
Towards a Theory of Time-Bounded Verification

Joël Ouaknine and James Worrell

Oxford University Computing Laboratory, UK
{joel,jbw}@comlab.ox.ac.uk

Abstract. We propose a theory of time-bounded verification for real-
time systems, in which verification queries are phrased over time in-
tervals of fixed, bounded duration. We argue that this theory is both
pertinent , in that it is fully adequate to handle a large proportion of
‘real-world’ real-time systems and specifications; and effective, in that
the restriction to bounded time domains reclaims as decidable several of
the key decision problems of unbounded real-time verification. Finally,
we discuss several directions of ongoing and future work.

1 Introduction

In an influential invited address at the 10th Annual IEEE Symposium on Logic
in Computer Science (LICS 95), Boris Trakhtenbrot urged the research com-
munity to “lift the ‘classical’ Trinity to real-time systems” [51]. Trakhtenbrot’s
‘Trinity’ consisted of Logic, Nets, and Automata, viewed as the pillars of the
‘classical’ theory of verification. The genesis of this theory in fact go back some
five decades to the seminal work of Büchi, Elgot, and Trakhtenbrot himself re-
lating the monadic second-order logic of order (MSO(<)) and automata; see [53]
for a detailed historical perspective on the subject.

Underlying the increasingly successful applications of verification technology
to the design and validation of hardware and software systems has been the
long-running and sustained elaboration of a rich body of theoretical work. One
of the major accomplishments of this theory is the discovery and formulation of
the robust and far-reaching correspondence among the eclectic concepts of au-
tomata, temporal logic, monadic predicate logic, and regular expressions. Each of
these comes in various flavours, yet the adequation is maintained, in particular,
whether the discourse is over the finite or the infinite, or (in the language of
predicate logic) first or second order. A key result in this area is Kamp’s theo-
rem, which asserts the expressive equivalence of the monadic first-order logic of
order (FO(<)) and Linear Temporal Logic (LTL) [29, 19]. This influential result
has largely contributed to the emergence of LTL as the canonical linear-time
specification formalism in the classical theory.

On a pragmatic level, the close relationship between automata and logic has
enabled the design of model-checking algorithms for a wide variety of specifica-
tion formalisms rooted in temporal or predicate logic. While initially little more
than pure decidability results, these procedures have over the last few decades
been progressively honed into powerful industrial-strength tools.



2

Real-time verification, by contrast, is a much younger field. Its origins date
back approximately twenty-five years, when various researchers from such di-
verse communities as process algebra, Petri nets, automata theory, and software
engineering began investigating extensions of existing formalisms to adequately
handle timing considerations. By far the most prominent modelling paradigm
to have emerged is Alur and Dill’s notion of timed automaton [2], which at the
time of writing has accrued nearly 4000 citations according to Google Scholar.

One of the central results concerning timed automata is the PSPACE decid-
ability of the language emptiness (or reachability) problem [1]. Unfortunately,
the language inclusion problem—given two timed automata A and B, is every
timed word accepted by A also accepted by B?—is known to be undecidable [2].
A closely related phenomenon is the fact that timed automata are not closed
under complement. For example, the automaton in Fig. 1 accepts every timed
word in which there are two a-events separated by exactly one time unit.

a

reset(x)

a

a

x = 1

a a

Fig. 1. An uncomplementable timed automaton.

The complement language consists of all timed words in which no two a-
events are separated by precisely one time unit. Intuitively, this language is
not expressible by a timed automaton, since such an automaton would need an
unbounded number of clocks to keep track of the time delay from each a-event.
(We refer the reader to [25] for a rigorous treatment of these considerations.)

The undecidability of language inclusion severely restricts the algorithmic
analysis of timed automata, both from a practical and theoretical perspective,
as many interesting questions can be phrased in terms of language inclusion.
Over the past two decades, several researchers have therefore attempted to cir-
cumvent this obstacle by investigating language inclusion, or closely related con-
cepts, under various assumptions and restrictions. Among others, we note the
use of (i) topological restrictions and digitisation techniques: [22, 14, 42, 39];
(ii) fuzzy semantics: [20, 23, 41, 8]; (iii) determinisable subclasses of timed au-
tomata: [4, 47]; (iv) timed simulation relations and homomorphisms: [50, 37, 31];
and (v) restrictions on the number of clocks: [43, 18]. See also Henzinger et al.’s
paper on fully decidable formalisms [24].

In a strictly formal sense, the non-closure under complementation is easy to
remedy—one can simply generalise the transition mode to allow both conjunc-
tive and disjunctive transitions, an idea borrowed from the theory of untimed
automata that dates back thirty years [15]. Such untimed alternating automata
have played key roles in algorithms for complementing Büchi automata (see, e.g.,



3

[33]), temporal logic verification [52, 36], and analysis of parity games [17]. In
the timed world, the resulting alternating timed automata [34, 44, 35, 46, 16]
subsume ordinary timed automata and can be shown to be closed under all
Boolean operations. They have been used, among others, to provide model-
checking algorithms for various fragments of Metric Temporal Logic (MTL); see,
e.g., [44, 45, 12]. Unfortunately, the price to pay for the increase in expressiveness
is the undecidability of language emptiness!

