International Journal of Foundations of Computer Science
© World Scientific Publishing Company

ABSTRACTION AND COUNTEREXAMPLE-GUIDED REFINEMENT IN
MODEL CHECKING OF HYBRID SYSTEMS *

EDMUND CLARKE!, ANSGAR FEHNKER, ZHI HAN?, BRUCE KROGH,
JOEL OUAKNINE!, OLAF STURSBERG:3, MICHAEL THEOBALD'
1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3 Process Control Lab (CT-AST), University of Dortmund, 44221 Dortmund, Germany

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Hybrid dynamic systems include both continuous and discrete state variables. Properties of hy-
brid systems, which have an infinite state space, can often be verified using ordinary model checking
together with a finite-state abstraction. Model checking can be inconclusive, however, in which case
the abstraction must be refined. This paper presents a new procedure to perform this refinement op-
eration for abstractions of hybrid systems. Following an approach originally developed for finite-state
systems [11, 25], the refinement procedure constructs a new abstraction that eliminates a counterexam-
ple generated by the model checker. For hybrid systems, analysis of the counterexample requires the
computation of sets of reachable states in the continuous state space. We show how such reachability
computations with varying degrees of complexity can be used to refine hybrid system abstractions ef-
ficiently. Examples illustrate our counterexample-guided refinement procedure. Experimental results
for a prototype implementation indicate significant advantages over existing methods.

Keywords:Abstraction, Model Checking, Infinite-State Systems, Hybrid Systems, Refinement, Veri-
fication.

1. Introduction

Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for com-
plex systems such as manufacturing processes, automobiles, and transportation networks,
there is an urgent need for more powerful analysis tools, especially for safety critical ap-
plications. Tools developed so far for the automated analysis of hybrid systems are re-
stricted to low-dimensional continuous dynamics [29]. The reason for this limitation is the

*This research was supported by the Defense Advanced Research Project Agency (DARPA) MoBIES project
under contracts no. F3361500C1701 and F33615-02-C-0429, by the Army Research Office (ARO) under con-
tract no. DAAD19-01-1-0485, by the National Science Foundation (NSF) under grants no. CCR-0121547 and
CCR-0098072, by the Office of Naval Research (ONR) under contract no. NO0014-95-1-0520. The views and
conclusions in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of DARPA, ARO, ONR, NSF, the U.S. Government or any other entity.

A preliminary version of this work has appeared in [10].

difficulty of representing and computing sets of reachable states for continuous dynamic
systems. Recent publications have proposed two general approaches to deal with the com-
plexity of hybrid system analysis, namely modular analysis (e.g., [21, 15]) and abstraction
(e.g., [3, 1, 30]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [3]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [1, 30]. Existing tools often do
not take into account the specification itself when building an abstract model. Rather, an
abstract representation is constructed for the entire hybrid system using a degree of detalil
which seems to be appropriate. If the abstraction is not suitable to analyze the property,
then the abstract model is globally refined [7].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially violate
the property, and (c) iteratively refines the abstract model until verification reveals whether
or not the property in question is satisfied. A framework that follows this general scheme
of abstraction, refinement, and analysis¢ca@sinterexample-guided abstraction refinement
(CEGAR)[11, 13, 25]: For a given system the initial abstraction leads to a conservative
model that is guaranteed to include all behaviors of the original system. Model check-
ing [12, 8, 9] is then applied to the abstract model. If the property is violated, the model
checker produces eounterexampl@as anexecution pattof the abstract model for which
the property is not true. If this counterexample corresponds to a genuine behavior of the
original system, then the property does not hold for the original system. Otherwise, the
information provided by the counterexample is then usegfioethe abstract model, i.e.,
some detail is added to the abstract model in order to obtain a more accurate, yet conserva-
tive, representation of the original model. In particular, the refined model is constructed so
as to exclude thspuriouscounterexample. The procedure of alternating between model
checking and refinement is continued until the property is confirmed or refuted.

This procedure has recently been applied successfully to finite-state systems in a vari-
ety of areas, and in particular in the verification of digital circuits [11, 13]. Earlier work
based on the use of counterexamples includes the localization reduction in the context of
concurrent systems [25], and recent work has seen the application of the technique to the
verification of C programs [5, 19]. Another related abstraction refinement approach for pro-
grams [24] is not based on counterexamples but uses backward and forward reachability to
decide how to refine an abstract model.

