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Abstract. Metric temporal logic (MTL) is one of the most prominent
specification formalisms for real-time systems. Over infinite timed words,
full MTL is undecidable, but satisfiability for its safety fragment was
proved decidable several years ago [18]. The problem is also known to be
equivalent to a fair termination problem for a class of channel machines
with insertion errors. However, the complexity has remained elusive, ex-
cept for a non-elementary lower bound. Via another equivalent problem,
namely termination for a class of rational relations, we show that satis-
fiability for safety MTL is not primitive recursive, yet is Ackermannian,
i.e., among the simplest non-primitive recursive problems. This is surpris-
ing since decidability was originally established using Higman’s Lemma,
suggesting a much higher non-multiply recursive complexity.

1 Introduction

Metric temporal logic (MTL) is one of the most popular approaches for extending
temporal logic to the real-time setting. MTL extends linear temporal logic by
constraining the temporal operators with intervals of real numbers. For example,
the formula ♦[3,4]ϕ means that ϕ will hold within 3 to 4 time units in the future.
There are two main semantic paradigms for MTL: continuous (state-based) and
pointwise (event-based)—cf. [3, 12]. In the former, an execution of a system is
modelled by a flow which maps each point in time to the state propositions that
are true at that moment. In the latter, one records only a countable sequence
of events, corresponding to instantaneous changes in the state of the system.
In this paper we interpret MTL over the pointwise semantics3 and assume that
time is dense (arbitrarily many events can happen in a single time unit) but
non-Zeno (only finitely many events can occur in a single time unit).

Over the past few years, the theory of well-structured transition systems has
been used to obtain decidability results for MTL. Well-structured transition sys-
tems are a general class of infinite-state systems for which certain verification
problems, such as reachability and termination, are decidable; see [9] for a com-
prehensive survey. In [19] satisfiability and model checking for MTL were shown

3 Note that it follows from the thesis work of Henzinger [11] that safety MTL satisfi-
ability is undecidable over the continuous semantics.



to be decidable by reduction to the reachability problem for a class of well-
structured transition systems. Likewise, for a syntactically defined fragment of
MTL that expresses safety properties, called safety MTL, model checking and
satisfiability were shown decidable over infinite timed words by reduction to the
termination problem on well-structured transition systems [18].

Extracting well-structured systems from MTL formulas relies on Higman’s
Lemma, which states that over a finite alphabet the subword order is a well-
quasi order. Analysis of termination arguments that use Higman’s Lemma has
been applied to bound the complexity of reachability in lossy channel systems
and insertion (or gainy) channel systems: two classes of well-structured systems
that arise naturally in the modelling of communication over faulty media. For
the reachability and termination problem in lossy channel systems, an upper
bound in level Fωω of the fast-growing hierarchy was obtained in [7]. (Recall
that F<ω comprises the primitive recursive functions, Ackermann’s function lies
in Fω, while Fωω contains the first non-multiply recursive function.) The same
paper also shows that neither problem lies in a lower level of the hierarchy and
observes that both lower and upper bounds carry over to MTL satisfiability over
finite words and to reachability in insertion channel systems, among many other
problems.4 An upper bound in Fωω for safety MTL satisfiability has also been
sketched in [21] using related techniques.

Meanwhile, complexity lower bounds for safety MTL have been obtained
utilising a correspondence with the termination problem for insertion channel
systems. In [4] it is shown that termination for insertion channel machines with
emptiness tests is primitive recursive, though non-elementary.5 This result is
used to give a non-elementary lower bound in F3 for the satisfiability problem for
safety MTL. An improved lower bound in F4 is given in [13], again via insertion
channel machines, but still leaving a considerable gap with the above-mentioned
Fωω upper bound. This gap was highlighted recently in [14].

The key to determining the precise complexity of satisfiability for safety MTL
is to study a refined version of the termination problem for channel machines—
namely the fair termination problem. Roughly speaking, an infinite computation
of an insertion channel machine is fair if every message that is written to the
channel is eventually consumed—and not continuously preempted by insertion
errors. (In the translation between channel machines and MTL, fairness corre-
sponds in a precise sense to the non-Zenoness assumption.) We obtain lower
and upper complexity bounds for this problem that are Ackermannian, i.e., that
lie in level Fω of the fast-growing hierarchy. These bounds also apply to safety
MTL satisfiability, finally closing the above-mentioned complexity gap.