Turning to temporal logic, one finds a considerable body of work in the
literature concerned with adapting classical linear temporal formalisms to the
real-time setting; see, e.g., [32, 38, 7, 3, 54, 48]. One of the earliest proposals,
Koyman’s Metric Temporal Logic (MTL) [32], extends LTL by constraining the
temporal operators by (bounded or unbounded) intervals of the reals. For ex-
ample, the formula 3[3,4] ϕ requires ϕ to hold within 3 to 4 time units from
the present time. MTL has since become one of the most successful and popular
specification formalisms for timed systems.

Unfortunately, the satisfiability and model-checking problems for MTL are un-
decidable [21]. This has led researchers to consider various restrictions on MTL to
recover decidability. One of the most important such proposals is Metric Interval
Temporal Logic (MITL), a fragment of MTL in which the temporal operators may
only be constrained by non-singular intervals. Alur et al. showed that the sat-
isfiability and model-checking problems for MITL are EXPSPACE-complete [3].
A significant extension of this result, based on the notion of flatness, was later
obtained in [13]. Another interesting approach is that of Wilke, who considered
MTL over a dense-time semantics with bounded variability, i.e., parameterised by
a fixed bound on the number of events per unit time interval [54]. Wilke showed
that the satisfiability problem is decidable in this semantics and that MTL with
existential quantification over propositions is precisely as expressive as Alur-Dill
timed automata.

Work on real-time extensions of monadic first- and second-order logic of order
has been considerably scarcer. Hirshfeld and Rabinovich examine the monadic
first-order metric logic of order (FO(<,+1)) and show that unfortunately, it
is—in a precise technical sense—strictly more expressive over the reals than
any ‘reasonable’ timed temporal logic, and in particular than MTL [27]; see
also [11]. This sweeping inequivalence seriously dampens the hope of discovering
a ‘canonical’ timed temporal logic over the reals with a natural predicate-logical
counterpart, after the manner of LTL and FO(<) in the classical theory.

There has also been comparatively little research on finding suitable timed
analogues of the notion of regular expression. An interesting proposal is that of
Asarin et al. [9], who define a class of timed regular expressions with expressive
power precisely that of Alur-Dill timed automata, mirroring Kleene’s theorem
in the classical theory. Unfortunately, many natural questions, such as whether
two timed regular expressions are equivalent, remain undecidable.

In our view, the overall emerging picture of the present-day theory of real-
time verification is one of an amalgam of constructs and results—some deep and
striking—yet fundamentally constrained by a phalanx of inescapable undecid-



4

ability barriers. The elegance, uniformity, and canonicity of the classical theory
are lacking, and Trakhtenbrot’s challenge to a large extent remains unmet.

In an attempt to address these issues, we would like to propose here a time-
bounded theory of real-time verification . By ‘time-bounded’ we mean to
restrict the modelling and verification efforts to some bounded interval of time,
which itself can be taken as a parameter. A proximate motivation for our pro-
posal is the analogy with bounded model checking, which aims to circumvent an
intractable verification task by performing instead a more restricted—but less
costly—analysis. A related paradigm, originating from economics, is that of dis-
counting the future, whereby the later a potential error may occur, the lesser of
a concern it is.

Note that while bounded model checking restricts the total number of al-
lowable events (or discrete steps), time-bounded verification restricts the total
duration under consideration, but not the number of events, which can still be
unboundedly large owing to the density of time. We argue that this restriction
on total duration is a very natural one as regards real-time systems. For ex-
ample, a run of a communication protocol might normally be expected to have
an a priori time bound, even if the total number of messages exchanged is po-
tentially unbounded. In fact, many real-time systems, such as the flight control
software on board an aircraft, are normally rebooted and reset at regular inter-
vals (for example, presumably, on completion of a successful flight). One might
even argue that most hard real-time problems, which typically involve deadlines,
timeouts, and delays, only exist within a finely circumscribed time span. In such
cases, a time-bounded analysis seems entirely pertinent. We note that several re-
searchers have in fact already considered instances of time-bounded verification
in the context of real-time systems [49, 10, 30].

Aside from these practical considerations, we anticipate more favourable
complexity-theoretic properties from a time-bounded theory than from its un-
bounded counterpart. In recent work [40, 28], we have already amassed consid-
erable evidence to this effect, which we survey below and detail at greater length
in the main body of this paper.

The undecidability of language inclusion for timed automata, first established
in [2], uses in a crucial way the unboundedness of the time domain. Roughly
speaking, this allows one to encode arbitrarily long computations of a Turing
machine. In [40], we turned to the time-bounded version of the language inclusion
problem: given two timed automata A and B, together with a time bound N ,
are all finite timed words of duration at most N that are accepted by A also
accepted by B? One of our main results is that this problem is decidable and
in fact 2EXPSPACE-complete. It is worth noting that the time-boundedness
restriction does not alter the fact that timed automata are not closed under
complement, so that classical techniques for language inclusion do not trivially
apply.