This paper extends counterexample-guided model refinement to hybrid systems, which
include both continuous and discrete state variables and thus have an infinite state space.
We provide effective means of coping with the difficulties of computing reachable sets
for hybrid systems. In particular, we employ reachable set computations with varying
degrees of accuracy to refine hybrid system abstractions efficiently. This flexibility cannot
easily be achieved with other verification tools for hybrid systems. The approach most
closely related to ours, pursued independently by Alur et al. [2], also makes use of spurious
counterexamples to refine the state space of a hybrid system. This refinement differs from
ours in that it isglobal rather than location-specific. Moreover, Alur et al. currently restrict
themselves to so-calldahear hybrid systems, and use different sets of heuristics in their
refinement step.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe the CEGAR verification
approach that refines abstract models based on counterexamples. We introduce hybrid sys-

tems in Section 4, and apply CEGAR to hybrid systems in Section 5. Section 6 summarizes
the contributions of this paper.

2. Preliminaries

We introduce the notions of abstraction and counterexample-guided refinement for gen-
eral transition systems, defined as follows:

Definition 1 Transition SystemA transition system is a tripld’s = (S5, Sy, E) with a
(possibly infinite) state s&k, an initial setSy C S, and a set of transition& C S x S. ©

A pathof a transition system is a finite sequerieg, s1, - . ., s,,) With sg € Sy, each
s; € S, and each pair of successive stat€ss; 1) € E.

Given two transition systemd andC, A is said to be ambstract modebf C if the
following relation can be established.

Definition 2 Abstraction.A transition systemd = (5, Sy, F) with a finite set of state§
is an abstract model of a transition syst€m= (5, So, E), denotedd = C, if there exists
an abstraction functiom : S — S such that:

e the initial setisSy = a(Sy) = {30 | Iso € So : 0 = a(s0)}, and
[] E :_) Oé(E) = {(él,ég) ‘ 351,52 S SS (51,52) S E,.§1 = Oé(Sl),§2 = OZ(SQ)}. &

Note: In general, it is possible—and sometimes desirable—to consider an abstraetion
lation « rather than a mere abstraction function. The work presented here can easily be
adapted to this more general case, however for simplicity we shall stick to the above defi-
nition.

Sometimes the terrsimulationis used in the literature to describe the abstraction re-
lation. In contrast to the definitions of abstraction in [11, 13], Defn. 2 alldwe include
spurious transitionsi.e., the sef? may contain elements that do not correspond to transi-
tions inC. Spurious transitions arise in the construction of abstractions of hybrid systems
because in most cases sets of reachable states for continuous systems cannot be represented
and computed exactly [7].

Abstract models will be used to analyze properties of a given transition system. Through-
out the paper, we will call the given systatihthe concrete system

In order to construct a more detailed model from a given abstract model, we define the
following concept oimodel refinement

Definition 3 Refinement of Abstract Model&iven a concrete syste= (S, Sy, E) and
an abstract model = (S, Sy, E) such thatC' < A, with abstraction functiom : S — 5,
amodeld’ = (5,5}, E') is called a refined abstract model 6fwith respect to4 if there
are two abstraction functions’ : S — 5’ anda”’ : ' — S, i.e., ifC < A’ < A. o

Properties (or specifications) are verified for the concrete modeding an abstract model
A. In this paper we consider the verification of safety properties, defined as follows.

Definition 4 Safety. Given a transition systerff'S = (.5, Sy, E), let the setB C S\ Sy
specify a set of bad states. We say that TS is safe with respé&stdenoted byl’S =
AG— B iff there is no path in the transition system from an initial stat&into a bad state
in B. Otherwise we say TS is unsafe, denoted Byt~ AG-B. o

