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Abstract
The Skolem Problem asks to determine whether a given integer linear recurrence sequence (LRS)
has a zero term. This problem, whose decidability has been open for many decades, arises across a
wide range of topics in computer science, including loop termination, formal languages, automata
theory, and probabilistic model checking, amongst many others.

In the present paper, we introduce a notion of “large” zeros of linear recurrence sequences, i.e.,
zeros occurring at an index larger than a sixth-fold exponential of the size of the data defining the
given LRS. We establish two main results. First, we show that large zeros are very sparse: the set
of positive integers that can possibly arise as large zeros of some LRS has null density. This in turn
immediately yields a Universal Skolem Set of density one, answering a question left open in the
literature. Second, we define an infinite set of prime numbers, termed “good”, having density one
amongst all prime numbers, with the following property: for any large zero of a given LRS, there
is an interval around the large zero together with an upper bound on the number of good primes
possibly present in that interval. The bound in question is much lower than one would expect if
good primes were similarly distributed as ordinary prime numbers, as per the Cramér model in
number theory. We therefore conjecture that large zeros do not exist, which would entail decidability
of the Skolem Problem.
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1 Introduction

An (integer) linear recurrence sequence (LRS) ⟨un⟩∞
n=0 is a sequence of integers satisfying a

recurrence of the form

un+k = a1un+k−1 + · · · + akun (1)

where the coefficients a1, . . . , ak are integers. The celebrated theorem of Skolem, Mahler,
and Lech [27, 19, 15] describes the set of zero terms of such a recurrence:

▶ Theorem 1. Given an integer linear recurrence sequence ⟨un⟩∞
n=0, the set {n ∈ N : un = 0}

is a union of finitely many arithmetic progressions together with a finite set.

The statement of Thm. 1 can be refined by considering the notion of non-degeneracy of
an LRS. An LRS is non-degenerate if in its minimal recurrence no quotient of two distinct
roots of the characteristic polynomial is a root of unity.1 A given LRS can be effectively
decomposed as the merge of finitely many non-degenerate sequences, some of which may be
identically zero. The core of the Skolem-Mahler-Lech theorem is the fact that a non-zero
non-degenerate linear recurrence sequence has finitely many zero terms. Unfortunately, all

1 For basic definitions, facts, and properties concerning linear recurrence sequences, we refer the reader to
standard texts such as [9, Chaps. 1 and 2], [14, Chap. 4], or [28, Chap. 4].
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known proofs of this last result are ineffective: it is not known how to compute the finite set
of zeros of a given non-degenerate linear recurrence sequence. It is readily seen that existence
of a procedure to do so is equivalent to the existence of a procedure to determine whether
an arbitrary given LRS has a zero term; the latter is known as the Skolem Problem. We
refer to [4, Chap. 6] and [29, Chap. X] for expository accounts of the Skolem-Mahler-Lech
theorem and discussion of the ineffectiveness of known proofs.

Decidability of the Skolem Problem is known only for certain special cases, based on the
relative order of the absolute values of the characteristic roots. Say that a characteristic root
λ is dominant if its absolute value is maximal among all the characteristic roots. Decidability
is known in case there are at most 3 dominant characteristic roots, and also for recurrences
of order at most 4 [20, 30]. However for LRS of order 5 it is not currently known how to
decide the Skolem Problem. For a (highly restricted) subclass of LRS, the paper [1] obtains
nearly matching complexity lower and upper bounds for the problem.

Some recent lines of research have succeeded in establishing conditional decidability of the
Skolem Problem for simple LRS (i.e., LRS none of whose characteristic roots are repeated),
assuming certain classical number-theoretic conjectures [16, 5]. Nevertheless, to the best
of our knowledge, no putative algorithm has to date been proposed to solve the Skolem
Problem in full generality.

A different approach was initiated in [17, 18] via the notion of Universal Skolem Sets. An
infinite, recursive set S ⊆ N is a Universal Skolem Set if there is some algorithm which, given
any LRS, determines whether or not the LRS has a zero in S. Decidability of the Skolem
Problem is then of course equivalent to the assertion that N is itself a Universal Skolem Set.
The authors of [17] succeded in exhibiting a sparse Universal Skolem Set, i.e., a set having
null density, and left open the question of whether Universal Skolem Sets of strictly positive
density, or even density one, could be constructed (the interest in such sets being that they
approximate N more and more closely). The question was partially answered in [18], which
presented a positive-density Universal Skolem Set albeit restricted to simple LRS.

