
Model Checking Succinct and Parametric
One-Counter Automata

Stefan G̈oller1, Christoph Haase2, Jöel Ouaknine2, and James Worrell2

1 Universiẗat Bremen, Institut f̈ur Informatik, Germany
2 Oxford University Computing Laboratory, UK

Abstract. We investigate the decidability and complexity of various model check-
ing problems over one-counter automata. More specifically, we consider succinct
one-counter automata, in which additive updates are encoded in binary,as well
asparametricone-counter automata, in which additive updates may be given as
unspecified parameters. We fully determine the complexity of model checking
these automata against CTL, LTL, and modalµ-calculus specifications.

1 Introduction

Counter automata, which comprise a finite-state controllertogether with a number of
counter variables, are a fundamental and widely-studied computational model. One of
the earliest results about counter automata, which appeared in a seminal paper of Min-
sky’s five decades ago, is the fact that two counters suffice toachieve Turing complete-
ness [19].

Following Minsky’s work, much research has been directed towards studying re-
stricted classes of counter automata and related formalisms. Among others, we note
the use of restrictions to a single counter, on the kinds of allowable tests on the coun-
ters, on the underlying topology of the finite controller (such as flatness [8, 18]), and
on the types of computations considered (such as reversal-boundedness [16]). Counter
automata are also closely related to Petri nets and pushdownautomata.

In Minsky’s original formulation, counters were represented as integer variables
that could be incremented, decremented, or tested for equality with zero by the finite-
state controller. More recently, driven by complexity-theoretic considerations on the one
hand, and potential applications on the other, researchershave investigated additional
primitive operations on counters, such as additive updatesencoded in binary [2, 18]
or even inparametricform, i.e., whose precise values depend on parameters [3, 15].
We refer to such counter automata assuccinctandparametricresp., the former being
viewed as a subclass of the latter. Natural applications of such counter machines include
the modelling of resource-bounded processes, programs with lists, recursive or multi-
threaded programs, and XML query evaluation; see, e.g., [2,6, 16].

In most cases, investigations have centered around the decidability and complexity
of the reachabilityproblem, i.e., whether a given control state can be reached starting
from the initial configuration of the counter automaton. Various instances of the reacha-
bility problem for succinct and parametric counter automata are examined, for example,
in [9, 13, 15].

SOCA POCA

CTL, µ-calculus data

combined
EXPSPACE-complete Π0

1 -complete

LTL
data coNP-complete

combined PSPACE-complete coNEXP-complete

Table 1. The complexity of CTL, the modalµ-calculus, and LTL on SOCA and POCA.

The aim of the present paper is to study the decidability and complexity ofmodel
checkingfor succinct and parametric one-counter automata. In view of Minsky’s re-
sult, we restrict our attention tosuccinct one-counter automata (SOCA)andparametric
one-counter automata (POCA). On the specification side, we focus on the three most
prominent formalisms in the literature, namely the temporal logics CTL and LTL, as
well as the modalµ-calculus. For a counter automatonA and a specificationϕ, we
therefore consider the question of deciding whetherA |= ϕ, in case of POCA for all
values of the parameters, and investigate both thedata complexity (in which the for-
mulaϕ is fixed) as well as thecombinedcomplexity of this problem. Our main results
are summarized in Table 1.

One of the motivations for our work was the recent discovery that reachability is
decidable and in factNP-complete for both SOCA and POCA [13]. We were also in-
fluenced by the work of Demri and Gascon on model checking extensions of LTL over
non-succinct, non-parametric one-counter automata [9], as well as the recent result of
Göller and Lohrey establishing that model checking CTL on such counter automata is
PSPACE-complete [12].

On a technical level, the most intricate result is theEXPSPACE-hardness of CTL
model checking for SOCA, which requires several steps. We first show thatEXPSPACE

is ‘exponentiallyLOGSPACE-serializable’, adapting the known proof thatPSPACE is
LOGSPACE-serializable. Unfortunately, and in contrast to [12], this does not immedi-
ately provide anEXPSPACE lower bound. In a subsequent delicate stage of the proof,
we show how to partition the counter in order simultaneouslyto performPSPACE com-
putations in the counter and manipulate numbers of exponential size in a SOCA of
polynomial size.

For reasons of space, we have had to abbreviate or omit a number of proofs; full
details can however be found in the technical report [10].