Definition 5 CounterexamplesA patho = (sg, $1,...,8m) Of TS = (S, Sy, E) with
sm € B is called a counterexample dfS with respect to the safety proper®S =
AG—B. Given a concrete transition systefiy an abstract transition system, and a
counterexample in C', we say that = (3¢, $1, 82, . .., $m) iS the corresponding abstract
counterexample of the abstract systdnif §; = «a(s;) holds for alli € {0,...,m}. Given
a counterexamplé of A, o is called a corresponding concrete counterexample if foi,all
$; = afs;) and(s;, s;41) € E. If a counterexamplé of A has no corresponding concrete
counterexample fof’, ¢ is called a spurious counterexample. o

Lemma 1 Given a concrete modél = (S, Sy, E), and an abstract moded = (S, So, E)
of C' with an abstraction functiony, let B C S \ Sy, and chooseB C S such that
B2 a(B)={b|3beB:b=a(b)}. If Al=AG-B, thenC = AG-B.]

If A AG-B can be verified, it can immediately be concluded from Lemma 1 (i.e.,
without applying verification to the concrete systéfithatC = AG—B. On the other
hand, the converse of Lemma 1 with respect to A& property does not hold. If the
verification of A revealsA # AG-B, then we cannot conclude thatis not safe with
respect toB, since the counterexample fer may be spurious. We call a method that
checks whether or not a counterexample is spurioueidation method If the validation
method discovers that the counterexample is spurious, then the counterexample is used to
refine A. We now introduce a scheme foounterexample-guided abstraction refinement
(CEGAR)to verify safety properties for a given concrete model. The basic principle is to
repeat the following sequence of steps until the property is verified or refuted [11]. The
starting point is a concrete mod€! and an abstract model (we propose in Sec. 5.1 a
specific way to obtain an initial abstract model for hybrid systems). The first step is then
to analyzeA = AG-B by model checking. If this property holds it can immediately be
concluded from Lemma 1 that is safe, too. Otherwise a counterexample is obtained, and
we must verify whether it has a corresponding real counterexamgilg it so, then the
safety property does not hold fét. Otherwise, i.e., when the counterexample is spurious,
the counterexample is used to refine the motleThat is, a new and more detailed model
A’ with C < A’ < A is produced, which excludes the spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refutéd fbine
pseudo-code in Fig. 1 summarizes this procedure:

The crucial steps in th€EGAR procedure arenodel checkingvalidation, andrefine-
ment With respect to model checking, standard algorithms4G¥-properties can be used
[12].

For validating a counterexample, the important ingredient is the computation of succes-
sors of states. We define an operatacc that determines the successor states from a given
setS C S by suce(§) ={s e S |35 S:(5,5) € E}. This set may not be exactly com-
putable for a given concrete model i.e. only over-approximationsice(S) O succ(S)
may be available. We first assume thatc(S) is computable.

A counterexamples = (3o, ..., 8,,) of A is then validated as follows: Lef, =
a~1(8), k € {0,...,m} denote the sets of concrete states corresponding to an element
of 6. The reachable parts of these sets are recursively definSgetsf := Sp, Speech .=
succ(S7es) N Sk, k € {1,...,m}. The counterexample is spurious $fe<" = () for at
least onéek, and we sayhe counterexample is refute@®@therwise, the counterexample is
validated andB is reachable.

ALGORITHM: Counterexample-Guided Abstraction Refinem&eGAR
INPUT: Concrete model’ and a set of bad statés
OUTPUT: Biis (or is not) reachable

Generate initial abstract model(bad states are callef)
Generate counterexampie(if one exists) by model checking wrt B
WHILE & existsDO
Validation of &
IF & validatedTHENterminate with ‘B reachable”
ELSE
Generate refined moddl' using counterexamplé
A=A
Generate next by model checkingd wrt B
ENDIF
ENDDO
Terminate with ‘B not reachable”

Figure 1:CEGAR: Scheme for verifying/falsifying” = AG—B based on counterexample-
guided abstraction refinement

If the counterexample is refuted witfj**“" =), the modelA is refined into a new
finite abstract model’ = (5’, 5, E') (cf. Defn. 3). The refined model should take into
account that there are no concrete transitions from stat@$ifl* to states ir),.. We there-

fore require that the sét’ of A’ not contain transitions in the sgta’(s1), a/(s2)) | 351 €
Sreach sy € Sk }. Thus, successive refined models will exclude previously explored coun-
terexamples. A method for the refinement of abstract models for infinite-state systems will
be presented in the next section.

