
Duality for Labelled Markov Processes

Michael Mislove1, Joël Ouaknine2, Dusko Pavlovic3 and James Worrell1

1 Tulane University, Department of Mathematics, New Orleans, USA
2 Computer Science Department, Carnegie Mellon University, USA

3 Kestrel Institute, Palo Alto, USA

Abstract. Labelled Markov processes (LMPs) are automata whose
transitions are given by probability distributions. In this paper we present
a ‘universal’ LMP as the spectrum of a commutative C

∗-algebra con-
sisting of formal linear combinations of labelled trees. We characterize
the state space of the universal LMP as the set of homomorphims from
an ordered commutative monoid of labelled trees into the multiplicative
unit interval. This yields a simple semantics for LMPs which is fully ab-
stract with respect to probabilistic bisimilarity. We also consider LMPs
with entry points and exit points in the setting of iteration theories. We
define an iteration theory of LMPs by specifying its categorical dual:
a certain category of C

∗-algebras. We find that the basic operations for
composing LMPs have simple definitions in the dual category.

1 Introduction

This paper is concerned with the semantics of certain probabilistic labelled tran-
sition systems, called labelled Markov processes (or LMPs) [9, 11, 7, 8]. Proba-
bilistic models are important for capturing quantitative aspects of process be-
haviour, such as performance and reliability, e.g., the average response time to a
given action, or the probability with which a failure occurs. For this reason there
has been a lot of research into adapting the concepts and results of classical con-
currency theory to the probabilistic case. In particular, the notion of bisimilarity
has been adapted to probabilistic systems [18, 9, 17], and its equational theory
investigated in [22, 4, 19] amongst many others.

The bisimulation equivalence classes of LMPs can be gathered together into
what could be termed a universal LMP. This object has previously been studied
as the solution of a domain equation in the category of complete metric spaces
[7], and in the category of coherent domains [11, 8]. However, none of these
domain-theoretic treatments yielded concrete representations of the elements of
the universal LMP.

1 Supported by the Office of Naval Research, grant No. N000149910150 and the Na-
tional Science Foundation, grant No. CCR-0208743.

2 Supported by the Office of Naval Research, contract N00014-95-1-0520.
3 Supported by the EHS and SGER programs of the National Science Foundation,

under contract No. CCR-0209-004 and CCR-0345-397.

In this paper we exploit Stone-Gelfand-Naimark duality for commutative
C∗-algebras to show that the universal LMP has a very straightforward charac-
terization as a space of order-preserving monoid homomorphisms from a partially
ordered monoid T of trees to the multiplicative monoid [0, 1].

We think of the elements of T as branching traces or trace trees. Formally they
are just finite trees whose edges are labelled by events from a given alphabet. The
operation of grafting two such trees at the root gives the monoid multiplication
in T. The order on T is the natural generalization of the prefix order on traces.
For a given LMP the corresponding homomorphism maps each trace tree to the
probability that it gets performed.

In an earlier paper [8] we showed that two processes are bisimilar iff they
perform each trace tree1 with the same probability. This generalized a result of
Larsen and Skou [18]. The main result of this paper can be seen as extending
this characterization to ‘build processes out of trace trees’. This is a natural
variation of the familiar trace models of abstract machines.

The main mathematical tool that we use is the theorem of Stone asserting a
dual equivalence between the category of compact Hausdorff spaces and contin-
uous maps on the one hand, and the category of commutative real C∗-algebras
(a full subcategory of the category of commutative rings) on the other hand.
This duality associates to each compact Hausdorff space the ring of continuous
real-valued functions on the space, and to each C∗-algebra its spectral space of
characters: the ring homomorphisms into R. We apply the duality to recover
the universal LMP as the spectrum of a C∗-algebra consisting of formal linear
combinations of trace trees.

The concrete representation of the universal LMP, obtained in the first part
of this paper, opens a new, effective approach to composing LMPs. In particu-
lar, we augment the basic model of LMPs with entry and exit points, and study
some basic combinators, such as sequential composition, probabilistic choice and
iteration. Thus we obtain a category whose objects are finite sets, and where a
morphism S : X → Y is an LMP with entry points X and exit points Y . We
show that this category is dual (contravariantly equivalent) to a category of com-
mutative rings consisting of C∗-algebras of trace trees. Represented through this
duality, the basic combinators for LMPs have remarkably simple descriptions.

1.1 Related Work

Kozen [15] presents a predicate-transformer semantics of an imperative program-
ming language with probabilistic choice. This semantics is based on a duality
between linear maps and probabilistic relations, and is formalized in the setting
of iteration theories. The same themes of duality and iteration theories appear in
the present paper, but our development is in the context of interactive processes
rather than imperative programs. In particular, for us states are not just mea-
surable functions on a space of variables as in [15], but have a recursively-defined
structure.

