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Abstract

We study the relationship between informatic and classical differentiation on the
real line. The former arises when considering the interval domain over the reals
equipped with the Lebesgue measurement. We show that informatic differentiation
is a strict generalization of its classical counterpart, and wonder if it can provide a
springboard towards extending techniques and results from calculus to certain non
classically differentiable functions.

1 Introduction

Informatic differentiation arises in the study of domains and measurements [3].
Given a selfmap on a domain, its informatic derivative measures the rate
at which the content of the output changes with respect to the content of
the input. This, for instance, can be used to record how quickly a selfmap
converges to a fixed point, and sheds light on whether a fixed point is a local
attractor or not. These ideas have been used to study the complexity of
algorithms [5] and in the search for fixed points and zeros of functions [4].
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When specialized to the interval domain over the reals and continuous
real-valued functions, informatic differentiation bears strong similarities with
its classical counterpart. In this paper, we make precise and examine some of
these similarities, and show that informatic differentiation is a strict general-
ization of classical differentiation. One of the most promising consequences
of this observation is the possibility to extend certain results from calculus to
functions that do not necessarily admit classical derivatives.

2 Background

We shall be working exclusively with intervals of the real line, so knowledge
of domain theory is not required to read this paper. Still, let us hint at the
general idea of informatic differentiation (complete details are in [3]): given a
domain and measurement (D,µ), the informatic derivative of f : D → D at p
with respect to µ is

dfµ(p) =̂ lim
x→p

µf(x)− µf(p)

µx− µp

where the limit, if it exists, is taken in the µ topology on D. In the case we
are interested in, D will be the interval domain IR =̂ {[a, b] | a, b ∈ R∧ a 6 b}
of compact intervals over the reals, and µ will be the standard measure of
length, µ[a, b] = b− a. For p ∈ R we will denote the interval [p, p] by [p].
Thus, µ[p] = 0.

Now, any continuous map f : R → R has a canonical extension f̄ : IR →
IR. The informatic derivative of f̄ at [p] with respect to µ is then

df̄µ[p] =̂ lim
I→[p]

µf̄(I)

µI

where the limit is taken over all non-trivial intervals I ⊃ [p] with µI → 0.

The informatic and classical derivatives of a function are closely related as
the following theorem from [3] shows:

Theorem 2.1 Let f ∈ C(R) and let a, b ∈ R with a < b. Then for p ∈ R,

(i) df̄µ[p] > 0 whenever it exists.

(ii) If f ′(p) exists, then df̄µ[p] = |f
′(p)|.

(iii) df̄µ[p] = 0 iff f ′(p) = 0.

(iv) If df̄µ[x] > 0 for all x ∈ (a, b), then f ′ exists on (a, b).

(v) f ∈ C1(R) iff df̄µ ∈ C(R).

Proof. (Sketch.) (i), (ii), and (iii) are straightforward. For (iv), one first
shows that, whenever f achieves a local extremum at some point x ∈ R, then
the only value that df̄µ[x] can take, if it exists, is zero (cf. Example 2.2). Con-
sequently, if df̄µ[x] > 0 for all x ∈ (a, b), then f is monotone over (a, b), from
which the result easily follows. Lastly, for (v), note that if df̄µ is continuous
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at p, then f ′(p) must exist: either dfµ(p) = 0, in which case f ′(p) = 0, or
dfµ(p) > 0, and then by continuity dfµ > 0 on an open interval about p. 2

Example 2.2 The functions f(x) = x and g(x) = −x both have informatic
derivative 1 at p = 0. On the other hand, the function h(x) = |x| has no
informatic derivative at p = 0: indeed, when I is of the form [0, x], the ratio
µh̄(I)/µI = 1, whereas when I is of the form [−x, x], the ratio µh̄(I)/µI =
1/2, which shows that the limit as I → [0] cannot exist.

3 Defining the Sign of the Informatic Derivative

It may seem strange that df̄µ can capture differentiation without explicit ref-
erence to the sign of the derivative. The sign of the derivative, after all, is an
important piece of qualitative information. We now show that the existence
of an informatic derivative implicitly contains a description of the sign—even
if f is not classically differentiable.

Lemma 3.1 Let f ∈ C(R) and p ∈ R be such that df̄µ[p] exists. Then either

(i) lim
e→p+

max f̄([p, e])− f(p)

e− p
= 0 or (ii) lim

e→p+

min f̄([p, e])− f(p)

e− p
= 0 .

Moreover, df̄µ[p] = 0 iff both (i) and (ii) hold, and df̄µ[p] > 0 iff exactly one
of (i) and (ii) holds.

Proof. The only statement that is not immediate is that at least one of (i)
and (ii) must always hold. Without loss of generality, it suffices to consider
the case p = 0, f(0) = 0, and df̄µ[0] > 0.

For e > 0, let M+(e) = (max f̄([0, e]))/e and m+(e) = (min f̄([0, e]))/e.
Suppose that neither (i) nor (ii) holds. Then there exists q > 0 and two
decreasing sequences 〈e1, e2, . . .〉 and 〈e

′

1, e
′

2, . . .〉 of positive reals, both tending
to zero, such that, for all i, M+(ei) > q and m+(e′i) < −q. Note that this
entails that df̄µ[0] > q.