Unlike [4], we consider channel machines with a single channel. In [4], with-
out the hypothesis of fairness, the termination problem was shown to be non-

4 Incidentally, the model-checking problem over infinite timed words for safety MTL
against timed automata can also be shown to have complexity precisely in Fω

ω ,
following arguments presented in [19] together with the results of [7].

5 In the presence of insertion errors, read-transitions can always be taken, so the
channel is redundant unless there is an extra hypothesis, such as emptiness tests.



elementary in the number of channels. On the other hand, fair termination is
already undecidable if there are two channels. But with a single channel fair
termination is non-primitive recursive in the size of the channel alphabet. In
common with [4] we find that termination for insertion channels has a lower
complexity than termination for lossy channel systems or reachability for either
type of system, neither of which is multiply recursive.

Our technical development is carried out in a slightly more abstract frame-
work than insertion channel systems. We study the termination problem for
well-structured transition systems whose states are words over a given alphabet,
and whose transition relation is a rational relation that is (downwards) compat-
ible with the subword order. (This is similar to the basic framework of regular
model checking [2], but with the additonal hypothesis of monotonicity.)

To obtain an Ackermannian upper bound, we associate a Hydra battle with
each finite computation of such a system. For our purposes, a Hydra battle is a
sequence of ‘flat’ regular expressions that express assertions about states in the
computation. Each regular expression can be seen as arising from its precedessor
by a process of truncation (by the sword of Hercules) and regeneration. Our
Hydra correspond to the classical tree Hydra of Kirby and Paris [15] via a natural
correspondence between flat regular expressions and trees of height 2.

The basic pattern for proving our lower bound result is a standard one,
namely to reduce from the halting problem for Ackermannianly bounded Turing
machines by simulating their computations. However, in contrast to the common
approach in the literature, in which a large function and its inverse are computed
weakly before and after the simulation respectively (cf. e.g. [7, 22, 14]), we boot-
strap a counter that can count accurately to an Ackermannian bound even in
the presence of insertion errors. The bootstrapping involves extending Stock-
meyer’s yardstick construction, which reaches beyond the elementary functions,
to surpass all primitive recursive ones.

2 Preliminaries

2.1 Fast Growing Hierarchy

We define an initial segment of the fast growing hierarchy [16] of computable
functions by following the presentation of Figueira et al. [8].

For each k ∈ N, class Fk is the closure under substitution and limited re-
cursion of constant, sum and projection functions, and Fn functions for n ≤ k.
The latter are defined so that F0 is the successor function, and each Fn+1 is
computed by iterating Fn:

F0(x) = x + 1 Fn+1(x) = F x+1
n (x)

The following are a few simple observations:

– F0 = F1 contains all linear functions, like λx.x + 3 or λx.2x;
– F2 contains all elementary functions, like λx.22x

;



– F3 contains all tetration functions, like λx. 22
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The hierarchy is strict for k ≥ 1, i.e., Fk ( Fk+1, because Fk+1 /∈ Fk. Also,
for each k ≥ 1 and f ∈ Fk, there exists p ≥ 1 such that F p

k majorises f , i.e.,
f(x1, . . . , xn) < F p

k (max(x1, . . . , xn)) for all x1, . . . , xn [16, Theorem 2.10].
The union

⋃
k Fk is the class of all primitive recursive functions, while Fω

defined by Fω(x) = Fx(x) is an Ackermann-like non-primitive recursive function;
we call Ackermannian such functions that lie in Fω \

⋃
k Fk.

We remark that, following this pattern for successor and limit ordinals, the
hierarchy can be continued up to level ωω. The union

⋃
α<ωω Fα is the class of

all multiply recursive functions, and the non-multiply recursive functions in Fωω

have been called ‘hyper-Ackermannian’.

2.2 Finite Transducers

We work with normalised transducers with ǫ-transitions, whose input and output
alphabets are the same. They are tuples of the form 〈Q, Σ, δ, I, F 〉, where Q is a
finite set of states, Σ is a finite alphabet, δ ⊆ Q× (Σ ∪{ǫ})× (Σ ∪{ǫ})×Q is a
transition relation, and I, F ⊆ Q are sets of initial and final states respectively.

We write transitions as q
a|a′

−−→ q′, which can be thought of as reading a from the
input word (if a ∈ Σ) and writing a′ to the output word (if a′ ∈ Σ).

