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Abstract—A sequence is holonomic if its terms obey a linear
recurrence relation with polynomial coefficients. In this paper
we consider decision problems for first- and second-order
holonomic sequences involving inequalities. For first-order
sequences ⟨un⟩n and ⟨vn⟩n, we show that the problem of
determining whether un ≤ vn for each n reduces to the
problem of testing equality between periods (in the sense of
Kontsevich and Zagier) and their generalisations. For second-
order sequences whose coefficients are either constants or
linear polynomials, we show that Positivity (i.e., the problem
of determining whether the terms of a sequence are all non-
negative) also reduces to the problem of testing equality between
periods and their generalisations.

1. Introduction

1.1. Background

The class of holonomic (sometime P-finite) sequences,
which we will shortly define, underpins a number of com-
putational models with wide-ranging applications such as:
reachability questions for planar random walks and the cost
of searching in classical data structures such as quadtrees
[1]. Further discussions alongside numerous applications in
mathematics and the computational sciences are given in a
number of sources [2], [3], [4], [5].

A rational-valued sequence ⟨un⟩n is holonomic (of order
k and degree d) if there exist polynomials pk+1, . . . , p1 ∈
Q[n] of degree at most d with p1(x), pk+1(x) non-zero
polynomials such that

pk+1(n)un = pk(n)un−1 + · · ·+ p1(n)un−k.

Subject to a standard assumption that pk+1(n) ̸= 0 for non-
negative integer n, the above recurrence uniquely defines

an infinite sequence ⟨un⟩∞n=0 once the k initial values
u0, . . . , uk−1 are specified.1

The class of holonomic sequences contains the fa-
miliar class degree-0 sequences or C-finite sequences—
those sequences that satisfy a linear recurrence relation
with constant coefficients. Perhaps the best-known example
is the second-order Fibonacci sequence ⟨Fn⟩n satisfying
Fn = Fn−1 + Fn−2 for n ≥ 2, with F0 = 0, F1 = 1. The
subclass of first-order holonomic sequences are precisely the
hypergeometric sequences.

1.2. Motivation

Identities for holonomic sequences are a cornerstone of
the mathematical literature with much written on the close
connections with the analysis of generating functions in
fields such as combinatorics and probability [2], [5]. There
is “in contrast,. . . almost no algorithms are available for
inequalities” as noted by Kauers and Pillwein, [6].

Restricted variants of the inequality problem where at
least one of ⟨un⟩n and ⟨vn⟩n is taken to be constant have
garnered considerable attention in the Automated Verification
literature. For example, the Positivity Problem (i.e., whether
every term of a given sequence is non-negative) for C-finite
sequences is only known to be decidable at low orders, and
there is strong evidence that the problem is mathematically
intractable in general [7], [8]. There are even fewer decision
procedures for the Positivity Problem concerning holonomic
sequences that are not C-finite. However, several partial
results and heuristics are known in this setting (cf. [6], [9],
[10], [11], [12], [13]).

In the field of numerical analysis, the Minimality Problem
for holonomic sequences has received much attention. Briefly,
a non-zero holonomic sequence ⟨un⟩n satisfying a given re-
currence relation is minimal if given an independent solution

1. In the sequel, it will in fact often be convenient to start the sequence
at u−1 instead of u0.
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⟨vn⟩n one has un/vn → 0 as n → ∞. From numerical
calculations to asymptotic analysis, minimal solutions appear
in a number of sources [14], [15], [16], [17], [18], [19]—see
also the references therein. Kenison et al. [20] showed that
Positivity reduces to Minimality for second-order holonomic
sequences (a point we return to in our discussion of related
work).

On the one hand, decidability of the Positivity Problem
for hypergeometric sequences is straightforward to ascertain
(see Section 3). On the other hand, the decidability of the
Threshold Problem (i.e., whether every term of a given
sequence is at least a fixed value) is outstanding (we discuss
this point further in our discussion of related work).

Herein we focus our attention on low-order sequences
(first- and second-order). In the work that follows,

1) We consider the Inequality Problem for hypergeometric
sequences.

2) We consider the Positivity Problem for second-order
holonomic sequences; that is, sequences that satisfy a
recurrence relation of the form

p3(n)un = p2(n)un−1 + p1(n)un−2 , (1)

where p1, p2, p3 ∈ Q[x].

1.3. Contributions

Main Results. Our main focus in the present paper is on
Turing reductions among inequality problems, and also on
reductions to the problem of deciding equality for classes of
numbers (known as [univariate] periods, exponential periods,
and pseudoperiods that originate from algebraic geometry
and number theory). As we develop in the sequel, these
quantities also arise as linear combinations of values of
hypergeometric functions evaluated at rational or algebraic
parameters, or as Beta integrals evaluated at algebraic num-
bers. Various established conjectures appear in the literature
concerning the decidability of equality checking among
periods and related expressions, notably those of Kontsevich
and Zagier [21].

We summarise our main results as follows:
1) The Hypergeometric Inequality Problem reduces to the

problem of deciding equality between pseudoperiods
(Theorem 3.3).

2) For degree-1 second-order holonomic sequences, the
Positivity and Minimality Problems both reduce to
the problem of deciding equality between exponential
periods and pseudoperiods (Theorem 4.1).

3) Finally, taking a model-theoretic perspective, we point
out that all of the above problems become decidable
with the assistance of a classical Gabrielov–Vorobjov
oracle, as discussed in Section 5.

Polynomial Continued Fractions. Our approach to inequal-
ity decision problems via the analysis of continued fractions
will also be of independent interest to researchers further
afield.

There is a long history of mathematical research concern-
ing the class of continued fractions whose partial quotients

are given by polynomials. For example, the continued fraction
expansion for 4/π given by Lord Brouncker (as reported by
Wallis in [22]2)

4

π
= 1 +

∞

K
n=1

(2n− 1)2

2

has well-behaved partial quotients. Bowman and Mc Laughlin
[24] (see also [25]) coined the term polynomial continued
fraction for such constructions. The evaluation of polynomial
continued fractions whose partial quotients have low degrees
appears in [26], [27], [28]. For deg(an) ≤ 2 and deg(bn) ≤
1, Lorentzen and Waadeland [27, §6.4] express the poly-
nomial continued fraction K(an/bn) as a ratio of the value
of two hypergeometric functions with algebraic parameters
evaluated at an algebraic point. However, those authors do not
cover all cases at low degrees; for example, the polynomial
continued fraction K

∞
n=1

−n(n+1)
2n+1 corresponding to the recur-

rence relation (n+1)un = (2n+1)un−1−(n+1)un−2 is not
treated. Indeed the presentation in [27] does not handle cases
where the corresponding recurrence has a single repeated
characteristic root—the above is one such example with its
associated characteristic polynomial x2 − 2x+1 = (x− 1)2.
We extend the evaluation of low-degree polynomial continued
fractions given by Lorentzen and Waadeland by giving a
complete classification in terms of ratios of hypergeometric
functions in our proof of Theorem 4.9.

1.4. Related Work

Second-Order Sequences. In recent work, Kenison et al.
[20] showed that for second-order holonomic sequences
the Positivity Problem reduces to the Minimality Problem.
More specifically, those authors gave a semi-algorithm that
terminates on all non-minimal solutions by exploiting classi-
cal convergence results for continued fractions. The setting
herein, degree-1 second-order holonomic sequences, is far
stricter. On the other hand, our results are more profound and
far-reaching in this setting. Indeed, our reduction establishes
new and novel connections to long-standing conjectures on
deciding equality between periods (and their generalisations)
from algebraic geometry and number theory.

We note, for the avoidance of doubt, that reductions
to the aforementioned equality problems is critical on our
assumption that the polynomial coefficients in (1) have degree
at most one. To the best of our knowledge, there is no such
analysis available if we lift this restriction.

First-Order Recurrences. The Threshold and Membership
Problems are open even in the setting of hypergeometric
sequences—for a hypergeometric sequence ⟨un⟩n and target
t, recall that the Membership Problem asks to determine
whether un = t for some n. It is notable that the Membership
Problem reduces to the Threshold Problem in this setting due
to the asymptotic behaviour of hypergeometric sequences.
Since the release of this note as a preprint, further works

2. See the translation by Stedall [23].
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by Nosan et al. [29] and Kenison [30] have included dis-
cussions on the connection between the Threshold Problem
for hypergeometric sequences and the problem of deciding
equality between gamma products (see Section 3.1). In this
direction, Kenison establishes decidability of the Threshold
Problem for classes of hypergeometric sequences with certain
restrictive parameter symmetries (such as those sequences
whose parameters are all Gaussian integers). We delay formal
definitions and terminology to Section 2.

