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Abstract—Bounded model checking (BMC) is a highly success-
ful bug-finding method that examines paths of bounded length
for violations of a given regular or ω-regular specification. A
completeness threshold for a given model M and specification ϕ
is a bound k such that, if no counterexample to ϕ of length k or
less can be found in M , then M in fact satisfies ϕ. The quest for
‘small’ completeness thresholds in BMC goes back to the very
inception of the technique, over a decade ago, and remains a
topic of active research.

For a fixed specification, completeness thresholds are typically
expressed in terms of key attributes of the models under consider-
ation, such as their diameter (length of the longest shortest path)
and especially their recurrence diameter (length of the longest
loop-free path). A recent research paper identified a large class
of LTL specifications having completeness thresholds linear in the
models’ recurrence diameter [7]. However, the authors left open
the question of whether linearity is in general even decidable.

In the present paper, we settle the problem in the affirmative,
by showing that the linearity problem for both regular and ω-
regular specifications (provided as automata and Büchi automata
respectively) is PSPACE-complete. Moreover, we establish the
following dichotomies: for regular specifications, completeness
thresholds are either linear or exponential, whereas for ω-regular
specifications, completeness thresholds are either linear or at least
quadratic.

Index Terms—Bounded model checking, computer-aided veri-
fication, automata theory.

I. INTRODUCTION

Bounded model checking (BMC) was introduced in [1], [2]
as a symbolic bug-finding method that searches for lasso-
shaped counterexamples to an LTL formula in a given Kripke
structure. Within three or four years following its introduction,
it was found to have almost entirely replaced BDD-based
model checking in the hardware industry, thanks largely to
the huge advances made in SAT technology over the past 10
to 15 years.

The fundamental approach underpinning BMC is to look
for counterexamples, or bugs, of bounded length. As such,
an absence of counterexample is inconclusive; a genuine bug
could still lurk deeper within the system. For this reason, from
the very inception of the technique, researchers have attempted
to turn BMC into a complete method with the ability also to
guarantee the absence of counterexamples of any length. See,
for instance, the original work of Biere et al. [2], or the 2008
Turing Award lecture of Ed Clarke [4], in which the problem
is described as a topic of active research. See also the work

on cube enlargement techniques [8], circuit co-factoring [5],
induction [10], and Craig interpolation [9].

In [2], Biere et al. observed that for simple safety prop-
erties of the form Gp, a completeness threshold is given
by the diameter (longest distance between any two states)
of the Kripke structure under consideration: indeed, if no
counterexample to Gp of length at most the diameter of the
system can be found, then no counterexample of any length
can possibly exist. Likewise, for liveness properties such as
Fq, the recurrence diameter (length of the longest loop-free
path) of the Kripke structure can be seen to be an adequate
completeness threshold. In a recent paper [7], Kroening et
al. substantially extend these observations by identifying a
large class of ω-regular specifications for which completeness
thresholds linear in the recurrence diameter of the models
can be effectively computed. This class consists of so-called
cliquey Büchi automata, and subsumes among others the
fragment of LTL consisting of unary next-free formulas. The
authors also present examples of simple specifications having
quadratic or even exponential completeness thresholds.1

Unfortunately, [7] left as an open question whether the
problem of determining if an ω-regular specification has a
linear completeness threshold is decidable. In this paper,
we answer the question affirmatively by showing that the
linearity problem for both regular and ω-regular specifications
(provided as automata and Büchi automata respectively) is
PSPACE-complete; and when the completeness threshold is
indeed linear, we provide effective bounds on the linearity
constant. Moreover, we establish the following dichotomies:
for regular specifications, completeness thresholds are either
linear or exponential, whereas for ω-regular specifications,
completeness thresholds are either linear or at least quadratic
(and can be precisely quadratic or exponential).

In general, model checking can be applied to structures in
which either states or edges are labelled. We have opted to
present our work in the context of edge-labelled structures,
also known as automata, in order to simplify our exposition;
our main results also apply to state-labelled structures (Kripke
structures), although the careful verification of this fact is a
somewhat laborious exercise.

1The precise definition of the magnitude of completeness thresholds is given
in Sec. II.



II. NOTATION

We denote the empty word by ε. A finite automaton over
alphabet Σ is a tuple (Q, I,∆, F ) where Q is the set of states,
I ⊆ Q is the set of initial states, ∆ ∈ P(Q × Σ × Q) is the
transition relation and F ⊆ Q is the set of final states. When
we consider finite automata as acceptors of infinite words we
refer to them as Büchi automata. If B is an automaton, then
we use B to denote both the automaton and (assuming the
context is clear) its set of states. In particular, we denote by
|B| the number of states of automaton B.

A transition is a tuple in the transition relation. A path
π through an automaton B is a sequence of transitions π =
(ei)i=l

i=1 where l ∈ N∪{∞} and the edges are consecutive. The
length of π, denoted |π|, is equal to l, and the word spelled by
π is denoted word(π). A finite path π is k-bounded if |π| ≤ k.
An infinite path π is lasso-shaped and k-bounded if it can be
written as π = u.vω , where |u| + |v| ≤ k. A path is simple
if every state is visited at most once. A path starting in an
initial state is accepting if it ends in a final state (for finite
automata) or if some final state is visited infinitely often (for
Büchi automata).

An edge-labelled transition system over Σ is a tuple
(S, s0,∆) where S is the set of states, s0 is the initial state
and ∆ ⊆ P(Q×Σ×Q) is the transition relation. All models
considered in this paper are edge-labelled transition systems
and we refer to them simply as models.

Let M be a model. The diameter of M , denoted
d(M), is the length of a longest shortest path between
any two reachable states of M . The recurrence diameter
of M , denoted rd(M), is the length of a longest loop-
free (simple) path through M . For an automaton B hav-
ing at least one accepting path, we define sap(B) =
min{k | B has a (lasso-shaped) k-bounded accepting path}
to be the length of a shortest accepting path. Observe that
d(M) ≤ rd(M) ≤ |M | and, in case of finite automata,
sap(B) ≤ d(B) where we extend the definition of diameter
to automata in the natural way.

The product of a model M = (Q, s0,∆) with an automaton
B = (Q′, I ′,∆′, F ), denoted M × B, is an automaton over
Σ defined to be (Q′′, I ′′,∆′′, F ′′) where the two transition
systems synchronise on edge transitions:
• Q′′ = Q×Q′
• I ′′ = {s0} × I ′
• ∆′′ = {((q1, q′1), a, (q2, q′2) ∈ Q′′×Σ×Q′′ | (q1, a, q2) ∈

∆, (q′1, a, q
′
2) ∈ ∆′}

• F ′′ = Q× F .