2 Preliminaries

By Z we denote theintegersand byN = {0, 1, 2, . . .} the naturals. For eachi, j ∈
Z we define[i, j] = {k ∈ Z | i ≤ k ≤ j} and [j] = [1, j]. For eachi, n ∈ N,
let biti(n) denote theith least significant bit of the binary representation ofn. Hence
n =

∑

i∈N
2i · biti(n). By binm(n) = bit0(n) · · · bitm−1(n) we denote the firstm least

significant bits written fromleft to right. Let pi denote theith prime number for each

i ≥ 1. We definelog(n) = min{i ≥ 1 | 2i > n}, i.e. log(n) denotes the number of
bits that are needed to representn in binary. For each wordv = a1 · · · an ∈ Σn over
some finite alphabetΣ and eachi, j ∈ [n] definev[i, j] = ai · · · aj andv(i) = v[i, i].
For the rest of the paper, we fix a countable set ofatomic propositionsP. A transition
systemis a tupleT = (S, {Sρ | ρ ∈ P},→), whereS is a set ofstates, Sρ ⊆ S for
eachρ ∈ P andSρ is non-empty for finitely manyρ ∈ P, and finally→⊆ S × S is a
set oftransitions. We prefer to use the infix notations1 → s2 instead of(s1, s2) ∈→.
An infinite pathis an infinite sequenceπ = s0 → s1 → · · · . For each infinite path
π = s0 → s1 → · · · and eachi ∈ N, we denote byπi the suffixsi → si+1 → · · ·
and byπ(i) the statesi. A SOCAis a tupleS = (Q, {Qρ | ρ ∈ P}, E, λ), whereQ is
a finite set ofcontrol states, Qρ ⊆ Q for eachρ ∈ P andQρ is non-empty for finitely
manyρ ∈ P, E ⊆ Q×Q is a finite set oftransitions, andλ : E → Z∪{zero}. We call
a SOCAS with λ : E → {−1, 0, 1} ∪ {zero} a unary one-counter automaton (OCA).
A POCAis a tupleP(X) = (Q, {Qρ | ρ ∈ P}, E, λ), where the first three components
are same as for a SOCA,X is a finite set ofparameters over the naturals, andλ : E →
(Z ∪ {zero} ∪ {−x,+x | x ∈ X}). For each assignmentσ : X → N the induced
SOCA is defined asPσ = (Q,E, λ′) whereλ′(e) = σ(x) if λ(e) = x, λ′(e) = −σ(x)
if λ(e) = −x, andλ′(e) = λ(e) otherwise. IfX = {x} we also writeP(x) instead
of P(X). Thesizeof a POCA is defined as|P| = |Q| + |X| + |E| · max{log(|a|) |
a ∈ λ(E) ∩ Z}. Hence, we represent each appearing integer in binary. The size of a
SOCA is defined analogously. A SOCAS = (Q, {Qρ | ρ ∈ P}, E, λ) describes a
transition systemT (S) = (Q × N, {Qρ × N | ρ ∈ P},→), where for eachq1, q2 ∈ Q

and eachn1, n2 ∈ N we haveq1(n1) → q2(n2) iff either λ(q1, q2) = n2 − n1, or both
n1 = n2 = 0 andλ(q1, q2) = zero.

3 CTL Model Checking

Formulasϕ of CTL are given by the following grammar, whereρ ranges overP:

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | EXϕ | E(ϕUϕ) | E(ϕWUϕ)

Given a transition systemT = (S, {Sρ | ρ ∈ P},→), a states ∈ S, and some CTL
formulaϕ, define(T, s) |= ϕ by induction on the structure ofϕ as follows:

(T, s) |= ρ ⇐⇒ s ∈ Sρ for eachρ ∈ P

(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and(T, s) |= ϕ2

(T, s) |= ¬ϕ ⇐⇒ (T, s) 6|= ϕ

(T, s) |= EXϕ ⇐⇒ (T, t) |= ϕ for somet ∈ S with s → t

(T, s) |= E(ϕ1Uϕ2) ⇐⇒ ∃s0, . . . , sn ∈ S, n ≥ 0 : s0 = s, (T, sn) |= ϕ2,

∀i ∈ [0, n − 1] : (T, si) |= ϕ1 andsi → si+1

(T, s) |= E(ϕ1WUϕ2) ⇐⇒ (T, s) |= E(ϕ1Uϕ2) or ∃s0, s1, . . . ∈ S.∀i ≥ 0 :

s = s0, (T, si) |= ϕ1 andsi → si+1

Subsequently we use the standard abbreviations for disjunction, and implication. More-
over, we definett = ρ ∨ ¬ρ for someρ ∈ P andEFϕ = E (tt Uϕ). Let us define the

CTL model checking problemon SOCA and POCA resp.

CTL MODEL CHECKING ON SOCA

INPUT: SOCAS = (Q,E, λ), q ∈ Q, n ∈ N in binary, a CTL formulaϕ.
QUESTION: Does(T (S), q(n)) |= ϕ?