In computer science, the Skolem Problem lies at the heart of key decision problems
in formal power series [25, 3], stochastic model checking [24], control theory [6, 10], and
loop termination [23]. The problem is also closely related to membership problems on
commutative matrix groups and semigroups, as considered in [7, 13]. We note that in several
of the above-mentioned citations, the Skolem Problem is used as a reference benchmark to
establish hardness of other open decision problems.

In this paper we propose an explicit bound for the largest zero of a non-degenerate
LRS in terms of the data describing the LRS. We call zeros that exceed this bound large
zeros of the LRS. Evidently, decidability of the Skolem Problem would follow from a proof
that large zeros do not exist. Using known upper bounds on the cardinality of the set of
zeros of non-degenerate LRS, it is relatively straightforward to show that the set of integers
arising as large zeros of some non-degenerate LRS has null density, which in turn yields a
Universal Skolem Set of density one. While a proof that large zeros do not exist currently
seems well out of reach, we give a heuristic argument as to why this should nevertheless
be expected. This argument is based on an analogue of the well-known Cramér conjecture
on gaps between consecutive primes. This conjecture, originally formulated by Cramér in
1936 [8] and subsequently refined by various number theorists into its present form, asserts
that, for some constant κ > 1, for every prime p the distance to the next largest prime is at
most κ(log p)2. The conjecture is based on the heuristic that the sequence of prime numbers
behaves similarly to a Poisson-like random process in which the probability of a number x

being prime is 1/ log x. The largest observed prime gaps are of the order of 0.5(log p)2 [22],
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however the best known upper bound on prime gaps is O(p0.525), due to Baker, Harman,
and Pintz [2], which is far from Cramér’s conjectured bound. Cramér himself proved that,
under the Riemann hypothesis, prime gaps are bounded above by O(p0.5 log p) [8]. On the
other hand, the best known lower bound is Ω(log p log log p), which is some way from the
conjectured upper bound. We refer to [12] for a discussion of Cramér’s conjecture and its
refinements.

Here we define a subset of so-called good primes based on divisibility properties of LRS.
We show that the set of good primes has density one in the set of all primes. We further
show that if the Cramér conjecture applies also to gaps between consecutive good primes,
then large zeros of LRS cannot exist. The proof of the latter result proceeds by establishing
an upper bound on the number of good primes in the neighbourhood of a large zero that
violates the conjectured upper bound on gaps between good primes. In other words, if good
primes are distributed according to Cramér’s heuristic then large zeros cannot exist and the
Skolem Problem is decidable.

2 Background

We will need some basic notions concerning algebraic numbers. All material can be found
in [11]. Recall that a number field K is a subfield of C that is finite dimensional as a vector
space over Q. We assume that K is a Galois extension of Q, that is, it arises as the splitting
field of a polynomial with integer coefficients. All elements of K are algebraic over Q, that
is, they arise as roots of polynomials with integer coefficients. Those elements that arise
more specifically as roots of monic polynomials with integer coefficients are called algebraic
integers. The algebraic integers in K form a subring, denoted OK.

For a number field K, we denote by Gal(K/Q) the group of field automorphisms of K.
Given α ∈ K, the norm of α is defined by

NK/Q(α) =
∏

σ∈Gal(K/Q)

σ(α) .

The norm NK/Q(α) is rational for all α ∈ K; moreover NK/Q(α) = 0 iff α = 0, and NK/Q(α)
is an integer if α ∈ OK. Clearly we have |NK/Q(α)| ≤ MdK , where dK is the degree of K and

M := max
σ∈Gal(K/Q)

|σ(α)|

is the house of α.
We recall that every ideal in OK can be written uniquely up to the order of its factors as

the product of prime ideals. Given a rational prime P ∈ Z, we say that a prime ideal p lies
above P if p is a factor of POK. In this case we have that P | NK/Q(α) for all α ∈ p.

Let p be a prime ideal of OK lying above P ∈ Z. Recall that the Frobenius automorphism
σ ∈ Gal(K/Q) corresponding to p is such that σ(α) ≡ αP mod p for all α ∈ OK.

3 Large Zeros

For an LRS u = ⟨un⟩∞
n=0 as in (1), define its size to be

Cu := max{k, |a1|, . . . , |ak|, |u0|, . . . , |uk−1|, 10} .