Definition 1. An automaton B has a linear completeness
threshold if there exists c ∈ R+ such that for all models M , if
M×B has some accepting path, then sap(M×B) ≤ c·rd(M).

Definition 2. An automaton B has at least
quadratic/exponential completeness threshold if there
exists a sequence of models (Mi)i=∞

i=1 with rd(Mi)→∞ and
a constant c ∈ R+ such that sap(Mi × B) ≥ c · rd(Mi)2 or
sap(Mi ×B) ≥ 2c·rd(Mi), respectively.

s0 s1 s2,3 s4 s5

w1
w2

w3

w4

v0 v1 v3 v4

Fig. 1. A loop model.

In short, we say that B is linear, at least quadratic or at
least exponential. Note that although we defined completeness
thresholds using automata, it is a property purely of the
language recognised by the automaton: B is linear iff for all
models M the shortest word in L(M) ∩ L(B) ≤ c · rd(M).

If π is a path through M then π(i) denotes the i-th vertex
(starting from 1) of π. Then for a < b ∈ N the expression
π[a . . . b] denotes the subpath of π from index a to index
b inclusively. The expression π[a . . .) denotes the suffix of
π starting at index a. The first and the last state of π are
denoted first(π) and last(π) respectively. If τ is another path
in M such that last(π) = first(τ) then πτ is the concatenation
of π followed by τ . For states (s1, b1), (s2, b2) ∈ M × B

let Π(s2,b2)
(s1,b1)

= {π | π is a path through M × B, first(π) =
(s1, b1), last(π) = (s2, b2),∀i < |π| . π(i) 6= (s2, b′)} be the
set of paths through M starting in (s1, b1), ending in (s2, b2)
and visiting the state s2 only once. If ρ is a path in B such
that word(ρ) = word(π) then π ⊗ ρ denotes the unique path
in M ×B obtained by composing π and ρ componentwise.

III. REGULAR LANGUAGES

Throughout this section, we consider a fixed finite automa-
ton B. Let M be a model. The structure of loops in M , as
determined by the paths in the product M × B, turns out to
be crucial to linearity of B. For example, if π is a simple path
in M , then it cannot possibly be longer than the recurrence
diameter of M . In order to be longer than the recurrence
diameter, π has to intersect itself and thus contain some loops.
Roughly speaking, we will show that π needs approximately
k reasonably well-behaved loops in order to be of length at
least k times the recurrence diameter. These considerations
motivate the introduction of models of the following special
form, an example of which is shown in Fig. 1.

Definition 3. Given n ∈ N, words w1, . . . , wn ∈ Σ+ and
words v0, v1, . . . , vn ∈ Σ∗ we define a loop model as follows.
The model contains (among others) states s0, . . . , sn+1. State
s0 is the initial state. For every 0 ≤ i ≤ n there is a path,
called an arc, from si to si+1 that spells the word vi and for
1 ≤ i ≤ n a loop path spelling wi is attached to si. If vi = ε
then we identify si with si+1.

Definition 4. Let w ∈ Σ∗. We define a transition relation Rw

between states of B induced by w by (b1, b2) ∈ Rw if b1
w→ b2.

And we define the set Sw of states of B such that b ∈ Sw if
P (w) ∩ L(b) 6= ∅ where P (w) is the set of all prefixes of w
(including the empty string and w itself) and L(b) is the set
of words accepted by B starting in b.



The relations Rw and Sw satisfy the following properties.

Lemma 5. Let w, v ∈ Σ∗ be words. Then Rwv = Rv ◦ Rw

and b ∈ Swv ⇐⇒ b ∈ Sw ∨ ∃c ∈ Sv . (b, c) ∈ Rw.

The automaton B induces the following equivalence relation
on Σ∗, cf. [3].

Definition 6. Two words w, v ∈ Σ+ are equivalent, written
w ∼ v, if the corresponding relations and sets are equal,
Rw = Rv and Sw = Sv . We say that a word w or loop w is
pumpable if the equivalence class [w] is infinite. We denote
the index of ∼ by CB .

From Lemma 5, we easily see that ∼ is a congruence, i.e.,
w ∼ v and x ∼ y imply that wx ∼ vy. Note also that CB ≤
2|B|

2+|B|. If the automaton B is clear from the context, we
drop B and write C instead of CB .

Lemma 7. Let w ∈ Σ∗. If w is not pumpable then |w| ≤ C
and if w is pumpable then for any K ∈ N there is a word v
such that w ∼ v and K ≤ |v| ≤ K + C.

Proof: (Sketch) If w decomposes as w = xyz such that
x ∼ xy then xykz ∼ xyz for any k ≥ 0.

Consider a loop model. We shall show below that only
the number of pumpable loops taken by accepting paths is
essential to nonlinearity of B. Also, some of the loops of a
loop model may not be taken by every accepting path and
are thus redundant. We further restrict only to models without
redundant loops and by concatenating loops attached to the
same state we can also assume that at most one loop is attached
to every state.

Definition 8. Let M = (n,−→w ,−→v ) be a loop model with
n loops such that |vi| > 0 for i > 0 and let ρ =
((m1, b1) . . . (mt, bt)) be a path in M × B. Then we can
associate the vector (x1, . . . , xn) with ρ where xi := |{1 ≤
j ≤ t | mj = si}| − 1 equals the number of times ρ takes
the loop wi (in the projection onto M ). We say that ρ skips
the loop wi if xi ≤ 0. The model M is called an irredundant
loop model (for B) if |vi| > 0 for every 0 < i ≤ n, every
loop wi is pumpable, no accepting path skips a loop and
L(M) ∩ L(B) 6= ∅.

The equivalence of two words w ∼ v has been specifically
designed so that if a word is replaced by an equivalent one
in an irredundant loop model, we obtain another irredundant
loop model.

Lemma 9. Let M = (n,−→w ,−→v ) be an irredundant loop model
and let N be the model obtained by replacing wi by x for some
x ∼ wi and 1 ≤ i ≤ n. Then N is an irredundant loop model.

Proof: (Sketch) Let π be an accepting path through N×B
and suppose, to the contrary, that it skips some loop. We shall
turn π into a path ρ through M ×B that takes the loop wi as
many times as π takes x and is the same as π elsewhere.