In subsequent work, we examined the substantially more sophisticated prob-
lem of time-bounded emptiness (or equivalently, language inclusion) for alter-
nating timed automata [28]. We also succeeded in establishing decidability, but



5

in contrast to ordinary timed automata, showed that this problem has non-
elementary complexity.

A third line of investigation concerns the relative expressiveness of temporal
and predicate metric logics over bounded intervals of the reals, in analogy with
the classical equivalence of LTL and FO(<). Somewhat surprisingly, we discov-
ered that MTL has precisely the same expressive power as FO(<,+1) over any
bounded time domain [40]. This is in sharp contrast to the situation over un-
bounded time, where neither MTL nor any ‘reasonable’ temporal extension of it
can match the full expressiveness of FO(<,+1) [27].

Finally, we devoted a significant fraction of our efforts to time-bounded
model-checking and satisfiability questions for timed automata and metric log-
ics. In addition to MTL and FO(<,+1), we consider the monadic second-order
metric logic of order, MSO(<,+1). In [40], we showed that the time-bounded
model-checking and satisfiability problems for monadic first- and second-order
metric logics all have non-elementary complexity, whereas these problems are
EXPSPACE-complete in the case of MTL (and this in spite of the expressive
equivalence of MTL and FO(<,+1) over bounded time domains). It is worth
recalling, in contrast, that these problems are all undecidable over unbounded
time.

We believe that this small but significant body of results constitutes a clear
indication that the restriction to time-boundedness may lead to a substantially
better-behaved theory of real-time verification, mirroring the classical theory
and enabling one to lift classical results to the timed world.

It is perhaps worth stressing that we do not envisage time-bounded verifi-
cation to replace its unbounded counterpart entirely; one can always imagine
instances genuinely requiring unbounded real-time analysis. What we do assert,
however, is that for a large proportion of hard real-time systems, a time-bounded
approach should prove not only algorithmically advantageous, but will also be
entirely adequate theoretically.

The remainder of the paper is organised as follows. We recall standard real-
time definitions and conventions in Sec. 2. Sections 3, 4, and 5 respectively
introduce ordinary timed automata, metric logics, and alternating timed au-
tomata. In Sec. 6, we turn to the relative expressiveness of MTL and FO(<,+1)
over bounded time domains. Section 7 then examines our various time-bounded
decision problems: emptiness, language inclusion, model checking, and satisfia-
bility. Finally, we briefly discuss some of the multiple possible future research
directions in Sec. 8.

Our treatment is fairly spare; in particular, we do not present proofs, but
instead offer pointers to the relevant literature. Our aim is mainly to motivate
and illustrate, and we have occasionally opted to sacrifice precision for insight.

2 Real-Time Preliminaries

We fix some of the real-time notation and modelling conventions that we use
throughout this paper. While there are a wealth of alternatives and variants



6

that can be considered—many of which appear in some form or other in the
literature—our aim here is not to be encyclopedic, but rather to lay a simple
background in which to phrase some of the key motivating results in the area.

Two of the basic formalisms discussed in this paper are timed automata (both
ordinary and alternating) and metric logics. Timed automata are most commonly
given a semantics in terms of timed words, i.e., sequences of instantaneous, real-
valued timestamped events, whereas metric logics are more naturally predicated
on piecewise-continuous flows or signals. Accordingly, these are the semantics we
adopt here; this does not prevent us from specifying timed-automaton behaviours
using metric logics, as timed words can naturally be viewed as particular kinds
of flows.

In this paper, we are largely concerned with behaviours over time domains
of the form [0, N), where N ∈ N is some fixed positive integer. Let us therefore
in general write T to denote either [0, N) or R≥0.

Let Σ denote a finite set (or alphabet) or events. Typical elements of Σ are
written a, b, c, a1, etc. A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈
Σ∗ is a finite word and τ = 〈t1t2 . . . tn〉 ∈ T∗ is a strictly increasing sequence of
real-valued timestamps of the same length.1 Note that while we are restricting
ourselves to finite timed words, there is no a priori bound on the number of
events.

Let MP be a set of monadic predicates, denoted P,Q,R, etc. Monadic pred-
icates will alternately be viewed as second-order variables over T, i.e., ranging
over sets of non-negative real numbers, and as atomic propositions holding at
various points in time. Given P ⊆MP a finite set of monadic predicates, a flow
(or signal) over P is a function f : T → P(P) that is finitely variable. Finite
variability is the requirement that the restriction of f to any finite subinterval
of T have only finitely many discontinuities.2

A flow f : T→ P(P) corresponds to an interpretation of the monadic pred-
icates in P: for any P ∈ P, the interpretation of P as a subset of T is simply
{t ∈ T | P ∈ f(t)}. Conversely, any (finitely-variable) interpretation of all the
predicates in P defines a unique flow f : T→ P(P).