Let ε < q/12 be a positive real number. Find δ such that, for any non-
trivial interval I ⊆ R containing 0 with µ(I) < δ, |µf̄(I)/µI − df̄µ[0]| < ε.

We claim that there exists some 0 < e < δ/2 such that both M+(e) > q/3
and m+(e) < −q/3. To see this, choose i large enough so that ei, e

′

i < δ/2.
If neither ei nor e′i satisfies the condition, the continuous function g(x) =
max f̄([0, x]) + min f̄([0, x]) must change signs between ei and e′i. The in-
termediate value theorem therefore yields a value e between ei and e′i at
which g vanishes: M+(e) = −m+(e) = (1/2)(µf̄([0, e])/µ[0, e]). Note that
µf̄([0, e])/µ[0, e] > df̄µ[0] − ε > 11q/12, and thus M+(e) > 11q/24 > q/3.
Likewise, m+(e) < −q/3.

Let M−(e) = (max f̄([−e, 0]))/e and m−(e) = (min f̄([−e, 0]))/e. Notice
that we cannot both have M−(e) > M+(e) and m−(e) 6 m+(e), otherwise we

3



Martin and Ouaknine

would have µf̄([−e, e]) = µf̄([−e, 0]) which would quickly lead to a contra-
diction on account of the inequalities |µf̄([−e, e])/µ[−e, e] − df̄µ[0]| < ε and
|µf̄([−e, 0])/µ[−e, 0] − df̄µ[0]| < ε. Likewise, we cannot both have M+(e) >

M−(e) andm+(e) 6 m−(e). Without loss of generality let us therefore assume
that m−(e) 6 m+(e) < M−(e) 6 M+(e).

We now have

µf̄([−e, e])

µ[−e, e]
=
M+(e)−m−(e)

2
=

(M+(e)−m+(e)) + (M−(e)−m−(e))− (M−(e)−m+(e))

2
<

(df̄µ[0] + ε) + (df̄µ[0] + ε)− (0 + q/3)

2
=

df̄µ[0] + ε− q/6 < df̄µ[0] + q/12− q/6 = df̄µ[0]− q/12 < df̄µ[0]− ε .

In short, we get µf̄([−e, e])/µ[−e, e] < df̄µ[0]−ε, contradicting the hypothesis
|µf̄([−e, e])/µ[−e, e]− df̄µ[0]| < ε. 2

There is then an underlying trichotomy at work: either we have exactly
one of (i) and (ii), or df̄µ[p] = 0. This implicitly defines a quantity called the
sign of df̄µ at [p], denoted sgn(df̄µ)(p), formally given by

sgn(df̄µ)(p) =̂





+1 if only (ii)

−1 if only (i)

0 otherwise .

The informatic derivative on the real line is a signed quantity in disguise.

Definition 3.2 For f ∈ C(R) and p ∈ R, we define

dfµ(p) =̂ sgn(df̄µ)(p) · df̄µ[p]

whenever df̄µ[p] exists.

Theorem 3.3 Let f ∈ C(R) and p ∈ R be such that dfµ(p) exists.

(i) dfµ(p) = f ′(p) whenever f ′(p) exists.

(ii) If dfµ(p) > 0, then for all sufficiently small non-trivial intervals I =
[p − δ, p + δ], if f achieves its minimum over I at x− and its maximum
over I at x+, then x− < p < x+.

(iii) If dfµ(p) < 0, then for all sufficiently small non-trivial intervals I =
[p − δ, p + δ], if f achieves its minimum over I at x− and its maximum
over I at x+, then x+ < p < x−.

Proof. (Sketch.) (i) is immediate. For (ii) and (iii), first apply Lemma 3.1
to g(x) = f(2p− x), and then show that sgn(dḡµ)(p) = −sgn(df̄µ)(p). 2
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A classical derivative can thus be factored into two more primitive ideas:
(1) a sign, which gives qualitative information about the shape of the curve
f , and (2) a number df̄ , which expresses magnitude of rate of change.

4 Informatic vs. Classical Differentiability

Despite the close connection between the two notions, we now show that
informatic differentiation is strictly more general than classical differentiation.

Let l : [0, 1] → R be l(x) = ln(x + 1). Note that 0 < l(x) < x for all
x ∈ (0, 1]. Define a sequence 〈a1, a2, . . .〉 as follows: a1 = 1, and ai+1 = l(ai).

Lemma 4.1 The sequence 〈a1, a2, . . .〉 is strictly decreasing and converges to
zero.

Proof. We have l(1) < 1, i.e., a2 < a1. Assuming that an+1 < an, applying
l (which is strictly increasing) to both sides yields an+2 = l(an+1) < l(an) =
an+1. By induction, the sequence is hence strictly decreasing. Moreover, it is
bounded below by 0, and thus has a limit, which by continuity must remain
unchanged under l; 0 is the only such point. 2

Next, define a sequence 〈b1, b2, . . .〉 by picking bi such that ai+1 < bi < ai.
It is clear that the sequences 〈b1, b2, . . .〉 and 〈a1, b1, a2, b2, . . .〉 are also strictly
decreasing, with limit 0.