Given a (partial) function f : R → R and a positive integer ℓ, let fℓ(x) = f ◦ f ◦ · · · ◦ f(x),
where the iteration is ℓ-fold (thus f1 = f). We say that n is a zero of u if un = 0, and we
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say that it is a large zero if the inequality

n < 2 exp6(Cu) (2)

fails.
As we argue later on, there are good reasons to expect that (2) holds for all zeros of

all non-degenerate LRS, which in turn would establish decidability of the Skolem Problem.
Unfortunately, we are unable to prove this assertion. Nevertheless, we will show that large
zeros are very sparse, i.e., have null density amongst the positive integers.

Let us first define what it means for a prime to be bad. Let X > 2 exp7(1) be an integer.
We say that the LRS u is small at level X if it has size Cu ≤ log6(X/2). Let us write
C := Cu (that is, we omit the dependence on u). We can express the general term ut of u as

ut =
s∑

i=1
Qi(t)αt

i ,

where s ≤ C and α1, . . . , αs are the roots of the characteristic polynomial

xk − a1xk−1 − · · · − ak

of u and Q1, . . . , Qs are univariate polynomials. Recall that if αi has multiplicity µi as
a characteristic root then Qi has degree at most µi − 1. Let K := Q(α1, . . . , αs). The
coefficients of each Qi are in K and can be computed from the initial values u0, . . . , uk−1 of
the sequence by solving a system of linear equations.

By Cramer’s determinant rule,2 each of the coefficients of Qi is the quotient of an algebraic
integer by the determinant3

∆ :=

∣∣∣∣∣∣∣∣∣
1 . . . 0 1 . . . 0 1 · · ·

α1 . . . α1 α2 . . . αs−1 αs . . .
...

. . .
...

...
. . .

...
...

. . .
αk−1

1 . . . (k − 1)µ1−1αk−1
1 αk−1

2 . . . (k − 1)µs−1αk−1
s−1 αk−1

s . . .

∣∣∣∣∣∣∣∣∣ .

By the Cauchy root bound we have |αi| ≤ 1+C for i ∈ {1, . . . , s}. It follows that the squared
Euclidean norm of each column vector above is at most

k(k − 1)2(k−1)(1 + C)2k < k2k(1 + C)2k .

Thus, by the Hadamard inequality,

∆2 < (k2k(1 + C)2k)k = (k(1 + C))2k2
.

Let us now replace u by v := ∆2u, noting that u and v have the same zeros. We then have
that

Pi := ∆2Qi(t) =
µi−1∑
j=0

ci,jtj ,

2 This rule is named after the 18th-century Genevan mathematician Gabriel Cramer, who is presumably
unrelated to the 20th-century Swedish mathematician Harald Cramér, whose work plays an important
role in motivating the present article.

3 The underlying matrix has s blocks, one for each characteristic root. For ℓ ∈ {1, . . . , s} the ℓ-th block
has dimension k × µℓ and has (i, j)-th element (i − 1)(j−1)α

(i−1)
ℓ for i ∈ {1, . . . , k} and j ∈ {1, . . . , µℓ}.
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where ci,j ∈ OK are algebraic integers whose house is at most

(1 + C)∆2 < (1 + C)4C2+1 < CC3
.

Let σ ∈ Σs be any permutation of the first s integers and let

βi := ασ(i) for i = 1, . . . , s .

For some nonnegative integer m consider the algebraic integer

vm,σ =
s∑

i=1
Pi(m)βiα

m
i . (3)

▶ Definition 2. We say that P ∈ [X, 2X] is bad, if there exists an LRS u which is small at
level X, a permutation σ ∈ Σs, and an integer m ∈ [0, X1/4], such that

The algebraic integer vm,σ defined in (3) above is non-zero, and
P is a prime factor of NK/Q(vm,σ).

Let Pbad(X) be the set of bad primes in [X, 2X].

▶ Proposition 3. We have

#Pbad(X) < X2/3

for all X > X0, where X0 is some effective absolute constant.

Proof. In order to estimate the size of Pbad(X), we first need to find out:
1. How many such expressions (3) are there?
2. How large are they?

For (1), the coefficients a1, . . . , ak and initial values u0, . . . , uk−1 are all in [−C, C], an
interval containing at most 2C + 1 < 3C integers. Altogether for fixed k there are at
most (3C)2k ≤ (3C)2C 2k-tuples, and summing up over k we derive an upper bound of
C(3C)2C < C3C distinct possible LRS of size at most C. This in turn is an upper bound on
the number of s-tuples ((Qi, αi))s

i=1. We must then multiply this quantity with the number
of possible permutations of the characteristic roots, which is at most C! < CC . There are
therefore at most C4C linear recurrence sequences w = ⟨wm⟩∞

m=0 whose m-th term is given
by

wm =
s∑

i=1
Pi(m)βiα

m
i for all m ≥ 0 .