CTL MODEL CHECKING ON POCA

INPUT: POCAP(X) = (Q,E, λ), q ∈ Q, n ∈ N in binary, a CTL formulaϕ.
QUESTION: Does(T (Pσ), q(n)) |= ϕ for everyσ : X → N?

3.1 Upper Bounds

Due to space restrictions we do not formally introduce the modal µ-calculus and refer
to [1] for more details instead. In [21] Serre showed that thecombined complexity of
the modalµ-calculus on OCA is inPSPACE. Since every SOCA can be transformed
into an OCA of exponential size, and since each CTL formula can be translated into
an alternation-freeµ-calculus formula with a linear blowup, the following proposition
is immediate by adjusting the resultingµ-calculus formula appropriately. Moreover,
this immediately implies the containment in the arithmetichierarchy of the combined
complexity of the modalµ-calculus and CTL on POCA.

Proposition 1. For the modalµ-calculus and CTL the combined complexity on SOCA
is in EXPSPACE, whereas it is inΠ0

1 on POCA.

3.2 Hardness of the Data Complexity of CTL on SOCA

Before we proveEXPSPACE-hardness of the data complexity of CTL on SOCA, we in-
troduce some notions and results from complexity theory. Given a languageL ⊆ Σ∗, let
χL : Σ∗ → {0, 1} denote thecharacteristic function ofL. We define thelexicographic
order onn-bit stringsby x ¹n y if and only if binn(x) ≤ binn(y), e.g.011 ¹3 101.
We say a languageL is exponentiallyC-serializable via some languageR ⊆ {0, 1}∗ if
there is some polynomialp(n) and some languageU ∈ C s.t. for allx ∈ {0, 1}n

x ∈ L ⇐⇒ χU

(

x · 02p(n)
)

· · · χU

(

x · 12p(n)
)

∈ R,

where the bit strings on the right-hand side of the concatenation symbol are enumer-
ated in lexicographic order. This definition is a padded variant of the serializability
notion used in [11], which in turn is a variant of the serializability notion from [5, 14,
22]. Some subtle technical padding arguments are required to lift AC

0-serializability of
PSPACE, proven in Theorem 22 in [11], to exponentialLOGSPACE-serializability of
EXPSPACE.

Theorem 2. For every languageL in EXPSPACE there is some regular languageR
such thatL is exponentiallyLOGSPACE-serializable viaR.

A further concept we use is the Chinese remainder representation of a natural number.
For everym,M ∈ N we denote byCRRm(M) the Chinese remainder representation
of M as the Boolean tuple(bi,c)i∈[m],0≤c<pi

, wherebi,c = 1 if Mmodpi = c and

bi,c = 0 otherwise. The following theorem tells us that in logarithmic space we can
compute the binary representation of a natural number from its Chinese remainder rep-
resentation. This result is a consequence of [7], where it isshown that division is in
logspace-uniformNC

1.

Theorem 3 ([7] Theorem 3.3). The following problem is inLOGSPACE:
INPUT: CRRm(M), j ∈ [m], b ∈ {0, 1}.
QUESTION: Is bitj(M mod2m) = b?

In the rest of this section, we sketch the proof ofEXPSPACE-hardness of the data com-
plexity of CTL on SOCA. LetL ⊆ {0, 1}∗ be an arbitrary language inEXPSPACE.
Then by Theorem 2, there is some regular languageR ⊆ {0, 1}∗ s.t.L is exponentially
LOGSPACE-serializable viaR. Hence there is some languageU ∈ LOGSPACE s.t. for
all x ∈ {0, 1}n we have

x ∈ L ⇐⇒ χU

(

x · 02p(n)
)

· · · χU

(

x · 12p(n)
)

∈ R, (1)

where the bit strings on the right-hand side of the concatenation symbol are enumerated
in lexicographic order. For the rest of this section, let us fix an inputx0 ∈ {0, 1}n.
Let N = p(n) andA = (Q, {0, 1}, q0, δ, F) be some deterministic finite automaton
with L(A) = R. Let us describe equivalence (1) differently: We havex0 ∈ L iff the
program in Fig. 1 returnstrue. We are going to mimic the execution of the program by
a fixed CTL formula and a SOCA that can be computed fromx0 in logarithmic space.
Before we start with the reduction, let us discuss the obstacles that arise:

q ∈ Q; q := q0;
d ∈ N; d := 0;
b ∈ {0, 1};
while d 6= 22N

loop

b := χU (x0 ·bin2N (d));
q := δ(q, b);
d := d + 1;

endloop

return q ∈ F ;

Fig. 1. A program that re-
turnstrue iff x0 ∈ L.

