where
U ∈ τ and r ∈ [0, 1]. The specialization order on VX with respect to this
topology is given by µ v µ′ iff µU 6 µ′U for all U ∈ τ . V extends to an endo-
functor on Top—the category of topological spaces and continuous maps—by
defining V(f)(µ) = µ ◦ f−1 for a continuous map f .

Suppose D is a domain regarded as a topological space in its Scott topology.
Jones [18] has shown that the specialization order defines a domain structure
on VD, with the set of simple valuations forming a basis. Furthermore, it
follows from the following proposition that the topology on VD is actually the
Scott topology with respect to the pointwise order on valuations.

Proposition 10 (Edalat [13]) A net 〈µα〉 converges to µ in the Scott topol-
ogy on VD iff lim inf µαU > µU for all Scott-open U ⊆ D.

Finally, Jung and Tix [19] have shown that if D is a coherent domain then so
is VD. In summary we have the following proposition.

Proposition 11 The endofunctor V : Top→ Top preserves the subcategory
ωCoh of coherent ω-continuous domains and Scott-continuous maps.

The fact that we define the functor V on Top rather than just on a category
of domains has a payoff later on.

Obviously, valuations bear a close resemblance to measures. In fact, any val-
uation on a domain D may be uniquely extended to a measure on the Borel
σ-field generated by the Scott topology on D [3, Corollary 4.3]. Conversely, any
Borel measure on an ω-continuous domain defines a valuation when restricted
to the open sets [3, Lemma 2.5]. (ω-continuity is needed here since measures
do not in general satisfy the Scott-continuity condition in the definition of
valuations.) Henceforth we treat valuations and measures on ω-continuous
domains as interchangeable; thus, for instance, we integrate Borel measurable
functions against valuations. We also note that on ω-continuous domains the
Borel σ-field generated by the Scott topology coincides with the Borel σ-field
generated by the Lawson topology.
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5 The Lawson Topology on VD

Given an ω-continuous domain D, we define the weak topology 5 on VD
to be the weakest topology such that for any Lawson-continuous function
f : D → [0, 1], the map µ 7→

∫

fdµ is continuous. An alternative characteriza-
tion is that a net of valuations 〈µα〉 converges to µ in the weak topology iff
lim inf µαO > µO for each Lawson-open set O (cf. [22, Thm II.6.1]). Next we
show that for a coherent domain D, the Lawson topology on VD coincides
with the weak topology.

Proposition 12 (Jones [18]) If µ ∈ VD is an arbitrary valuation, then,
given a finite set A ⊆ D,

∑

a∈A raδa v µ iff (∀B ⊆ A)
∑

a∈B ra 6 µ(↑B).

Proposition 13 Given a finite subset F ⊆ D, 0<r<1 and ε>0, there exists
a finite set G of simple valuations such that for any valuation µ, µ(↑F ) < r
implies µ 6∈ ↑ G and µ(↑F ) > r + ε implies µ ∈ ↑G.

PROOF. Write F = {x1, . . . , xn}. Let δ = ε/n and define fδ : [0, 1]→ [0, 1]
by fδ(x) = max{mδ | mδ � x,m ∈ N}. Next we define G to be the finite set

G =

{

n
∑

i=1

riδxi
| r <

n
∑

i=1

ri 6 1 and {r1, . . . , rn} ⊆ Ran fδ

}

.

Now suppose that µ(↑F ) < r. From the definition of G one sees that ν ∈ G
implies ν(↑F ) > r. It immediately follows from Proposition 12 that µ 6∈ ↑ G.

On the other hand, suppose that µ(↑F ) > r + ε. We show that µ ∈ ↑G. To
this end, let ri = fδ(µ(↑xi \

⋃

j<i ↑xj)) for i ∈ {1, . . . , n}. Now

µ(↑F )−
n

∑

i=1

ri = µ(↑F )−
n

∑

i=1

fδ(µ(↑xi \
⋃

j<i

↑ xj))

=
n

∑

i=1



µ(↑xi \
⋃

j<i

↑ xj)− fδ(µ(↑xi \
⋃

j<i

↑ xj))





<nδ = ε.

It follows that
∑n

i=1 ri > r and so
∑n

i=1 riδxi
∈ G.

5 The definite article is a bit misleading here since there is more than one weak
topology in the present context. Indeed, both the Scott and Lawson topologies on
VD can be seen as weak topologies.
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Finally, we observe that
∑n

i=1 riδxi
v µ since, if B ⊆ {1, . . . , n}, then

∑

i∈B

ri =
∑

i∈B

fδ(µ(↑xi \
⋃

j<i

↑ xj)) 6
∑

i∈B

µ(↑xi \
⋃

j<i

↑ xj) 6 µ(↑B).

2

Proposition 14 A net 〈µα〉 converges to µ in the lower interval topology on
VD iff lim sup µαE 6 µE for all finitely generated upper sets E.

PROOF. Suppose µα → µ. Let E = ↑F , where F is finite, and suppose ε>0
is given. Then by Proposition 13 there is a finite set G of simple valuations
such that µ 6∈ ↑ G and for all valuations ν, ν 6∈ ↑ G implies νE 6 µE + ε. Then
we conclude that lim sup µαE 6 µE + ε since the net µα is eventually in the
open set VD \ ↑ G.

Conversely, suppose µα 6→ µ. Then µ has a sub-basic open neighbourhood
VD \ ↑ ρ such that some subnet µβ never enters this neighbourhood. We can
assume that ρ =

∑

a∈A raδa is a simple valuation. Since ρ 6v µ there exists
B ⊆ A such that

∑

a∈B ra >µ(↑B). But µβ(↑B) >
∑

a∈B ra >µ(↑B) for all β.
Thus lim sup µα(↑B) > µ(↑B). 2

Corollary 15 Let 〈µα〉 be a net in VD. Then 〈µα〉 converges to µ in the
Lawson topology on VD iff

(1) lim inf µαU > µU for all Scott-open U ⊆ D, and
(2) lim sup µαE 6 µE for all finitely generated upper sets E ⊆ D.