As a result, we have that any point x ∈ (0, 1] uniquely lies in an interval
of the form (bi, ai] or of the form (ai+1, bi]. We can thus define a function
f : [0, 1] → R, as follows: set f(0) = 0, and for any x ∈ (0, 1], if x ∈ (bi, ai],
let f(x) be such that the point (x, f(x)) lies on the segment connecting the
point (bi, 0) to the point (ai, ai) (i.e., f(x) = ai(x− bi)/(ai− bi)); otherwise (if
x ∈ (ai+1, bi]), let f(x) be such that (x, f(x)) lies on the segment connecting
(ai+1, ai+1) to (bi, 0). Since each of these segments clearly lies between the
lines y = x and y = 0, we have that 0 6 f(x) 6 x for all x ∈ [0, 1]. (See
Figure 1.)

Extend f to [0,∞) by setting f(x) = 1 for x > 1, and further extend
f to the whole of R by setting f(x) = −f(−x) for x < 0. f is plainly
a well-defined continuous function, and is moreover classically differentiable
everywhere outside of the set {±ai,±bi | i > 1} ∪ {0}.

Lemma 4.2 f is not classically differentiable at x = 0.

Proof. This easily follows from the fact that f takes on the values (ai, ai)
and (bi, 0) for all i. Since the sets {ai | i > 1} and {bi | i > 1} are dense at 0,
the classical derivative cannot exist as it would have to simultaneously take
on the values (among others) of 1 and 0. 2

Lemma 4.3 f is informatically differentiable at x = 0 and dfµ(0) = 1.
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Fig. 1. The construction of y = f(x) over [0, 1]

Proof. Observe first that since f is an odd function, it suffices to consider
intervals of the form [0, δ] when computing the limit underlying the informatic
derivative.

Let therefore I = [0, δ] be a non-trivial interval of length at most 1, and
find the least ai such that δ 6 ai. We then have ai+1 < δ, so [0, ai+1] ⊂ I,
which entails that f̄([0, ai+1]) ⊆ f̄(I), and thus µf̄([0, ai+1]) 6 µf̄(I). Note
that µf̄([0, ai+1]) = ai+1, since f(ai+1) = ai+1. Combining, we have

l(ai)

ai
=
ai+1

ai
6
ai+1

δ
=
µf̄([0, ai+1])

µI
6
µf̄(I)

µI
6 1 .

If we now let δ tend to 0, we get that ai tends to 0 as well, and hence that
the ratio l(ai)/ai = (l(0 + ai)− l(0))/ai tends to l

′(0) = 1. Consequently,

df̄µ[0] = lim
I→[0]

µf̄(I)

µI
= 1 .

We conclude the proof by noting that, clearly, sgn(df̄µ)(0) = 1. 2

We point out that it would be easy, if slightly messy, to convert f into a
function classically differentiable over R−{0}: one would need to ‘smooth’ f
over each of its cusps. The resulting function would be informatically differ-
entiable over the whole of R, yet still not classically differentiable at zero. We
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therefore record the following:

Theorem 4.4 In what follows, p, a, and b are real numbers with a < b, and
f is a continuous function from R to R.

(i) There are functions f which admit an informatic derivative at p yet which
are not classically differentiable at p.

(ii) There are functions f which are informatically differentiable over (a, b)
yet which fail to be classically differentiable over an infinite subset of

(a, b).

(iii) Any function f which is informatically differentiable over (a, b) must be
classically differentiable over a dense subset of (a, b).

Proof. (Sketch.) (ii) can be achieved by iterating the construction of f (in-
cluding the smoothing-over) over smaller and smaller sub-intervals of (a, b).
For (iii), first note that for any x ∈ (a, b), either df̄µ is strictly positive in
some open interval about x, or df̄µ vanishes at points arbitrarily close to x;
in either case, we can invoke Theorem 2.1 to conclude that f ′ exists in a set
with accumulation point x. 2

5 Conclusion

We have shown that notions of informatic and classical differentiation are
tightly related, yet that the former strictly generalizes the latter. As a con-
sequence, it may be possible to extend techniques and results which belong
to the classical differential calculus to functions that need not be classically
differentiable.

For example, a standard theorem of calculus states that if g(p) = p and
|g′(p)| < 1, then the fixed point p is a local attractor for g. An entirely similar
result holds in the informatic world [3,4]. Setting g(x) = α · f(x), where f
is the function constructed in the previous section and 0 6 α < 1, we are
therefore able to conclude that 0 is a locally attractive fixed point of g, even
though g′(0) does not exist. Along the same lines, it may be possible to extend
iterative zero-finding techniques such as Newton’s method to functions that
need not be classically differentiable.

The work presented in this paper only scratches the surface; it would
be very interesting to further investigate the links between informatic and
classical differentiation. In particular, it would be most useful to develop
a full differential (and integral?) informatic calculus, and perhaps even port
some of these ideas back over to the broader context of domain theory.

It may also be very fruitful to contrast the notions of informatic and non-
smooth differentiation [2].
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