3. Refinement of Abstract Models

This section presents a specific method for refining an abstract mbdé&he main
idea is to directly use the information obtained from the validation procedure to refine
certain abstract states. Assume that the abstract model includes a transition Betamdn
32, while the validation of the counterexample has revealed that only a subset of concrete
states inS, := a~1(4y) is reachable from concrete statesdn:= a~1(5;). In this case
we refineA by splitting $, into two new states. The first one, denotedstiy“", represents
the reachable subset 8§, given by Siea" := succ(S;) N Sz. The second one, denoted
by 55°™7, represents the complement of the reachable part, givéi§By := S, \ Sgeach.
In addition, the abstraction function that maps concrete states to abstract ones also has to
be refined.

Definition 6 State Splitting.Consider a concrete modél = (S, Sy, E) and an abstract
modelA = (S, Sy, E) with an abstraction functiom : S — S. Let(51,%,) € E be
a transition of a counterexampte. Then, we defing,,;; to be a function that map4,
o, and (31, §,) € E onto both an abstract model’ = (57,5}, E’) and an abstraction
functiona’ : S — S, i.e., (A", ') = pepit (A, a, (31, 52)), defined as follows:

o 5= (5\ {521) U {sgen 557}

a(s) ifs& Sy
° O/(S) _ ggeach if s € Sér'euch
557" if s € S50

o S\ ={§¢c§a"(§) e Sy}
o B/ = {(8,8)) € & x §'|F81,8, € S : (81,82) € ENG = (8 A dy =
(3

"(82)3 \ { (51,857}

wherea” : §' — S maps#’ to itself if ' ¢ {552 55°™"}, and tos, otherwise. o

Notice that, while this definition is very general in scope, for practical purposes (and in
particular computer implementation) it is necessary to place restrictions on the abstraction
functions as well as the various sets we compute to insure that the subsequent calculations
be feasible. For instance, in our case all sets are represented by polyhedra, although other
types of representations are possible.

Lemma 2 Let A = (S, So, E) be an abstract model af' = (S, So, E) with abstraction

functione : S — S. For a given transition(s;, 3,) € F, assume thas;e*<" £ (). Then
(A, ") = popiit (A, @, (81, 82)) is arefinement oft, i.e., A = A’ > C. []

The idea of splitting an abstract state has also been considered by Jeannet et al. [24].
However, their method does not address hybrid systems, and it uses forward and backward
reachability on the abstract model rather than counterexamples to decide which state to
split. One advantage (among others) of a counterexample-based approach is that it termi-
nates quickly when a discovered counterexample is not spurious and thus proving that the
safety property does not hold for the concrete system.

As a next step, we consider the case where the set of successfirand the setS,
are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Transition Purging.The functionp,..,. maps a given abstract moddl =
(S, S0, E), an abstraction functiom: : S — S and a transition(sy, 4,) € E to A’ =
(S, S0, E") with B/ = E'\ {(51, 82)}. o

Lemma 3 Let A = (S, So, E) be an abstract model @' = (S, S, E) with the abstrac-
tion functiona : S — S. For a given transition(s, $,) € E, assume thafieh = ().
ThenA’ := ppurge (4, o, (51, 82)) is arefinement o, i.e., A = A" = C. []

Based on these results, we now present a more specific formulation Gfether
algorithm in Fig. 2, calledNFINITE-STATE-CEGAR, which uses the functions,,;;; and
Ppurge fOr refinement.

Correctness of the algorithm is implied by the following lemfidote that termination
of the algorithm cannot be guaranteed as the number of states in the concrete model may
be infinite, and a finite abstract model to verify (or disprove) the given property may not
exist [18].

Lemma 4 If the algorithm terminates with B reachable”, thenC' £ AG-B, and if the
algorithm terminates with B not reachable”, therC' = AG-B. |

2The proofs of all lemmas in the paper can be found in the appendix.