If π[k . . . l] for k < l is one traversal of x by π then π(k) =
(si, bk) and π(l) = (si, bl). Thus bk

x→ bl in B. Since wi ∼ x,
it holds that bk

wi→ bl. So there is a path τ in B from bk to

bl. Let α be a path through M from si to si corresponding to
one traversal of the loop wi. Then replace π[k . . . l] by α⊗ τ .

If π terminates inside the loop x then let π(k) be the last
occurrence of si in π. Then π(k) = (si, bk) and last(π) =
(m, bl) for some m inside the loop x and bl accepting state.
Thus, bk ∈ Sx and since wi ∼ x, it holds that bk ∈ Swi

.
So there is a path τ2 in B from bk to bm for some accepting
state bm of B such that word(τ2) is a prefix of wi. Let α2

be a path through M from si traversing the loop wi and
spelling word(τ2). Then we replace π[k . . .] by α2⊗τ2 thereby
obtaining a path ending in a final state.

Similarly, we also have:

Lemma 10. Let M = (n,−→w ,−→v ) be an irredundant loop
model and let N be the model obtained by replacing vi by
x for some x ∼ vi and 0 ≤ i ≤ n. Then N is an irredundant
loop model.

We now state the main theorem of this paper relating
automata that have nonlinear completeness threshold and
irredundant loop models. The third statement forms the crucial
part of our decision procedure.

Theorem 11. Let B be a finite automaton. Then the following
are equivalent.
(a) B does not have a linear completeness threshold.
(b) For every k ∈ N there exists an irredundant loop model

with at least k loops.
(c) There exists an irredundant loop model with L loops such

that 2K ≥ L > K, where K = 22|B||B|.

We first show that (b) =⇒ (a). Then we prove that
(b) ⇐⇒ (c) and justify the specific value of K. Finally,
we establish that (a) =⇒ (b).

We begin by proving a stronger version of (b) =⇒ (a).

Theorem 12. Let B be an automaton. If for every k ∈ N
there exists an irredundant loop model with at least k loops
then B’s completeness threshold is at least quadratic.

Proof: Let M = (n,−→w ,−→v ) be an irredundant loop model
with n loops. Then, using Lemma 7, change every wi to yi

such that wi ∼ yi and n ≤ |yi| ≤ n + C. Also, change
every vi to xi such that vi ∼ xi and |xi| ≤ C. Denote the
obtained model by M ′. Lemmas 9 and 10 guarantee that M ′

is irredundant. Now, rd(M ′) ≤ 2(n+C)+(n+1)C ≤ 2nC+
2nC + nC + nC = 6nC since a longest loop-free path visits
at most two loops and traverses all vi’s. On the other hand,
sap(M ′ ×B) ≥ n2 as every accepting path traverses each of
at least n loops and each loop is of length at least n. Thus,

sap(M ′ ×B) ≥ n2 ≥ rd(M ′)2

36C2

Since n can be arbitrarily large, the result follows.
Next, we shall show that if there is an irredundant loop

model with more loops than a certain critical threshold then
there are irredundant loop models with arbitrarily many loops.
Let M = (n,−→w ,−→v ) be an irredundant loop model. Recall that
we denoted the state of M to which the loop wi is attached
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Fig. 2. A partition of an irredundant loop model.

by si and the initial state of B by b0. Then for every 0 <
i < n, the states of B can be assigned into the following two
(overlapping) categories.

Ei := {b ∈ B | Π(si,b)
(s0,b0)

6= ∅}

Fi := {b ∈ B | ∃π ∈ Π(si,b)
(s0,b0)

. π skips some wj for j < i}

The set Ei collects the reachable states of B at the state si

of M and the set Fi collects the states which are reachable
by a path skipping a loop.

Furthermore, let π be an accepting path in M × B. Then
π visits every state si ∈ M and so let f(i) be the index
of the first occurrence of si in π. If n > 22|B||B| then,
by the pigeonhole principle, there are indices 1 ≤ i <
j ≤ n such that Ei = Ej , Fi = Fj and there is a state
b ∈ B such that π(f(i)) = (si, b) and π(f(j)) = (sj , b).
Next, partition M into three loop models, corresponding to
the prefix, pumpable segment and the suffix of M respec-
tively: X := (i − 1, (w1, . . . , wi−1), (v0, . . . , vi−1)), Y :=
(j − i, (wi, . . . , wj−1), (ε, vi, . . . , vj−1), Z := (n − j +
1, (wj , . . . , wn), (ε, vj , . . . , vn)). For example, the partition of
an irredundant loop model with 3 loops split at i = 1, j = 3
is depicted in Fig. 2.

Thus, M can be written as X → Y → Z where the last
state of one part is identified with the first state of the next
part. Similarly, let α = π[1 . . . f(i)], β = π[f(i) . . . f(j)] and
γ = π[f(j) . . .). The following theorem shows that Y can be
pumped while keeping the model irredundant.

Lemma 13. The model M ′ = X → Y → Y → Z is
irredundant and αββγ is an accepting path through M ′×B.

Proof: By contradiction, making case distinction on the
place where an accepting path skips a loop.

Let i, j be as above. Observe that the states si, sj of M ′

correspond to the first state of the first copy of Y and the
first state of the second copy of Y , respectively. Let ρ be an
accepting path in M ′×B and suppose, to the contrary, that ρ
does not take some loop wk of M ′. If ρ does not visit the state
sj then ρ is completely contained in (X → Y )×B and so ρ
is an accepting path in M ×B skipping wn. So suppose that
ρ visits the state sj and let ρ(f(j)) = (sj , t) be the state of ρ
when it is first visited. Denote the suffix of ρ starting at f(j)
by τ2 = ρ[f(j) . . .). Note that τ2 is a path in (Y → Z) × B
that finishes in a final state. There are two possibilities: either
k < j and wk is in X → Y or k ≥ j and wk is in Y → Z.

Suppose that 1 ≤ k < j. Then t ∈ Fj since t is reachable
by a path that skips wk. By the choice of Y , t ∈ Fi as well
and so there is a path τ1 from the initial state to (si, t) in
M ×B that skips a loop. Note that τ1 is a path in X×B and

so τ1τ2 is an accepting path in M ×B that skips some loop.
But this is impossible as M is irredundant.

Now suppose that j ≤ k. Then τ2 is a path in (Y → Z)×B
that skips wk. Also, t is reachable from the initial state and
thus t ∈ Ej . By the choice of Y , t ∈ Ei as well and so there
is a path τ1 from the initial state to (si, t) in M × B. Note
that τ1 is a path in X×B and so τ1τ2 is an accepting path in
M × B that does not take every loop. But this is impossible
as M is irredundant.