1 In fact we took the view that trace trees are types of button-pressing tests.

An iteration theory of probabilistic processes has been studied by Aceto, Ésik
and Ingólfsdóttir [4], building on earlier work of Stark and Smolka [22]. These
two papers treat finite-state LMPs as terms in a simple probabilistic process
calculus. Their main contributions are soundness and completeness results for
axiomatizations of the bisimilarity relation. Since these papers deal with process
calculi, the basic operations of prefixing, probabilistic choice and iteration are
defined at the syntactic level using an operational semantics. These operations
are then lifted to bisimulation equivalence classes of terms using the fact that
bisimilarity is a congruence. In contrast, we use a concrete representation of
bisimulation equivalence classes of LMPs as maps of C∗-algebras, and define
the basic operations directly on these representations.

One of the most comprehensive applications of duality in semantics can be
found in the work of Abramsky on domain theory in logical form [1]. This work
is based on a Stone-type duality between a category of spectral spaces (SFP
domains in their Scott topologies) and a category of distributive lattices. As
a case study, Abramsky considers a domain for bisimulation and computes its
spectrum. In this we paper we compute the spectrum of a domain for proba-
bilistic bisimulation. However, so far our work is much more modest in scope; in
particular we have not tried to isolate a fragment of the duality for C∗-algebras
that is pertinent to any reasonable category of domains.

Another paper close in spirit to the present work is Abramsky and Vickers
[2]. They consider a variety of equivalences for concurrent processes in a unified
framework of quantale modules—actions of quantales on sup-lattices. In partic-
ular, they present quantales of tests using generators and relations, and model
transition systems as right quantale modules (where the elements of the quan-
tale act on states of the transition system). Using the self-duality of the category
of sup-lattices they obtain left quantale modules of ‘process capabilities’ which
they use to build fully abstract models of processes.

Di Pierro, Hankin and Wicklicky [21] use C∗-algebras to define abstract
interpretations of probabilistic transition systems. These C∗-algebras are non-
commutative operator algebras, but we believe that exploring connections with
this work merits futher investigation.

2 Labelled Markov Processes

Below we give the formal definition of the class of probabilistic transition systems
that we study in this paper. This definition extends that of Larsen and Skou [18]
by including entry points and exit points as part of the basic data. For a similar
treatment of labelled transition systems, see [6].

Assume a fixed finite set Act of actions or events. Given a set S, a sub-
probability distribution on S is a non-negative real-valued function on S with
countable support and total mass no greater than 1.

Definition 1. Given finite sets X and Y of entry points and exit points, a
labelled Markov process S : X → Y is a tuple (S, ι, µ) consisting of a set S of

states, an injective function ι : X → S and, for each s ∈ S, a sub-probability
distribution µs on (Act× S) + Y .

Given s ∈ S and a ∈ Act, µs(a, t) is the probability that the process in
state s makes an a-transition to t ∈ S; µs(y) is the probability that it makes a
transition to the exit point y ∈ Y . Note that µs is a sub-probability distribution
on (Act× S) + Y . We interpret the difference between the total mass of µs and
1 as the probability of refusing all actions. We also adopt the notation µs,a for
the sub-probability distribution on S given by µs,a(t) = µs(a, t).

Apart from the presence of entry and exit points, Definition 1 differs from
the notion of LMP in [9, 8] in that, for each state s, the µs,a are components
of a single transition probability distribution, rather than being an arbitrary
family of probability distributions. In the terminology of [14] we are using the
generative model as opposed to the reactive model. Also, to keep things simple,
we only define LMPs with discrete probabilites. However, all our results hold
for the more general case where the state space of a LMP is a measurable space
and the transitions are given by sub-probability measures (see [9, 8]). This more
general type of LMP briefly features in the definition of a universal system in
Section 7.

Probabilistic bisimilarity [18] (henceforth just bisimilarity) is the probabilis-
tic analogue of strong bisimilarity for labelled transition systems. It gives a
branching-time notion of behavioural equivalence for LMPs.

Definition 2. Let S = (S, ι, µ) : X → Y be an LMP. An equivalence relation R
on S is a bisimulation if sRt implies that

– for each a ∈ Act and R-equivalence class A, µs,a(A) = µt,a(A),
– for each y ∈ Y , µs(y) = µt(y).

We say that two states are bisimilar if they are related by some bisimulation.

In words: an equivalence relation is a bisimulation if related states have
matching probabilities of making transitions into any equivalence class and into
any exit point.

3 Operations on LMPs

In this section we define some operations for composing LMPs. These are the
counterparts on the semantic level of constructs that might be found in a typical
process calculus. In particular, processes with exit points correspond to terms
with free variables, composition corresponds to substitution of terms, and itera-
tion corresponds to the application of the recursion operator. These definitions
will later form the basis of a category in which LMPs are morphisms.

Elements. Given a finite set X, each element x ∈ X determines an LMP
x : 1→ X with one state ∗, where ∗ makes a transition to output x ∈ X with
probability 1. Formally x = ({∗}, ι, µ), where µ∗(x) = 1.