ALGORITHM: INFINITE-STATE-CEGAR
INPUT: Concrete model’ and a set of bad statés
OUTPUT: Biis (or is not) reachable

Generate initial abstract modgland abstraction function
B:= «a(B)
Generate counterexampte= (3o, . .., $,,) by model checking ofi wrt B
S(?)“each - Oé_l(§0)
WHILE 6 existsDO
/I validation of counterexample
k:=0
WHILE Speech £ () ANDk < m DO
k:=k+1
Sreach .= suce(Sreach)y N a=1(§)
ENDDO
/Il if counterexample is validated, then terminate, else refine
IF Speach N B = () THENterminate with ‘B reachable”
ELSE
FORI =1,...,k
/I split abstract stat&, into two: one that corresponds
/I to S7e*ch and one that correspondsdo ! (3;) \ Sreach
IF Slreach 7£ 0171(31)
THEN(A, a) = psplit(A7 (&S (§l_1, §l))
ENDIF
ENDFOR
/I remove spurious transition betwe&n ; and sy
A= ppurge (A, @, (8k-1, 3k))
Generates by model checking oft wrt B
ENDIF
ENDDO
Terminate with ‘B not reachable”

Figure 2:INFINITE-STATE-CEGAR.

The proposed procedure of validating counterexamples and refining abstract models is
based on the computation of successor states. Alternatively, one could formulate a similar
algorithm that uses sets of predecessors, or even a combination of both as presented in [11]
and [13].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that sets
of successor states are exactly computable. Unfortunately, this rarely occurs in practice
for hybrid systems, and one must settle foraer-approximatiorsuce to the successor
functionsucc. In this case, the counterexample validation step may become overly conser-
vative, in that the algorithm may fail to refute a spurious counterexamg@e. the other
hand, we have:

bWe discuss this point in greater detail in the next section.

Lemma5 If the INFINITE-STATE-CEGAR algorithm using over-approximations in com-
puting successor states terminates with hot reachable”, therC = AG-B. |

Example. Let us borrow Hofstadter's “MU-puzzle”[23] to illustrate the salient issues at
hand.

The MIU-system is a simple rewrite system over alphabet {M, |, U}, with initial
string MI, and production rules

1. 2zl — xIU

2. Mx — Mxx

3. zllly — xUy
4. zUUy — xy

wherezx,y € ¥* are arbitrary finite strings, and string concatenation is denoted as simple
juxtaposition. For example, from the initial striddl, one can derive the new stridglU
through an application of Rule 1.

The MU-puzzle asks whether this rewrite system can ever derive the Btting

We model this as a safety property over an infinite transition system (S, S, E),
as follows. LetS = ¥*, S, = {MI}, and

E = {(x1,xIU), (Mx, Mxx), (xIlly, xUy), (xUUy, xy) | x,y € £*} .

Let B = {MU}. ltis clear thaC' F AG—B if and only if the MU-puzzle cannot be solved,
in other words if the string/1U cannot be derived in the MIU-system.

The abstract models @f that we shall consider ‘lump together’ states (iXstrings)
of S. The first step is to choose an initial abstract model. The only obligatory requirement
is that this model should separate the initial state(s) from the bad state(s). An additional
desirable property of the initial partition is that it should also be reasonably coarse, so as
to minimize the number of abstract states and correspondingly allow for efficient model
checking.

Let us first introduce some auxiliary definitions. Fore >*, let fjx represent the
number of times the symbadlappears inz, modulo 3. Next, forj = 0,1,2, let S5/ =
{s € S| #is = j}. Our initial abstract model igl; = ({S=!,5=%2} {S=1} F;), where
5=02 = §=0J §=2 and the transition relatioR; is depicted below:

The abstraction function; : S — {S=!, §=%2} satisfiesv;(s) = S=!if #js = 1, and
ai(s) = S=%2 otherwise. Our set of abstract bad stateBis= «1(B) = a1 ({MU}) =
{520,2}.

We now observe that; # AG—B; since there is a path (consisting of a single transi-
tion) from the initial state&5=" to the bad stat€="2 ¢ B;. However, upon validation over
the concrete systefi, we find that this counterexample is in fact spurious, since the only
one-step transitions from the single initial stddé € So areMl — MIU (as per Rule 1)
andMI — MII (Rule 2). In other wordgViU € B is not reachable in one step.