1.5. Structure

The remainder of the paper is structured as follows. In
Section 2 we give necessary preliminary material. We prove
Theorem 3.3 in Section 3. An overview of the proof of
Theorem 4.1 is given in Section 4. A necessary step in the
proof of Theorem 4.1, that Positivity reduces to Minimality
for degree-1 second-order holonomic sequences, is discussed
in Section 4.1. We conclude the paper and point out directions
for future research in Section 6. The appendices round out
the proof Theorem 4.1.

2. Preliminaries

We briefly recall some terminology for second-order
holonomic recurrences [20]. Consider a holonomic recurrence
of the form (1). For our purposes, we can safely assume that
none of the polynomial coefficients are identically zero (see
Section 3). Moreover by considering a shifted recurrence
relation we can also assume that each polynomial coefficient
has constant sign,3 and has no roots for n ≥ 0. Additionally
we can assume that sign(p3) = 1. Thus we define the
signature of a recurrence relation (1) (or its normalisation
(2)) as the ordered pair (sign(p2(n)), sign(p1(n))).

2.1. Continued Fractions

A continued fraction

∞

K
n=1

an
bn

:=
a1

b1 +
a2

b2 +
a3

b3 + . . .

is defined by an ordered pair of sequences ⟨an⟩n and ⟨bn⟩n
of complex numbers where an ̸= 0 for each n ∈ N.
Comprehensive accounts on the theory of continued fractions
are given in [27], [31]. Herein we shall always assume
that ⟨an⟩n and ⟨bn⟩n are real-valued rational functions. A
continued fraction converges to a value f = K(an/bn) if
its sequence of approximants ⟨fn⟩∞n=1 converges to f in
R̂ = R∪{∞}. The sequence ⟨fn⟩n is recursively defined by

3. We denote the sign of a number alternately as belonging to {1, 0,−1}
or (if zero is excluded) as belonging to {+,−}.

the following composition of linear fractional transformations.
For w ∈ R̂, define

sn(w) =
an

bn + w
for each n ∈ {1, 2, . . .}.

We set fn := s1 ◦ · · · ◦ sn(0) so that fn = K
n
m=1

am

bm
.

Let ⟨An⟩∞n=−1 and ⟨Bn⟩∞n=−1 satisfy the recurrence
relation un = bnun−1 + anun−2 with initial values A−1 =
1, A0 = 0, B−1 = 0, and B0 = 1. As a pair, ⟨An⟩∞n=−1

and ⟨Bn⟩∞n=−1 form a basis for the solution space of
the recurrence. We call ⟨An⟩n and ⟨Bn⟩n the sequences
of canonical numerators and canonical denominators of
K(an/bn) because fn = An/Bn for each n ∈ N.

Two continued fractions are equivalent if they share the
same sequence of approximants. The following theorem gives
a procedure to move between equivalent continued fractions
[27], [31].

Theorem 2.1. The continued fractions K(an/bn) and
K(cn/dn) are equivalent if and only if there exists a
sequence ⟨rn⟩∞n=0 with r0 = 1 and rn ̸= 0 for each n ∈ N
such that cn = rnrn−1an and dn = rnbn for each n ∈ N.

Second-Order Holonomic Recurrences. Recall that a non-
trivial solution ⟨un⟩∞n=−1 of the recurrence

un = bnun−1 + anun−2 (2)

is minimal provided that, for all other linearly indepen-
dent solutions ⟨vn⟩∞n=−1 of the same recurrence, we have
limn→∞ un/vn = 0. Since the vector space of solutions has
dimension two, it is equivalent for a sequence ⟨un⟩∞n=−1 to
be minimal for there to exist a linearly independent sequence
⟨vn⟩∞n=−1 satisfying the above property. In such cases the
solution ⟨vn⟩n is called dominant.

Note that if ⟨un⟩n and ⟨vn⟩n are linearly independent
solutions of the above recurrence such that un/vn ∼ C ∈ R̂
then the recurrence relation has a minimal solution [27].
If, in addition, ⟨un⟩n is minimal then all solutions of the
form ⟨cun⟩n where c ̸= 0 are also minimal If ⟨un⟩n and
⟨vn⟩n are respectively minimal and dominant solutions of
the recurrence, then together they form a basis of the solution
space.

The existence of minimal solutions to a given second-
order recurrence has a long history dating back as far as
work by Pincherle [32] (cf. [14], [27], [28]).

Theorem 2.2 (Pincherle). Let ⟨an⟩∞n=1 and ⟨bn⟩∞n=1 be real-
valued sequences such that each of the terms an is non-
zero. First, the recurrence un = bnun−1 + anun−2 has
a minimal solution if and only if the continued fraction
K(an/bn) converges. Second, if ⟨un⟩n is a minimal solution
of this recurrence then the limit of K(an/bn) is −u0/u−1.
As a consequence, the sequence of canonical denominators
⟨Bn⟩∞n=−1 is a minimal solution if and only if the value of
K(an/bn) is ∞ ∈ R̂.

The following determinant lemma below is well-known
(see, for example, [27, Lemma 4, §IV]).
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Lemma 2.3. Suppose that ⟨un⟩n and ⟨vn⟩n are both so-
lutions to the recurrence relation un = bnun−1 + anun−2.
Then

unvn−1 − un−1vn = (u0v−1 − u−1v0)

n∏
k=1

(−ak).

Convergence of Continued Fractions. The following the-
orem collects together results from the literature; the first
statement follows as a consequence of Worpitzky’s Theorem
(see [31, Theorem 3.29]) and the convergence results in [33],
whilst the second statement follows from the Lane–Wall
characterisation of convergence [31, Theorem 3.3].

Theorem 2.4. Let K(κn/1) be a continued fraction with
⟨κn⟩n a function in Q(n). If κn < 0 for all sufficiently large
n ∈ N, then K(κn/1) converges to a value in R̂ if and only
if, either

• limn→∞ κn exists and is strictly above −1/4, or
• limn→∞ κn = −1/4 and moreover κn ≥ −1/4 −
1/(4n)2 − 1/(4n log n)2 for all sufficiently large n.

We now turn our attention to positive continued fractions.
A continued fraction K(an/bn) is positive if an > 0
and bn ≥ 0 for each n ∈ N. We will use the following
monotonicity result for the odd and even approximants of
positive continued fractions [27], [31].

Lemma 2.5. Suppose that for each n ∈ N the sequences
⟨an⟩n and ⟨bn⟩n are positive. Let ⟨fn⟩n be the sequence
of approximants associated with K

∞
n=1(an/bn). Then f2 ≤

f4 ≤ · · · ≤ f2m ≤ · · · ≤ f2m+1 ≤ · · · ≤ f3 ≤ f1. If, in
addition, b1 > 0 then the subsequences ⟨f2n⟩n and ⟨f2n+1⟩n
converge to finite, non-negative limits.

We recall a necessary and sufficient criterion for conver-
gence of a positive continued fraction [31, Theorem 3.14].

Theorem 2.6 (Stern–Stolz Theorem). A positive continued
fraction K(an/bn) converges if and only if its Stern–Stolz
series

∑∞
n=1

∣∣∣bn ∏n
k=1 a

(−1)n−k+1

k

∣∣∣ diverges to ∞.

2.2. Periods and the Kontsevich–Zagier Conjecture

Kontsevich and Zagier [21] define a period as a complex
number that can be obtained as the value of an integral of
an algebraic function over a semialgebraic domain. That is
to say, the real and imaginary parts of the number can be
written as absolutely convergent integrals of the form∫

σ

f(x1, . . . , xn) dx1 · · · dxn

where f is an algebraic function and the domain σ ⊆ Rn is
given by polynomial inequalities with algebraic coefficients.
The set of periods forms a countable subring in C and it is
easily seen that this ring contains all the algebraic numbers
Q. Both logα (for α ∈ Q) and π are periods since

logα =

∫ α

1

1

x
dx and π =

∫ ∞

0

2

x2 + 1
dx.

Given two algebraic numbers α and β, the problem of
determining algorithmically whether α = β is known to
be decidable. There is no known decision procedure for
determining equality between two periods. Subject to the
truth of the next conjecture due to Kontsevich and Zagier
(cf. [21, Conjecture 1]), the equality of periods is decidable.

Conjecture 2.7. Suppose that a period has two integral
representations. One can pass between the representations
via a finite sequence of admissible transformations where
each transformation preserves the structure that all functions
and domains of integration are algebraic with coefficients
in Q. The admissible transformations are: linearity of the
integral, a change of variables, and Stokes’s formula.

It is currently not known whether Euler’s number e is a
period. The following more general notion was introduced
in [21] to extend the definition of period to a larger class
containing e. An exponential period is a complex number
that can be written as an absolutely convergent integral of
the form ∫

σ

e−f(x1,...,xn)g(x1, . . . , xn) dx1 · · · dxn

where f and g are algebraic functions with algebraic coeffi-
cients and the domain σ ⊆ Rn is a semialgebraic set defined
by polynomials with algebraic coefficients. Conjecture 2.7
is predicted to generalise to exponential periods in [21].