Finally, note that a timed word (〈a1 . . . an〉, 〈t1 . . . tn〉) over alphabet Σ can be
viewed as a (particular type of) flow, as follows. Let P = Σ, and set f(ti) = {ai},
for 1 ≤ i ≤ n, and f(t) = ∅ for all other values of t ∈ T.

1 This gives rise to the so-called strongly monotonic semantics; in contrast, the weakly
monotonic semantics allows multiple events to happen ‘simultaneously’ (or, more
precisely, with null-duration delays between them).

2 It is commonly argued that infinitely-variable flows do not correspond to ‘feasible’
computations, hence the above restriction. It is however important to stress that we
do not place any a priori bound on the variability (unlike, for example, [54]), other
than requiring that it be finite.



7

3 Timed Automata

As discussed in the Introduction, we treat Alur-Dill timed automata, interpreted
over finite timed words, as the central theoretical implementation formalism in
this work.

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and ./ ∈ {=, 6=, <,>,≤,≥} is a comparison operator:

φ ::= true | false | x ./ k | x− y ./ k | φ1 ∧ φ2 | φ1 ∨ φ2 .

A timed automaton A is a six-tuple (Σ,S, SI , SF , X, δ), where:

– Σ is a finite set of events,
– S is a finite set of states,
– SI ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– δ : S×Σ×ΦX → P(S×P(X)) is the transition function: if (s′, R) ∈ δ(s, a, φ),

then A allows a jump from state s to state s′, consuming event a in the
process, provided the constraint φ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain unchanged. We require
that δ be finite, in the sense of having only finitely many inputs not mapping
to ∅.

Given a timed automaton A as above, a clock valuation is a function ν : X →
R≥0. If t ∈ R≥0, we let ν+t be the clock valuation such that (ν+t)(x) = ν(x)+t
for all x ∈ X.

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and
delayed transitions π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn), with each
di ∈ R>0 and ai ∈ Σ, subject to the following conditions:

1. s0 ∈ SI , and for all x ∈ X, ν0(x) = 0,
2. for each 1 ≤ i ≤ n, there are someRi ⊆ X and φi ∈ ΦX such that: (i) νi−1+di

satisfies φi, (ii) (si, Ri) ∈ δ(si−1, ai, φi), and (iii) νi(x) = νi−1(x) + di for all
x ∈ X \Ri, and νi(x) = 0 for all x ∈ Ri, and

3. sn ∈ SF .

Each di is interpreted as the (strictly positive) time delay between the firing of
transitions, and each configuration (si, νi), for i ≥ 1, records the data immedi-
ately following the ith transition.

A timed word (〈a1a2 . . . an〉, 〈t1t2 . . . tn〉) is accepted by A if A has some

accepting run of the form π = (s0, ν0)
d1,a1−→ (s1, ν1)

d2,a2−→ . . .
dn,an−→ (sn, νn) where,

for each 1 ≤ i ≤ n, ti = d1 + d2 + . . .+ di.



8

Finally, given time domain T, we write LT(A) to denote the language of A
over T, i.e., the set of timed words accepted by A all of whose timestamps belong
to T.

An example of a timed automaton is provided in Fig. 1, along with a descrip-
tion of its accepted language in the surrounding text.

4 Metric Logics

We introduce metric (or quantitative) logics to reason about and specify real-
time behaviours. We consider both predicate and temporal formalisms, and in-
vestigate their relative expressiveness in Sec. 6.

Let Var be a set of first-order variables, denoted x, y, z, etc., ranging over T.
Second-order monadic formulas are obtained from the following grammar:

ϕ ::= true | x < y | +1(x, y) | P (x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀xϕ | ∀P ϕ ,

where P ∈MP is a monadic predicate (viewed here as a second-order variable
over T), and +1 is a binary relation symbol, with the intuitive interpretation
of +1(x, y) as ‘x + 1 = y’.3 We refer to ∀x and ∀P as first-order and second-
order quantifiers respectively. Existential quantifiers ∃x and ∃P are definable
via standard dualities.

The monadic second-order metric logic of order , written MSO(<,+1),
comprises all second-order monadic formulas. Its first-order fragment, the
(monadic) first-order metric logic of order , written FO(<,+1), comprises
all MSO(<,+1) formulas that do not contain any second-order quantifier; note
that these formulas are however allowed free monadic predicates.

We also define two further purely order-theoretic sublogics, which are pe-
ripheral to our main concerns but necessary to express some key related re-
sults. The monadic second-order logic of order, MSO(<), comprises all second-
order monadic formulas that do not make use of the +1 relation. Likewise, the
(monadic) first-order logic of order, FO(<), comprises those MSO(<) formulas
that do not figure second-order quantification.

Metric Temporal Logic, abbreviated MTL, comprises the following tem-
poral formulas:

θ ::= true | P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | 3Iθ | �Iθ | θ1 UI θ2 ,

where P ∈MP is a monadic predicate (viewed here as an atomic proposition),
and I ⊆ R≥0 is an open, closed, or half-open interval with endpoints in N∪{∞}.
If I = [0,∞), then we omit the annotation I in the corresponding temporal
operator.