(A) We need some way of storingd on the counter.
Of course there are a lot of ways to do this, but since
we want to access all bits ofd in the assignmentb :=
χU (x0 ·bin2N (d)), the most natural way is probably to rep-
resentd in binary. However, for this2N bits are required.
More problematically, we need to be able to check ifd is
equal to22N

. This cannot be achieved by a transition in a
SOCA that subtracts22N

, since the representation of this
number requires exponentially many bits inn. (B) As in
[12], a solution to obstacle (A) is to stored in Chinese re-
mainder representation with the first2N prime numbers. A
polynomial number of bits (inn) suffice to represent each
of the occurring prime numbers, but we need exponentially
many of them. Thus, we cannot equip a polynomial size
SOCA with transitions for each prime number, simply becausethere are too many of
them.(C) The assignmentb := χU (x0 · bin2N (d)) implies that we need to simulate
on the counter a logarithmically space bounded DTM for the languageU on an expo-
nentially large input (inn). Speaking in terms of the input sizen, this means that we
need to provide polynomially many bits on the counter that can be used to describe the
working tape for this DTM. However, we need to provide some on-the-fly mechanism
for reading the input.

Let us give a high-level description of theEXPSPACE-hardness proof. In the first step,
we carefully design a data structure on the counter and explain the intuition behind it.
In the second step, we list five queries which we aim at implementing via fixed CTL
formulas and by SOCA that can be computed from the inputx0 in logarithmic space.

The data structure and how to access it: Let K = n + 2N + 1 denote the number
of bits that are required to store an input forU . Let α = log K denote the number of
bits that we require for storing a pointer to an input forU and letβ be the number of
bits that suffice for storing theK th prime. Henceα = O(N) and by the Prime Number
Theorem, it follows thatβ = O(log(K log(K))) = O(N). The numberα and such a
sufficiently large numberβ can be computed fromx0 in logarithmic space.

τ1 τ2

qbit,i •

−2i+1

−2i

ϕbit,1 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ EXτ2)

ϕbit,0 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ ¬EXτ2)

Fig. 2. SOCA Sbit,i and CTL
formulas ϕbit,b for checking if
biti(v) = b.

Let us describe the data structure on the
counter in our reduction. Assume that the
counter value is v ∈ N. We are inter-
ested only in thel least significant bits of
the binary representation ofv, where l is
some number that is exponentially bounded in
n; the value of l will be made clear be-
low. Assume V = bit0(v) · · · bitl−1(v). We
imagine V to be factorized into blocks of
bits

V = I M C J X Y Z B (∗)

whereI ∈ {0, 1}α is a prime number index;M ∈ {0, 1}β is intended to represent
theI th prime numberpI ; C ∈ {0, 1}β is some residue class moduloM ; J ∈ {0, 1}α

represents a pointer to some bit ofB; X,Y andZ consist of polynomially many bits
(in n) and are intended to represent the working tape of three space-bounded DTMs
that we will comment on later in more detail; andB ∈ {0, 1}n+2N

with B = x0B
′

for someB′ ∈ {0, 1}2N

. Our intention is thatB represents the current input forU , and
in particularB′ represents the counting variabled from Fig. 1. Throughout the rest of
this section,v will denote an arbitrary natural number. MoreoverI,M,C, J,X, Y, Z

andB will implicitly be coupled withv via the factorization(∗). Note that all of the
bit strings have polynomial length inn except forB. Subsequently, we identify each of
the blocks with the natural number they represent. A simple but powerful gadget, which
will subsequently be used to check for eachb ∈ {0, 1} if the ith bit of the counter isb, is
shown in Fig. 2. We have thatqbit,i(v) satisfiesϕbit,b iff bit i(v) = b, for eachb ∈ {0, 1}.

Queries that we need to implement: Next, we list five queries that we aim at answer-
ing by instances of the model checking problem. Each query isbased on its preceding
queries.

(Q1) AssumingC < M , doesC ≡ B modM hold?
(Q2) IsM theI th prime number, i.e.M = pI?
(Q3) What is bitJ(B)?
(Q4) Does(B[1, n] · B[n + 1, n + 2N]) ∈ U hold?
(Q5) Doesx0 ∈ L hold?

EXPSPACE-hardness of data complexity of CTL on SOCA will hence followfrom the
implementation of query Q5. Letγ = O(N) denote the absolute value of the leftmost

bit position ofB in V . Hence, when theγth bit of V is set to1 and we subtract2γ from
the counter, then the leftmost bit ofB is set to0. Similarly, letµ denote the leftmost bit
position ofM in V . Q1 can now be realized as follows.