2.3. Pseudoperiods

In this paper we also encounter integrals that formally
resemble univariate periods, and that arise variously as
rational linear combinations of values of hypergeometric
functions evaluated at real algebraic parameters, and as
beta integrals evaluated at algebraic numbers. A (univariate)
pseudoperiod is a number that can be written as an absolutely
convergent integral of the form∫

σ

n∑
i=1

exp
( k∑

j=1

αi,j Log fi,j(x)
)
dx (n, k ∈ N) ,

where the domain σ ⊆ R is a semialgebraic set, the functions
fi,j are real-valued, non-zero algebraic functions on σ
excluding a finite number of points (the poles of f in σ),
αi,j ∈ Q, and Log is the principal branch of the complex
logarithm.

Integrals of the above form are well-defined since the
integrand is measurable4. Further, the integrand is (Lebesgue)
integrable as the integral is absolutely convergent. Since σ
is a finite union of points and open intervals, we lose no
generality assuming that σ is an interval with algebraic
endpoints, and that moreover it does not contain any poles
or zeros of the fi,j .

4. For a real-valued algebraic function f , Log f(x) is defined and is
continuous at all but finitely many points (the poles and zeros of f ), and
is thus measurable. Since exp(

∑
αi Log fi(x)) =

∏
exp(αi Log fi(x)),

and exp(αi Log fi(x)) is measurable, the claim follows.
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The formal resemblance to periods is evidenced by
defining f(x)α := exp(αLog f(x)), whence the integrand
becomes

∑n
i=1

∏
j=1 fi,j(x)

αk . When all the αi,j are ra-
tional, the pseudoperiod is readily seen to be a bona fide
univariate period. Conversely, any univariate period is a
pseudoperiod.

We remark that there is no particular reason to restrict
the definition of pseudoperiods to univariate functions, in
which case any period would likewise be a pseudoperiod. In
this paper we only encounter univariate entities, so we omit
discussion of a more general definition.

Given two finite products of pseudoperiods, the Pseu-
doperiod Equality Problem asks to determine whether the
products are equal. The problem is decidable subject to the
truth of a stronger version of Conjecture 2.7.

2.4. Infinite Products and the Gamma Function

We say an infinite product
∏∞

k=1 r(k) converges if the
sequence of partial products converges to a finite non-zero
limit (otherwise the product is said to diverge). Recall the
following classical theorem [34], [35] for the gamma function
(see [36]) Γ: C \ {0,−1,−2, . . .}.

Theorem 2.8. Consider the rational function

r(k) :=
c(k + φ1) · · · (k + φm)

(k + ψ1) · · · (k + ψm′)

where we suppose that each φ1, . . . , φm, ψ1, . . . , ψm′ is a
complex number that is neither zero nor a negative integer.
The infinite product

∏∞
k=1 r(k) converges to a finite non-zero

limit only if c = 1, m = m′, and
∑

j φj =
∑

j ψj . Further,
the value of the limit is given by

∞∏
k=0

r(k) =

m∏
j=1

Γ(ψj)

Γ(φj)
.

Let ⟨wn⟩∞n=−1 be a hypergeometric sequence given by
wn := w−1

∏n
k=0 r(k) with w−1 ̸= 0 and r(k) as above.

We deduce that ⟨wn⟩n converges to a finite non-zero limit
only if r(k), which we term the associated shift quotient,
satisfies the conditions given in Theorem 2.8.

For ξ, ν ∈ C with Re(ξ),Re(ν) > 0, the beta function
(see [36]) is given by B(ξ, ν) =

∫ 1

0
tξ(1 − t)ν dt, which

is a pseudoperiod when ξ and ν are algebraic. Further, we
have the following identity Γ(ξ)Γ(ν) = B(ξ, ν)Γ(ξ + ν),
which we shall (repeatedly) apply to products of the form
Γ(ψ1) · · ·Γ(ψk) in the sequel.

2.5. Hypergeometric Functions

A series
∑
ckx

k is called hypergeometric if the sequence
⟨cn⟩n is hypergeometric. It can be shown (see [36]) that a
hypergeometric series can be written as follows

∞∑
k=0

ckx
k = c0

∞∑
k=0

(φ1)k · · · (φj)k
(ψ1)k · · · (ψℓ)k

xk

k!
,

where, for ρ ∈ C, the (rising) Pochhammer symbol (ρ)n is
defined as (ρ)0 = 1, and (ρ)n =

∏n−1
j=0 (ρ + j) for n ≥ 1.

Here the parameters ψm are not negative integers or zero
for otherwise the denominator would vanish for some k.
The series terminates if any of the parameters φm is zero
or a negative integer. We let jFℓ(φ1, . . . , φj ;ψ1, . . . , ψℓ;x)
denote the series on the right-hand side.

A hypergeometric series jFℓ(φ1, . . . , φj ;ψ1, . . . , ψℓ;x)
converges absolutely for all x if j ≤ ℓ and for |x| < 1
if j = ℓ + 1. It diverges for all x ̸= 0 if j > ℓ + 1 and
the series does not terminate. Furthermore, in the case that
j = ℓ + 1, the series with |x| = 1 converges absolutely if
Re(

∑
ψi−

∑
φi) > 0. The series converges conditionally if

x ̸= 1 and 0 ≥ Re(
∑
ψi−

∑
φi) > −1. The series diverges

if Re(
∑
ψi −

∑
φi) ≤ −1.

Abusing notation, we let jFℓ(φ1, . . . , φj ;ψ1, . . . , ψℓ;x)
denote the analytic function defined by the corresponding
series in its radius of convergence (assuming it has a
positive radius of convergence), and elsewhere by analytic
continuation.

Example 2.9. Of special interest to us is the Gauss hyper-
geometric function 2F1(a, b; c;x), with a, b, c ∈ C, c neither
zero nor a negative integer. It is a single-valued function on
the cut complex plane C \ [1,∞) (cf. [27, §VI.1]).

Another function of interest is the confluent hypergeo-
metric function (of the first kind) 1F1(a; b;x), b neither zero
nor a negative integer. The series defines an entire function.

For Re(c) > Re(b) > 0, Euler gave the following integral
representation: for all x ∈ C \ [1,∞), 2F1(a, b; c;x) is equal
to

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− xt)a
dt, (3)

where tb, (1− t)c−b−1, and (1− xt)−a have their principal
values. Here the path of integration is understood to be along
the real line between 0 and 1. We observe that for a, b, c,
x ∈ Q, the integral in (3) is a pseudoperiod.

3. The Hypergeometric Inequality Problem

At order one, both minimality and positivity are algo-
rithmically trivial. Indeed, positivity of a hypergeometric
sequence is readily determined by inspecting the polyno-
mial coefficients of its defining recurrence relation together
with the sign of the first few values of the sequence. For
minimality, the solution set of a hypergeometric recurrence
is a one-dimensional vector space and so such recurrences
cannot possibly admit minimal sequences. Thus we have the
following.

Lemma 3.1. Minimality and Positivity are both decidable
for hypergeometric sequences.

We also invoke the following lemma (considered folklore)
in our proof of Theorem 3.3 (below).

Lemma 3.2. The Skolem Problem for hypergeometric se-
quences is decidable.
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Recall that the Skolem Problem for holonomic sequences
asks to determine whether there is an index n such that
un = 0. Discussions of the Skolem Problem for C-finite
sequences at low orders are given in [8].

Let us turn our attention to the subject of this sec-
tion. Given two hypergeometric sequences ⟨un⟩∞n=−1 and
⟨vn⟩∞n=−1, the Hypergeometric Inequality Problem (HIP)
asks to determine whether un ≤ vn for each n ∈ {−1, 0, . . .}.
The main result of this section is the following theorem,
which follows from Lemma 3.4 and Proposition 3.6.

Theorem 3.3. The Hypergeometric Inequality Problem
reduces to the problem of checking equality between pseu-
doperiods.

3.1. Reduction Argument for Theorem 3.3

An intermediate step in our proof of Theorem 3.3
introduces the Hypergeometric Threshold Problem (HTP).
Given a hypergeometric sequence ⟨wn⟩∞n and a real-algebraic
constant θ (the threshold), the problem is to determine
wn ≤ θ for each n. Clearly the Positivity Problem is a
specialisation of the Threshold Problem with threshold zero.

Lemma 3.4. The Hypergeometric Inequality Problem re-
duces to the Hypergeometric Threshold Problem.