PROOF. Combine Propositions 10 and 14. 2

Corollary 16 If D is Lawson compact, then so is VD and the weak and
Lawson topologies agree on VD.

PROOF. Recall [22, Thm II.6.4] that the weak topology on the space of
Borel measures on a compact Hausdorff space is itself compact. By Corollary
15, the Lawson topology on VD is coarser than the weak topology. But it is
a standard fact that if a compact topology is finer than a Hausdorff topology,
then the two must coincide. 2

The Lawson compactness of VD was first proved by Jung and Tix in [19].
Their proof is purely domain-theoretic and doesn’t use the compactness of
the weak topology.
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6 A Final Labelled Markov Process

In this section we show that one may construct a final labelled Markov process
as a fixed point D ∼= V(D)Act of the probabilistic powerdomain. In order
to prove this result it is convenient to use the notion of a coalgebra of an
endofunctor.

Definition 17 Let C be a category and F : C → C a functor. An F -coalgebra
consists of an object C in C together with an arrow f : C → FC in C. An
F -homomorphism from an F -coalgebra 〈C, f〉 to an F -coalgebra 〈D, g〉 is an
arrow h : C → D in C such that Fh ◦ f = g ◦ h:

C

f

��

h //D
g

��

FC Fh
//FD

(1)

F -coalgebras and F -homomorphisms form a category whose final object, if it
exists, is called the final F -coalgebra.

Next we recall a standard construction of a final F -coalgebra. Let C be a
category with a final object 1 and with limits of all ωop-chains (i.e., diagrams
indexed by the poset ωop). Given an endofunctor F : C → C we may form the
following ωop-chain

1
!
←− F1

F !
←− F 21

F 2!
←− F 31

F 3!
←− · · · (2)

To be precise, the sequence of objects F n1 is defined inductively by F n+11 =
F (F n1). The unique map F1→ 1 is denoted !, and the maps F n! are defined
inductively by F n+1! = F (F n!).

We denote the limit cone of the chain (2) by {F ω1
πn−→ F n1}n<ω. The uni-

versal property of this cone entails that there is a unique ‘connecting map’

F (F ω1)
f
−→ F ω1 such that πn · f = Fπn−1 for each n < ω.

Proposition 18 ([2]) If the connecting map f is an isomorphism, then 〈F ω1, f−1〉
is a final F -coalgebra.

Given a measurable space X = 〈X, Σ〉, we write MX for the set of sub-
probability measures on X. For each measurable subset A ⊆ X we have an
evaluation function pA : MX → [0, 1] sending µ to µA. We take MX to be
a measurable space by giving it the smallest σ-field such that all the evalu-
ations pA are measurable. (In fact this is the smallest σ-field such that in-
tegration against any measurable function g : X → [0, 1] yields a measurable
map MX → [0, 1].) Next, M is turned into a functor Mes → Mes by defining
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M(f)(µ) = µ ◦ f−1 for f : X → Y and µ ∈ MX. This functor is studied by
Giry [16].

Given a labelled Markov process 〈X, Σ, µ〉, the transition probability function
µ may be regarded as a measurable map X →M(X)Act, where (−)Act denotes
Act-fold product in Mes. That is, labelled Markov processes are nothing but
coalgebras of the endofunctor MAct on the category Mes. Furthermore it is
easy to verify that the coalgebra homomorphisms are precisely the zig-zag
maps.

Next, we relate the functor M to the probabilistic powerdomain functor V.
To mediate between domains and measure spaces we introduce the forgetful
functor U : ωCoh→ Mes which maps a coherent domain to the Borel measur-
able space generated by the Scott topology. Note in passing that the σ-field
underlying UD is also the Borel σ-field with respect to the Lawson topology
on D, and can thus be regarded as the Borel σ-field on a Polish space.

Proposition 19 M ◦ U = U ◦ V.

PROOF. Suppose D is a coherent domain with a countable basis. Since
valuations on D in its Scott topology are in one-to-one correspondence with
Borel sub-probability measures on U(D), we have a bijection between the
points of the measurable spaces MU(D) and UV(D). It remains to show that
the underlying σ-field structures are the same.

Since D is ω-continuous, the Scott topology on D is separable, and we may
choose a countable basis P of Scott-open sets that is closed under finite in-
tersections and finite unions. The set of Borel sub-probability measures on D
can be given a σ-field structure in the following ways.

Σ1 is the smallest σ-field such that pA is measurable for each Borel set
A ⊆ D. This is the σ-field underlying MU(D).
Σ2 is the smallest σ-field such that pA is measurable for each A ∈ P .
Σ3 is the Borel σ-field generated by the Scott topology on VD. This is the
σ-field underlying UV(D).

To complete the proof of the proposition we show that Σ1 = Σ2 = Σ3.

• Σ1 = Σ2. Clearly Σ2 ⊆ Σ1. For the converse, consider

L = {A ⊆ D | pA is Σ2-measurable}.

L is a λ-system, i.e., it is closed under countable disjoint unions, comple-
ments and it contains D. Also, by definition of Σ2, we have that P is a
π-system contained in L. By the λ − π theorem we have that L contains
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the σ-field generated by P ; but this is the whole Borel σ-field on D. Thus
Σ1 ⊆ Σ2 by minimality of Σ1.
• Σ2 = Σ3. Given A ∈ P , the evaluation map pA : VD → [0, 1] is Scott contin-

uous and thus Σ3-measurable. By minimality of Σ2 it follows that Σ2 ⊆ Σ3.
Conversely, Σ2 is generated by sets {µ | µA > q} for A ∈ P and q ∈ Q. But
this is a countable basis for the Scott topology on VD; thus Σ2 contains all
Scott-open sets, and Σ3 ⊆ Σ2 by minimality of Σ3. 2

The following proposition collects together some standard facts about limits
in Mes and ωCoh. For this reason we do not give a detailed proof, though we
explain the significance of the hypotheses and give pointers to the literature.