For a transducer T as above, we say that τ is a transduction iff it is a path

q0
a1|a

′

1−−−→ q1 · · ·
an|a′

n−−−−→ qn where q0 is initial and qn is final, and we write In(τ)
and Out(τ) for the words a1 . . . an and a′

1 . . . a′
n respectively. The relation of T

is then R(T ) = {〈In(τ), Out(τ)〉 : τ is a transduction of T }. The transducers
recognise exactly rational relations between Σ∗ and Σ∗ (cf. e.g. [20, Chapter IV]).

A computation of a transducer T from a word w1 is a finite or infinite se-
quence of words w1, w2, . . . such that w1 R(T ) w2 R(T ) · · · .

If q and q′ are states of a transducer T , we write T (q, q′) for the transducer
obtained from T by making q the only initial state and q′ the only final state.

2.3 Composing Transducers

We write # for relational composition, as well as for its counterpart in terms of
transducers. Recalling a standard definition of the latter operation, given two
transducers T1 = 〈Q1, Σ, δ1, I1, F1〉 and T2 = 〈Q2, Σ, δ2, I2, F2〉, the transition
relation of their composition T1 # T2 = 〈Q1 ×Q2, Σ, δ, I1 × I2, F1 ×F2〉 is defined
so that every output of T1 must be consumed by an input of T2:

〈q1, q2〉
a|a′

−−→ 〈q′1, q
′
2〉 iff





q1
a|ǫ
−−→ q′1 and a′ = ǫ and q2 = q′2, or

q1
a|a′′

−−−→ q′1 and q2
a′′|a′

−−−→ q′2 for some a′′ ∈ Σ, or

q1 = q′1 and a = ǫ and q2
ǫ|a′

−−→ q′2.

We then have R(T1 # T2) = R(T1) # R(T2).



2.4 Downwards Monotone Transducers

Given an alphabet Σ, we write ⊑ for the subword ordering on Σ∗, i.e., w ⊑ w′

iff w′ can be obtained from w by a number of insertions of letters. The downward
closure of a subset L of Σ∗, i.e., {w | ∃w′. w ⊑ w′ ∧ w′ ∈ L}, is denoted by ↓L.

We say that a relation R on Σ∗ is downwards monotone iff, whenever w1 R
w2, every replacement of w1 by a subword w′

1 can be matched on the right-hand
side of R, i.e., ∀w1, w2, w

′
1. w1 R w2 ∧ w′

1 ⊑ w1 ⇒ ∃w′
2. w′

1 R w′
2 ∧ w′

2 ⊑ w2.
Note that this is the same notion as downward compatibility of R with respect
to ⊑ in the theory of well-structured transition systems [9].

A transducer T is downwards monotone iff its relation R(T ) has the property.

Proposition 1. Composing transducers preserves downward monotonicity.

We leave open the decidability of whether a given transducer is downward
monotone. We note however that this problem is at least as hard as the regular
Post embedding problem (PEPreg) [6], and therefore not multiply recursive [7].

2.5 Downward Rational Termination

The principal problem we study is whether a given downwards monotone trans-
ducer terminates from a given word:

Given a downwards monotone transducer T and a word w1 over its
alphabet, is every computation of T from w1 finite?

We remark that the standard rational termination problem, i.e., without the
assumption of downward monotonicity, is undecidable. Indeed, it is straight-
forward to compute a transducer that recognises the one-step relation between
configurations of a given Turing machine.

Another closely related problem is gainy rational termination (also called
increasing rational termination [14]):

Given a transducer T and a word w1 over its alphabet, is every compu-
tation of T⊑ from w1 finite?

Here T⊑ = ⊑ #T #⊑, where ⊑ on the right-hand side denotes a transducer whose
relation is the subword ordering over the alphabet Σ of T :

0
a|a

for all a ∈ Σ
ǫ|a

for all a ∈ Σ

Thus, T⊑ can be thought of as a ‘faulty’ version of T that may gain arbitrary
letters in both input and output words, i.e., suffers from ‘insertion errors’.

By observing that T⊑ is downwards monotone for every transducer T , gainy
rational termination reduces to downward rational termination. Conversely, for
a downwards monotone transducer T , it is easy to see that T has an infinite
computation from w1 iff the same is true of T⊑.