Tupling. Let S : X → Z and S ′ : Y → Z be LMPs with S = (S, ι, µ) and
S ′ = (S′, ι′, µ′). The tuple 〈S,S ′〉 : X + Y → Z is obtained by taking the
coproduct of S and S ′, and identifying the outputs. Formally, 〈S,S ′〉 = (S +
S′, ι′′, ρ), where ι′′ = ι+ ι′ : X + Y → S + S′, and

ρs(v) =

µs(v) if s ∈ S, v ∈ (Act× S) + Z

µ′
s(v) if s ∈ S′, v ∈ (Act× S′) + Z

0 otherwise .

Composition. Let S : X → Y and S ′ : Y → Z be LMPs with S = (S, ι, µ)
and S ′ = (S′, ι′, µ′). The composition (S #S ′) : X → Z is obtained by connecting
the outputs of S with the inputs of S ′. Formally S # S ′ = (S + S′, ι′′, ρ), where
ι′′ = (S → S + S′) ◦ ι, and

ρs(v) =

µs(v) if s ∈ S, v ∈ (Act× S)
∑

y∈Y µs(y)µ
′
ι′y(v) if s ∈ S, v ∈ (Act× S′) + Z

µ′
s(v) if s ∈ S′, v ∈ (Act× S′) + Z .

Thus composition is given by integration, just as in the category of stochastic
relations studied in [3].

Iteration. Given S : X → X + Y with S = (S, ι, µ), the iterate S† : X → Y

is obtained by connecting each exit point x ∈ X to the corresponding entry
point. Writing S† = (S, ι, ρ), we define ρ so as to satisfy:

ρs(v) = µs(v) +
∑

x∈X

µs(x)ριx(v) (1)

for s ∈ S and v ∈ (Act× S) + Y .
The definition of ρ relies on the Kleene-∗ operation for matrices over the

semiring R∞
+ (see Appendix A). Write X = {x1, . . . , xn} and Y = {y1, . . . , yp}.

Let A be the n × n matrix with Aij = µιxi
(xj) and B the n × p matrix with

Bij = µιxi
(yj). We first define the transition behaviour of the entry states by

ριxi
(yj)

def
= (A∗B)ij and ριxi

(a, t)
def
= (A∗v)i,

where v is the column vector whose j-th entry is µι(xj)(a, t). Now the definition
of ρs for s ∈ S \ Range(ι) can be read off from Equation 1.

Probabilistic Choice. Let X be a finite set, X
in1−→ X + X

in2←− X a
designated coproduct, and 0 6 r 6 1 a real number. We define the LMP ⊕r :
X → X +X by ⊕r = (X, idX , µ), where µx(in1(x)) = r and µx(in2(x)) = 1− r
for each x ∈ X—that is, state x selects output in1(x) with probability r and
output in2(x) with probability 1−r. Given LMPs S,S ′ : X → Y , we write S⊕rS
for ⊕r # 〈S,S ′〉.

The above operations form the basis of the iteration theory of LMPs de-
fined in Section 8. More precisely, this theory is predicated on LMPs modulo

bisimilarity, where the bisimilarity relation is extended from states to LMPs in
the definition below.

Definition 3. Let S,S ′ : X → Y be LMPs, and let the tuple 〈S,S ′〉 be defined

relative to a designated coproduct X
in1−→ X +X

in2←− X. We say that S and S ′

are bisimilar, written S ' S ′, if there is a bisimulation R on the tuple 〈S,S ′〉
which relates entry points in1(x) and in2(x) for each x ∈ X.

4 A Monoid of Trace Trees

In this section we present a grammar for a class of trees corresponding to
branching-time traces of an LMP. This language (minus exit actions) corre-
sponds to the test languages of [18, 8] which were shown to characterize, respec-
tively, similarity in labelled transition systems, and probabilistic bisimilarity in
labelled Markov processes.

Fix a finite set Y (corresponding to the exit points of an LMP). The language
of trace trees is generated by the grammar

τ ::= 1 | y | aτ | τ · τ (2)

where a ∈ Act and y ∈ Y .
A trace tree is either the null tree 1, an exit action y ∈ Y , a prefixing aτ , or a

branch point τ1 · τ2. Note the distinction between prefixing (which is denoted by
mere juxtaposition) and branching. We will typically elide the symbol 1 when
denoting non-trivial trace trees, e.g., we write a · bc for a1 · bc1. Without the
branching construct ‘·’ the grammar above would just specify a language of
traces. In order to physically realize a branching-time trace one would need to
be able to duplicate the process at any point in a run, for instance, via a save-
and-restore construct.

Definition 4. Given an LMP S : X → Y , with S = (S, ι, µ), for each s ∈ S we
define τS(s): the probability that s performs tree τ .