Proposition 20 (i) ωCoh is closed under countable products of pointed do-
mains.

(ii) ωCoh is closed under limits of ωop-chains where the chain maps are Scott-
continuous upper adjoints.

(iii) U preserves the limits in (i) and (ii).

PROOF. Limits in the category of dcpos and Scott-continuous functions are
created by the forgetful functor to the category of sets (via the pointwise
order) [15, Proposition IV-4.3]. The full subcategory ωCoh is not in general
closed under such limits; however it is closed under countable products of
pointed domains [17, Lemma VII-3.1] and ωop-limits where the bonding maps
are Scott-continuous upper adjoints [15, Exercise IV-4.15].

Part (iii) follows from the conjunction of two standard facts. Firstly, the rel-
evant limits in ωCoh are also limits in Top, where domains are regarded as
topological spaces in their Scott topology. Next, the forgetful functor from Top

to Mes preserves countable limits of separable spaces (see, e.g., [22, Theorem
1.10]). 2

Starting with the final object 1 of ωCoh, we construct the chain

1
!
←− VAct1

V
Act!
←− (VAct)21

(VAct)2!
←− (VAct)31

(VAct)3!
←− · · · (3)

and write {(VAct)ω1
πn−→ (VAct)n1}n<ω for the limit cone. The map VAct1

!
→ 1

has a lower adjoint since VAct1 has a least element. Thus each bonding map
in (3) has a lower adjoint.

Proposition 21
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(i) The image of (3) under U : ωCoh→ Mes is the chain

1
!
←−MAct1

M
Act!
←− (MAct)21

(MAct)2!
←− (MAct)31←− · · · (4)

similarly obtained by iterating the functor M.
(ii) U((VAct)ω1) = (MAct)ω1.
(iii) The image of the connecting map VAct((VAct)ω1)→ (VAct)ω1 under U is

the connecting map MAct((MAct)ω1)→ (MAct)ω1.

PROOF. First note that Proposition 19 and 20(iii) imply that MAct◦U = U◦
VAct. Part (i) immediately follows. Next, (ii) follows from (i) and Proposition
20. Finally (iii) follows from (ii) and Proposition 19. 2

Theorem 22 There is a final labelled Markov process whose state space is a
Polish space.

PROOF. The endofunctor VAct : ωCoh→ ωCoh is locally continuous : i.e., for
each pair of objects D,E ∈ ωCoh the action on homsets

(VAct)D,E : ωCoh(D,E)→ ωCoh(V(D)Act, V(E)Act)

is Scott continuous. Thus the fixed-point theorem of Smyth and Plotkin [23]
tells us that the connecting map VAct((VAct)ω1) → (VAct)ω1 is an isomor-
phism. By Proposition 21 (iii) the connecting map MAct(MAct)ω1→ (MAct)ω1
is also an isomorphism. By Proposition 18 the inverse of this last map makes
(MAct)ω1 a final MAct-coalgebra. Moreover, since (MAct)ω1 is Lawson compact,
and any second countable compact Hausdorff space is metrizable, (MAct)ω1 is
a Polish space. 2

Remark 23 The solution of the domain equation D ∼= V(D)Act has already
been considered by Desharnais et al. [12]. What is new here is the observation
that this domain is final as a labelled Markov process. By similar reasoning,
D in its Scott topology can be given the structure of a final coalgebra of the
endofunctor VAct on Top. We exploit this last observation in Lemma 28.

7 Functional Expressions and Metrics

In this section we recall the definition of a metric for approximate bisimilarity
due to Desharnais, Gupta, Jagadeesan and Panangaden [10]. Intuitively the
metric measures the behavioural proximity of states of an LMP. We show
that this metric generates the Lawson topology on the domain D ∼= V(D)Act
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from Remark 23. The primary use of the results here is to be found in the
analysis of testing in the following section. However, we are also able to deduce
some new facts about the metric in and of itself. In particular, we show that
the metric induces a compact topology on the space of all LMPs, and that
this topology is independent of the contraction factor used in the definition of
the metric (see below).

Definition 24 The set F of functional expressions is given by the grammar

f ::= 1 | min(f1, f2) | max(f1, f2) | 〈a〉f | f � q

where a ∈ Act and q ∈ [0, 1] ∩Q.

The syntax for functional expressions is closely related to the modal logic
presented below in Equation (12), Section 9. One difference is that the modal
connective 〈a〉 and truncated subtraction replace the single connective 〈a〉q.
However the intended semantics is quite different.

Fix a constant 0 < c 6 1. Given a labelled Markov process 〈X, Σ, µ〉, a func-
tional expression f determines a measurable function f c

X : X → [0, 1] according
to the following rules. (We elide the subscript and superscript in f c

X where no
confusion can arise.)

1(x) = 1

min(f, g)(x) = min(f(x), g(x))

max(f, g)(x) = max(f(x), g(x))

(f � q)(x) = max(f(x)− q, 0)

(〈a〉f)(x) = c
∫

fdµx,a

In particular, 〈a〉f is the composition

X
µ−,a //MX

∫

f−
// [0, 1] −·c // [0, 1] .

The left-hand map is measurable by definition of an LMP, while the middle
map is measurable if f is measurable. Thus 〈a〉f is measurable whenever f is
measurable.

The interpretation of a functional expression f is relative to the prior choice
of the constant c. The role of this constant is to discount observations made
at greater modal depth. The interpretation of f is also relative to a particular
LMP; however we have the following proposition.

Proposition 25 Suppose g : 〈X, Σ, µ〉 → 〈Y, Σ′, µ′〉 is a zig-zag map. Then for
each functional expression f ∈ F, f c

X = f c
Y ◦ g.
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PROOF. The proof is by a straightforward induction on the structure of
f ∈ F. 2

Given an LMP 〈X, Σ, µ〉, Desharnais et al. [10] defined a metric 6 dc
X on the

state space X by
dc

X(x, y) = sup
f∈F

|f c
X(x)− f c

X(y)| .