Lemma 4. There is a CTL formulaϕmod s.t. we can compute fromx0 in logarithmic
space a SOCASmod and a control stateqmod s.t. (T (Smod), qmod(v)) |= ϕmod iff C ≡
B modM .

Proof. For brevity, we illustrate the special caseC = 0, i.e. (T (Smod), qmod(v)) |=
ϕmod iff B ≡ 0 modM . The SOCASmod contains four atomic propositionsρ0, ρ1, y, z

and is depicted below. The CTL formulaϕmod expresses that we traverse the sequence
of diamonds and thereby repeatedly subtractM from B. The number of diamonds
equalsβ, the number of bits ofM . One diamond corresponds to one bit ofM . In
case bitβ of M is 1, which we can verify by a transition to the initial control state of
the SOCASbit,µ+β (see Fig. 2), we subtract2γ+β from B, otherwise we do not modify
the counter value. This process is repeated until we reach the last diamond in which
we consider the first bit ofM . Finally, the transition fromqmod to the control state
satisfyingz serves for checking ifB = 0 by trying to subtract2γ .

Sbit,µ+β Sbit,µ+β−1 Sbit,µ

qmod
y

•z

−2γ

•

•

ρ1

ρ0

qbit,µ+β qbit,µ+β−1qbit,µ+β−1 qbit,µ

•

•
ρ1

ρ0
•

• •

•
ρ1

ρ0
•

•· · ·
0

0

−2γ+β

0

0 0 0 0 0 0

0

0

−2γ+β−1

0

0

0

−2γ

0

0

We putϕmod = E

(

∧

b∈{0,1} ρb → EXϕbit,b

)

U(y ∧ ¬EXz). ⊓⊔

Let us give some informal ideas on how to implement the queries Q2 to Q5. We strongly
recommend the reader to consult the technical report [10] tounderstand the technical
subtleties.

For implementing Q2 we simulate with a SOCASprime some polynomially space-
bounded DTM that decides, on the input〈I,M〉, whetherM = pI . We use the bit
stringX from (∗) for storing the working tape of this DTM on the counter. The current
input and working tape symbol and the position of the input and working tape in the
counter can directly be hard-wired into the control states of Sprime. We can construct a
fixed CTL formula that simulates the computation of this DTM.

Implementing Q3, i.e. deciding theJ th bit of B, is more involved. Recall thatB
consists ofn+2N bits andJ consists ofα = O(N) bits. Hence checking if bitJ(B) = 1
cannot be done in a similar fashion as in Fig. 2, sinceJ is too big. The solution is
the following: By making use ofSprime, one can initializeM with pI and after that
decide ifC ≡ B modpI by making use ofSmod andϕmod from Lemma 4. Hence,
we can access bits of the Chinese remainder representation of B. Let us assume that

R = CRRK(B) = (bi,c)1≤i≤K,0≤c<pi
is the Chinese remainder representation of

B. Observe that|R| is exponential inn andR is not stored anywhere on the counter.
However we can use the bit stringsI andC as pointers to access the bitbI,C of R. By
Theorem 3, givenR (in our case on-the-fly by the pointersI andC), the bit stringJ

andb ∈ {0, 1}, we can decide if bitJ(B) = b by simulating a logarithmically space-
bounded DTM on the input〈R, J, b〉 of exponential size. In the blockY of (∗) we
reserve the space that this DTM requires. Q4 can be implemented similarly as Q3 by
simulating a logarithmically space-bounded DTM that decides U on input B[1, n] ·
B[n + 1, n + 2N] of exponential size. We useZ for simulating the working tape and
the bit sequenceJ as a pointer to access the bits ofB.

For implementing Q5 we simulate the program from in Fig. 1. Recall that our bit
sequenceB is of lengthn + 2N . We initialize the firstn bits of B with x0. The re-
maining bit sequenceB′ stores the variabled of the program, initialized with0 and
being repeatedly incremented by adding2γ+n. Thus, checking whend becomes22N

for the first time boils down to checking whenB′ overflows for the first time. This can
be checked by initializingJ appropriately and being able to access theJ th bit via query
Q3. The states of the automatonA can directly be handled by the control states of the
SOCA. To obtainχU (x0, bin2N (d)), we invoke the query Q4 and store this bit in the
control state of the SOCA. This concludes ourEXPSPACE-hardness proof.

Theorem 5. The data complexity and the combined complexity of CTL and the modal
µ-calculus on SOCA isEXPSPACE-complete.