– 1S(s) = 1.
– (y)S(s) = µs(y).
– (aτ)S(s) =

∫
τSdµs,a.

– (τ1 · τ2)S(s) = (τ1)S(s)(τ2)S(s).

The null tree is performed with probability 1 in any state. The probability
that aτ is performed in any given state is the weighted average of the probability
that τ is performed in the next state after an a-transition. The last clause says
that probability of performing an immediately branching tree τ1·τ2 is the product
of the probabilities of performing each branch.

For determining an LMP up to bisimilarity, only the behaviour of states
reachable from the entry points matters. Given S : X → Y , for each x ∈ X

we define the real-valued function Ŝx on trace trees by Ŝx(τ) = τS(ιx). Thus

Ŝx(τ) is the probability that S does τ on input x. The following theorem is a
generalization of the main result of [8] to allow for LMPs with entry and exit
points.

Theorem 5. Let S, T : X → Y be LMPs. Then S and T are bisimilar iff Ŝx =
T̂x for all x ∈ X.

Having used trace trees to characterize equivalence of states, we consider the
dual problem: when are two trees equivalent in that each state performs them
with the same probability? More generally, we define a preorder 6 on trace trees
by τ 6 τ ′ iff τS 6 τ ′S for all LMPs S. The key to constructing a model for
LMPs that is fully abstract with respect to bisimilarity is to axiomatize this
preorder. As a first step, notice that the map (−)S preserves the equations below.
These say that the set of trace trees forms a commutative monoid equipped
with the smallest partial order in which 1 is the top element and prefixing and
multiplication are monotone.

1 · τ = τ τ 6 1
τ1 · τ2 = τ2 · τ1 τ1 · τ 6 τ2 · τ if τ1 6 τ2

τ1 · (τ2 · τ3) = (τ1 · τ2) · τ3 aτ1 6 aτ2 if τ1 6 τ2

We denote the resulting partially-ordered monoid by T[Y]. Thus we have a
monoid for each set Y of exit actions.

5 Stone-Gelfand-Naimark Duality

Our basic reference for this section is the monograph of Johnstone [16]. We define
C∗-algebras to be certain types of commutative rings. The category C∗-Alg is
the resulting full subcategory of CRng. Here we should emphasize that we take
C∗-algebras to be algebras over R as opposed to the more standard presentation
as algebras over C (cf. Naimark [13, Theorem III.2.1]).

Let A be a commutative ring. Since we are primarily interested in rings of
functions, we use f, g to denote typical elements of A. We say that A is an
ordered ring if it is equipped with a partial order satisfying

f + g 6 f ′ + g if f 6 f ′

f · g 6 f ′ · g if f 6 f ′, g > 0

f2
> 0 .

We say that an ordered commutative ring A is Archimedean if for all f there
exists a positive integer n with f 6 n · 1. If the additive group of A is torsion-
free and divisible, so that A admits a Q-algebra structure, then we may define
a seminorm2 on A by

||f || = inf{q ∈ Q | −q · 1A 6 f 6 q · 1A}. (3)

2 Non-zero elements can have norm zero.

Definition 6. A commutative ring A is a real C∗-algebra if

– the additive group of A is torsion free and divisible, and
– A possesses an Archimedean partial order such that Equation 3 defines a

norm with respect to which A is complete.

In a C∗-algebra it turns out that f > 0 iff f is a square. Thus the partial order is
determined by the ring structure, and ring homomorphims between C∗-algebras
are automatically order preserving.

Definition 7. A character of a C∗-algebra A is a ring homomorphism ϕ : A→ R.
The spectrum of A, denoted specA, is the space of characters of A in the Zariski
topology, which is generated by the cozero sets coz(f) = {ϕ : ϕ(f) 6= 0} where
f ∈ A.

The spectrum of a C∗-algebra is a compact Hausdorff space. Conversely, the
ordered ring C∗(X) of continuous real-valued functions on a compact Hausdorff
space X is always a C∗-algebra. This association of compact Hausdorff spaces
and C∗-algebras is functorial, and is in fact a dual equivalence:

Theorem 8 (Stone). The category KHaus of compact Hausdorff spaces and
continuous maps is dually equivalent to C∗-Alg.

6 A Family of C*-algebras

In this section we extend the monoid of trace trees to a C∗-algebra whose spec-
trum is the state space of a universal LMP.

Fix a set Y of exit points. We extend the grammar (2) for trace trees to
a grammar of functional expressions by allowing rational linear combinations.
Thus functional expressions are given by

f ::= q | y | af | f · f | f + f (4)

where a ∈ Act, y ∈ Y and q ∈ Q.
We will use the letters f and g to denote functional expressions. We adopt

the convention that a term denoted τ has been generated using only the sub-
grammar (2). We reserve the phrase trace tree for such terms.

We use functional expressions as generators in a presentation of a family of
ordered rings O[Y], where the index Y indicates the dependence on the finite
set Y of exit variables. In this presentation ‘·’ acts as multiplication, 1 is the
multiplicative identity, and + acts as addition in O[Y].