It is shown in [10] that zero distance in this metric coincides with bisimilarity.
Roughly speaking, the smaller the distance between states, the closer their
behaviour. The exact distance between two states depends on the value of c,
but one consequence of our results is that the topology induced by the metric
dc

X is the same for any value of c in the open interval (0, 1).

Example 26 In the labelled Markov process below, dc
X(s0, s3) = c2δ. The two

states are bisimilar just in case δ = 0.

s1

a,1

��

s0

a, 1
2

>>||||||||

a, 1
2   

BB
BB

BB
BB

s3

a, 1
2
+δ

``BBBBBBBB

a, 1
2
−δ~~||

||
||

||

s2

Now consider the domain D ∼= V(D)Act from Remark 23 qua labelled Markov
process; denote the transition probability function by µ.

Proposition 27 For any f ∈ F, the induced map f : D → [0, 1] is monotone
and Lawson continuous.

PROOF. The proof is by induction on f ∈ F. The only non-trivial case is
f ≡ 〈a〉g; then f : D → [0, 1] is given by the composite

D
µ

//V(D)Act πa //VD

∫

gd−
// [0, 1] (5)

Note that each map above is Lawson continuous—the last one by the induction
hypothesis and Corollary 16. 2

Define a preorder 4 on D by

x 4 y iff f(x) 6 f(y) for all f ∈ F.

6 Strictly speaking we should say that dc
X is a pseudometric, since distinct states

may have distance 0.
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Since each functional expression gets interpreted as a monotone function, x v
y implies x 4 y. Theorem 29 asserts that the converse also holds. In order to
prove this result we need the following lemma.

Note that in the lemma we distinguish between an upper set V ⊆ D, and a
4-upper set U ⊆ D (x ∈ U and x 4 y implies y ∈ U).

Lemma 28 If a ∈ Act, x 4 y and U ⊆ D is Scott open and 4-upper, then
µx,a(U) 6 µy,a(U).

PROOF. Let K = {x1, . . . , xm} ⊆ U and z ∈ D \ U be given. For each
i ∈ {1, . . . ,m}, since xi 64 z, there exists gi ∈ F such that gi(xi) > gi(z). Since
F is closed under truncated subtraction, and each gi is Lawson continuous, we
may, without loss of generality, assume that gi(xi) > 0 and gi is identically
zero on a Lawson-open neighbourhood of z. Moreover, if we set gz = maxi gi,
then gz ∈ F is identically zero in a Lawson-open neighbourhood of z and is
bounded away from 0 on ↑K. Such a function gz can be exhibited for any
z ∈ D \ U .

Since D\U is Lawson compact (being Lawson closed) we can pick z1, . . . , zm ∈
D \U such that f = minj gzj

is identically zero on D \U and is bounded away
from zero on ↑K by, say, r > 0. Finally, setting h = min(f, r), we get

µx,a(↑K) 6
1

r

∫

hdµx,a 6
1

r

∫

hdµy,a 6 µy,a(U),

where the middle inequality follows from (〈a〉h)(x) 6 (〈a〉h)(y).

Since U is the (countable) directed union of sets of the form ↑K for finite
K ⊆ U , it follows that µx,a(U) 6 µy,a(U). 2

Theorem 29 The order on D coincides with 4.

PROOF. Let σD denote the Scott topology on D and τ the topology of Scott-
open 4-upper sets. Consider the following diagram, where ι is the continuous
map given by ιx = x.

〈D, σD〉

ι

��

µ
//V〈D, σD〉

Act

VιAct

��

〈D, τ〉
µ′

//______ V〈D, τ〉Act

(6)

Since ι is a bijection there is a unique function µ′ making the above diagram
commute in the category of sets.
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Recall that the topology on V〈D, τ〉 is generated by sub-basic opens of the
form {ν | νU >r} for U ∈ τ and 0<r<1. The inverse image of such a set under
µ′ is Scott open by the Scott continuity of µ and is 4-upper by Lemma 28.
Thus µ′ is a continuous map and yields a VAct-coalgebra structure on 〈D, τ〉.

The finality of the VAct-coalgebra 〈〈D, σD〉, µ〉, as indicated in Remark 23,
implies that ι has a continuous left inverse, and is thus a homeomorphism.
Hence, for each y ∈ D, the Scott-closed set ↓ y is τ -closed, and thus 4-lower.
Thus x 4 y implies x v y. 2

Corollary 30 (Theorem 4.10[11]) Let 〈X, Σ, µ〉 be a labelled Markov pro-
cess with X an analytic space. Denote by v the bisimilarity relation on X.
Then x v y iff f c

X(x) = f c
X(y) for all functional expressions f ∈ F.

PROOF. Let g denote the unique zig-zag map from 〈X, Σ, µ〉 to the final
LMP, i.e., the domain D from Remark 23. Then

x v y⇔ g(x) = g(y) by Propositions 5 and 8

⇔ f c
D(g(x)) = f c

D(g(y)) for all f ∈ F, by Theorem 29

⇔ f c
X(x) = f c

X(y) for all f ∈ F, by Proposition 25.

2

Remark 31 Corollary 30 has already appeared as [11, Theorem 4.10]. The
proof there is quite different. Among other things it relies on a modal logic
characterizing bisimilarity from [9], a translation between functional expres-
sions and formulas of the modal logic, and an approximation scheme for re-
covering an arbitrary LMP as the join of a chain of finite-state approximants.
These last two points are discussed at greater length in Section 9. We should
add that [11] also proves that given an LMP 〈X, Σ, µ〉, x ∈ X is simulated by
y ∈ X just in case f c

X(x) 6 f c
X(y) for all functional expressions f .

Since we view the domain D as a labelled Markov process, we can consider
the metric dc

D as defined in Section 3. We will need the following result.

Proposition 32 (Lemma 4.6[10]) Suppose 0<c<1 and Act is finite. Then
given ε > 0, there exists finite F′ ⊆ F such that for all x, y ∈ D

0 6 dc
D(x, y)− sup

f∈F′

|f c
D(x)− f c

D(y)|< ε.