Proof. Let ⟨ûn⟩n and ⟨ũn⟩n be hypergeometric sequences
with associated shift quotients r̂(n) and r̃(n), respectively.
We can assume that r̂(n) and r̃(n) are constant in sign
by shifting the sequence as appropriate. By Lemma 3.2,
one can decide whether there exists an n ∈ {−1, 0, . . .}
such that ũn = 0. If such an n exists, the HIP reduces
to determining the Positivity Problem for ⟨ûn⟩n (which is
trivial by Lemma 3.1) with a number of comparisons between
initial values determined by the shift. Thus we can assume
there is no n ∈ {−1, 0, . . .} for which ũn = 0.

Let ⟨wn⟩n be the sequence with terms given by wn :=
sign(ũn)ûn/ũn. The sequence ⟨wn⟩n is well-defined and
satisfies the recurrence wn = r(n)wn−1 where r(n) :=
sign(r̃)r̂(n)/r̃(n). Thus ⟨wn⟩n is a hypergeometric sequence.
It is clear that ûn ≤ ũn for each n if and only if
wn ≤ sign(r̃). There are two cases to consider: either
sign(r̃) is alternating or constant. If sign(r̃) is alternating
then one considers two instances of the HTP as it is
sufficient to determine whether w2n ≤ − sign(ũ−1) and
w2n−1 ≤ sign(ũ−1) for each n. Thus in both cases the HIP
reduces to instances of the HTP.

Let us list our ongoing assumptions (which we make
without loss of generality):

1) Given an instance of the HTP, we shall assume that the
threshold is non-zero (Lemma 3.1).

2) Given a hypergeometric sequence ⟨wn⟩n we shall
assume that sign(wn) is constant (Lemma 3.4) and that
there is no such n ∈ N for which wn = 0 (Lemma 3.2).

We add two further assumptions to our list:

3) Given a hypergeometric sequence ⟨wn⟩n, we shall
assume that the associated shift quotient takes the form

r(n) = c
(n+ φ1) · · · (n+ φm)

(n+ ψ1) · · · (n+ ψm′)

such that c > 0 and each parameter φj , ψj ∈
Q. By taking a suitable shift, we can assume that
Re(φj),Re(ψj) > 0 for each j.

4) Subject to a suitable shift, we assume that both ⟨r(n)⟩n
and ⟨r(n)− 1⟩n are monotone and have constant sign.

Lemma 3.5. The Hypergeometric Threshold Problem re-
duces to the problem of determining equality between a
real-algebraic number and the limit of a hypergeometric
sequence.

Proof. We have wn − wn−1 = (r(n)− 1)wn−1. Sequences
⟨r(n)− 1⟩n and ⟨wn⟩n have constant sign (by assumption),
so we deduce that ⟨wn⟩n is monotone. For the class of
sequences that diverge to ±∞, the HTP is easily decidable.
Indeed, if ⟨wn⟩n diverges to −∞ then it suffices to check
whether w−1 ≤ θ. Thus we can safely assume that the limit
of ⟨wn⟩n exists and is finite.

Assume that limn→∞ wn = ℓ ∈ R. Let θ, the threshold,
be a real-algebraic constant. Then one needs to determine
whether: ℓ > θ, in which case one can detect that eventually
wn > θ; ℓ < θ, in which case it suffices to check whether
w−1 ≤ θ as ⟨wn⟩n is monotone; or ℓ = θ. Thus the HIP
is recursively enumerable and, in addition, the problem is
decidable subject to an oracle that can determine whether
ℓ = θ.

Proposition 3.6. The Hypergeometric Threshold Problem
reduces to the Pseudoperiod Equality Problem.

Proof. By Lemma 3.5, the HTP is decidable subject to
determining whether limn→∞ wn = ℓ is equal to a given
algebraic threshold θ. As previously noted, we can freely
assume that θ ̸= 0. This in turn means we can assume
that ℓ ̸= 0. Thus the associated shift quotient r(n) satisfies
the necessary assumptions in Theorem 2.8 and, additionally,
ℓ = θ if and only if Γ(ψ1) · · ·Γ(ψk) = θ · Γ(φ1) · · ·Γ(φk).

For the former product we have

Γ(ψ1) · · ·Γ(ψk) = Γ(
∑k

i=1 ψi)

k−1∏
i=1

B(
∑

j≤i ψj , ψi+1),

and we obtain an analogous expression (also in terms
of the beta function) for the latter product. Since∑k

i=1 ψi =
∑k

i=1 φi, the problem of determining whether
Γ(ψ1) · · ·Γ(ψk) and θ · Γ(φ1) · · ·Γ(φk) are equal reduces
to determining whether

k−1∏
i=1

B(
∑

j≤i ψj , ψi+1) = θ

k−1∏
i=1

B(
∑

j≤i φj , φi+1).

Consequently, determining whether ℓ = θ reduces to an
instance of the Pseudoperiod Equality Problem.

Remark 3.7. If the sequence parameters φℓ and ψm in the
preceding displayed equation are rational, then the act of
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determining whether the equality holds is an instance of test-
ing equality between periods. Hence in this restricted setting,
the HIP is decidable subject to the truth of Conjecture 2.7.

As can be seen from the preceding discussion, the HIP
reduces to determining the multiplicative relations of the
Gamma function for given inputs. The latter problem is the
subject of an older conjecture due to Rohrlich [37, Conjec-
ture 21]. The Rohrlich Conjecture predicts that any multi-
plicative relation of the form

∏n
j=1(2π)

−1/2Γ(ξ) = θ for
appropriate ξj ∈ Q and real-algebraic θ can be derived from
the standard functional identities for the gamma function
(the translation, reflection, and multiplicative properties). We
remark that, similar to Conjecture 2.7, Rohrlich’s conjecture
implies there is a semi-algorithm that can decide the HIP
with rational inputs by enumerating all applications of the
functional relations.

4. The Positivity and Minimality Problems for
Degree-1 Second-Order Holonomic Sequences

Let us state the main result of this section.

Theorem 4.1. For degree-1 second-order holonomic se-
quences, the Positivity and Minimality Problems reduce to
deciding equalities between pseudoperiods and exponential
periods.

Proof Strategy. We give a high-level overview of our
proof strategy. First, we will show that Positivity reduces to
Minimality for degree-1 second-order holonomic sequences
(Section 4.1). We thus deduce the desired corollary.

Corollary 4.2. For degree-1 second-order holonomic se-
quences the Positivity Problem reduces to the Minimality
Problem.

In light of Corollary 4.2, in order to establish Theorem 4.1
it remains to prove that Minimality for degree-1 second-
order sequences reduces to the aforementioned equality
checking problems. For reference, Theorem 4.1 will follow
as a consequence of Corollary 4.7 and Theorem 4.9 (below).

4.1. Positivity reduces to Minimality at Low Degrees

For second-order holonomic sequences, Kenison et al.
[20] proved that Positivity reduces to Minimality for second-
order holonomic sequences. There is a single crucial step in
their reduction argument that does not preserve the degrees of
the polynomial coefficients—which is necessary to establish
Theorem 4.1 above. More specifically, this step transforms
a (−,+) relation into a (+,−) relation. It is therefore
necessary to closer examine the case (−,+) under our
running assumption that the recurrence in question is degree-
1. We perform this examination in the work that follows.

We shall require the following technical lemma.

Lemma 4.3. Suppose that ⟨un⟩n is a solution sequence for
recurrence (4) with signature (−,+). Assume that u−1 > 0.
For even n ∈ N, un > 0 if and only if fn > −u0/u−1. For
odd n ∈ N, un > 0 if and only if fn < −u0/u−1.

Proof. Recall the canonical solution sequences ⟨An⟩∞n=−1

and ⟨Bn⟩∞n=−1. Then un = Anu−1 + Bnu0 for each n ∈
{−1, 0, . . .}. For recurrences with signature (−,+), it is
easy to show by induction that Bn < 0 for each odd n ∈ N,
and Bn > 0 for each even n ∈ N. Thus for even n ∈ N
we have that un > 0 if and only if An/Bn + u0/u−1 =
fn + u0/u−1 > 0. The case for odd n ∈ N is handled in a
similar fashion.

Another consequence of the work by Kenison et al. shows
that, for our purposes, it is sufficient to consider only those
recurrence relations whose associated continued fraction
K(an/bn) converges to a finite limit. This claim is explained
by the following observation (due to [20]): the positive
solutions of a second-order holonomic recurrence relation
with signature (−,+) are precisely those solutions that are
minimal. Without loss of generality we can assume the limit
of the associated continued fraction is finite due to Pincherle’s
Theorem. Thus all that remains is to prove the following
proposition.

Proposition 4.4. Suppose that ⟨un⟩n with initial values
u−1, u0 > 0 is a solution sequence for a degree-1 recurrence
(4) with signature (−,+) whose associated continued frac-
tion K(an/bn) converges to a finite limit f . The following
statements are equivalent:

1) the sequence ⟨un⟩n is positive,
2) the sequence ⟨un⟩n is minimal, and
3) −u0/u−1 = f .