The relations in the presentation of O[Y] include the equations for an ordered
ring: the Abelian group axioms for +, the commutative monoid axioms for ‘·’,
the distributive law of ‘·’ over +, and axioms asserting the compatibility of the
order relation with the ring structure. To these we add Equations 5–8 below. The
effect of these equations is to fix the semantics of prefixing as integration against

a sub-probability measure. Note that the distributive law (8) implies that every
functional expression is equal to a linear combination of trace trees.

0 6 y (5)

af 6 ag if f 6 g (6)
∑

a∈Act a+
∑

y∈Y y 6 1 (7)

a(q1 · f + q2 · g) = q1 · af + q2 · ag (8)

Definition 9. Define O[Y] to be the free ordered ring3 generated by the set of
functional expressions and satisfying Equations 5–8.

Proposition 10. O[Y] is a torsion-free divisible Archimedean ordered ring.

O[Y] is Archimedean since each functional expression is equal to a linear
combination of trace trees, and each trace tree τ satisfies τ 6 1.

Definition 11. Define the C∗-algebra A[Y] to be the Cauchy completion of O[Y]
in the norm (3). The ring operations on O[Y] are non-expansive in this norm,
so they extend to A[Y].

Proposition 12. A[Y] is the free C∗-algebra over O[Y] qua ordered ring.

Remark 13. Combining Definition 9 and Proposition 12 we see that in order to
specify a ring homomorphism from A[Y] to a C∗-algebra R it suffices to give an
interpretation of the functional expressions in R such that the relations in the
presentation of O[Y] all hold. Since the interpretations of + and · are forced,
this boils down to interpreting prefixing a(−) and exit actions y ∈ Y .

Given a set S, write C∗(S) for the ring of bounded real-valued functions on
S. This ring is a C∗-algebra (cf. [16]).

Definition 14. Let S : X → Y be an LMP with S = (S, ι, µ). We define a ring
homomorphism

A[Y]
(−)S
−→ C∗(S)

by the following clauses:

(af)S(s) =

∫

S

fSdµs,a

(y)S(s) = µs(y) .

Furthermore we define Ŝx ∈ spec A[Y] by Ŝx(f) = fS(ιx).

Note that this extends Definition 4. Indeed, since every element of O[Y] is equal
to a linear combination of trace trees, an element of spec A[Y] is determined by
an order-preserving monoid homomorphism T[Y]→ [0, 1] satisfying Equation 7.

3 Note in passing that the existence of a free ordered ring on a given set of generators
and relations follows from the existence of free algebras for Horn theories.

7 Universal LMPs

In this section we define a universal LMP U [Y] : ∅ → Y on outputs Y . The state
space of U [Y] is spec A[Y]. In order to manufacture the transition probabilities
we use the Riesz representation theorem [20].

Theorem 15. (Riesz) Let K be a compact Hausdorff space and ϕ : C∗(K)→ R

a positive linear map, i.e. ϕ(f) > 0 whenever f > 0. Then there is a unique
positive Borel measure µ on K such that ϕ(f) =

∫
fdµ for all f ∈ C∗(K).

The transition behaviour of ϕ ∈ spec A[Y] is given by a sub-probability
measure µϕ on (Act × spec A[Y]) + Y which is defined as follows. First, µϕ(y),
the probability of making a transition to the exit y ∈ Y , is defined to be ϕ(y).
Next, given a ∈ Act, let ϕa : A[Y]→ R be defined by ϕa(f) = ϕ(af). The
distributive law (8) ensures that ϕa is a linear map. Also, ϕa is positive since ϕ
is positive and prefixing is monotone in A[Y]. We define µϕ,a = µϕ({a} × −) to
be the Borel sub-probability measure on spec A[Y] corresponding by Theorem
15 to the linear map

C∗(spec A[Y]) ∼= A[Y]
ϕa
−→ R .

Note the application of Theorem 8 in the above isomorphism. Finally, we observe
that Equations 5 and 7 guarantee that µϕ, as defined above, is a sub-probability
measure.

In order to state the universal property of U [Y], we define the notion of a
zig-zag map [9].

Definition 16. Let S,S ′ be LMPs on exits Y . Suppose that S = (S, ι, µ) and
S ′ = (S′, ι′, µ′). A function h : S → S′ is a zig-zag map iff

– µs,a(h−1(t)) = µh(s),a(t) for all s ∈ S, t ∈ S′ and a ∈ Act.
– µs(y) = µh(s)(y) for all s ∈ S, y ∈ Y .

The following proposition is proved in [9].

Proposition 17. Let S,S ′ be LMPs on exits Y . A function h : S → S ′ is a
zig-zag map iff the kernel of h is a bisimulation.

Next we show how the initiality of A[Y] transfers, via Stone duality, to the
finality of U [Y].