Theorem 33 For 0<c<1 and finite Act the Lawson topology on D is induced
by dc

D.
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PROOF. The Lawson topology on D is compact. By Theorem 29, dc
D is a

metric (not just as pseduometric), and so it induces a Hausdorff topology. Thus
it suffices to show that the Lawson topology is finer than the topology induced
by dc

D. Now if xn → x in the Lawson topology, then f(xn) → f(x) for each
f ∈ F, since each functional expression is interpreted as a Lawson-continuous
map. Now, by Proposition 32, dc

D(xn, x)→ 0 as n→∞. 2

Remark 34 Both hypotheses in the above theorem are necessary. In partic-
ular it is shown in [10] that the topology induced by dc

X differs for c < 1 and
c = 1.

We defined a metric dc
X for each labelled Markov process X. However, if one

thinks of a labelled Markov process X = 〈X, Σ, µ〉 as being equipped with a
distinguished (initial) state sX , then one can define a metric dc on the class
LMP of all labelled Markov processes by

dc(X,Y ) = sup
f∈F

|f c
X(sX)− f c

Y (sY )|.

Corollary 35 For 0 < c < 1 the topology on LMP induced by dc is compact
and independent of the value of c.

PROOF. Consider the function LMP → D mapping a labelled Markov
process X to the image of the distinguished state sX under the unique zig-zag
map X → D. By Proposition 25 this map is an isometry (i.e., a distance
preserving map) 〈LMP , dc〉 → 〈D, dc

D〉. Furthermore this map it is clearly
surjective. The stated results now easily follow from Theorem 33. 2

8 Testing

In this section we characterize similarity on an LMP as a testing preorder, and
bisimilarity as a testing equivalence. The testing formalism we use is that set
forth by Larsen and Skou [20]. (See also Abramsky [1] and Bloom and Meyer
[5] for similar formalisms.) The idea is to specify an interaction between an
experimenter and a process; the way a process responds to the various kinds
of tests determines a simple and intuitive behavioural semantics.

A typical intuition is that a process is a black box whose interface to the
outside world includes a button for each action a ∈ Act. The most basic
kind of test is to try and press one of the buttons: either the button will
go down and the process will make an invisible state change (corresponding
to a labelled transition), or the button doesn’t go down (corresponding to a
refusal). An important question arises as to which mechanisms are allowed
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to combine the basic button-pushing experiments. Here, following Larsen and
Skou, we suppose that the tester can save and restore the state of the process
at any time. Or rather we make the equivalent assumption that the tester can
make multiple copies of the process in order to experiment independently on
one copy at a time. The facility of copying or replicating processes is crucial
in capturing branching-time equivalences like bisimilarity.

Definition 36 The test language T0 is given by the grammar

t ::= 1 | at | t · t

where a ∈ Act.

The term 1 represents the test that does nothing but successfully terminate.
The term at represents the test: press button a, and in case of success proceed
with test t. We usually abbreviate a1 to just a. Finally, t1 · t2 specifies the test:
make two copies of (the current state of) the process, perform the test ti on
the i-th copy, and record success in case both sub-tests succeed.

Definition 37 Given a labelled Markov process 〈X, Σ, µ〉, we define an in-
dexed family {P (−, t)}t∈T0

of real-valued random variables on 〈X, Σ〉 by

P (x, 1) = 1

P (x, at) =
∫

P (−, t)dµx,a

P (x, t1 · t2) = P (x, t1) · P (x, t2)

Intuitively P (x, t) is the probability that state x passes test t.

The following simple example motivates the inclusion of the branching con-
struct in T0.

Example 38 Consider the labelled Markov process 〈X, Σ, µ〉 over label set
Act = {a, b} depicted below.

x0

a[1]

��

y0
a[ 1

2
]

zzvvvvvvvvv
a[ 1

2
]

$$
IIIIIIIII

x1

b[ 1
2
]

��

y1 y2

b[1]
��

x2 y3

It is readily verified that P (x0, t) = P (y0, t) for any test t with no branching,
i.e., for any trace t. However x0 is not bisimilar to y0. This is witnessed by
the test t ≡ a(b · b), since P (x0, t) = 1/4 while P (y0, t) = 1/2.

Theorem 39 Let 〈X, Σ, µ〉 be a labelled Markov process. Then x, y ∈ X are
bisimilar just in case P (x, t) = P (y, t) for each test t ∈ T0.
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PROOF. Consider the free real vector space V = {
∑

λiti | λi ∈ R, ti ∈ T0}
over T0. The binary product map on T0 has a unique extension to a bilinear
map V × V → V . Furthermore, P : X × T0 → R has a unique extension to a
function P : X × V → R that is linear in its second argument.

P (−, v) is a bounded real-valued function on X for each v ∈ V . Furthermore,
the pointwise product of P (−, v1) and P (−, v2) is just P (−, v1 · v2). Let A
denote the closure of the family of the functions P (−, v) in the Banach alge-
bra of all bounded real-valued functions on X equipped with the supremum
norm. Then A is a closed sub-algebra, i.e., it is closed under sums, scalar
multiplication and (pointwise) products. Now it is well-known that any such
sub-algebra is also closed under (pointwise) binary minima and maxima (see
Johnstone [17]). We recall the argument for the reader’s convenience.

It is enough to show that f ∈ A implies |f | ∈ A since

max(f, g) = 1
2
(f + g) + 1

2
|f − g| .

Without loss of generality, since A is closed under scalar multiplication, we
may suppose that −1 6 f 6 1. Let g = 1− f 2; then 0 6 g 6 1, and

|f |=
√

f 2 =
√

1− g

= 1− 1
2
g − 1

8
g2 − · · · − 1·3···(2n−3)

2nn!
gn − · · ·

But this sum converges uniformly; thus |f | ∈ A, and A is closed under point-
wise binary minima and maxima.

Furthermore, given a ∈ Act and v =
∑

λiti ∈ V , let v′ =
∑

λi ati. Then, by
linearity of the integral, the function x 7→

∫

P (−, v)dµx,a is just P (−, v′). Thus
A contains the interpretations of all functional expressions f ∈ F.