3 The usual approach is of course to define +1 as a unary function symbol; this however
necessitates an awkward treatment over bounded domains, as considered in this
paper. We shall nonetheless abuse notation later on and invoke +1 as if it were a
function, in the interest of clarity.



9

Finally, Linear Temporal Logic, written LTL, consists of those MTL formulas
in which every indexing interval I on temporal operators is [0,∞) (and hence
omitted).

Figure 2 pictorially summarises the syntactic inclusions and relative expres-
sive powers of these various logics.

MSO(<, +1)

mmmmmm
RRRRRRR

MSO(<) FO(<, +1) MTL

FO(<)

QQQQQQQ
lllllll

LTL

Fig. 2. Relative expressiveness among the various logics. Metric logics are enclosed in
boxes. Straight lines denote syntactical inclusion, whereas dotted lines indicate expres-
sive equivalence over bounded time domains (cf. Sec. 6).

We now ascribe a semantics to these various logics in terms of flows over T.
Given a formula ϕ of MSO(<,+1) or one of its sublogics, let P and {x1, . . . , xn}
respectively be the sets of free monadic predicates and free first-order variables
appearing in ϕ. For any flow f : T→ P(P) and real numbers a1, . . . , an ∈ T, the
satisfaction relation (f, a1, . . . , an) |= ϕ is defined inductively on the structure
of ϕ in the standard way. For example:

– (f, a) |= P (x) iff P ∈ f(a).
– (f, a1, . . . , an) |= ∀P ϕ iff for all flows g : T→ P(P∪ {P}) extending f (i.e.,

such that g�P = f), we have (g, a1, . . . , an) |= ϕ.
(Here P is the set of free monadic predicates appearing in ∀P ϕ, and therefore
does not contain P .)

And so on.
We shall particularly be interested in the special case in which ϕ is a sentence,

i.e., a formula with no free first-order variable. In such instances, we simply write
the satisfaction relation as f |= ϕ.

For θ an MTL or LTL formula, let P be the set of monadic predicates ap-
pearing in θ. Given a flow f : T → P(P) and t ∈ T, the satisfaction relation
(f, t) |= θ is defined inductively on the structure of θ, as follows:

– (f, t) |= true.
– (f, t) |= P iff P ∈ f(t).
– (f, t) |= θ1 ∧ θ2 iff (f, t) |= θ1 and (f, t) |= θ2.
– (f, t) |= θ1 ∨ θ2 iff (f, t) |= θ1 or (f, t) |= θ2.
– (f, t) |= ¬θ iff (f, t) 6|= θ.
– (f, t) |= 3Iθ iff there exists u ∈ T with u > t, u− t ∈ I, and (f, u) |= θ.
– (f, t) |= �Iθ iff for all u ∈ T with u > t and u− t ∈ I, (f, u) |= θ.



10

– (f, t) |= θ1 UI θ2 iff there exists u ∈ T with u > t, u− t ∈ I, (f, u) |= θ2, and
for all v ∈ (t, u), (f, v) |= θ1.

Finally, we write f |= θ iff (f, 0) |= θ. This is sometimes referred to as the
initial semantics.

Note that we have adopted a strict semantics, in which the present time t
has no influence on the truth values of future temporal subformulas.

An important point concerning our semantics is that it is continuous, rather
than pointwise: more precisely, the temporal operators quantify over all time
points of the domain, as opposed to merely those time points at which discon-
tinuities occur. Positive decidability results for satisfiability and model checking
of MTL over unbounded time intervals have been obtained in the pointwise se-
mantics [44, 45, 46]; it is worth noting that none of these results hold in the
continuous semantics.

5 Alternating Timed Automata

We introduce alternating timed automata as a generalisation of ordinary timed
automata in which, in addition to disjunctive (or nondeterministic) transitions,
one also allows conjunctive transitions. Our notation closely follows that of
Sec. 3.

For Prop a set of propositional variables, the collection B+(Prop) of positive
Boolean formulas over Prop is given by the following grammar:

ψ ::= true | false | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 ,

where p ∈ Prop. A subset M ⊆ Prop satisfies ψ ∈ B+(Prop) if the truth
assignment that ascribes true to elements ofM and false to elements of Prop\M
satisfies ψ.

An alternating timed automaton is a six-tuple A = (Σ,S, SI , SF , X, δ),
where

– Σ is a finite set of events,
– S is a finite set of states,
– SI ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– δ : S ×Σ ×ΦX → B+(S ×P(X)) is the transition function. We require that
δ be finite, in the sense of having only finitely many inputs not mapping to
false.

Intuitively, the transition function of an alternating timed automaton is in-
terpreted as follows: in state (s, ν), if ν satisfies the clock constraint φ and
{(s1, R1), . . . , (sk, Rk)} satisfies δ(s, a, φ), then we think of the automaton as
having a conjunctive transition (s, ν) a−→ {(s1, ν1), . . . , (sk, νk)}, where each
clock valuation νi is the same as ν except for the clocks in Ri which are all reset
to zero.