Proof. The sequence ⟨−fn⟩∞n=1 is the sequence of approx-
imants associated with K(an/− bn). This is a positive
continued fraction and so, by Lemma 2.5, the subsequences
⟨−f2n⟩∞n=1 and ⟨−f2n−1⟩∞n=1 converge to finite limits −ℓ1
and −ℓ2, respectively. By Lemma 4.3, a solution sequence
⟨un⟩n is positive if and only if ℓ2 ≤ −u0/u−1 ≤ ℓ1. The
Stern–Stolz series (Theorem 2.6) associated with K(an/−bn)
diverges due to our assumption that each of the coefficients
in (4) is a polynomial with degree in {0, 1}. We conclude
that ℓ1 = ℓ2. Thus ⟨un⟩n is positive if and only if −u0/u−1

is equal to f = ℓ1 = ℓ2. From Theorem 2.2, a solution
sequence ⟨un⟩n is minimal if and only if −u0/u−1 is the
value of the continued fraction K(an/bn).

We thus deduce the desired result, Corollary 4.2.

4.2. Parameterising the Minimality Problem

In the sequel it is helpful to parameterise the Minimality
Problem as follows.

Problem 4.5 (Minimal(j, k, ℓ)). Given a solution ⟨vn⟩∞n=−1

to (1) with deg(p3) = j,deg(p2) = k, and deg(p1) = ℓ,
determine whether ⟨vn⟩n is minimal.

Cases where any of the polynomial coefficients are
identically 0 are straightforward consequences of the work
in Section 3. Thus we shall focus on j, k, ℓ ∈ {0, 1}.
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4.3. Interreductions for Minimal(j, k, ℓ)

Consider problem Minimal(0, 0, 0): determine whether
a holonomic sequence that solves a second-order C-finite
recurrence is a minimal solution. Since this problem is
a special case of Minimal(1, 1, 1) (multiply each of the
coefficients by (n + 1)) we make no further mention of
Minimal(0, 0, 0) in the sequel. Thus we need only consider
the eight remaining cases associated with Minimal(j, k, ℓ).
We first reduce the number of problems to five by establishing
interreductions between instances of Minimal(j, k, ℓ). Next
we employ minimality-preserving transformations to obtain
canonical instances of each of the remaining problems
(Corollary 4.7). In the sequel we show that these canonical
instances reduce to checking whether a pseudoperiod or an
exponential period vanishes. The different cases are listed
in Theorem 4.9.

For the remaining problem instances it is useful to
establish the following conventions. In each instance
Minimal(j, k, ℓ) we consider a recurrence relation of the form

(α1n+ α0)un = (β1n+ β0)un−1 + (γ1n+ γ0)un−2. (4)

In the case that deg(α1n + α0) = 0 we understand that
α1 = 0 (and adopt a similar convention for the other
coefficients). We shall always assume that the values α0, β0,
and γ0 are non-zero in accordance with the assumption that
the polynomial coefficients do not vanish on non-negative
integers. We also introduce the notation α := α0/α1.

For recurrence (4) with α1 ̸= 0, we define the associated
characteristic polynomial as α1x

2 − β1x− γ1, and refer to
its roots as the associated characteristic roots.

Proposition 4.6 presents the cases we need to consider
to establish the Minimality Problem at low degrees. The
proof of Proposition 4.6, a necessary (but tedious) exercise
in accounting, is relegated to Appendix A.

Proposition 4.6.

1) Minimal(0, k, 1) and Minimal(1, k, 0) are interreducible.
2) Minimal(1, 0, 0) reduces to Minimal(1, 1, 1).
3) Minimal(1, 1, 1) reduces to the Minimality Problem for

a recurrence of the form

un =
β1n+ β0
n+ α

un−1 +
γ1n+ γ0
n+ α

un−2, (5)

where α, β0, β1, γ0, γ1 ∈ Q, β1 > 0, and |γ1| = β1.
The characteristic roots associated to the recurrence
are (β1 ±

√
β2
1 + 4γ1)/2. If β2

1 + 4γ1 = 0, then we
have a further reduction to the Minimality Problem for
solutions to

un =
2n+ β0
n+ α

un−1 −
n+ γ0
n+ α

un−2, (6)

where α, β0, γ0 ∈ Q and the recurrence has a single
repeated characteristic root 1.

4) Minimal(1, 0, 1) reduces to the Minimality Problem for
solutions to a recurrence of the form5

un =
β0

n+ α
un−1 +

n+ γ0
n+ α

un−2, (7)

where α, γ0 ∈ Q and β0 ∈ Q∩R>0. The characteristic
roots associated to the recurrence are ±1.

Let λ and µ be the roots of the associated characteristic
polynomial such that |λ| ≤ |µ|. In recurrences (5)–(7) γ1
is not zero so we have λ, µ ̸= 0. Further, by setting µ = 1
for (7), we have that µ > 0 for the associated recurrences
(5)–(7), as the coefficient β1 > 0 in the first two.

We shall treat recurrences (5) and (6) as distinct cases
in the sequel. That is to say, in the former we shall always
assume that β2

1 + 4γ1 ̸= 0 (so that the characteristic roots
are distinct).

The following corollary is an immediate application of
Proposition 4.6.

Corollary 4.7. For j, k, ℓ ∈ {0, 1}, decidability of prob-
lem Minimal(j, k, ℓ) reduces to proving decidability of
Minimal(0, 1, 0), Minimal(0, 1, 1), and decidability of the
Minimality Problem for solutions to recurrences (5)–(7).

Recall that the problem of determining whether a degree-
1 second-order recurrence relation admits minimal solu-
tions is decidable. The next lemma gives necessary and
sufficient conditions for the relevant recurrences to admit
minimal solutions. The straightforward proof, which uses
Pincherle’s Theorem and standard results on the convergence
of continued fractions stated in the Preliminaries, is given
in Appendix B. In particular, in the sequel we shall assume
that the characteristic roots of a recurrence relation are real-
valued.

Lemma 4.8.
1) A recurrence un = (β1n+ β0)un−1 + (γ1n+ γ0)un−2

with β0, β1, γ0, γ1 ∈ Q, with β0, β1, γ0 ̸= 0, admits
minimal solutions.

2) A recurrence of the form (5) or (7) admits minimal
solutions if and only if the associated characteristic
roots are real.

3) A recurrence of the form (6) admits minimal solutions
if and only if β0 − α− γ0 ≥ 0.

4.4. Reduction to Equality Checking

We now turn our attention to the final step in the
proof of Theorem 4.1. For degree-1 second-order holonomic
sequences, Theorem 4.1 claims that the Positivity and
Minimality Problems reduce to deciding equalities between
pseudoperiods and exponential periods. In light of the
preceding discussion, it suffices to prove the following result.

Theorem 4.9.
1) Minimal(0, 1, 0) reduces to checking whether an expo-

nential period vanishes.

5. Notice that sequences satisfying (7) are not necessarily holonomic as
β0 can be a real algebraic number.
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2) Minimal(0, 1, 1) reduces to checking whether an expo-
nential period vanishes.

3) Minimality for recurrences (5) and (7) reduce to the
Pseudoperiod Equality Problem.

4) Minimality for recurrences (6) reduces to checking
whether an exponential period vanishes.

We thus devote the remainder of the section to the proof
of Theorem 4.9. The lynchpin in deciding minimality is
Pincherle’s Theorem (Theorem 2.2), which, as the reader
will recall, transforms such problems into questions about
the convergence of polynomial continued fractions. The
remainder of our approach to the proof of Theorem 4.1 is via
techniques and tools given by Lorentzen and Waadeland in
[27, §VI.4.1]. Those authors consider low-degree polynomial
continued fractions and express their limits as quotients
of hypergeometric functions. These functions admit, after
suitable transformations, integral representations that involve
pseudoperiods or exponential periods.

We include the proof of Theorem 4.9(3) in the main text.
In order to avoid repetition amongst similar arguments, the
proofs of the remaining items are relegated to Appendix B.

As a point of independent interest, it is notable that the
evaluation of low-degree polynomial continued fractions by
Lorentzen and Waadeland does not extend to the continued
fractions associated with Theorem 4.9(4) (and, by extension,
recurrences of the form (6)). As far as we are aware, our
analysis is the first to complete this gap in the literature.