This answers (1). As for (2), recall that the coefficients of Pi are of size at most CC3 .
There are at most C terms, the largest monomial involved in Pi(m) is at most mC < XC

and the largest root has magnitude at most 1 + C < 2C. Thus each individual term is of
absolute value at most

CC3+1(2C)XC(2C)X1/4
= exp

(
(C3 + 1) log C + log(2C) + C log X + X1/4 log(2C)

)
< exp(X0.26)

for X > X0, since C is tiny in comparison to X. Hence the norm of the number shown in
(3) is of size at most

exp(C!X0.26) < exp(X0.27) for X > X0 ,
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since the degree of K is at most C! (as K is the splitting field of a polynomial of degree at
most C). Moreover, as noted earlier, there are at most C4C such expressions. Thus a bad
prime P divides an integer which is a product of such numbers and is of size at most

exp(C4CX0.27) < exp(X0.28) for X > X0 .

Therefore the number of possible choices for P is at most X0.28. Since the number of
choices for m is at most X0.25, we conclude that, for X > X0, the cardinality of Pbad(X) is
at most

X0.25+0.28 < X2/3 ,

as required. ◀

We will shortly present heuristic arguments, in the spirit of Cramér, to the effect that
large zeros cannot exist. Let us however first prove that the set of large zeros is, at the very
least, sparse. To this end, let

L := {n ∈ N : there exists a non-degenerate LRS u such that un = 0 and (2) fails} .

Thus L is the set of large zeros of some non-degenerate LRS.

▶ Theorem 4. The set L has null density. In fact, writing L(X) = L ∩ [0, X], the inequality

#L(X) = O

(
X

(log X)B

)
holds with any constant B > 0.

Proof. Let X > 2 exp7(1), and put C := ⌈log6(X/2)⌉. We wish to count the number of large
zeros in the interval [0, X]. By definition, any such zero originates from an LRS u which is
small at level X, i.e., having size Cu ≤ C. As shown in the proof of Prop. 3, there are at
most C3C such LRS. On the other hand, Schmidt [26] proved that any LRS of order k or
less has at most exp3(3k log k) < exp4(C) zeros, assuming k is taken to be at most C. Hence
the total number of zeros emanating from such LRS is at most exp4(C)C3C , whence the
inequality

#L(X) ≪ X

(log X)B

easily follows for any B > 0. ◀

▶ Corollary 5. The set S := N \ L is a Universal Skolem Set of density one.

Proof. It is clear that the set L is recursive, and hence that S is recursive as well.
Density one follows from Thm. 4, and universality follows from the fact that S, by

definition, doesn’t contain any large zeros. Thus given any nondegenerate LRS u of size Cu,
its only possible zeros in S can only lie in the interval [0, 2 exp6(Cu)], which can readily be
checked. ◀

In the remainder of the paper we present a heuristic argument supporting the much
stronger assertion that large zeros do not exist, or in other words that the set L is empty.
The strategy is as follows. Recall that, according to Prop. 3 along with the prime number
theorem, the set of bad primes has null density amongst the prime numbers.
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We define an infinite set of prime numbers, termed “good”, that has density one amongst
all prime numbers. Assuming that good primes are distributed similarly as ordinary primes,
according to the Cramér model in number theory, we would expect that Cramér’s conjecture
on gaps between primes applies also to good primes. More precisely, this conjecture postulates
the existence of precise upper bounds on the largest possible gap between consecutive primes,
and is predicated on the heuristic that the primes behave as a set of randomly distributed
integers with asymptotic density conforming to the prime number theorem. However we show
that around any large zero of an LRS there is an interval and an upper bound on the number
of good primes in the interval that together contradict the above Cramér-type conjecture on
gaps between good primes. We therefore conjecture that large zeros do not exist.

Let us write P = {p1, p2, . . .} to denote the set of prime numbers, enumerated in increasing
order, and let Pgood := P\Pbad = {g1, g2, . . .} denote the set of good primes, again enumerated
in increasing order.

▶ Conjecture 6 (Cramér-Granville). For some κ > 1,

lim sup
j→∞

pj+1 − pj

log2 pj

= κ .