Now suppose x, y ∈ X are such that P (x, t) = P (y, t) for all t ∈ T0. Then
P (x, v) = P (y, v) for all all v ∈ V . Thus f(x) = f(y) for all functional
expressions f ∈ F, and x and y are bisimilar by Corollary 30. 2

Theorem 39 generalizes and simplifies a result of Larsen and Skou [20, The-
orem 6.5]. The generalization is that Larsen and Skou’s result only applied
to discrete probabilistic transition systems satisfying the minimal deviation
assumption. This last condition says that there is a fixed ε > 0 such that any
transition probability µx,a({y}) is an integer multiple of ε. Theorem 39 sim-
plifies [20, Theorem 6.5] in that the test language T0 contains no negative
observations or failures. We explain this point in more detail in Appendix A.

Given the fact that bisimilarity on an LMP is just mutual similarity, one might
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conjecture that x ∈ X is simulated by y ∈ X just in case P (x, t) 6 P (y, t) for
all t ∈ T0. However the following example shows that this is not the case.

Example 40 Consider the process from Example 38. It is readily verified that
P (x0, t) 6 P (y0, t) for all t ∈ T0. However x0 is not simulated by y0. In
particular, x1 is only simulated by y2, but the probability of moving from x0 to
x1 is greater than the probability of moving from y0 to y2.

There is no hope of using the elements of V to characterize similarity, since V
contains negative scalar multiples of tests—so the functions P (−, v) are not
monotone with respect to the similarity preorder. On the other hand, if we were
to restrict attention to the cone V+ of positive linear combinations of elements
of T0, then in the example above we would still have P (x0, v) 6 P (y0, v) for
all v ∈ V+. Nevertheless the solution we outline below does follow the general
idea of using a ‘monotone’ subset of V as a test language.

One can think of the test t ≡ t1 · t2 as a conjunction, in that t succeeds if
each of its components succeeds. In order to capture similarity the idea is to
consider more general truth-functional ways of combining tests.

Definition 41 For each n ∈ N, the set Fma(n) of propositional formulas on
variables p1, . . . , pn is generated by the syntax

ϕ ::= > | pi | ϕ ∨ ϕ | ϕ ∧ ϕ .

Under the standard Boolean semantics, each ϕ ∈ Fma(n) is interpreted as a
function ϕB : Bn → B, where B = {false, true}. We also consider a real-valued
semantics where ϕ ∈ Fma(n) is interpreted as a function ϕR : [0, 1]n → [0, 1].
Given r1, . . . , rn ∈ [0, 1], consider n independently distributed Booelan-valued
Bernoulli random variables X1, . . . , Xn, where Xi takes value true with prob-
ability ri. We define

ϕR(r1, . . . , rn) = P (ϕB(X1, . . . , Xn) = true).

Definition 42 The test language T1 is given by the grammar

t ::= at | ϕ(t1, . . . , tn) [ϕ ∈ Fma(n)] .

Given a labelled Markov process 〈X, Σ, µ〉 and x ∈ X, we extend the definition
of the function P (x,−) from T0 to T1 by

P (x, ϕ(t1, . . . , tn)) = ϕR(P (x, t1), . . . , P (x, tn)) .

A test t ∈ T1 can be viewed as a tree whose edges are labelled with elements
of Act and such that an n-way branching node is labelled by an element of
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Fma(n). Intuitively, the test t ≡ ϕ(t1, . . . , tn) is implemented as follows. Make
n copies of the current state of the process; run test ti on the i-th copy;
record success for t if ϕ is true under the (Boolean) valuation v ∈ Bn given by
vi = true iff ti succeeds.

If ϕ ≡ p1 ∨ p2, we abbreviate ϕ(t1, t2) to t1 ∨ t2. This test succeeds iff either
of the disjuncts succeeds. The notation t1 ∧ t2 is interpreted similarly. Both
notations should be employed with care since neither of these operations is
idempotent. In fact, t1 ∧ t2 exactly corresponds to the test t1 · t2 from the
language T0.

Theorem 43 Let 〈X, Σ, µ〉 be a labelled Markov process. Then x ∈ X is sim-
ulated by y ∈ X iff P (x, t) 6 P (y, t) for all tests t ∈ T1.

Example 44 Recall the process from Example 38 and consider the test t ≡
a(b ∨ b). Then P (x0, t) = 3/4 while P (y0, t) = 1/2. Thus t witnesses the fact
that x0 is not simulated by y0.

The rest of this section is devoted to a proof of Theorem 43. This proof, which
is inspired by [20, Theorem 6.5], has a statistical flavour and is strikingly
different from that of Theorem 39. However, we believe that an alternative
proof using the technology of compact pospaces may be possible (see [17]).

Definition 45 Let 〈X, Σ, µ〉 be a labelled Markov process. Recall that each
functional expression f ∈ F defines a function X → [0, 1] (again, take c = 1).
Given f ∈ F, 0 6 α < β 6 1 and ε > 0, we say that t ∈ T1 is a test for
(f, α, β, ε) if for all x ∈ X,

Whenever f(x) > β then P (x, t) > 1− ε;
Whenever f(x) 6 α then P (x, t) 6 ε.

Thus, if test t succeeds on state x, then with high confidence we can assert that
f(x) > α. On the other hand, if t fails on state x, then with high confidence
we can assert that f(x) < β.

Lemma 46 Let 〈X, Σ, µ〉 be a labelled Markov process. Then for any f ∈ F,
0 6 α < β 6 1 and ε > 0, there is a test t for (f, α, β, ε).

PROOF. The proof proceeds by induction on f ∈ F. The cases f ≡ 1 and
f ≡ g � q are straightforward and we omit them.