3 Upper Bound

We obtain an Ackermannian upper bound for downward rational termination by
proving that, given an instance T , w1 of the problem, there is an Ackermannianly
large positive integer N(T , w1) such that if T terminates from w1 then all its
computations from w1 have lengths bounded by N(T , w1).

At the heart of the proof, there is an analysis of computations of T from
w1 in terms of how frequently they contain words that belong to certain regular
languages. A trivial case is when the regular language consists of all words over
the alphabet of T , for which the frequency is 1. More interestingly, our central
lemma (Lemma 6) shows that, assuming that the frequency of the language of
a regular expression E in a computation of length N is u−1 and that N is suf-
ficiently large in terms of u, either some segment of the computation can be
pumped to produce an infinite computation, or E can be refined to some E′

whose frequency is some smaller u′−1
. The notion of refinement of the regular

expressions is such that only finitely many successive refinements are ever pos-
sible, and so if T terminates from w1 then repeated applications of the lemma
must stop because N is not sufficiently large. Moreover, the refinements of the
regular expressions and the decreases in their frequences observe certain bounds
(that depend on T , but not on w1 or N), which together with the preceding rea-
soning enables us to obtain a global bound on the lengths of all the computations
(provided that T terminates from w1).

Before the central lemma, we have two lemmas that are about pumpability
of computation segments, and its connection with the regular expressions and
their refinements. Leading to the main result, we have another two lemmas,
which are concerned with bounding the sequences of regular expressions and
frequences that can arise from repeated applications of the central lemma, and
consequences of those bounds for the lengths of computations. However, we first
introduce the class of regular expressions used and the notion of refinement, as
well as a useful class of auxiliary transducers.

3.1 Flat Regular Expressions (FRE)

A prominent role in the sequel is played by the following subclass of the sim-
ple regular expressions of Abdulla et al. [1]: we say that a regular expression
over an alphabet Σ is flat iff it is of the form ∆∗

1d1∆
∗
2d2 · · ·∆

∗
K with K ≥ 1,

∆1, . . . , ∆K ⊆ Σ and d1, . . . , dK−1 ∈ Σ ∪ {ǫ}.
For such a regular expression E, let: the length of E be K; the height of E be

maxK
i=1 |∆i|. If l ∈ N+, let us say that E is l-refined by E′ iff E′ can be obtained

from E by replacing some ∆∗
i with an FRE E† over ∆i such that:

– the length of E† is at most l, and
– the height of E† is strictly less than |∆i|, i.e., each set in E† is strictly in ∆i.

In that case, E′ is also an FRE over Σ, of length at most K + l− 1. When each
set in E† has size |∆i| − 1, we call the refinement maximal.



For E still as above, let IE denote an identity transducer on the downward
closure of the language of E as follows:

1

a|a
for all a ∈ ∆1

2
d1|d1

ǫ|ǫ

a|a
for all a ∈ ∆2

· · ·
d2|d2

ǫ|ǫ

K

a|a
for all a ∈ ∆K

Indeed, R(IE) = {〈w, w〉 : w ∈ ↓L(E)}, so IE is downwards monotone.

3.2 Pumpable Transductions

Since finite sequences of consecutive transductions can be seen as single trans-
ductions of composite transducers, it suffices to consider pumpability of trans-
ductions instead of considering it for computation segments. The notion we de-
fine applies to transductions between words in the language of an FRE E =
∆∗

1d1 · · ·∆
∗
K , and essentially requires that, for all i, while reading the portion of

the input word in ∆∗
i , the transduction visits a part of the transducer that is

able to consume any word in ∆∗
i . The composition with the identity transducer

is a technical tool to ensure that traversing different paths in the state-transition
graph still produces words that conform to E.

Definition 2. If T is a downwards monotone transducer and E = ∆∗
1d1 · · ·∆

∗
K

is a FRE over an alphabet Σ, and τ is a transduction of composite transducer
T #IE such that In(τ) ∈ L(E), let us say that τ is pumpable iff it can be factored

as s1
τ1−→ s′1

d1|e1

−−−→ s2
τ2−→ s′2

d2|e2

−−−→ · · · sK
τK−−→ s′K , where, for each i ∈ {1, . . . , K},

∆∗
i ⊆ ↓dom(R((T # IE)(si, s

′
i))).

Lemma 3. If T is downwards monotone, and T # IE has a transduction τ such
that In(τ) ∈ L(E) and which is pumpable, then T has an infinite computation
from any word in ↓L(E).