Proposition 18. Let S = (S, ι, µ) be an LMP on exits Y . Then a function
h : S → spec A[Y] is a zig-zag map S → U [Y] iff the dual map h : A[Y]→ C∗(S),
where h(f)(s) = h(s)(f), satisfies

– h(af)(s) =
∫

S
h(f)dµs,a, and

– h(y)(s) = µs(y) for all s ∈ S, y ∈ Y .

Proof (Sketch). The zig-zag condition in Definition 16 says that
∫

(f ◦h)dµs,a =∫
fdµh(s),a for all step functions f : S′ → R. By linearity of the integral this

equation holds for all bounded real-valued f ; but this transfers through the
duality to the first equation in the proposition. �

By Remark 13 there is a unique map A[Y]→ C∗(S) satisfying the clauses in
Proposition 18—namely the map (−)S from Definition 14. Thus we obtain:

Theorem 19. U [Y] is final in the category whose objects are LMPs on exits Y
and whose morphisms are zig-zag maps.

In conjunction with Proposition 17, the finality of U [Y] implies that the relation
of bisimilarity on a given LMP S : X → Y is the kernel of the unique zig-zag
map to U [Y]. By definition, this map sends the entry state labelled by x ∈ X to

the character Ŝx. Thus we obtain:

Corollary 20. Two LMPs S, T : X → Y are bisimilar (cf. Definition 3) iff

Ŝx = T̂x for each x ∈ X.

In particular, S : X → Y is represented up to bisimilarity by the X-indexed set
(Ŝx)x∈X of characters of A[Y].

8 An Iteration Theory of LMPs

The notion of an iteration theory arises by extending a Lawvere algebraic theory
with an iteration operation on maps. In particular, an iteration theory is a cate-
gory with finite coproducts. The iteration operation takes a map ϕ : X → X + Y

to a map ϕ† : X → Y , and is required to satisfy certain equations like the Elgot
fixed point identity, the Bekič (pairing) identity and the group identities [5].
Flowchart algorithms, regular and context-free languages, synchronization trees
and Floyd-Hoare logic have all been formalized in the setting of iteration theories
(see [5]).

In Section 3 we presented the raw material for an iteration theory of LMPs;
in particular we defined composition, tupling, probabilistic choice and iteration.
In this section we show that one obtains an iteration theory from these operations
by considering LMPs modulo bisimilarity. We present this iteration theory via
a duality with a category of C∗-algebras and maps we call factorizations. In
particular, we show that LMPs are dual to factorizations, and iterating LMPs
is dual to taking fixed points of factorizations.

For each x ∈ X the projection πx : A[X]→ R is the ring map defined by

πx(af) = 0 and πx(x′) =

{
1 if x = x′

0 otherwise.
(9)

(Recall from Remark 13 that to define a C∗-algebra map with domain A[X] it
suffices to show how to interpret prefixing and variables in the target.) Note that
πx ∈ spec A[X] is the spectral counterpart to the LMP x : 1→ X in Section 3 ac-
cording to the representation of Corollary 20. Given a ring map ϕ : A[Y]→ A[X],
the components of ϕ are the characters ϕx = πx ◦ ϕ : A[Y]→ R, x ∈ X.

Definition 21. A (tree) factorization is a ring homomorphism ϕ : A[Y]→ A[X]
satisfying the following relations:

ϕ(af) = aϕ(f) +
∑

x∈X

ϕx(af) · x

ϕ(y) =
∑

x∈X

ϕx(y) · x .

A factorization is completely determined by its components. In particular,
given an X-indexed family (ϕx)x∈X in spec A[Y], the above equations uniquely
define a factorization ϕ : A[Y] → A[X]. To explain the terminology, note that
a factorization sends a trace tree τ ∈ T[Y] to a linear combination of all those
trees in T[X] from which τ may be obtained by substituting trees for leaves (see
the following example).

Example 22. Let a, b, c ∈ Act and X = {x}. A factorization A → A[X] maps
ab · c to a linear combination of the trees x ·x, x · c, ax ·x, ax · c, ab ·x and ab · c.

Definition 23. The category Fact is the subcategory of CRng with objects the
C∗-algebras A[X], where X is a finite set, and morphisms the factorizations.
Henceforth we simply take the objects of Fact to be the finite sets.

Proposition 24. Fact has finite products.

Proof (sketch). Given finite sets X and Y , the span X
π1←− X + Y

π2−→ Y is a
binary product, where π1 : A[X + Y]→ A[X] is the factorization defined by

π1(af) = aπ1(f) and

{
π1(x) = x x ∈ X
π1(y) = 0 y ∈ Y

and π2 : A[X + Y]→ A[Y] is the factorization defined by

π2(af) = aπ2(f) and

{
π2(x) = 0 x ∈ X
π2(y) = y y ∈ Y .