Finally, note that α, β and γ are paths through X×B, Y ×B
and Z×B respectively. By the construction first(β) = (si, b)
and last(β) = (sj , b). Thus β concatenated with itself gives
a valid path through (Y → Y ) × B. Since γ ends in a final
state, αββγ is an accepting path in M ′ ×B.

By modifying the above proof slightly, we can also show
the following:

Lemma 14. The model M ′′ = X → Z is irredundant and
αγ is an accepting path through M ′′ ×B.

Since we can pump as well as remove segments from large
enough irredundant loop models, we have:

Theorem 15. There are irredundant loop models with arbi-
trarily many loops if and only if there is an irredundant loop
model M = (n,−→w ,−→v ) with 22|B||B| < n ≤ 22|B|+1|B|.

By flattening some of the repeated loops we shall prove
in the following paragraphs that the nonlinearity of B is
witnessed by very structured irredundant loop models. Ob-
serve that the values of Ei+1 and Fi+1 depend only on
Ei, Fi, wi and vi. Therefore, Ei = Ej and Fi = Fj even
for M ′ = X → Y → Y → Z. Thus the same reasoning can
be applied inductively to pump Y thereby obtaining a family
of irredundant loop models of the form X → Y ∗ → Z.

Theorem 16. For every k ∈ N the model X → Y k → Z is
irredundant and αβkγ is an accepting path in (X → Y k →
Z)×B.

Suppose that π traverses the loop wi exactly xi times. Let
v := viw

xi+1
i+1 vi+1 . . . w

xj−1
j−1 vj−1 be the unwinding of all but

the first loop of Y according to β. That is, word(β) = wxi
i v.

Finally, define Y ′ to be the loop model (1, wxi
i , (ε, v)). Ob-

serve that Y ′ is only a submodel of Y and since X → Y ∗ → Z
is irredundant, so is X → (Y ′)∗ → Z. In particular,
word(αβkγ) ∈ L((X → Y ′k → Z) × B). Finally, by
flattening the loops in X and Z we obtain a family of models
of the form x → (Y ′)∗ → z where x = word(α) and
z = word(γ).

Theorem 17. For every k ∈ N, the model Nk := x→ Y ′k →
z is irredundant.

Denote the only remaining loop in Y ′ by w. The models
Nk’s have very intricate structure. In particular, no accepting
path through Nk × B takes two v’s in succession or takes x
immediately followed by v. Consider the fractal-like models
as shown in Fig. 3. The model is obtained by identifying the
leaves of two complete binary trees, orienting the edges as
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Fig. 3. Model with the shortest accepting path exponential in the recurrence
diameter.

in the figure and by adding back edges from one tree to the
other. Let M be the model in Fig. 3, ρ an accepting path in
M × B, and k the number of traversals of v by ρ. The path
ρ can easily be modified into an accepting path in Nk × B
spelling the same word. But using the properties of Nk stated
above it follows that ρ recursively traverses the entire structure.
The path ρ might stay in a submodel of M for a while, but
eventually, it has to traverse every edge of M . Finally, observe
that no loop-free path in M takes more than one edge going
up. Therefore, the recurrence diameter is logarithmic in the
number of edges. Thus, using Thm. 11, we have shown:

Theorem 18. If the completeness threshold of an automaton
B is not linear, then it must be at least exponential.

This result is also optimal. Let M be a general (not
necessarily irredundant) model and let V be the number of its
states. Then sap(M ×B) ≤ |B|V . Observe that by removing
an edge from M the recurrence diameter of M never increases
whereas sap(M × B) never decreases. Therefore, we can
assume that M contains only edges on the shortest accepting
path. Thus the out-degree and in-degree of every node in M
is at most |B|. Hence, the number of states reachable in K
steps or less from the initial state is at most |B|K+1. Since all
states are reachable, there must be a state at distance at least
log|B| V − 1 from the initial state. Therefore, the diameter,
and hence the recurrence diameter, of M is at least rd(M) ≥
log|B| V −1 = log|B| (|B|V )−2 ≥ log|B| (sap(M ×B))− 2.

Theorem 19. Let M be a model such that L(M × B) 6= ∅.
Then rd(M) ≥ log|B| (sap(M ×B))− 2.

A. From General Models to Irredundant Loop Models

Finally, we prove the remaining implication (a) =⇒ (b)
of Thm. 11. In this section, let M denote an edge-labelled
transition system. The main idea of the proof is to take a
projection onto M of an accepting path through M ×B and,
by identifying non-overlapping loops, folding it into a loop
model. In order to control the folding we need the loops in
the projection to be as simple as possible. This motivates the
following definition:

Definition 20. A path ρ through M is locally minimal if both
the following conditions hold:

1) Every state s of M appears at most C times in ρ.
2) The distance between successive occurrences of the same

state is at most C. In other words, for i < j, if ρ(i) =
ρ(j) and ∀i < k < j . ρ(k) 6= ρ(i), then j − i ≤ C.

Definition 21. A loop ρ of length n through M is locally
minimal if both the following conditions hold:

1) If ρ(i) = ρ(1) then i = 1 or i = n.
2) ρ[2 . . . n− 1] is a locally minimal path.

Although not loop-free, locally minimal paths and loops
provide a bound on rd(M).

Lemma 22. Let ρ be a locally minimal path through M . Then
rd(M) ≥ |ρ|/C2.

Proof: Denote the length of ρ by n. We shall prove by
induction on n that there is a loop-free path π ⊆ ρ through
M beginning with first(ρ) of length at least n/C2.

The base case, n = 1, is trivial. For ρ longer than 1, let ρ(k)
be the last occurrence of ρ(1) in ρ. Possibly, k = 1. Since ρ
is locally minimal, it holds that k ≤ C2.

If k = n then take π = ρ(1). Then |π| = 1 and n ≤
C2. Otherwise, if k < n then let π′ be the path obtained by
applying the induction hypothesis to ρ[k + 1, . . . , n]. Finally,
take π = ρ(1) · π′. Since π′ begins with ρ(k+ 1) and ρ(1) =
ρ(k), the sequence π is a path. Moreover, since ρ(1) 6∈ ρ[k+
1 . . .), the path π is simple. Furthermore,

|π| = |π′|+ 1 ≥ n− k
C2

+ 1 ≥ n− C2

C2
+ 1 =

n

C2

A similar lemma holds for locally minimal loops.

Lemma 23. Let ρ be a locally minimal loop through M . Then
rd(M) ≥ (|ρ| − 1)/C2.

We now define the formal notion of a folding of a path
through M .