The following is a ‘pumping lemma’: roughly, if a transduction from E to E
is such that its input word is not in the language of any ‘short’ refinement of E,
then it is pumpable. Here ‘short’ amounts to a bound which is the product of
the length of E and the size of the transducer’s state space.

Lemma 4. Suppose that: T is a downwards monotone transducer with set of
states Q and alphabet Σ; E is a FRE over Σ, of length K; τ is a transduction
of T # IE such that In(τ) ∈ L(E). Then either τ is pumpable, or In(τ) ∈ L(E′)
for some K|Q|-refinement E′ of E.



3.3 Sword of Hercules

Our central lemma, assuming that γ is a computation of length N from w1 of
a downwards monotone T which terminates from w1, can be applied repeatedly
to γ to yield some sequence 〈E0, u0〉, 〈E1, u1〉, . . . of pairs of FREs and positive
integers, as long as N is sufficiently large. For each h, there are at least ⌊N/uh⌋
occurrences in γ of words from the language of Eh. Moreover, each Eh+1 refines
Eh, and the length of Eh+1 as well as uh+1 are bounded by elementary functions
of: the number of states of T , the length and height of Eh, and uh. Recalling the
notion of refinement, each application of the lemma can be thought of as a strike
of Hercules on the FRE Eh, after which the latter has a Hydra-like response:
although some component of the form ∆∗

h is removed from Eh, it is replaced

in Eh+1 by some FRE E†
h. The height of E†

h, however, must be strictly smaller
than the size of ∆h, but the bound on its length grows with every strike.

Definition 5. For α ∈ (0, 1], let us say that a regular expression E is α-frequent
in a sequence of words w1, . . . , wN iff there exists J ∈ {1, . . . , N} of size ⌊Nα⌋
such that wj ∈ L(E) for all j ∈ J .

Lemma 6. Suppose that γ = w1, . . . , wN is a computation of a downwards
monotone transducer T with set of states Q and alphabet Σ, and that T termi-
nates from w1. If an FRE E over Σ and u ∈ N+ are such that N ≥ 16u2 and E is
u−1-frequent in γ, then there exists a K|Q|4u-refinement E′ of E which is u′−1

-

frequent in γ, where K = len(E), H = hgt(E), and u′ = 16u2K(H + 1)2K|Q|4u

.

3.4 Slaying the Hydra

The next two lemmas show that every sequence of pairs of FREs and positive
integers that can arise from repeated applications of Lemma 6 is finite, i.e.,
Hercules always defeats the Hydra eventually, and that if N ≥ 16u2 for every u
in such a sequence and T terminates from w1, then T cannot have a computation
from w1 of length N . Moreover, from the single-step bounds in Lemma 6, we
establish a bound for each pair in terms of |Q|, |Σ| and the distance from the
initial pair 〈Σ∗, 1〉, where Q and Σ are the state space and the alphabet of T .

We first define a directed graph which contains every sequence that Lemma 6
can yield. To show that every path that starts from 〈Σ∗, 1〉 is finite, we also
introduce a measure on FREs E over Σ in terms of |Σ|-tuples of natural numbers.
The latter records, for each s ∈ {1, . . . , |Σ|}, how many sets of size s occur in E.

We say that a sequence y0, y1, . . . of tuples in some Nk is bad iff there do not
exist i < j such that yi ≤ yj, where ≤ is the pointwise ordering. We recall that,
by Dickson’s Lemma, ≤ is a well-quasi ordering on Nk, i.e., there is no infinite
bad sequence. Hence, the finiteness of every path from 〈Σ∗, 1〉 follows once we
show that every corresponding sequence of measures in N|Σ| is bad.

Definition 7. Given a set of states Q and an alphabet Σ, let ΥQ,Σ be the graph:

– the vertices are pairs 〈E, u〉 where E is an FRE over Σ and u ∈ N+;



– there is an edge from 〈E, u〉 to 〈E′, u′〉 iff E′ is a K|Q|4u-refinement of E

and u′ = 16u2K(H + 1)2K|Q|4u

, where K = len(E) and H = hgt(E).

Definition 8. For E = ∆∗
1d1 · · ·∆

∗
K an FRE over Σ and s ∈ {0, . . . , |Σ|}, let

Ys(E) = |{i : i ∈ {1, . . . , K} and |∆i| = s}|.