Case f ≡ min(f1, f2): By induction, let ti be a test for (fi, α, β, ε/2) for i = 1, 2.
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Then we take t ≡ t1 ∧ t2 as a test for (f, α, β, ε). Now

min(f1, f2)(x) > β ⇒ f1(x) > β and f2(x) > β

⇒ P (x, t1) > 1− ε/2 and P (x, t2) > 1− ε/2

⇒ P (x, t) > 1− ε,

and

min(f1, f2)(x) 6 α⇒ f1(x) 6 α or f2(x) 6 α

⇒ P (x, t1) 6 ε/2 or P (x, t2) 6 ε/2

⇒ P (x, t) 6 ε/2.

Case f ≡ max(f1, f2): Let ti be a test for (fi, α, β, ε/2) for i = 1, 2. Then we
take t ≡ t1 ∨ t2 as a test for (f, α, β, ε). The justification is similar to the case
above.

Case f ≡ 〈a〉g: Pick n ∈ N and ε′ > 0. By the induction hypothesis, for
1 6 i 6 n we have a test ti for (g, i−1

n
, i

n
, ε′). Pick ϕ ∈ Fma(n) such that

ϕB(p1, . . . , pn) = true iff 1
n
|{i | pi = true}| > β+α

2
.

The rest of the proof is a calculation to show that for suitably large n and
small ε′, t ≡ ϕ(at1, . . . , atn) can be used as a test for (f, α, β, ε).

Fix x ∈ X. Let θ1, . . . , θn be independent {0, 1}-valued Bernoulli random
variables, where θi = 1 with probability P (x, ati). Furthermore, define θ =
(1/n)

∑n
i=1 θi. Thus P (x, t) = P (θ >

β+α

2
).

The induction hypothesis is that for 1 6 i 6 n

g(y) > i
n
⇒ P (y, ti) > 1− ε′ (7)

g(y) 6 i−1
n
⇒ P (y, ti) 6 ε′ . (8)

We estimate P (x, ati) by conditioning on the value of g using (7) and (8).

(1− ε′)µx,a

{

g >
i

n

}

6 P (x, ati) 6 µx,a

{

g >
i− 1

n

}

+ ε′.

Since E[θ] = 1
n

∑n
i=1 P (x, ati), it follows that

(1− ε′)

n

n
∑

i=1

µx,a

{

g >
i

n

}

6 E[θ] 6
1

n

n
∑

i=1

µx,a

{

g >
i− 1

n

}

+ ε′.
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Whence, by a straightforward manipulation of terms in the summation,

(1− ε′)
n

∑

i=1

i

n
µx,a

{

i

n
6 g <

i + 1

n

}

6 E[θ] 6

n
∑

i=1

i

n
µx,a

{

i− 1

n
< g 6

i

n

}

+ ε′

Thus we can choose ε′ small enough and n large enough to ensure that

|E[θ]−
∫

gdµx,a|<
β−α

4
. (9)

Since V [θ] = (1/n2)
∑n

i=1 V [θi] 6 1/n, by Chebyshev’s inequality [14] for large
n it holds that

P
{

|θ − E[θ]| 6 β−α

4

}

> 1− ε. (10)

It is straightforward that the choice of ε′ and n required to make (9) and (10)
true can be made independently of x ∈ X. Now

(〈a〉g)(x) > β ⇒
∫

gdµx,a > β by definition of 〈a〉g

⇒ E[θ] >
3β+α

4
by (9)

⇒ P
(

θ >
β+α

2

)

> 1− ε by (10)

⇒ P (x, t) > 1− ε.

Similarly it follows that (〈a〉g)(x) 6 α⇒ P (x, t) 6 ε. 2

Theorem 43 now follows from Lemma 46 using the characterization of simu-
lation in terms of functional expressions from Remark 31.

9 Conclusion and Related Work

The theme of this paper has been the use of domain-theoretic and coalgebraic
techniques to analyze labelled Markov processes. These systems generalize the
discrete labelled probabilistic processes investigated by Larsen and Skou [20].
Our main results extend and simplify the work of Larsen and Skou on the
connection between probabilistic bisimulation and testing. The direction of
this generalization, and the ideas and techniques we use, are mainly inspired by
the work of Desharnais, Edalat, Gupta, Jagadeesan and Panandagen [9,10,12].
In particular, as we now explain, there are several interesting parallels between
the results reported here and their work on the logical characterization of
bisimilarity.

A central result of Larsen and Skou [20] was a logical characterization of
bisimilarity for discrete LMPs satisfying the minimum deviation assumption.
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The formulas in their logic were generated by the grammar

ϕ ::= > | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉qϕ | ∆a (11)

where a ∈ Act and q ∈ [0, 1] ∩Q.

This is a probabilistic version of Henessey-Milner logic [21]. The semantics is
given by a satisfaction relation � between states of a labelled Markov process
and formulas. In particular, one has x � 〈a〉qϕ if the probability that x makes
an a-labelled transition to the set of states satisfying ϕ exceeds q. Also x �

∆a just in case no a-transition is possible from x. This logic characterizes
bisimilarity in the sense that states satisfy the same formulas just in case they
are bisimilar.

In generalizing the result of Larsen and Skou beyond the discrete case, Deshar-
nais et al. [9] realized that an even simpler logic, generated by the grammar

ϕ ::= > | ϕ ∧ ϕ | 〈a〉qϕ , (12)

is sufficient to characterize bisimilarity for all LMPs. This is reflected in our
observation that negative observations, or failures, are not needed to test for
bisimilarity. Indeed the grammar for the smaller logic is very similar in form
to the grammar for tests in Definition 36. The one significant difference is
that in the grammar for tests the modalities are not indexed with numbers.
Of course, the semantics of tests is completely different, with, in particular,
an arithmetic interpretation of conjunction as multiplication.

It was later shown in [12] that the logic (12) is inadequate to characterize
similarity: one needs to include disjunction. Again, this is reminiscent of the
observation that the test language in Definition 36 doesn’t characterize sim-
ilarity, and that one needs to use the more general test language T1 from
Definition 42.