Definition 24. Given numbers k1, . . . , kn > 0, lo-
cally minimal paths α0, . . . , αn and locally minimal loops
β1,1, . . . , β1,k1 , . . . , βn,1, . . . , βn,kn

satisfying for all i, j:
• last(αi) = first(αi+1) = first(βi+1,j) = last(βi+1,j),
• |αi| > 0 for 0 < i < n, and
• |βi,j | > C,

a normalisation N with n loop bundles is a loop
model given by arcs word(α0), . . . ,word(αn) with loops



word(βi,1), . . . ,word(βi,ki
) in the ith loop bundle. A normal-

isation is accepting if first(α0) is the initial state of M and
L(N ×B) 6= ∅.

For example, we can think of the model in Fig. 1 as a
normalisation with 3 loop bundles of size 1, 2, and 1. Observe
that we can use locally minimal paths and loops to map every
path through N to a corresponding path through M .

Lemma 25. Let N be a normalisation. Then L(N) ⊆ L(M).

Then we use normalisations to bound sap(M×B) in terms
of rd(M).

Lemma 26. Let N be an accepting normalisation with n loop
bundles. Then sap(M ×B) ≤ 4n|B|C2rd(M).

Proof: The shortest accepting path traverses at most |B|
loops in every loop bundle. Thus, using Lemmas 22 and 23
to bound the lengths of α’s and β’s, we obtain

sap(M ×B) ≤ sap(N ×B)

≤ (n+ 1)C2rd(M) + n|B|(C2rd(M) + 1)

≤ 4n|B|C2rd(M).

In particular, if there exists n ∈ N such that for every model
M there is an accepting normalisation with fewer than n loop
bundles then B is linear. We therefore have:

Theorem 27. If B does not have a linear completeness
threshold, then for every k ∈ N there is a model Mk such
that L(Mk × B) 6= ∅ and every accepting normalisation of
Mk has at least k loop bundles.

If L(M ×B) 6= ∅ then by instantiating the following result
from the initial state to a reachable final state we obtain an
accepting normalisation.

Theorem 28. Let states m1,m2 ∈ M and w ∈ Σ∗ be such
that m1

w→ m2. There exists a normalisation N such that
|N | ≤ |w|,first(α0) = m1, last(αn) = m2 and there is a
path π from the initial state of N to the last state of N such
that word(π) ∼ w, where the αi’s refer to the locally minimal
paths from Def. 24.

Proof: Let ρ be the shortest path in M from m1 to m2

such that word(ρ) ∼ w. Clearly, |ρ| ≤ |w| and every state of
M appears at most C times in ρ.

We prove by induction on the length of ρ that there
is a normalisation N such that |N | ≤ |ρ|,first(α0) =
first(ρ), last(αn) = last(ρ) and there is a path π from the
initial state of N to the last state of N such that word(ρ) =
word(π).

If ρ satisfies 2 from Def. 20 of locally minimal paths then
we are done. Simply take n = 0 and α0 = ρ. Otherwise, pick
i, j with minimal j such that ρ(i) = ρ(j), i < j − C and
∀i < k < j . ρ(k) 6= ρ(i). Then ρ[i . . . j] is a locally minimal
loop.

If i = 1 then let N ′ be the normalisation obtained by ap-
plying the inductive hypothesis to ρ[j . . .). And add ρ[1 . . . j]
into the first loop bundle of N ′ thereby obtaining N .

If i > 1 then note that ρ[1 . . . i] is a locally minimal path.
Let N ′ be the normalisation obtained by applying the inductive
hypothesis to ρ[i . . .). And set N = ρ[1 . . . i]→ N ′.

Corollary 1. Let M be a model such that L(M × B) 6= ∅.
Then an accepting normalisation exists.

Finally, we show that the smallest accepting normalisation
of Mk gives rise to an irredundant loop model with at least k
pumpable loops.

Theorem 29. Let B be nonlinear. Then for every k ∈ N there
exists an irredundant loop model with at least k − 1 loops.

Proof: Let Mk be as defined above and let N be the
smallest accepting normalisation of Mk. By the choice of M ,
N has at least k loop bundles. Recall that ki’s denote the
number of loops in the i-th loop bundle. First, we show that
every accepting path in N ×B takes every loop at least once.

Suppose, to the contrary, that there is an accepting path π
in N ×B that skips some loop wi,j . Let N ′ be obtained from
N by removing the loop wi,j and the corresponding path βi,j .

If ki > 1 then N ′ is an accepting normalisation smaller than
N . But this is impossible. If ki = 1 then we have eliminated
the i-th loop bundle from N thereby concatenating vi−1 with
vi and αi−1 with αi. The concatenated path might not be
locally minimal in M ; however, we can replace it by a smaller
normalisation thanks to Thm. 28. The net result is a compound
accepting normalisation that is smaller than N , again yielding
a contradiction. Thus every accepting path takes every loop.

Second, we show that it is possible to transform N so that
every loop bundle is of size 1. Fix an accepting path π through
N × B and recall that wi1 , . . . , wiki

are the loops in the ith
loop bundle of N . Let w be the word spelled by π while
traversing through wi1 , . . . , wiki

in N ×B. Then we remove
wi1 , . . . , wiki

from N and replace them by the single loop
spelling w. By Def. 24 of a normalisation, each wi is longer
than C. Hence, |w| > C. By applying this transformation to
every loop bundle, we obtain a new model N ′. If |αn| = 0
then vn = ε. So let wn be the last loop of N ′. We remove wn

from N ′ and append the word wn to vn−1 so that the last arc
is non-null.

Note that word(π) ∈ L(N ′). Since N ′ is just a submodel
of N , every accepting path through N ′ × B traverses every
loop. And so N ′ is an irredundant loop model.

B. Decision Procedure

In this section, we present a PSPACE decision procedure
to determine whether a given automaton has a linear com-
pleteness threshold. If the automaton is linear we further show
how to bound the linearity constant c from Def. 1. The section
finishes by giving a corresponding proof of PSPACE-hardness.

Let K = 22|B||B|. The decision procedure works by
guessing a large enough loop model and then checking, on-
the-fly, that the model is irredundant. Thm. 11 guarantees that
it suffices to search for a loop model with number of loops
between K and 2K.



The algorithm first nondeterministically chooses the number
of loops n in the model and then it keeps updating the set Ei of
states reachable by a path in M×B and Fi of states reachable
by a path skipping a loop. See the text before Lemma 13
for the precise definition. To update these sets, the algorithm
guesses a loop w ∈ Σ∗ and an arc v ∈ Σ∗. Instead of storing w
and v, it calculates the relations Rw, Rv and sets Sw, Sv . These
sets and relations are calculated by guessing the words letter
by letter, and using Lemma 5 to update the sets incrementally.