�

Proposition 25. Each homset Fact(X,Y) is a pointed dcpo in the following
partial order: ϕ 6 ψ iff ϕ(τ) 6 ψ(τ) for each trace tree τ ∈ A[X].

Proof. Recall two standard results about a C∗-algebra A. First, the partial order
is a closed subset of A× A, and second, the closed unit ball {f ∈ A : ||f || 6 1}
is compact in the norm topology.

Now let {ϕ(k)} be a directed set in Fact(X,Y). Given τ ∈ A[X] we have that
||ϕ(k)(τ)|| 6 ||τ || 6 1 since all ring maps are non-expansive. By compactness of
the unit ball in A[Y], the net ϕ(k)(τ) has a limit point in the norm topology on
A[Y]. By the closedness of the partial order on A[Y] it easily follows that this
limit point is in fact a supremum. We define a factorization ϕ : A[X]→ A[Y] by
specifying its values on trace trees: ϕ(τ) =

⊔
k ϕ

(k)(τ). Then ϕ is the supremum
of the family {ϕ(k)} by construction.

Define the factorization ⊥XY : X → Y by ⊥XY (af) = af and ⊥XY (x) = 0
for all x ∈ X. Then ⊥XY is least in Fact(X,Y). �

Proposition 26. Composition in Fact is jointly continuous:

(
⊔

k ϕ
(k)) ◦ ψ =

⊔
k(ϕ(k) ◦ ψ) and χ ◦ (

⊔
k ϕ

(k)) =
⊔

k(χ ◦ ϕ(k)) ,

for any directed family ϕ(k) : X → Y , ψ : W → X and χ : Y → Z.
Moreover composition is left-strict in that ⊥Y Z ◦ ϕ = ⊥XZ for ϕ : X → Y .

Proof. Since limits of directed sets in the unit ball of a C∗-algebra are also limits
in the norm topology, they are preserved by any ring map. �

We use the dcpo-enriched structure of Fact in a standard way (see [5, Chap-
ter 8]) to define a dagger operation taking a morphism ϕ : X + Y → X to a
morphism ϕ† : Y → X (think of parameterized fixed point). The dagger opera-
tion satisfies the Elgot fixed point identity ϕ† = ϕ ◦ 〈ϕ†, idY 〉 (where the angled
brackets refer to product tupling in Fact).

Definition 27. Given a factorization ϕ : X + Y → X, the iterate ϕ† : Y → X

is defined to be
⊔

k ϕ
(k), where ϕ(0) = ⊥Y X and ϕ(k+1) = ϕ ◦ 〈ϕ(k), idY 〉.

8.1 Duality Between LMPs and Factorizations

Recall that an LMP S : X → Y is determined up to bisimilarity by the X-
indexed set (Ŝx)x∈X , where Ŝx ∈ spec A[Y] gives the behaviour at the entry point
x ∈ X. But, by the remarks following Definition 21, this X-tuple of characters
also determines a factorization, which we denote Ŝ : A[Y]→ A[X]. We regard Ŝ
as the dual of S (note the reversal of direction). Each factorization is the dual
of some LMP and this duality is faithful up to bisimilarity of LMPs.

Proposition 28. Given LMPs S, T : X → Y , Ŝ = T̂ iff S and T are bisimilar.

The following proposition shows that composition of LMPs corresponds to
functional composition of factorizations.

Proposition 29. Given LMPs S : X → Y and T : Y → Z, (S # T)̂ = Ŝ ◦ T̂ .

Proof (sketch). The key is to show how T̂ acts as a ‘predicate transformer’. In
particular, given x ∈ X, one shows by structural induction on f ∈ A[Z] that

(S # T)x̂(f) = Ŝx(T̂ (f)). �

Iteration of LMPs and fixed points of factorizations also correspond via
the duality. A nice consequence of this is the fact that the iteration theory
identities for the dagger operation on LMPs all follow by virtue of the standard
construction used in Definition 27 (see [5, Chapter 8, Theorem 2.15]). The reader
may compare with the proof in [4] that, modulo bisimilarity, terms in a calculus
for regular probabilistic processes form an iteration theory.

Proposition 30. If S : X → X + Y is a LMP then (S†)̂ = (Ŝ)†.

9 Summary and Future Work

In programming and semantical frameworks, there are usually many different
ways to represent the same computational behaviours. In concurrency, canonical
representatives of the equivalence classes of bisimilar processes are represented
as elements of final coalgebras, often constructed in categories of domains. The
applicability of such theories hinges on convenient representations of those el-
ements. The final coalgebra capturing LMPs has been described in [7]. The
domain-theoretic treatment is in [11, 8]. However the issue of representability
had so far not been tackled. In the present paper, a method for obtaining canon-
ical representatives of LMPs has been presented. Their states are represented as
simple monoid homomorphisms. The simplicity of this representation supports
hope for a wider practical applicability of the LMP model.