We would also like to clarify the relationship between parts of this work and
the paper [12] on approximating LMPs. That work features the same domain
equation D ∼= V(D)Act appearing in the present paper; furthermore, the au-
thors exhibit a two-stage construction for interpreting an arbitrary LMP in
D. In the first stage they show how to interpret a finite-state LMP as an ele-
ment of D. The second stage utilizes a method for unfolding and discretizing
an arbitrary LMP X = 〈X, Σ, µ〉 into finite-state approximants. In fact they
produce a sequence of finite approximants, which is a chain in the simulation
order, and such that any formula satisfied by X is also satisfied by one of the
finite approximants. Then they define the interpretation of X in the domain D
to be the join of the interpretations of its finite approximants. Using their re-
sults on the logical characterization of bisimilarity they show that each LMP
is bisimilar to its interpretation in D. It follows that their domain-theoretic
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semantics is the same as our final semantics.

As far as we are aware, it was de Vink and Rutten [24] who were the first to
study probabilistic transition systems as coalgebras. However, since they work
with ultrametric spaces, their results only apply in the discrete setting, not
to arbitrary LMPs. It was also noted in [9] that LMPs are coalgebras of the
Giry functor, although this observation was not developed there.

An interesting problem, suggested by the development in Section 8, would
be to realize the final LMP as the Gelfand-Naimark dual of an equationally
presented C∗-algebra. The idea would be to take the free vector space V in
Section 8 and quotient by a suitable set of equations to get a commutative
algebra. An issue that is as yet unresolved is how to define a suitable norm in
order to get a C∗-algebra. We conjecture that this can be done, and moreover
that the final LMP can be recovered as the space of characters of the resulting
algebra.
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A Tests and Observations

Below we recall the testing formalism used by Larsen and Skou [20] to charac-
terize probabilistic bisimilarity on discrete systems. This framework was also
used in an earlier version of this paper [8]. We show that the test languages
T0 and T1, introduced in Definitions 36 and 42 respectively, correspond to two
fragments of Larsen and Skou’s language.

In fact, the set TLS of tests introduced by Larsen and Skou is almost exactly
the same as T0. The only difference in the syntax is that in TLS tupling plays
the role of multiplication. However, rather than considering only that a test
may succeed or fail, Larsen and Skou associate to each test t ∈ TLS a set Ot

of observations. In this way they account for the fact that some branches of t
may succeed while others may fail.

Definition 47 ([20]) The test language TLS is given by the grammar

t ::= 1 | at | 〈t1, . . . , tn〉

where a ∈ Act.

For t ∈ TLS the set of observations Ot is defined by

O1 = {1}

Oat = {a×} ∪ {ae | e ∈ Ot}

O〈t1,...,tn〉 = Ot1 × · · · ×Otn .

The only observation of the test 1 is success—which is again denoted 1. An
observation of at is either failure of a, denoted a×, or success of a followed
by observation e ∈ Ot, denoted ae. An observation of a tuple test 〈t1, . . . , tn〉
consists of a tuple 〈e1, . . . , en〉, where ei is an observation of ti.

Thus Ot is a set of mutually exclusive and exhaustive observations that might
arise when test t is performed. Given an LMP 〈X, Σ, µ〉, each state x ∈ X
induces a probability distribution Pt(x,−) on Ot according to the following
rules.
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P1(x, 1) = 1

Pat(x, ae) =
∫

Pt(−, e)dµx,a

Pat(x, a×) = 1− µx,a(X)

P〈t1,...,tn〉(x, 〈e1, . . . , en〉) = Pt1(x, e1) · · ·Ptn(x, en)

Thus Pt(x, e) is the probability of making observation e when test t is run in
state x. Given E ⊆ Ot we write Pt(x,E) =

∑

e∈E Pt(x, e), i.e., the probability
of observing some result in E. Larsen and Skou [20, Theorem 6.5] showed that
in a discrete LMP satisfying the minimal deviation assumption, two states x
and y are bisimilar just in case Pt(x,E) = Pt(y, E) for all tests t ∈ TLS and
E ⊆ Ot.

Next we show how to intepret the language T1 in TLS.

Proposition 48 For each test t ∈ T1 there is a test t′ ∈ TLS and a set of
observations E ⊆ Ot′ such that, for any LMP 〈X, Σ, µ〉 and x ∈ X, P (x, t) =
Pt′(x,E).

PROOF. The proof is by induction on t ∈ T1. The base case> ∈ T1 is trivial.
Consider now the test at. By induction there exists t′ ∈ TLS and E ⊆ Ot′ such
that P (x, t) = Pt′(x,E) for all x ∈ X. Then, by linearity of the integral, we
get that P (x, at) = Pat′(x, aE) for all x ∈ X, where aE = {ae | e ∈ E}.
Finally, suppose t ≡ ϕ(t1, . . . , tn), and, by induction, let t′i ∈ TLS and Ei ⊆ Ot′

i

be such that P (x, ti) = Pt′
i
(x,Ei) for all x ∈ X. Write t′ ≡ 〈t′1, . . . , t

′
n〉 and

define E ⊆ Ot′ by

E = {〈e1, . . . , en〉 | ϕB(e1 ∈ E1, . . . , en ∈ En) = true} .

When test t′i is run in state x, the probability of making an observation in Ei

is Pt′
i
(x,Ei). We conclude that Pt′(x,E) = ϕR(Pt′

1
(x,E1), . . . , Pt′n

(x,En)) (cf.
Definition 41). Now

P (x, t) = ϕR(P (x, t1), . . . , P (x, tn))

= ϕR(Pt′
1
(x,E1), . . . , Pt′n

(x,En))

= Pt′(x,E) .

Example 49 Corresponding to the test a(b∨ b) in T1 is the test a〈b, b〉 in TLS

with set of observations E = {a〈b, b〉, a〈b×, b〉, a〈b, b×〉}.

Remark 50 Given a test t ∈ T0, the corresponding test t′ ∈ TLS is obtained
by a trivial syntactic replacement of multiplication by tupling. Futhermore the
associated set of observations E ⊆ Ot′ is just the singleton {t′}, i.e., the
observation that all parts of the test succeed.
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