The algorithm needs to ensure that w is pumpable. However,
Lemma 7 guarantees that it suffices to nondeterministically
select a word of length between C and 2C.

Note that only polynomially many bits in |B| are needed to
store Rw and Sw and since C and K are singly exponential in
|B|, only polynomially many bits are needed to store n or the
length of w. Also, only |B| bits are needed to store E and F .
Thus, the algorithm can be implemented in nondeterministic
polynomial space. Finally, the algorithm ensures that a final
state of B is visited only at the end.

Algorithm 1 Decision procedure for finite automata
n← guess a number ∈ (K, 2K]
Rv0 , Sv0 ← guess a word
E ← Rv0({s0- the initial state of B})
F ← ∅.
for i = 1 to n do
Rw, Sw ← guess a pumpable word
Rv, Sv ← guess a word
E′ ←

⋃
0≤k≤|B|Rwkv(E)

F ′ ←
⋃

0≤k≤|B|Rwkv(F ) ∪Rv(E)
if Swk∩E 6= ∅∨(i < n∧

⋃
0≤k≤|B| Swkv∩E 6= ∅)∨(i =

n ∧ Sv ∩ F 6= ∅) then
return false {A final state is reachable before the end}

end if
(E,F )← (E′, F ′)

end for
return (E \ F ) ∩ Final 6= ∅

Suppose that we determine that B has a linear completeness
threshold. Then, by Thm. 15, we know that every irredundant
loop model has at most K loops and so by instantiating
Algorithm 1 for n = 0 . . .K we can calculate the maximum
number L of loops in an irredundant loop model. We claim
that every model M has an accepting normalisation with
at most L + 1 loop bundles. For otherwise, there would
be a model ML+2 such that every accepting normalisation
of ML+2 has at least L + 2 loop bundles. But then by
the argument in the proof of Thm. 29 there would be an
irredundant loop model with L+1 loops, which is impossible.
Thus, every model M has an accepting normalisation with at
most L + 1 loop bundles. Applying Lemma 26, we get that
sap(M ×B) ≤ 4(L+ 1)|B|C2rd(M).

Observe that K depends only on |B| and so even without
calculating L it is possible to bound the linearity constant c
by c ≤ 4(K + 1)|B|C2rd(M). Thus the problem of finding a

s0 s1 s2
c

d

e

Fig. 4. Automaton with exponential completeness threshold

bound for c is also PSPACE-hard as we show next.

Theorem 30. It is PSPACE-hard to determine whether an
automaton B has a linear completeness threshold.

Proof: The proof is by reduction from the universality
problem for nondeterministic automata, well-known to be
PSPACE-hard [6]. Let A be an automaton over alphabet Σ.
We transform A into an automaton B over alphabet Σ∪{#},
where # 6∈ Σ, such that A is universal if and only if B has a
linear completeness threshold.

Let C be any automaton with non-linear completeness
threshold (e.g., Fig. 4) and denote the models witnessing
nonlinearity by (Mi)i∈N. Let D be a single-state automaton
accepting Σ∗. Define automaton B to be the disjoint union of
A, C and D, with additional #-labelled transitions from each
non-accepting state of A to the initial state of C and from each
accepting state of A to the initial state of D. Then, make all
states of A in B non-accepting. B can clearly be constructed
in polynomial time.

Now if A is universal then L(B) = Σ∗#Σ∗. We claim that
B has a linear completeness threshold in this case. Let M be
a model such that L(M×B) 6= ∅. Let m

#→ m′ be a reachable
# transition in M and let π be the shortest path from the initial
state of M to m. By taking a prefix of π if necessary, we can
assume that # 6∈ word(π). Then |π| ≤ diam(M) ≤ rd(M)
and word(π)# ∈ L(M) ∩ L(B).

On the other hand, suppose that A does not accept some
word w ∈ Σ∗. We claim that the models (w# → Mi)i∈N,
obtained by attaching the last state of a path spelling w# to
the initial state of Mi, witness nonlinearity of B.

Let π be an accepting path in (w#→ Mi)× B and write
π = π1#π2. Since A rejects w, the #-transition in π must go
from a rejecting state of A to the initial state of C. Thus π2 is
an accepting path in Mi ×C. Therefore |π2| ≥ sap(Mi ×C)
and the claim follows since w is of a constant fixed size.

IV. ω-REGULAR LANGUAGES

We now sketch how to extend the results from regular
languages to ω-regular languages. In this section, let B be
a Büchi automaton. Our aim is to bound the length of the
shortest lasso-shaped path in terms of the recurrence diameter.
The equivalent of an irredundant loop model that is suitable for
ω-regular languages is depicted in Fig. 5. The noose consists
of one big loop with several (3 in Fig. 5) nested loops. We say
that a model M of this form is an irredundant ω-loop model
if for every accepting lasso shaped path π1π

ω
2 it holds that π1

traverses every loop of the stem and π2 traverses every loop
of the noose. Note that π2 may traverse the noose more than
once and in general, a single traversal of the noose might not
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Fig. 5. General form of a non linear model for ω-regular languages.

traverse all loops inside the noose. Also note that the shortest
lasso-shaped accepting path takes at most |B| traversal through
the noose.

In case of regular languages, a path is accepting if it ends
in a final state. However, for ω-regular languages an accepting
path needs to visit a final state infinitely often. Therefore, we
have to modify the equivalence of two words to reflect this
so that, if we replace a word by an equivalent one in an
irredundant ω-loop model, we obtain a new irredundant ω-
loop model.

Definition 31. Given w ∈ Σ∗ we define a binary relation Tw

on B by (b1, b2) ∈ Tw if there is a path ρ through B that
begins in b1, finishes in b2, visits a final state and spells w.

Definition 32. Given w, v ∈ Σ∗, the words are equivalent,
written as w ∼ v, if Rw = Rv and Tw = Tv .

Thm. 11 on the relationship between finite automata with
nonlinear completeness threshold and irredundant loop models
has a direct counterpart in terms of Büchi automata and
irredundant ω-models.

Theorem 33. Let B be a Büchi automaton. Then the following
are equivalent.

(a) B does not have a linear completeness threshold.
(b) For every k ∈ N there exists an irredundant ω-loop model

with at least k loops.
(c) There exists an irredundant ω-loop model with L loops

such that 2Kω ≥ L > Kω , where Kω = 24|B|2 .