11

As an example, let us define an automaton A over alphabet Σ = {a} that
accepts those words such that for every timed event (a, t) with t < 1 there is
an event (a, t+ 1) exactly one time unit later. A has a single clock x and set of
locations {s, u}, with s initial and accepting, and u non-accepting. The transition
function is defined by:

δ(s, a, x < 1) = (s, ∅) ∧ (u, {x}) δ(s, a, x ≥ 1) = (s, ∅)
δ(u, a, x 6= 1) = (u, ∅) δ(u, a, x = 1) = true

The automaton is illustrated in Fig. 3 in which we represent the conjunctive
transition by connecting two arrows with an arc.

A run of A starts in location s. Every time an a occurs in the first time unit,
the automaton makes a simultaneous transition to both s and u, thus opening
up a new thread of computation equipped with a fresh copy of the clock x. The
automaton must eventually leave location u, which is non-accepting, and it can
only do so exactly one time unit after first entering the location.

s u true
reset(x)

x ≥ 1

x = 1

x 6= 1

x < 1

Fig. 3. Alternating timed automaton A.

We now formally define the language accepted by an alternating timed au-
tomaton A = (Σ,S, SI , SF , X, δ). A run of A over a timed word (〈a1a2 . . . an〉,
〈t1t2 . . . tn〉) is a finite dag satisfying the following conditions: (i) each vertex
is a triple (i, s, ν), with 0 ≤ i ≤ n, s ∈ S a location, and ν a clock valuation;
(ii) there is a vertex (0, s0, ν0), where s0 ∈ SI and ν0(x) = 0 for all x ∈ X;
(iii) each vertex (i, s, ν), i ≤ n − 1, has a (possibly empty) set of children of
the form {(i + 1, s1, ν1), . . . , (i + 1, sk, νk)} where, writing ν′ = ν + ti+1 − ti
(and adopting the convention that t0 = 0), there is a conjunctive transition
(s, ν′) ai−→ {(s1, ν1), . . . , (sk, νk)}.

The run is accepting if for each vertex (n, s, ν), s is an accepting location; in
this case we say that the timed word (〈a1a2 . . . an〉, 〈t1t2 . . . tn〉) is accepted by
A. The language LT(A) of A over T is the set of timed words accepted by A all
of whose timestamps belong to T.

One of the motivations for introducing alternating timed automata is that
they enjoy better closure properties than ordinary timed automata:

Proposition 1. For any time domain T, alternating timed automata are effec-
tively closed under union, intersection, and complement [35, 46].



12

6 Expressiveness

Fix a time domain T, and let L and J be two logics. We say that L is at least
as expressive as J if, for any sentence θ of J , there exists a sentence ϕ of L
such that θ and ϕ are satisfied by precisely the same set of flows over T.

Two logics are then said to be equally expressive if each is at least as
expressive as the other.

The following result can be viewed as an extension of Kamp’s celebrated
theorem, asserting the expressive equivalence of FO(<) and LTL [29, 19], to
metric logics over bounded time domains:

Theorem 1. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<,+1) and MTL are equally expressive. Moreover, this
equivalence is effective [40].

Note that expressiveness here is relative to a single structure T, rather than
to a class of structures. In particular, although FO(<,+1) and MTL are equally
expressive over any bounded time domain of the form [0, N), the correspondence
and witnessing formulas may very well vary according to the time domain.

It is interesting to note that FO(<,+1) is strictly more expressive than MTL
over R≥0 [27, 11]. For example, MTL is incapable of expressing the following
formula (in slightly abusive but readable notation)

∃x∃y ∃z (x < y < z < x+ 1 ∧ P (x) ∧ P (y) ∧ P (z))

over the non-negative reals. This formula asserts that, sometime in the future,
P will hold at three distinct time points within a single time unit.

It is also worth noting that MSO(<,+1) is strictly more expressive than
FO(<,+1)—and hence MTL—over any time domain.

7 Decision Problems

We now turn to various decision problems concerning timed automata and metric
logics over bounded time domains. Recall that the latter are real intervals of the
form [0, N), with N ∈ N considered part of the input (written in binary). We
also contrast our results with their known counterparts over the non-negative
reals R≥0.

The most fundamental verification question is undoubtedly the emptiness
(or reachability) problem : does a given timed automaton accept some timed
word? It is well known that the problem is PSPACE-complete over R≥0 [1], and
the proof is easily seen to carry over to bounded time domains:

Theorem 2. The time-bounded emptiness problem for timed automata is
PSPACE-complete (following [1]).

The language-inclusion problem takes as inputs two timed automata, A
and B, sharing a common alphabet, and asks whether every timed word accepted
by A is also accepted by B. Unfortunately, language inclusion is undecidable over
R≥0 [2]. However:



13

Theorem 3. The time-bounded language-inclusion problem for timed automata
is decidable and 2EXPSPACE-complete [40].