3.3 Hardness of the data complexity of CTL on POCA

We now show that there exists a fixed CTL formula for which model checking of POCA
isΠ0

1 -hard by a reduction from the emptiness problem fortwo-counter automata, which
is Π0

1 -complete [19]. Similar to a SOCA, a two-counter automatonA consists of a finite
set of control states and transitions between them. However, each transition ofA acts
on two counters, which it can in- and decrement and test forzero.

The idea of our reduction is as follows: Given a two-counter automatonA, we con-
struct a POCAP(x) with one parameter in such a way that the two counters from
A are encoded into the single counter fromP(x). Given a counter valuen of P(x),
n modx encodes the value of the first, andn div x encodes the value of the second
counter ofA. Hence, testing whether the first equals0 corresponds to checking whether
n ≡ 0 modx, while testing whether the second counter equals0 corresponds to check-
ing whethern ≥ x. Incrementing (resp. decrementing) the first counter ofA can be
mimicked by adding (resp. subtracting)1, whereas on counter two this corresponds to
adding (resp. subtracting)x. Of course, we need CTL formulas to ensure that we do
not overflow when simulating an increment of the first counterof A. For instance, if
n ≡ −1 modx and we want to simulate an increment of the first counter ofA in that
way, we would actually set the first counter to0 and simultaneously increment the sec-
ond counter. However, ifA is not empty, thenx can be instantiated with a large enough
value such that such an overflow does not occur. Conversely, if A is empty then there is
no such instantiation.

Theorem 6. The data and combined complexity of CTL on POCA isΠ0
1 -complete.

4 LTL Model Checking

Formulas of LTL are given by the following grammar, whereρ ranges overP:

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

The semantics of LTL is given in terms of infinite paths in a transition system. Let
T = (S, {Sρ | ρ ∈ P},→) be a transition system,π = s0 → s1 → · · · an infinite path
in T andϕ an LTL formula, we define(T, π) |= ϕ by induction on the structureϕ.

(T, π) |= ρ ⇐⇒ π(0) ∈ Sρ, ρ ∈ P (T, π) |= ¬ϕ ⇐⇒ π 6|= ϕ

(T, π) |= ϕ1 ∧ ϕ2 ⇐⇒ ∀i ∈ {1, 2} : (T, π) |= ϕi (T, π) |= Xϕ ⇐⇒ (T, π1) |= ϕ

(T, π) |= ϕ1Uϕ2 ⇐⇒ ∃j ≥ 0 : (T, πj) |= ϕ2 and∀0 ≤ i < j : (T, πi) |= ϕ1

LTL MODEL CHECKING ON SOCA

INPUT: SOCAS = (Q,E, λ), q ∈ Q, n ∈ N in binary, an LTL formulaϕ.
QUESTION: Does(T (S), π) |= ϕ for all infinite pathsπ with π(0) = q(n)?

LTL MODEL CHECKING ON POCA

INPUT: POCAP(X) = (Q,E, λ), q ∈ Q, n ∈ N in binary, an LTL formulaϕ.
QUESTION: Does(T (Pσ), π) |= ϕ for all σ : X → N and for all infinite pathsπ with

π(0) = q(n)?

4.1 Upper Bounds

A standard approach to LTL model checking is the automata-based approach, in which
behaviours ofsystemsare modelled as non-deterministic Büchi automata (NBA). Given
an NBAA modelling a system and an LTL formulaϕ, the idea is to translateϕ into an
NBA A¬ϕ of size2O(|ϕ|) such that the language ofA×A¬ϕ is empty iffϕ holds on all
infinite traces ofA. The concept of B̈uchi automata can easily be adopted to the setting
of counter automata. Then aBüchi-SOCAis not empty if there is an infinite path on
which some designated control states occurs infinitely often. The latter boils down to
just checking for recurrent reachability. Moreover, the Büchi-SOCA obtained from the
product of a SOCA and an NBA can be defined and constructed in a straightforward
way. We omit details for brevity.

It was shown in [13] that checking emptiness iscoNP-complete for both B̈uchi-
SOCA and B̈uchi-POCA, and in [9] that it isNL-complete for B̈uchi-OCA. We use
these results for establishing upper bounds for the LTL model checking problems.