Proof of Theorem 4.9(3). Consider recurrence (5). Recall µ
and λ are the roots of the characteristic polynomial of recur-
rence with µ > |λ| > 0. Let ⟨un⟩n be a minimal solution
to the recurrence. By Theorem 2.2, −u0/u−1 = K(an/bn).
Then K(an/bn) is equivalent to the continued fraction

1

αδ2

∞

K
n=1

(γ1n+ γ0)(n+ α− 1)δ2

(β1n+ β0)δ

by applying Theorem 2.1 with r0 = 1, rn = δ(n + α) for
n ∈ N, and δ a non-zero real number. Setting δ = 1/µ,
x = λ/µ, and either

a =
λ2α− λβ0 − γ0

λ(λ− µ)
, b = α− 1, c = a+

γ0
γ1

; or

a =
µ2α− µβ0 − γ0

µ(λ− µ)
+ 1, b =

γ0
γ1
, c = a+ α− 1

we obtain, by substitution, the continued fraction

µ2

α

∞

K
n=1

−(c− a+ n)(b+ n)x

c+ n+ (b− a+ 1 + n)x
. (8)

Here we note that γ1 = −λµ and β1 = λ+ µ. Notice here
that |x| < 1 by assumption. Furthermore, by shifting the
sequence appropriately, the parameter a does not change, but
b and c are shifted by an integer value. Hence we may assume
that c is a positive number. Finally, a, b, c, x ∈ Q(µ) and so
are real algebraic numbers. By Lorentzen and Waadeland’s
work [27, §VI, Theorem 4(A)],

− α

µ2

u0
u−1

=
c 2F1(a, b; c;x)

2F1(a, b+ 1; c+ 1;x)
− β0

µ
. (9)

Let us first show that the equality problem is decidable
if a, b, c − a, or c − b is a negative integer, or if either
a = 0, or c − b = 0. If either a = 0, or that either a or b
is a negative integer, then both the hypergeometric series
terminate. Thus equality testing reduces to checking equality
between algebraic numbers, which is decidable. Moreover,
we have Euler’s transformation (cf. [36, Eq. 2.2.7]):

2F1(a, b; c;x) = (1− x)c−a−b
2F1(c− a, c− b; c;x),

which implies that if c − b = 0 or one of c − a and c − b
is a negative integer then again the series terminates, and
the problem reduces to checking equality between algebraic
numbers. Thus for the remainder of the proof we assume
that a, b, c−a, c−b are not negative integers and, in addition,
that both a and c− b are non-zero.

Consider the sequence ⟨Pn(x)⟩n defined by

P2n(x) = 2F1(a+ n, b+ n; c+ 2n;x) and
P2n+1(x) = 2F1(a+ n, b+ n+ 1; c+ 2n+ 1;x).

Let ⟨sn⟩∞n=1 be the sequence of linear fractional transforma-
tions given by by sn(w) := anx/(1 + w) such that a2n+1

and a2n are given by

−(a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
and

−(b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
,

respectively. It can be shown that

P0(x)

P1(x)
= s1 ◦ · · · ◦ sn

(
Pn(x)

Pn+1(x)

)
(see [27, § VI.1]). Under the aforementioned assumptions we
have ai ̸= 0 for each i = 1, . . . , n, and so the composition
of the si is an invertible linear fractional transformation. It
follows that

P0(x)

P1(x)
=
XnPn+1(x) + YnPn(x)

ZnPn+1(x) +WnPn(x)
, (10)

where the sequences ⟨Wn⟩n, ⟨Xn⟩n, ⟨Yn⟩n, ⟨Zn⟩n are over
Q(a, b, c, x) and satisfy XnWn−YnZn ̸= 0. Take N ∈ N to
be both even and sufficiently large such that c+2N > b+N .
Substituting (10) into (9) with n = N and rearranging, we
obtain the equation aNPN+1(x) = bNPN (x), where aN and
bN are defined by

XN −ZN
β0µ− αu0/u−1

cµ2
and

β0µ− αu0/u−1

cµ2
WN −YN ,

respectively. Observe now that Euler’s integral representation
(3) holds for both PN+1 and PN . By linearity of the integral,
we see that deciding Minimality for recurrences of the form
(5) reduces to checking whether the integral∫ 1

0

tb+N−1(1− t)c−b+N−1

(1− xt)a+N

(
aN

(c+2N)
b+N t− bN

)
dt

vanishes. This integral is a pseudoperiod, so we are done
for this part.

Now consider recurrence (6). In a similar manner to
previous arguments, a solution ⟨un⟩n of (6) is minimal if
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−αu0/u−1 is equal to the continued fraction in (8) when
one sets x = −1, and either

a =
1

2
(α+ β0 − γ0), b = α− 1, c =

1

2
(α+ β0 + γ0); or

a =
1

2
(β0 + γ0 − α) + 1, b = γ0, c =

1

2
(β0 + γ0 + α).

As c+a−b−1 = β0 > 0 and the parameters are real-valued,
by [27, §VI, Theorem 4(A)] the continued fraction converges
to (9). The remainder of the proof follows similarly.

We briefly summarise the connection between the out-
standing parts of Theorem 4.9 and properties of various
hypergeometric functions. For Theorem 4.9(1) we show
that the equality problem reduces to checking whether
0F1(; a;x)/0F1(; a+ 1;x), where a, x ∈ Q, is equal to an al-
gebraic number. Similarly, for Theorem 4.9(2) the problem re-
duces to checking whether 1F1(a; b;x)/1F1(a+ 1; b+ 1;x)
is equal to an algebraic number. Here again a, x ∈ Q. Finally
for Theorem 4.9(4) we show that the problem reduces to
checking whether U(a, b, x)/U(a+ 1, b+ 1, x) is equal to
an algebraic number. Here again a, b, x ∈ Q, and U is defined
for all a, b, x ∈ C, Re(a),Re(x) > 0 as

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt.

The definition of U immediately gives the desired result
after rearranging (and shifting the sequence appropriately).

The remainder of the proof in each of the outstanding
cases follows by inspection of integral representations of the
aforementioned hypergeometric functions. The integrals for
0F1(; s+ 1; z) and 1F1(a; b;x) are

Γ(s+ 1)√
πΓ(s+ 1/2)

∫ 1

−1

e−2
√
zt(1− t2)s−1/2 dt, and

Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1ext dt,

respectively (cf. [38, Eq. 9.1.69], [36, Eq. 4.7.5], and [38,
Eq. 13.2.1]). These representations hold for Re(a) > −1/2
and Re(b) > Re(a) > 0, respectively. The desired results
are then easily deduced by a simple rearrangement argument.

5. Pfaffian Functions and Gabrielov–Vorobjov
Oracles

We now turn to the final theme in this paper. In this
section we give a brief model-theoretic discussion of periods
and related expressions, along with the attendant decision
problems. We note that the classes of periods, exponential
periods, and pseudoperiods discussed herein can also be
expressed as values of univariate Pfaffian functions evaluated
at rational arguments, and in turn all the decision problems
considered in this paper become decidable subject to classical
Gabrielov–Vorobjov oracles.

Khovanskii introduced Pfaffian functions in [39], [40].
Let U be an open domain in R. A Pfaffian chain in U is a
sequence of complex analytic functions

ϕ1, ϕ2, . . . , ϕr : U → C

satisfying Pfaffian differential equations

ϕ′j(x) = Pj(x, ϕ1, . . . , ϕj) for j = 1, . . . , r

where each Pj ∈ Z[i][x, y1, . . . , yj ] is a polynomial with
coefficients among the Gaussian integers. A function ϕ : U →
C is called a (univariate) Pfaffian function if there exists
a Pfaffian chain ϕ1, ϕ2, . . . , ϕr and a polynomial P ∈
Z[i][x, y1, . . . , yr] such that ϕ(x) = P (x, ϕ1, . . . , ϕr).

Gabrielov and Vorobjov [41] introduce the concept of an
oracle for deciding the consistency of a system of Pfaffian
constraints.6 Subject to such an oracle, they provide an
algorithm for the smooth stratification of semi-Pfaffian sets.
This notion of a Gabrielov–Vorobjov oracle has since been
reused in a wide range of contexts (see, e.g., [42], [43], [44],
[45], [46], [47]).

It is straightforward to show that any univariate period,
exponential period, or pseudoperiod α can be written as
α = limx→1− f(x), where f : (0, 1) → C is a univariate
Pfaffian function. In fact, one can write f(x) =

∫ x

0
g(y) dy,

where g itself is also Pfaffian on (0, 1).
Suppose one wishes to determine whether two given prod-

ucts of pseudoperiods (or [exponential] periods) α1 · · ·αj

and β1 · · ·βj are equal, in other words solving a particular
instance of the Pseudoperiod Equality Problem. Write each
αi as limx→1− fi(x), with

fi(x) =

∫ x

0

gi(y) dy,

and each βi as limx→1− pi(x), with

pi(x) =

∫ x

0

qi(y) dy,

where all the functions in play are Pfaffian. Observe that
each Fi(x) := fi(x) +

∫ 1

x
gi(y) dy is Pfaffian with domain

(0, 1), and of constant value Fi(x) = αi. Likewise one can
write Pi(x) = βj for Pfaffian Pi defined over (0, 1). The
question of whether α1 · · ·αj = β1 · · ·βj therefore boils
down to asking whether there is some x ∈ (0, 1) such that
F1(x) · · ·Fj(x) = P1(x) · · ·Pk(x), for which a Gabrielov–
Vorobjov oracle readily provides an answer, since Pfaffian
functions are closed under products and we are therefore
indeed dealing with a (rather simple) Pfaffian constraint
system.