For a fixed metric logic L, the satisfiability problem asks, given a sentence
ϕ of L over a set P of free monadic predicates, whether there exists a flow over
P satisfying ϕ. The model-checking problem for L takes as inputs a timed
automaton A over alphabet Σ, together with a sentence ϕ of L with set of free
monadic predicates P = Σ, and asks whether every timed word (viewed as a
flow) accepted by A satisfies ϕ.

The canonical time domain for interpreting the metric logics MSO(<,+1),
FO(<,+1), and MTL is the non-negative real line R≥0. Unfortunately, none of
these logics are decidable over R≥0 [5, 6, 26]. The situation however differs over
bounded time domains, as the following result indicates:

Theorem 4. The time-bounded satisfiability and model-checking problems for
the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable, with the
following complexities [40]:

MSO(<,+1) Non-elementary
FO(<,+1) Non-elementary

MTL EXPSPACE-complete

Finally, we turn our attention to alternating timed automata. The empti-
ness and language-inclusion problems are of course defined in the same
way as for ordinary timed automata. One may also wish to model check a timed
automaton A (qua implementation) against an alternating timed automaton B
(qua specification). Note that since alternating timed automata are closed under
all Boolean operations (in linear time), these problems are all polynomial-time
equivalent to the emptiness problem.

Unfortunately, emptiness is undecidable for alternating timed automata over
R≥0, by immediate reduction from the undecidability of language inclusion for
ordinary timed automata. Thankfully, the situation over bounded time domains
is more favourable:

Theorem 5. The time-bounded emptiness and language-inclusion problems for
alternating timed automata are decidable, but with non-elementary complex-
ity [28].

8 Discussion and Future Directions

In this work, we have attempted to promote a theory of time-bounded verifi-
cation to answer, at least in part, Trakhtenbrot’s 15-year-old challenge to ‘lift
the classical theory to the real-time world’. We have argued that this theory
is both pertinent , in that it is fully adequate to handle a large proportion
of ‘real-world’ real-time systems and specifications; and effective , in that the
restriction to bounded time domains reclaims as decidable several of the key
decision problems of real-time verification.



14

In terms of future work, we list below a sample of possible research avenues,
roughly divided along four main axes:

I. Extensions to further real-time formalisms. In this paper, we have en-
tirely focussed on linear-time semantics. Of course, a great deal of classical and
real-time verification work has been carried out in branching-time settings, and
it would be interesting to investigate whether the time-bounded approach can
be usefully combined with branching-time paradigms. Several researchers have
also considered various extensions of timed automata, such as weighted timed
automata and hybrid automata, and assorted verification problems; again, re-
formulating relevant questions in a time-bounded context may prove fruitful.
Another direction is that of timed games and related topics such as timed con-
troller synthesis.

II. Algorithmic and complexity issues. The complexity bounds presented in
this paper are fairly coarse-grained. In many instances, a finer ‘parameterised’
analysis (in which one or more of the inputs, such as the time domain, are
considered fixed) would undoubtedly yield valuable additional insight. Another
promising direction is to investigate combining existing algorithmic techniques,
such as those exploiting flatness in MTL formulas [13], with the algorithms spe-
cific to time-bounded verification.

III. Expressiveness. Many important questions regarding expressiveness are
left entirely unanswered. Do metric logics have equivalent alternating timed au-
tomata counterparts, and vice-versa? Can one develop an attractive theory of
timed regular expressions over bounded time domains? Is there a good notion
of robustness for time-bounded languages, in the sense of being impervious to
sufficiently small perturbations in the timestamps?

IV. Implementation and case studies. The history of verification has been
marked by a mutually beneficial interaction of theory and practice. We believe it
would be highly desirable, in conjunction with the study of the theoretical con-
cerns discussed here, to evaluate the practical effectiveness of time-bounded ver-
ification on real-world examples. This will no doubt require the development of
appropriate abstraction schemes, data structures, symbolic techniques, algorith-
mic heuristics, etc. Ultimately, however, a time-bounded theory of verification
can only gain widespread acceptance if its usefulness is adequately demonstrated.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proceedings of LICS. IEEE Computer Society Press, 1990.

[2] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126,
1994.

[3] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1), 1996.



15

[4] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211, 1999.

[5] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In
Proceedings of REX Workshop, volume 600 of LNCS. Springer, 1991.

[6] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
Inf. Comput., 104(1), 1993.

[7] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1), 1994.

[8] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In Pro-
ceedings of HSCC, volume 3414 of LNCS. Springer, 2005.

[9] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. J. ACM, 49(2),
2002.

[10] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Efficient computation
of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theor. Comput. Sci., 345(1), 2005.

[11] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and
MTL. In Proceedings of FSTTCS, volume 3821 of LNCS. Springer, 2005.

[12] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In
Proceedings of LICS. IEEE Computer Society Press, 2007.

[13] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and com-
plexity in real-time model checking. In Proceedings of ICALP, volume 5126 of
LNCS. Springer, 2008.