Similarly to regular languages, we prove that condition (b)
is equivalent to condition (a) and condition (c). By pumping
pumpable loops we can show the equivalent of Thm. 12 that
irredundant ω-models of arbitrary size witness that B has at
least quadratic completeness threshold.

Theorem 34. If for every k ∈ N there exists an irredundant ω-
loop model with at least k loops then B has at least quadratic
completeness threshold.

Recall that to show the analogous statement of (b) ⇐⇒ (c)
we carefully split the given irredundant loop model into three
pieces X → Y → Z so that the new model X → Y → Y →
Z is still irredundant. We proceed similarly for irredundant ω-
models. Suppose that M is an irredundant ω-loop model and
M has more than Kω loops. Then there are two possibilities.
Either most of the loops are in the stem of M or in the noose.
In the former case, we use the techniques developed for finite

languages to increase the number of loops. In the latter case,
we extend the methods to pump the noose. Recall that for
every si, the set Ei denoted the states of B reachable at si

and the set Fi ⊆ Ei consisted of states reachable by a path
skipping a loop. Denote the state where the stem and the noose
meet by s. Then a lasso-shaped path may traverse through
the noose more than once and so we consider similar sets
starting from (s, b) for every state b ∈ B. By symmetry, we
will also need information about states of (si, b) from which
it is possible to reach (s, b) for every b ∈ B. The following
four sets are sufficient:

Ep
i := {b ∈ B | Π(si,b)

(s,p) 6= ∅}

F p
i := {b ∈ B | ∃π ∈ Π(si,b)

(s,p) . π visits a final state}

Gq
i := {b ∈ B | Π(s,q)

(si,b)
6= ∅}

Hq
i := {b ∈ B | ∃π ∈ Π(s,q)

(si,b)
. π visits a final state}

Analogously to the finite case, we have a theorem to the
effect that if there are i < j such that (Ep

i , F
p
i , G

q
i , H

q
i ) =

(Ep
j , F

p
j , G

q
j , H

q
j ) for every p, q ∈ B then the segment be-

tween i and j can be pumped. By the pigeonhole principle,
this is guaranteed to happen if the number of loops in the
noose is greater than 24|B|2 .

Theorem 35. For every k ∈ N there is an irredundant ω-
loop model with at least k loops if and only if there is an
irredundant ω-loop model with n loops where 2Kω ≥ n >
Kω .

At this stage in the theory of regular languages, we were
able show that if an automaton is not linear then it has at
least exponential completeness threshold. This construction,
however, does not work for infinite strings. In the finite case,
it is always true that a final state of B is visited only at the
very end. However, in the case of infinite words, we may not
rule out the possibility that a final state is visited during the
traversals of w’s and v’s of which there are only finitely many.
And so it is possible that there is an accepting path which loops
forever in a submodel of the model from Fig. 3. In fact, we
show in Thm. 38 that there is a simple Büchi automaton with
precisely quadratic completeness threshold. On the other hand,
there are still Büchi automata with exponential completeness
threshold, similar to that depicted in Fig. 4.

Given a general model M , recall that we used normalisa-
tions (Def. 24) to show that nonlinearity of an automaton is
always witnessed by irredundant loop models in case of finite
languages. A normalisation N is a loop model that embeds
into M and the embedding is supplied by a path in M so that
loops and arcs of N correspond to locally minimal paths in M .
A similar argument works for ω-regular languages. We define
an analogous notion of ω-normalisation P , which is a ω-loop
model that embeds into M . The embedding again arises from
a path in M and ensures that loops and arcs of P map into
locally minimal paths in M . If π = π1π

ω
2 is a lasso-shaped

path then the embedding of the stem and noose arise from π1

and π2 respectively. Then, we use ω-normalisation to study M .



As in Lemma 26, for an accepting ω-normalisation with k loop
bundles it holds that sap(M×B) ≤ sap(P×B) ≤ f(k)rd(M)
is bounded by a function of the number of loop bundles in
P . Therefore, as in the Thm. 27, if a Büchi automaton is
nonlinear then for every k ∈ N there must exist a model
such that every accepting ω-normalisation has at least k loops.
Then, analogously to the Thm. 29, the ω-normalisation with
the smallest noose, and smallest stem in case of a tie, gives
rise to an irredundant ω-loop model.

Theorem 36. Let B be a Büchi automaton with nonlinear
completeness threshold. Then for every k ∈ N there exists an
irredundant ω-loop model with at least k loops.

A. PSPACE Decision Procedure for ω-Regular Languages

Recall that in order to obtain irredundant ω-models with
arbitrarily many loops we took a model with at least Kω

loops and depending on the concentration of loops, we either
pumped the stem or the noose. We make this distinction in
the decision procedure, which begins by nondeterministically
guessing which of the two cases holds.

In the case of large stem, we can assume, by unwinding the
noose if necessary, that the noose is a simple loop without any
nested loops. Then we can reuse with minor modification the
algorithm for regular languages to guess large enough stem
and hence irredundant ω-loop model.

In the case the noose is being pumped, we can assume,
by unwinding the stem if necessary, that the stem does not
contain any loops. And so the algorithm only needs to check
the existence of a large noose. The algorithm makes use of
the following fact. If a noose has more than |B|Kω loops and
every accepting path traverses every loop then, since we can
always restrict to paths traversing the noose at most |B| times,
at least Kω loops are traversed during some single traversal
of the noose.

The algorithm guesses the noose containing between Kω

and 2|B|Kω loops loop-by-loop. Denote the state where the
stem and the noose meet by s. Then for each pair of states
p, q ∈ B the algorithm iteratively calculates two numbers Apq

and Bpq denoting the minimum number of loops on some
single traversal of the noose from state (s, p) to state (s, q)
with and without visiting a final state, respectively. Then, it
uses these values to check whether for some reachable t there
is a path from (s, t) to (s, t) traversing the noose possibly
several times and visiting a final state so that during every
single traversal of the noose it visits less than Kω loops. This
can be done by iterating over all paths traversing the noose at
most |B| times. If there is no such path then every accepting
path through the noose traverses at least Kω loops. So we
can pick a subset of cardinality at least Kω of loops so that
all loops in S are traversed by every accepting path. Provided
there is some accepting path, we have a witness for a pumpable
noose.

The decision procedure needs to make one more check. It
must ensure that it is impossible to remain stuck inside the
noose forever and accept. This can also be done on-the-fly.

s0 s1

aa

b

Fig. 6. A quadratic Büchi automaton.