6. Conclusion

Summary of Results. The main results in this paper,
Theorem 3.3) and Theorem 4.1, draw new and novel con-
nections between inequality decision problems for low-order
holonomic sequences and the problem of checking equality

6. Gabrielov and Vorobjov consider both real Pfaffian and complex
Pfaffian functions in their paper. For real Pfaffian functions, a constraint
system consists of a Boolean combination of inequalities among Pfaffian
functions; the system is consistent if there exist values of the variables within
the relevant functions’ domains for which the constraint system is satisfied.
In the case of complex Pfaffian functions, only Boolean combinations of
equalities and disequalities are allowed.
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between the class of periods (and their generalisations).
We also give interesting connections between inequality
decision problems in this setting and the theory of Pfaffian
functions (Section 5); in particular, these decision problems
are decidable subject to a standard Gabrielov–Vorobjov
oracle.

Directions for Future Research. The problem of deciding
equality between general periods is a large open problem.
Nevertheless, we present compelling arguments and further
motivation to investigate the specific class of periods we
identify in previous sections: those that admit representations
that are single-dimensional (in the sense that the integrand is
univariate) and moreover arise exclusively as rational linear
combinations of the values of hypergeometric functions with
rational parameters. A clear direction for future research is
to establish unconditional decidability

Another possible direction for future research is suggested
by recent work due to Nosan et al. [29] and Kenison [30].
In both of these works, the authors restrict the polynomial
coefficients of the hypergeometric sequences. For instance,
Nosan et al. establish decidability of the Membership
Problem for hypergeometric sequences whose polynomial
coefficients have rational roots. An interesting pursuit for
future work for inequality decision problems for second-
order sequences might consider pursuing decidability for
second-order sequences under similar restrictions.
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erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche.
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Appendix A.
Proof of Proposition 4.6

In the work that follows it will be useful to normalise
recurrence (2). Our normalisation is an equivalence trans-
formation (in the sense of Theorem 2.1). Set b0 = 1,
κn := an/(bnbn−1), and consider

wn = wn−1 + κnwn−2. (11)

Then ⟨wn⟩n with w−1 = u−1 and wn := un/(
∏n

k=1 bk) is
a solution to (11) if and only if ⟨un⟩n is a solution to (2).

Proof of Proposition 4.6.

1) The result follows immediately from the equivalence
transformation between (2) and (11).

2) Division by α1 normalises the recurrence in the follow-
ing way:

(n+ α)un = βun−1 + γun−2. (12)

We shall assume that α := α0/α1 > 1 (this can be
achieved by shifting as appropriate). Suppose that ⟨un⟩n
is a solution of the normalised recurrence. We use the
updated reduction argument in Section 4 to obtain a
second recurrence. We have

(2n+ α)(2n+ α− 1)u2n

= (β2 + γ(4n+ 2α− 3))u2n−2 − γ2u2n−4. (13)

This defines a second-order recurrence with solutions
⟨vn⟩∞n=0 given by vn := u2n. The mapping n 7→ 2n
establishes a one-to-one correspondence between the
solutions of recurrences (12) and (13) and we claim
this correspondence preserves minimality. In order to
prove this claim we show that linear independence
and the asymptotic equalities are preserved. For linear
independence one direction is trivial: if ⟨un⟩n and ⟨vn⟩n
are linearly dependent solutions of (12), then ⟨u2n⟩n
and ⟨v2n⟩n are linearly dependent solutions of (13). For
the converse, suppose that ⟨un⟩n and ⟨vn⟩n are linearly
independent. Assume, for a contradiction, that there
exists an ℓ ∈ R such that u2n = ℓv2n for each n. We
study the sequence ⟨un − ℓvn⟩∞n=−1. By assumption
0 ̸= u−1 − ℓv−1 and 0 = u0 − ℓv0. Using (12) we then
compute

u1 − ℓv1 =
γ

1 + α
(u−1 − ℓv−1) and

u2 − ℓv2 =
β

2 + α
(u1 − ℓv1) ̸= 0,

a contradiction to our assumption.
We turn our attention to minimality. Suppose that
⟨un⟩n and ⟨vn⟩n are minimal and dominant solu-
tions of (12), respectively. Then limn→∞ un/vn =
limn→∞ u2n/v2n = 0. Since ⟨u2n⟩n and ⟨v2n⟩n are
linearly independent by the above, ⟨u2n⟩n is necessarily
a minimal solution of (13). Conversely, assume that
⟨un⟩n and ⟨vn⟩n are linearly independent solutions such
that ⟨u2n⟩n is a minimal solution of (13) (recall that
the existence of minimal solutions is decidable for each
recurrence). Since ⟨v2n⟩n is linearly independent of
⟨u2n⟩n, limn→∞ u2n/v2n = 0. Since recurrence (12)
must also admit minimal solutions, one easily deduces
that ⟨un⟩n is likewise minimal.
Notice that the Minimality Problem for ⟨vn⟩n is an
instance of Minimal(2, 1, 0) where the polynomial g3 has
rational roots. The equivalence transformations between
(2) and (11) give the reduction to Minimal(1, 1, 1) under
this assumption.

3) A solution sequence ⟨un⟩n satisfies a normalised recur-
rence of the form

un =
β1n+ β0
n+ α

un−1 +
γ1n+ γ0
n+ α

un−2.
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If β1 = |γ1| then we are done. If not, consider
the sequence ⟨vn⟩n with terms given by vn :=
(sign(γ1)β1/γ1)

nun. Not only is it evident that ⟨vn⟩n
satisfies a recurrence of the desired form, but the
sequence ⟨vn⟩n is also a minimal solution if and only
if ⟨un⟩n is a minimal solution.
Assume now that β2

1 + 4γ1 = 0 in (5). As |γ1| =
|β1|, it follows immediately that β1 = 4 = −γ1. Now
the sequence ⟨(1/2)nun⟩n satisfies a recurrence of the
form (6) and minimality is clearly preserved by this
transformation.

4) In this case the recurrence admits minimal solutions if
and only if γ1α1 > 0 (compare to Lemma 4.8). This
follows by an application of Theorem 2.4 as the standard
normalisation (11) has κn = (γ1n + γ0)(α1(n − 1) +
α0)/β

2
0 . The reduction to (7) follows by considering

the sequence ⟨(sign(β0)
√
α1/γ1)

nun⟩n.

Appendix B.
Proof of Theorem 4.9 Continued

Let us first prove Lemma 4.8.

Proof of Lemma 4.8. First, it is useful to normalise the
recurrences using the normalisation in (11) so that one can
determine whether a minimal solution exists using the criteria
in Theorem 2.4 and Theorem 2.2. Under our assumptions, this
normalisation does not change the signature of the recurrence.
Second, recall that the characteristic roots of a recurrence are
real if and only if β2

1 + 4γ1 ≥ 0. Further, the characteristic
roots are distinct if and only if β2

1 + 4γ1 ̸= 0.
1) Regardless of whether γ1 = 0 or not, when the recur-

rence has signature (−,+) it is clear that limn→∞ κn =
0. When the recurrence has signature (+,+) it is
clear that

∑∞
n=2 1/(nκn) = ∞ and so the associated

Stern–Stolz series (Theorem 2.6) diverges to ∞. These
conditions are sufficient to prove the statement.

2) First, let us consider recurrence (5) under the assumption
that β2

1 + 4γ ̸= 0. When (5) has signature (−,+) there
are minimal solutions if and only if 1 + 4γ1/β

2
1 > 0 if

and only if λ, µ ∈ R. When (5) has signature (+,+) it
is clear that limn→∞ κn = γ1/β

2
1 > 0 and so always

admits minimal solutions. Finally, recurrence (7) also
always admits minimal solutions: here the recurrence
has signature (+,+) and the Stern–Stolz series (Theo-
rem 2.6) diverges to ∞ since

∑∞
n=2 1/

√
κn = ∞.

3) The normalisation of (6) is of the form wn = wn−1 +
κnwn−2 with

κn = −1

4
− α− β0 + γ0

4n
− ε

16n2
+ O(1/n3)

and ε = 4β0(β0 − α− γ0) + 4α(1 + γ0)− β0(β0 + 2).
There are two cases to consider. If β0−α−γ0 ̸= 0 then
the recurrence admits minimal solutions if and only if
β0 − α − γ0 > 0. Otherwise β0 = α + γ0, in which
case κn simplifies as follows:

κn := −1

4
− −(α− γ)(α− γ − 2)

16n2
+ O(1/n3).