For every fixed LTL formulaϕ, and every POCAP, the size ofP × A¬ϕ is O(|P|),
hence the data complexity of LTL on SOCA and POCA is incoNP. Hardness forcoNP

follows fromNP-hardness of reachability using a fixed formulattUρ for someρ ∈ P.
If both P andϕ are part of the input then|P × A¬ϕ| = |P| · 2O(|ϕ|), and hence [13]

gives acoNEXP upper bound for the combined complexity of LTL model checking on
both SOCA and POCA. This upper bound can however be improved for SOCA. Given
a SOCAS, let m be the absolute value of the maximum increment or decrement on

the transitions inS. Let S
′ be the B̈uchi-SOCA obtained from the productS × A¬ϕ by

replacing every transition labeled withz with a sequence of fresh transitions and control
states of lengthz, where, depending on the sign ofz, each transition is labeled with+1
resp.−1. We have|S′| = m · |S| · 2O(|ϕ|), and hence theNL upper bound for emptiness
of Büchi-OCA from [9] yields aPSPACE upper bound.

Proposition 7. The data complexity of LTL model checking on SOCA and POCA is
coNP-complete, the combined complexity of LTL model checking onSOCA isPSPACE-
complete, and the combined complexity of LTL model checkingon POCA is incoNEXP.

4.2 Hardness of the Combined Complexity of LTL on POCA

We are now going to sketch a proof ofcoNEXP-hardness of LTL model checking on
POCA via a reduction from the complement of theNEXP-completeSuccinct 3-SAT
problem [20]. An input ofSuccinct 3-SAT is given by a Boolean circuitC that encodes
a Boolean formulaψ in 3-CNF, i.e.ψ =

∧

0≤j<M (ℓj
1 ∨ ℓ

j
2 ∨ ℓ

j
3). Let j ∈ [M] be the

index of a clause encoded inbinary andk ∈ {1, 2, 3}. Assume thatψ usesN different
variablesy1, . . . , yN . On input(j · k), the output ofC is (i · b), wherei ∈ [N] is the
index of the Boolean variable that appears in literalℓ

j
k, and whereb = 0 whenℓ

j
k is

negative andb = 1 when ℓ
j
k is positive.Succinct 3-SAT is to decide whetherψ is

satisfiable. Fig. 3 depicts on a high-level the POCAP(x) derived fromC that we are
using in our reduction.

As a first step, let us provide a suitable encoding of truth assignments by natural
numbers. The encoding we use has also been employed for establishing lower bounds
for model checking OCA [17]. Recall thatpi denotes theith prime number. Every
natural numbern defines a truth assignmentνn : {y1, . . . , yN} → {0, 1} such that
νn(yi) = 1 iff pi dividesn. By the Prime Number Theorem,pN = O(N log N) and
henceO(|C|) bits are sufficient to representpN . Of course, since we need exponentially
many prime numbers they cannot be hard-wired intoP(x).

Let us now take a look atP(x). It uses one parameterx and employs several gadgets.
Only the gadgetsSdivides andSnot divides manipulate the counter. All gadgets are designed
so that they communicate via designated propositional variables, and not as in Section
3.2 with the help of the counter. Starting inqstart, P(x) first loads the value of the
parameterx on the counter. Think ofx encoding a truth assignment ofψ. Next,P(x)
traverses throughSinc, which initially chooses an arbitrary indexj identifying a clause
of ψ. Every timeSinc is traversed afterwards, it incrementsj moduloN and hereby
moves on to the next clause. NowP(x) branches non-deterministically into a gadgetSC

in order to compute(i · b) from C on input(j · 1), (j · 2), resp.(j · 3). The indexi is
then used as input to a gadgetSprime, which computespi. Then if b = 0, it is checked
thatpi does not dividex, and likewise thatpi dividesx if b = 1. Those checks need
to modify the counter. After they have finished, we restore the valuex on the counter
and the process continues with clausej + 1 modN . We can construct an LTL formula
ϕ that ensures that all gadgets work and communicate correctly, and prove thatψ is
satisfiable iff there is an assignmentσ and an infinite pathπ = qstart(0) → · · · such
that (T (Pσ), π) 6|= ϕ. The gadgetsSinc, Scircuit andSinc can be realized by simulating
space-bounded Turing machines with SOCA and some appropriate LTL formulas. Here

Sinc(j) SC(j · 2)

= (i · b)

SC(j · 1)

= (i · b)

SC(j · 3)

= (i · b)

Sprime(i)

= pi

Sdivides(pi, x)

b = 0?

Snot divides(pi, x)

b = 1?

•qstart

+x

0

0

0

0

0

0

0

0
0

0

zero

Fig. 3. High-level description of the POCAP(x) used for the reduction fromSuccinct 3-SAT.

it is important that our LTL formulaϕ is not fixed. Divisibility resp. non-divisibility is
checked similar as in the CTL case, cf. Lemma 4. We refer the reader to the technical
report for further details [10].

Theorem 8. The combined complexity of LTL model checking on POCA iscoNEXP-
complete.