Since Kω is singly exponential in |B| and we can assume
that the noose and every loop is taken at most |B| times, only
polynomially many in |B| bits are needed to store Apq, Bpq

and all intermediate values.
Finally, observe that by taking C to be a nonlinear Büchi

automaton in (Thm. 30) we obtain the corresponding hardness
result.

Theorem 37. It is PSPACE-hard to determine whether a Büchi
automaton B has a linear completeness threshold.

Unlike the case of regular languages, there are automata
with completeness threshold strictly between linear and expo-
nential.

Theorem 38. The automaton in Fig. 6 is exactly quadratic.

Proof: A family of irredundant ω-models witnessing at
least quadratic completeness threshold has w = a∗ and v = b.

Let M be a model such that L(M×B) 6= ∅ and let αβω be
the shortest accepting lasso-shaped path in M×B. By proving
results on the structure of loops of M traversed by α and β
we show that the model induced by π is almost an irredundant
ω-loop model.

Suppose that there are i < j such that α(i) = (m,x) and
α(j) = (m, y). Let p be the label of the edge from α(i) to
α(i+1) and q be the label of the edge from α(j) to α(j+1)—
if α(j) is the last state of α then take β(1) instead. Since s0
cannot be followed by b there are 9 possibilities for the tuple
(x, y, p, q).

x
y

π(i+ 1)

π(j + 1)

p

q

If x = y then α[1 . . . i]α[j . . .)βω is a shorter lasso-shaped
path. Thus, no such loop appears in α.

If q = a then α(j+1) = (n, s1) for some n ∈M such that
m is connected to n by an edge. But this state is reachable
from α(i) and so the path α[1 . . . i]α[j+ 1 . . .)βω is a shorter
accepting lasso shaped path. Thus, no such loop appears in α.

Finally, we are left with the situation where all loops satisfy
x = s0, y = s1, p = a and q = b. Now, α(i + 1) = (n, s1)
which is a possible successor of α(j). So if there is some
b between α(i) and α(j) then α[1 . . . i]α[i + 1 . . . j]ω is a
shorter lasso-shaped accepting path. Hence, there cannot be
any b between α(i) and α(j). That is, the word spelled by
α[i . . . j] is aj−i and since α is minimal, the projection of
α[i . . . j] onto M is a simple loop. Therefore, there are no
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Fig. 7. Possible shape of the noose of the model induced by the path π from
Thm. 38. Each ti begins and ends with b, ti ∈ b+ bΣ∗b

nested loops in the projection of α onto M and so the model
induced by α is a loop model.

This concludes α. Now suppose that there are i < j such
that β(i) = (m,x) and β(j) = (m, y) and it is not the case
that i = 1 and j = |β|. Let p be the label of the edge from
β(i) to β(i + 1) and q be the label of the edge from β(j)
to β(j + 1)—if β(j) is the last state of β then we take β(1)
instead. As above, there are 9 possibilities for (x, y, p, q).

If (x = y) or (x = s0, y = s1, p = q = a) or (x = s1, y =
s0, p = q = a). Then it is possible to show that either by
staying in the loop β[i . . . j] forever or by eliminating it from
β we obtain a shorter accepting path. So loops of this type do
not appear in β.

If x = s0, y = s1, p = a and q = b then as above, it is
possible to show that word(β[i . . . j]) = aj−i, the projection
of β[i . . . j] onto M is a simple loop. So if there are only loops
of this form in β then the model induced by β is a loop model
with the first and the last state identified—a simple noose.

Finally, suppose that there is a loop of the form x = s1, y =
s0, p = b and q = a. Observe that β(j + 1) = (n, s1) for
some n ∈ M and so β(j + 1) is a valid successor of β(i).
If there is a b in word(β[j . . .)β[1 . . . i]) then we can skip the
loop thereby obtaining a shorter lasso-shaped accepting path
α(β[1 . . . i]β[j+ 1 . . .))ω . So there is no b on that path, hence
the word it spells consists only of a’s and so the projection of
the path β[j . . .)β[1 . . . i] onto M is a simple loop. Suppose
that there is another loop of the type x = s1, y = s0, p =
b, q = a at position k . . . l where i ≤ k < l ≤ j such that
(i, j) 6= (k, l). Now, we know that β(i + 1) and β(j) are
accepting. Since the loop β[k . . . l] is properly nested in the
loop β[i . . . j] the removal of the loop β[k . . . l] leaves at least
one of these two states which gives rise to a shorter lasso-
shaped accepting path. Therefore, there are no nested loops
inside β[i . . . j] of this form. Thus, all nested loops are as
in the previous paragraph (x = s0, y = s1, p = a, q = b). It
follows that the submodel of M induced by β[i . . . j] is a loop
model and the projection of βω onto M is as in Fig. 7.

So, α and β correspond to traversals of (almost) loop models
and the models of this shape are clearly at most quadratic.

V. CONCLUDING REMARKS

This paper settles the main open questions listed in Sec. 6
of [7]: it is decidable, and in fact PSPACE-complete, whether
a regular (resp. ω-regular) specification has a linear complete-
ness threshold, provided the specification is given as an au-

tomaton (resp. Büchi automaton). Moreover, two dichotomies
are at play: a regular specification either has a linear or
an exponential completeness threshold, whereas an ω-regular
specification has a completeness threshold that is either linear
or at least quadratic.

As mentioned in the Introduction, these results also apply to
state-labelled automata and models, by adapting our approach
appropriately.

Several questions however remain. We conjecture that in the
case of ω-regular specifications, there is in fact a trichotomy:
completeness thresholds are either linear, precisely quadratic,
or precisely exponential. We believe that such a result could
be obtained by pushing further the techniques which we have
developed in this paper.

Another interesting question is the complexity of determin-
ing whether an ω-regular specification has a linear complete-
ness threshold, assuming the specification is provided as an
LTL formula. One immediately obtains an EXPSPACE upper
bound through the translation of LTL formulas into (at most)
exponentially-sized Büchi automata. We were only able to
establish a PSPACE lower bound for LTL and we conjecture
that PSPACE in fact suffices. Note also that the PSPACE-
hardness result relies on the automaton under consideration
being nondeterministic. We leave open the question of com-
plexity of the decision procedure for deterministic automata.

If an automaton has linear completeness threshold then it
would be desirable to be able to estimate the linearity constant
as precisely as possible. Although we provided upper bounds,
these appear fairly loose from both practical and theoretical
standpoints. The problem of calculating and/or approximating
the constant more closely remains open.
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