Since −x(x− 2) ≤ 1 for each x ∈ R, by Theorem 2.4,
we deduce that this subcase always admits minimal
solutions.

We move on to complete the proof of Theo-
rem 4.9(1)&(2)&(4) in order.

Proof of Theorem 4.9(1). If ⟨un⟩n is a minimal solution
to recurrence un = (β1n + β0)un−1 + γ0un−2 then, by
Theorem 2.2, −u0/u−1 is equal to

∞

K
n=1

γ0
β1n+ β0

= β0
0F1(;β0/β1; γ0/β

2
1)

0F1(;β0/β1 + 1; γ0/β2
1)

− β0

(see [27, §VI.4]). Hence the Minimality Problem for the
above recurrence reduces to checking the equality

(β0u−1−u0) 0F1

(
;
β0
β1

+ 1;
γ0
β2
1

)
= u−1β0 0F1

(
;
β0
β1

;
γ0
β2
1

)
.

The Bessel functions of the first kind, sometimes called
cylinder functions, Js(z) are a family of functions that solve
Bessel’s differential equation [28], [36], [38]. For z, s ∈ C
the function Js(z) is defined by the hypergeometric series
[38, Equation 9.1.69]

Js(z) :=
1

Γ(s+ 1)

(z
2

)s

0F1(; s+ 1;−z2/4).

We obtain the principal branch of Js(z) by assigning (z/2)s

its principal value. When Re(s) > −1/2 we have the
following integral representation [36, Equation 4.7.5],

Js(z) =
1√

πΓ(s+ 1/2)

(z
2

)s
∫ 1

−1

eizt(1− t2)s−1/2 dt.

Hence for Re(s) > −1/2, we have the following integral
representation

0F1(; s+1; z) =
Γ(s+ 1)√
πΓ(s+ 1/2)

∫ 1

−1

e−2
√
zt(1−t2)s−1/2 dt.

Let us return to minimal solutions of the aforementioned
recurrence relation. By substitution and linearity of the
integral, we see that Minimal(0, 1, 0) reduces to checking
whether the following integral∫ 1

−1

e
−2

√
γ0

β1
t(1− t2)β0/β1−3/2

(
2(β0u−1−u0)

2β0−1 (1− t2)− 1
)
dt

vanishes. The integral in question is an exponential period,
as the values βi and γ0 are rational numbers. To ensure that
the integral converges absolutely note that we can shift the
recurrence so that β0/β1 > 3/2.

Proof of Theorem 4.9(2). Consider an instance of
Minimal(0, 1, 1): without loss of generality it is of
the form un = (β1n + β0)un−1 + (γ1n + γ0)un−2. By
shifting the sequence appropriately, we may assume that
β0

β1
+ γ1

β2
1

is positive. Let ⟨un⟩n be a minimal solution. Then
−u0/u−1 is equal to

∞

K
n=1

γ1n+ γ0
β1n+ β0

=
(β0 +

γ1

β1
) 1F1(

γ0

γ1
; β0

β1
+ γ1

β2
1
; γ1

β2
1
)

1F1(
γ0

γ1
+ 1; β0

β1
+ γ1

β2
1
+ 1; γ1

β2
1
)

− β0.
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Here the value on the right-hand side is given in [27, §VI.4].
Let a = γ0/γ1, b = β0/β1 + γ1/β

2
1 , and x = γ1/β

2
1 ,

then Minimal(0, 1, 1) reduces to checking the equality

1F1(a; b;x)

1F1(a+ 1; b+ 1;x)
=

(u−1β0 − u0)

u−1(β0 +
γ1

β1
)
.

Notice here that a > 0 and b > 0 by assumption. Applying
the transformation 1F1(a; b;x) = ex 1F1(b − a; b;−x) (cf.
[38, 13.1.27]), we have that if b − a is zero or a negative
integer, the values of the associated finite series are elements
of Q(a, b, x). As these parameters are rational, the equality
is plain to check. We thus assume that b− a is not zero or
a negative integer.

Proceeding as in the proof of Theorem 4.9(3), it can be
shown that the sequence ⟨Pn(x)⟩∞n=0 with Pn = 1F1(a +
n; b+2n;x) if n is even, Pn = 1F1(a+n+1; c+2n+1;x)
if n is odd, satisfies

P0(x)

P1(x)
= s1 ◦ · · · ◦ sn

(
Pn(x)

Pn+1(x)

)
,

where ⟨sn⟩∞n=1 is a sequence of linear fractional transforma-
tions given by sn(w) = dnx/(1 + w), where

dn =


− b− a+ n

(b+ 2n)(b+ 2n+ 1)
if n is odd, and

a+ n

(b+ 2n− 1)(b+ 2n)
if n is even

(see [27, §VI.2.2]). As dn ̸= 0 under our assumptions on a
and b, the composition of the linear fractional transformations
is an invertible. Thus

P0(x)

P1(x)
=
XnPn+1(x) + YnPn(x)

ZnPn+1(x) +WnPn(x)
,

with XnWn − YnZn ̸= 0 for all n ≥ 1. We recall that
1F1(a; b;x) admits the integral representation

1F1(a; b;x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1ext dt

whenever Re(b) > Re(a) > 0 [27, Appendix 4.4] or [48,
§6.5]. One can then complete the proof in a manner analogous
to the proof of Theorem 4.9(3).

It remains to prove Theorem 4.9(4). We first deal with a
simple case that turns out to be decidable.

Lemma B.1. Let ⟨un⟩n be a non-trivial solution to (6) with
β0 = α + γ0. If α ≤ γ0 + 1 then ⟨un⟩n is minimal if and
only if u0/u−1 = 1. If α > γ0 + 1 then ⟨un⟩n is minimal if
and only if u0/u−1 = (γ0 + 1)/α.

Proof. If β0 = α + γ0, then the constant sequence ⟨1⟩n is
a solution to the recurrence by inspection. Hence ⟨1⟩n and
⟨Bn⟩n defined by B−1 = 0, B0 = 1 are linearly independent
solutions and, by Lemma 2.3,

Bn =

n∑
k=0

k∏
m=1

m+ γ0
m+ α

=

n∑
k=0

(γ0 + 1)k
(α+ 1)k

.

By a straightforward application of Stirling’s approximation,
(γ0+1)n/(α+1)n ∼ nγ0−α as n→ ∞. Hence if γ0−α ≥
−1 the series diverges (by comparison to the harmonic series)
from which we deduce that ⟨1⟩n is minimal. If γ0−α < −1,
then limn→∞Bn converges to the value

∞∑
k=0

(γ0 + 1)k(1)k
(α+ 1)k

1

k!
= 2F1(γ0 + 1, 1;α+ 1; 1)

=
Γ(α+ 1)Γ(α− γ0 − 1)

Γ(α− γ0)Γ(α)
=

α

α− γ0 − 1
.

In the second equality we use [36, Thm. 2.2.2]. It follows
that ⟨un⟩n = α

α−γ0−1 ⟨1⟩n − ⟨Bn⟩n is a minimal solution,
and we may compute u0/u−1 = (γ0 + 1)/α.

Proof of Theorem 4.9(4). The case when β0 = α + γ0 is
decidable by the above lemma, so we consider the case
β0 > α+ γ0; otherwise the recurrence admits no minimal
solutions by Lemma 4.8.

The function U(a, b, x), the confluent hypergeometric
function of the second kind, is defined for all a, b, x ∈ C
with Re(a),Re(x) > 0 as

U(a, b, x) =
1

Γ(a)

∫ ∞

0

e−xtta−1(1 + t)b−a−1 dt.

As noted by Temme in [49], the sequence ⟨un⟩∞n=−1 given
by u−1 = 1

a−1U(a− 1, b, x), un := (a)nU(a+ n, b, x) is a
minimal solution of the recurrence

un =
2n+ x+ 2a− b− 2

n+ a− b
un−1 −

n+ a− 2

n+ a− b
un−2 (14)

(assuming that a ̸= 1 and a − b is not a negative integer).
Notice that the recurrence holds also for n = 1 because

(2a+x−b)U(a, b, z)−U(a−1, b, z) = a(1+a−b)U(a+1, b, c).

When one substitutes the values a = γ0+2, b = γ0+2−α,
and x = β0 − γ0 − α into (6) one obtains recurrence (14).
Subject to an initial shift of the sequence, we may assume
that have a > 2. We also have x > 0 by assumption (shifting
the sequence has no effect on x). Hence, a minimal solution
to (6) satisfies u0/u−1 = (a− 1)U(a, b, x)/U(a− 1, b, x).
We may apply the integral representation for U immediately.
Since the parameters involved are rational numbers, the
integrals obtained are exponential periods, and the claim
follows.
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