Lemma 9. Suppose that Q is a set of states, Σ is an alphabet, and 〈E0, u0〉 →
〈E1, u1〉 → . . . is a path from 〈Σ∗, 1〉 in ΥQ,Σ. Then 〈Y1(E0), . . . , Y|Σ|(E0)〉,

〈Y1(E1), . . . , Y|Σ|(E1)〉, . . . is a bad sequence, and letting f(u) = 16u3+2u1+4u

, we

have
∑|Σ|

s=0 Ys(Eh), uh < fh+max(|Q|,|Σ|)(2) for all h.

Lemma 10. Suppose that: T is a downwards monotone transducer with set of
states Q and alphabet Σ; T terminates from w1; N ≥ 16u2 for all vertices 〈E, u〉
that are reachable from 〈Σ∗, 1〉 in ΥQ,Σ . Then T does not have a computation
from w1 of length N .

3.5 Main Result

Given the preceding lemmas, it remains to do two things. The first is to show
that, in every graph ΥQ,Σ , the positive integers in all vertices that are reachable
from 〈Σ∗, 1〉 are bounded by an Ackermannian function of |Q| and |Σ|. Although
the vertices and edges of ΥQ,Σ can be encoded using the classical Hydra trees
of Kirby and Paris [15], we do not require the full generality of the latter, but
are able to obtain an Ackermannian bound using Lemma 9 and recent results of
Figueira et al. [8] on lengths of bad sequences of tuples of natural numbers.

Writing N(|Q|, |Σ|) for the obtained bound, it then remains to argue that a
computation of T from w1 can be non-deterministically guessed and checked in
Ackermannian time or space, but that can be done by a straightforward non-
deterministic algorithm that explores the state-transition graph of the iterated
transducer T N(|Q|,|Σ|)−1 on the fly.

Theorem 11. Termination for a downwards monotone transducer T with set
of states Q and alphabet Σ, from a word w1 over Σ, is decidable by an algorithm
whose complexity is bounded by an Ackermannian function. For fixed |Σ|, the
bound is in F|Σ|+2.

Proof. From Lemma 9, for every path 〈E0, u0〉 → 〈E1, u1〉 → . . . from ver-
tex 〈Σ∗, 1〉 in ΥQ,Σ , the sequence 〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉,

. . . in N|Σ| is bad, and for all h, max(Y1(Eh), . . . , Y|Σ|(Eh)) < fh+max(|Q|,|Σ|)(2),
i.e., in the terminology of Figueira et al. [8], the sequence is max(|Q|, |Σ|)-
controlled by the function g(h) = fh(2). Since f is in class F2 of the fast grow-
ing hierarchy, we have that g belongs to F3. Also, g is monotone and satisfies
g(h) ≥ max(1, h) for all h, and we can assume that |Σ| ≥ 1. Hence, [8, Proposi-
tion 5.2] applies and gives us a function Ms(t) such that Ms is in Fs+2 for each
s ≥ 1, and the length of 〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉, . . . is at
most M|Σ|(max(|Q|, |Σ|)).



Since the distance of each 〈E, u〉 reachable from 〈Σ∗, 1〉 in ΥQ,Σ is at most
M|Σ|(max(|Q|, |Σ|)) − 1, we have by Lemma 9 that N(|Q|, |Σ|) ≥ 16u2, where

N(k, s) = 16(g(Ms(max(k, s)) − 1 + max(k, s)))2.

Therefore, by Lemma 10, T terminates from w1 iff it does not have a computation
from w1 of length N(|Q|, |Σ|).

We conclude that termination of T from w1 is decidable by guessing and
checking an N(|Q|, |Σ|)-long computation of T from w1, which is equivalent to
guessing and checking a transduction of the iterated transducer T N(|Q|,|Σ|)−1

from w1. It follows that space O(N(|Q|, |Σ|) × (log |Q| + log |Σ|) + log |w1|) is
sufficient for a non-deterministic algorithm.

Recalling that M|Σ| is in F|Σ|+2 and that g is in F3 ⊆ F|Σ|+2, we have that
N(|Q|, |Σ|) as a function of |Q| is also in F|Σ|+2. Therefore, as a function of
the combined size of T and w1, the non-deterministic space bound is in F|Σ|+2

when |Σ| is fixed, and in Fω in general. Since the classes involved of the fast
growing hierarchy are closed under squaring and exponentiation, the same coarse
classifications apply to consequent deterministic space and time bounds. ⊓⊔

4 Lower Bound

We use the following variant of the fast growing functions Fk, which give rise to
the Ackermann hierarchy (cf. e.g. [10]):

A1(x) = 2x Ak+1(x) = Ax
k(1), for k ≥ 1.