[14] D. Bošnački. Digitization of timed automata. In Proceedings of FMICS, 1999.

[15] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1),
1981.

[16] M. Dickhöfer and T. Wilke. Timed alternating tree automata: The automata-
theoretic solution to the TCTL model checking problem. In Proceedings of ICALP,
volume 1644 of LNCS. Springer, 1999.

[17] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proceedings of FOCS. IEEE Computer Society Press,
1991.

[18] M. Emmi and R. Majumdar. Decision problems for the verification of real-time
software. In Proceedings of HSCC, volume 3927 of LNCS. Springer, 2006.

[19] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of
fairness. In Proceedings of POPL. ACM Press, 1980.

[20] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proceedings of HART, volume 1201 of LNCS. Springer, 1997.

[21] T. A. Henzinger. The Temporal Specification and Verification of Real-Time Sys-
tems. PhD thesis, Stanford University, 1991. Technical Report STAN-CS-91-1380.

[22] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proceedings of ICALP, volume 623 of LNCS. Springer, 1992.

[23] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid
systems. In Proceedings of HSCC, volume 1790 of LNCS. Springer, 2000.

[24] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-
guages. In Proceedings of ICALP, volume 1443 of LNCS. Springer, 1998.

[25] P. Herrmann. Timed automata and recognizability. Inf. Process. Lett., 65, 1998.

[26] Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complexity.
Fundam. Inform., 62(1), 2004.

[27] Y. Hirshfeld and A. Rabinovich. Expressiveness of metric modalities for continu-
ous time. Logical Methods in Computer Science, 3(1), 2007.



16

[28] M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. Alternating timed au-
tomata over bounded time. In Proceedings of LICS. IEEE Computer Society
Press, 2010.

[29] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, 1968.

[30] J.-P. Katoen and I. S. Zapreev. Safe on-the-fly steady-state detection for time-
bounded reachability. In Proceedings of QEST. IEEE Computer Society Press,
2006.

[31] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O Automata:
A mathematical framework for modeling and analyzing real-time systems. In
Proceedings of RTSS. IEEE Computer Society Press, 2003.

[32] R. Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4), 1990.

[33] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. Comput. Log., 2(3), 2001.

[34] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proceeding of
FOSSACS, volume 3441 of LNCS. Springer, 2005.

[35] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Log., 9(2), 2008.

[36] C. Löding and W. Thomas. Alternating automata and logics over infinite words.
In Proceedings of IFIP TCS, volume 1872 of LNCS. Springer, 2000.

[37] N. A. Lynch and H. Attiya. Using mappings to prove timing properties. Dis-
tributed Computing, 6(2), 1992.

[38] J. Ostroff. Temporal Logic of Real-Time Systems. Research Studies Press, 1990.

[39] J. Ouaknine. Digitisation and full abstraction for dense-time model checking. In
Proceedings of TACAS, volume 2280 of LNCS. Springer, 2002.

[40] J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. In Pro-
ceedings of CONCUR, volume 5710 of LNCS. Springer, 2009.

[41] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In Proceedings of LICS. IEEE Computer Society Press, 2003.

[42] J. Ouaknine and J. Worrell. Universality and language inclusion for open and
closed timed automata. In Proceedings of HSCC, volume 2623 of LNCS. Springer,
2003.

[43] J. Ouaknine and J. Worrell. On the language inclusion problem for timed au-
tomata: Closing a decidability gap. In Proceedings of LICS. IEEE Computer
Society Press, 2004.

[44] J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In
Proceedings of LICS. IEEE Computer Society Press, 2005.

[45] J. Ouaknine and J. Worrell. Safety Metric Temporal Logic is fully decidable. In
Proceedings of TACAS, volume 3920 of LNCS. Springer, 2006.

[46] J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Tem-
poral Logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

[47] J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real Time.
PhD thesis, University of Namur, 1999.

[48] J.-F. Raskin and P.-Y. Schobbens. State-clock logic: A decidable real-time logic.
In Proceedings of HART, volume 1201 of LNCS. Springer, 1997.

[49] O. Roux and V. Rusu. Verifying time-bounded properties for ELECTRE reactive
programs with stopwatch automata. In Proceedings of Hybrid Systems, volume
999 of LNCS. Springer, 1994.



17

[50] S. Taşiran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying abstractions
of timed systems. In Proceedings of CONCUR, volume 1119 of LNCS. Springer,
1996.

[51] B. A. Trakhtenbrot. Origins and metamorphoses of the trinity: Logic, nets, au-
tomata. In Proceedings of LICS. IEEE Computer Society Press, 1995.

[52] M. Y. Vardi. Alternating automata and program verification. In Computer Science
Today, volume 1000 of LNCS. Springer, 1995.

[53] M. Y. Vardi. From philosophical to industrial logics. In Proceedings of ICLA,
volume 5378 of LNCS. Springer, 2009.

[54] T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In Proceedings of FTRTFT, volume 863 of LNCS. Springer, 1994.