Our application of Stone duality for C∗-algebras to derive canonical repre-
sentatives of LMPs is an instance of a general approach to representing com-
putational behaviours by lifting dualities, and adjunctions. A detailed account
of this general framework, with applications to other computational structures,
will be described in forthcoming work.

Unlike the papers [9, 11, 8] we have not emphasized the measure-theoretic
aspects of LMPs, but instead focused on the discrete case. As we already said,
the idea was to communicate the essential concepts with the minimum overhead.
However, another reason for this policy is that treating LMPs at the level of
measurable spaces sits rather uneasily with the assumption of finite sets of entry
and exit points. This suggests that an interesting direction for further work would
be to allow the domain and codomain of an LMP to be measurable spaces. This
would yield a category of measurable spaces and LMPs. It would be interesting
to compare such a category to the category of probabilistic relations studied in
[3].

Finally, we intend to investigate connections between our representation of
LMPs and the notion of formal tree series [12].

References

1. S. Abramsky. A Domain Equation for Bisimulation. Information and Computation

92:161–218, 1991.
2. S. Abramsky and S. Vickers. Quantales, observational logic and process semantics.

Mathematical Structures in Computer Science, 3:161–227, 1993.
3. S. Abramsky, R. Blute and P. Panangaden. Nuclear and Trace Ideals in Tensor-∗-

categories. Journal of Pure and Applied Algebra, 143:3–47, 1999.
4. L. Aceto, Z. Ésik and A. Ingólfsdóttir. Equational Axioms for Probabilistic Bisim-

ilarity. In Proceedings of 9th AMAST, Lecture Notes in Computer Science, volume
2422, pages 239–253, 2002.

5. S. Bloom and Z. Esik. Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

6. S. Bloom and Z. Esik. The Equational Logic of Fixed Points. Theoretical Computer

Science, 179:1–60.

7. F. van Breugel and J. Worrell. An Algorithm for Quantitative Verification of
Probabilistic Transition Systems. In Proceedings of CONCUR’01, volume 2154 of
LNCS, Springer-Verlag, 2001.

8. F. van Breugel, M. Mislove, J. Ouaknine and J. Worrell. Domains, Testing and Sim-
ilarity for Labelled Markov Processes. To appear in Proceedings of FOSSACS’03,

Theoret. Comp. Sci., 2003.
9. J. Desharnais, A. Edalat and P. Panangaden. Bisimulation for Labelled Markov

Processes. Information and Computation, 179(2):163–193, 2002.
10. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for Labeled

Markov Processes. In Proc. 10th International Conference on Concurrency Theory,
volume 1664 of LNCS, Springer-Verlag, 1999.

11. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating La-
beled Markov Processes. Information and Computation, 184(1):160–200, 2003.

12. Z. Esik and W. Kuich. Formal Tree Series. Journal of Automata Languages and

Combinatorics, 8(2):145–185, 2003.
13. M.A. Naimark. Normed Rings, 2nd ed., Nauka, Moscow 1968; reprint of the revised

English edition, Wolters-Noordhoff, Groningen 1970.
14. R. van Glabbeek, S. Smolka, B. Steffen. Reactive, generative and stratified models

of probabilistic processes. Information and Computation, 121(1):59–80, 1996.
15. D. Kozen. The Semantics of Probabilistic Programs. Journal of Computer and

System Science, 22:328–350, 1981.
16. P. Johnstone. Stone Spaces. Cambridge University Press, 1982.
17. B. Jonsson, K. Larsen and W. Yi. Probabilistic Extensions of Process Algebras.

In J.A. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra,
pages 685–710, Elsevier, 2001.

18. K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information

and Computation, 94(1):1–28, 1991.
19. M. Mislove, J. Ouaknine and J. Worrell. Axioms for Probability and Nondetermin-

ism. In Proc. EXPRESS’03, ENTCS 91(3), 2003.
20. K.R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.
21. A. Di Pierro, C. Hankin, and H. Wiklicky. Quantitative Relations and Approxi-

mate Process Equivalences. In Proceedings of CONCUR’03, volume 2761 of LNCS,
Springer-Verlag, 2003.

22. E.W. Stark and S.A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Proof, Language, and Interaction: Essays in Honour of Robin Milner.

MIT Press, 2000.

A Semiring Facts

Let R∞
+ denote the semiring of nonnegative reals with the usual addition and

multiplication, and with ∞ adjoined. In this semiring we have ∞· 0 = 0 ·∞ = 0
and ∞ + a = a +∞ = ∞. Let Mat R∞

+ denote the semiring of matrices over
R∞

+ . This semiring is ω-complete (it has countable sums), so there is a Kleene-∗
operation given by A∗ =

∑∞
k=0A

k.

Proposition 31. Let A be an n×n matrix and B an n× p matrix in Mat R∞
+ .

If [A B] is a sub-stochastic matrix, i.e. the entries on each row have sum no
greater than 1, then A∗B is a sub-stochastic matrix.