5 Conclusion

In this paper, we have settled the computational complexityof model checking CTL,
the modalµ-calculus and LTL on SOCA and POCA with respect to data and combined
complexity. Our proofs for providing lower bounds have introduced some non-trivial
concepts and techniques, which we believe may be of independent interest for providing
lower bounds for decision problems in the verification of infinite state systems.

An interesting aspect of future work could be to considersynthesis problemsfor
POCA. Given a POCAP(X) and a formulaϕ, a natural question to ask is whether there
exists an assignmentσ such that(T (Pσ), π) |= ϕ on all infinite pathsπ starting in some
state ofT (Pσ). For CTL resp. the modalµ-calculus, such a problem is undecidable by
Theorem 6. However for LTL it seems conceivable that this problem can be translated
into a sentence of a decidable fragment of Presburger arithmetic with divisibility, similar
to those studied in [4].

References

1. A. Arnold and D. Niwínski. Rudiments ofµ-calculus, volume 146 ofStudies in Logic and
the Foundations of Mathematics. North-Holland, 2001.

2. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. InProc. of CAV, volume 4144 ofLNCS, pages 517–531. Springer,
2006.

3. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. InProc. of ICALP,
volume 4052 ofLNCS, pages 577–588. Springer, 2006.

4. Marius Bozga and Radu Iosif. On decidability within the arithmetic of additionand divisi-
bility. In Proc. of FOSSACS, volume 3441 ofLNCS, pages 425–439. Springer, 2005.

5. Jin-Yi Cai and Merrick Furst. PSPACE survives constant-width bottlenecks. International
Journal of Foundations of Computer Science, 2(1):67–76, 1991.

6. Cristiana Chitic and Daniela Rosu. On validation of xml streams using finite state machines.
In Proc. of WebDB, pages 85–90. ACM, 2004.

7. Andrew Chiu, George Davida, and Bruce Litow. Division in logspace-uniform NC1. The-
oretical Informatics and Applications. Informatique Théorique et Applications, 35(3):259–
275, 2001.

8. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and presburger arith-
metic. InProc. of CAV, volume 1427 ofLNCS, pages 268–279. Springer, 1998.

9. St́ephane Demri and Ŕegis Gascon. The effects of bounding syntactic resources on Pres-
burger LTL. Journal of Logic and Computation, 19(6):1541–1575, December 2009.

10. Stefan G̈oller, Christoph Haase, Joël Ouaknine, and James Worrell. Model checking
succinct and parametric one-counter automata. Technical report, University of Bremen,
2010. Available via
http://www.informatik.uni-bremen.de/tdki/research/papers/
succ.pdf.

11. Stefan G̈oller and Markus Lohrey. Branching-time model checking of one-counter processes.
Technical report, arXiv.org, 2009.http://arxiv.org/abs/0909.1102.

12. Stefan G̈oller and Markus Lohrey. Branching-time model checking of one-counter processes.
In Proc. of STACS, pages 405–416. IFIB Schloss Dagstuhl, 2010.

13. Christoph Haase, Stephan Kreutzer, Joel Ouaknine, and James Worrell. Reachability in
parametric one-counter automata. 2010. Submitted. Available via:
http://www.comlab.ox.ac.uk/files/2833/iandc.pdf.

14. Ulrich Hertrampf, Clemens Lautemann, Thomas Schwentick, Heribert Vollmer, and
Klaus W. Wagner. On the power of polynomial time bit-reductions. InProc. of CoCo,
pages 200–207. IEEE Computer Society Press, 1993.

15. O. H. Ibarra, T. Jiang, N. Trân, and H. Wang. New decidability results concerning two-way
counter machines and applications. InProc. of ICALP, volume 700 ofLNCS, pages 313–324.
Springer, 1993.

16. Oscar H. Ibarra and Zhe Dang. On the solvability of a class of diophantine equations and
applications.Theor. Comput. Sci., 352(1):342–346, 2006.

17. P. Jaňcar, A. Kǔcera, F. Moller, and Z. Sawa. DP lower bounds for equivalence-checking and
model-checking of one-counter automata.Information Computation, 188(1):1–19, 2004.

18. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc. of ATVA’05,
volume 3707 ofLNCS, pages 489–503. Springer, 2005.

19. Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in
theory of Turing machines.Annals of Mathematics. Second Series, 74:437–455, 1961.

20. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
21. Olivier Serre. Parity games played on transition graphs of one-counter processes. InProc.

of FOSSACS, volume 3921 ofLNCS, pages 337–351. Springer, 2006.
22. Heribert Vollmer. A generalized quantifier concept in computationalcomplexity theory.

Technical report, arXiv.org, 1998.http://arxiv.org/abs/cs.CC/9809115.