For example, A2 is exactly exponentiation of 2, and A3 is exactly tetration of
2. One can check that, for all k, p ≥ 1, there exists xk,p ≥ 0 such that, for
all x ≥ xk,p, we have Ak(x) > F p

k−1(x); hence Ak /∈ Fk−1 if k ≥ 2 by [16,
Theorem 2.10]. Conversely, Ak(x) ≤ Fk(x) for all k ≥ 1 and x ≥ 0, so Ak ∈ Fk.

To obtain our lower bound result, we provide a construction of ‘dependent
counter programs’ D1, D2, . . . such that each Dk+1 is computable from Dk in
logarithmic space. For every k, Dk consists of routines for basic counter opera-
tions (initialisation, increment, decrement, zero testing, maximum testing), and
is dependent in the sense that it may operate on an as yet unspecified counter by
calling the latter’s operations as subroutines. Moreover, Dk is closely related to
the Ak function above: provided C is a counter program that reliably implements
a counter bounded by N (in the sense that transducers that correspond to its
routines compute correctly, even if insertion errors are possible), then Dk[C] re-
liably implements a counter bounded by Ak(N). Given a Turing machine of size
K, we then use DK [C] with C reliable up to K to build a transducer that reli-
ably simulates AK(K) steps of the machine (in the presence of insertion errors),
and diverges iff the machine halts.

Theorem 12. Given a deterministic Turing machine M of size K, we have
that a transducer T (M) and a word w1, over an alphabet of linear size, are com-
putable in elementary time, such that M halts within time AK(K) iff T (M)⊑
does not terminate from w1.



5 Safety MTL Satisfiability

We now show that the satisfiability problem for the safety fragment of MTL is
inter-reducible with the termination problem for gainy transducers (equivalently,
for downwards monotone transducers, cf. Sect. 2.5), thus improving the best
known upper and lower bounds for the former. This reduction relies on results
in the literature concerning insertion channel machines (ICMs)—a model that
is very closely related to gainy transducers.

The formulas of MTL are built over a set of atomic events Σ using monotone
Boolean connectives and time-constrained versions of the next operator ©, until
operator U , and the dual until operator Ũ :

ϕ ::= ⊤ | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2,

where a ∈ Σ and I ⊆ R≥0 is an interval with endpoints in N ∪ {∞}.

A timed word over alphabet Σ is a pair ρ = 〈σ, τ〉, where σ is an infinite
word over Σ and τ is an infinite sequence of non-negative reals that is strictly
increasing and unbounded (i.e., non-Zeno). The satisfiability problem for MTL
asks whether a given formula is satisfied by some timed word. This problem was
shown undecidable in [17], motivating the introduction of the sub-logic safety
MTL in [18]. Safety MTL is the fragment of MTL obtained by requiring that the
interval I in each until operator UI have finite length. Thus safety MTL allows
bounded eventualities, such as ♦(0,1)ϕ, but not unbounded eventualites, such as
♦(0,∞)ϕ. The satisfiability problem for safety MTL was shown to be decidable
in [18] by an argument involving Higman’s Lemma. It was later observed that this
argument yields an upper bound in level Fωω of the fast-growing hierarchy [21].
A non-elementary lower bound (in F3) is given in [4] and an improved lower
bound in F4 is given in [13].

Theorems 11 and 12 yield upper and lower bounds for safety MTL satisfia-
bility that are both in Fω through four reductions:

ICM fair
termination

gainy rational
termination

safety MTL
satisfiability

(iii)

(iv)(i)

(ii)

where an ICM is a finite-state automaton acting on an unbounded channel that is
subject to insertion errors, and their fair termination problem ask whether there
is no infinite computation which is fair, i.e., in which every message written to
the channel is eventually read.

The reductions (i) and (ii) are almost immediate and require only logarithmic
space. Details for the reduction (iii), which can also be done in logarithmic
space, can be found in [4]. The most complex reduction is (iv): it is doubly
exponential, and its details are available in [13, Proposition 5.27], which builds
on a translation from MTL to channel machines in [5].
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