Cramér initially suggested that the constant κ in Conjecture 6 might be 1 [8], but
several decades later, building on substantial developments in the field, Granville produced
evidence that κ ≥ 2e−γ ≈ 1.1229 . . ., where γ is the Euler–Mascheroni constant [12]. There
is in any event considerable computational evidence in support of the Cramér-Granville
conjecture [22, 21].

As noted earlier, thanks to Prop. 3 and the prime number theorem, good primes have
density one amongst all prime numbers:

lim
X→∞

# (Pgood ∩ [0, X])
# (P ∩ [0, X]) = 1 .

Accordingly, it seems reasonable to suppose that, asymptotically speaking, good primes
should behave similarly to ordinary primes, or at least should exhibit similar “statistical”
properties. We therefore formulate:

▶ Conjecture 7. For some η > 1,

lim sup
j→∞

gj+1 − gj

log2 gj

= η .

We now have the following result.

▶ Theorem 8. Conjecture 7 implies that large zeros of LRS do not exist; or more precisely,
that L is a finite set.

Proof. Conjecture 7 can be reformulated as follows: there exist η > 1 and n0 ∈ N such that,
for all n ≥ n0, the interval

[n − η(log n)2, n]

always contains some good prime. In turn, this implies that the interval [n − η(log n)3, n]
must contain at least log n distinct good primes for n sufficiently large (say n ≥ n1 ≥
max{n0, 2 exp7(1)}).

Thus let n ≥ n1, put C := log6(n/2), and suppose that there is some LRS u with
Cu ≤ C such that un = 0—in other words, n is a large zero of u. Write n = P + m,
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where P ∈ [n − η(log n)3, n] is a good prime and 0 ≤ m < η(log n)3 < n1/4.4 As in the
proof of Prop. 3, let α1, . . . , αs be the characteristic roots of u, and let ∆2 be the smallest
positive integer such that, writing v := ∆2u, every term of vt of v has a representation as an
exponential polynomial

vt =
s∑

i=1
Pi(t)αt

i

in which all polynomials Pi have algebraic-integer coefficients.
Since un = vn = 0, we get

0 =
s∑

i=1
Pi(P + m)αP +m

i .

We now reduce the above equation modulo p, where p is some prime ideal of OK dividing P ,
from which we deduce that P divides

NK/Q

(
s∑

i=1
Pi(m)βiα

m
i

)
, (4)

where each βi = σ(αi) is obtained from applying the Frobenius automorphism induced by
p in K to αi. If the above expression (4) were non-zero, we would have to conclude that
P ∈ Pbad(n/2), contradicting our choice of P . Thus the expression (4) is zero.

Let us count how many expressions of the form (4) can vanish. More precisely, consider
the (complex-valued) LRS w = ⟨wj⟩∞

j=0 whose j-th term is given by

wj =
s∑

i=1
Pi(j)βiα

j
i for all j ≥ 0 ,

and whose order is at most C. Schmidt [26] proves that the number of distinct positive
integers m such that wm = 0 is at most

exp3(3C log C) < exp4(C) .

Of course, given u, the s-tuple (β1, . . . , βs) can be chosen in at most s! < CC ways. Thus
the total number of possible zeros for expression (4) is at most CC exp4(C) < exp5(C). Since
distinct choices of P give rise to distinct such zeros, and (as noted earlier) there are at least
log n possible choices for P , we conclude that

log n < exp5(C) ,

or equivalently n < exp6(C) = n/2, a contradiction. It thus follows, as claimed, that
Conjecture 7 prohibits the existence of large zeros of LRS that are greater than the absolute
constant n1. ◀

Thanks to Thm. 8, Conjecture 7 implies the existence of an algorithm to solve the Skolem
Problem. Given an LRS u, first decompose u into finitely many non-degenerate LRS, and
check that none of these is identically zero. Next, for each sub-LRS v of size Cv, simply
search for a zero up to index 2 exp6(Cv).5 If at the end of this process no zero has been
found for any of the LRS, return that u has no zeros.

4 Assume without loss of generality that n1 has been chosen sufficiently large also to ensure the validity
of the last of these inequalities.

5 Technically speaking, the algorithm should examine all terms up to index max{2 exp6(Cv), n1}, where
n1 is the absolute constant appearing in the proof of Thm. 8. The existence of n1 is implied by
Conjecture 7, but its effectivity would depend on the effectivity of Conjecture 7.
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