We must now refine our initial abstraction in such a way as to exclude this counterex-
ample. As discussed above, we would normally base our next refinement on the successor
function suce. Unfortunately, not only issuce(S=1) difficult to compute, but in fact it

turns out that iterating the refinement-counterexample-validation cycle swith would
never terminate, and thus would never allow us to decide whéttre A G—-B or not.

Fortunately, we are able to rely on an over-approximatiof of the successor states:
suce(s) = {u € S| thu = #is V fiu = 24;s}. Glancing at the production Rules 1-4, it
is clear thatsuce is indeed an over-approximation eficc; for example, Rule 3 removes
threel’s from one term to the next (and therefore leaves the same numbgnuddulo 3),
whereas Rule 2 doubles the numbet'sbf a term.

We then obtain the second abstractiép = ({S=Y, 5=, S=2} {S=1}, E3), where

E5 is depicted below:
4% .

The abstraction functiom : {S=9, 5=, 59521 takess € S to S=hs. We
have split the previous abstract st:SteO 2 into the two state$=° and S=2, and updated
our transition relation accordingly. Our set of abstract bad states istw as(B) =
az({MU}) = {S=°}.

We observe straightaway thdt = AG—-B,. Lemma 5 then implies that AG-B,
and hence that the MIU-system cannot derive the sivitiy

In general, as this example demonstrates, finding an initial abstraction, a suitable over-
approximation of the successor function, and performing efficient model refinements, can
be difficult and subtle tasks. In particular, these choices may require a good deal of insight.
However, we show in Section 5 that for hybrid systems one can find effective heuristics to
handle these problems.

4. Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid automata,
which are used to model hybrid systems. We will illustrate these definitions with an exam-
ple that models a simple car controller. The same example will be used in later sections to
illustrate the CEGAR approach to the verification of hybrid systems.

Definition 8 Syntax of the Hybrid Automato®/A. A hybrid automaton is a tupl&A4 =
(Z,29,X,in0,X0,T,g,7,f) where

e Z is a finite set of locations with an initial location € Z.
e X C R™is the continuous state space.

e inv: Z — 2% assigns to each location€ Z an invariant of the formnu(z) C X.

Xo C X is the set of initial continuous states. The set of initial hybrid states of HA
is thus given by the set of stateg } x X.

e T C Z x Z is the set of discrete transitions between locations.

g:T — 2% assigns a guard set((z1, z2)) € X t0 (z,22) € T.

e j: T x X — 2% assigns to each paifz;, z2) € T andz € g((21,22)) a jump set
J((21,22),7) C X.

o f: Z — (X — R") assigns to each location € Z a continuous vector field
f(2). We use the notatiofi, for f(z). The evolution of the continuous behavior in
location z is governed by the differential equatigit) = f.(x(¢)). We assume that
the differential equation has a unique solution for each initial valge) € inv(z). ¢

The semantics offA is defined by means of a trace transition system. Each(gtate
in the trace transition system corresponds to a continuous:statthin locationz. Two
such stateq,z1, x1) and(z2, x2), are connected by a transition in the trace transition system
if and only if state(z2, z2) can be reached from stafe;, z1) by a continuous evolution
within locationz; followed by a discrete transition to locatiap.

Definition 9 Semantics of the Hybrid AutomatdiA. The semantics of a hybrid automa-
ton HA is a transition systenT'T'S = (.S, Sy, F) with:

e the set of all hybrid state&:,) of HA,

s=UJ U {=} 1)

2E€EZ z€inv(z)

o the set of initial hybrid state§; = {29} x X,

e transitions(sy, s2) € E with s; = (21, 21), $2 = (22, z2), iff there existgzy, 22) €
T and a trajectoryy : [0, 7] — X for somer € R>? such that:

= X(0) = z1, x(7) € g((21,22)),
— 22 € j((21,22), X(7)),

= X(t) = [z (x(t)) for t € [0, 7],
— x(t) € inv(z;) fort € [0, 7],

— z9 € inv(zg).

A patho = (sg, s1, s2, ..., sm) Of TTS is called a trace ofH A, and we refer toI'T'S as
thetrace transition systewwf HA. o

Definition 10 Safety of a Hybrid Automatonfor a hybrid automaton7A with a seman-
tics as in Defn. 9, let, € Z \ {2} denote an unsafe locationHA is said to be safe
with respect toz,, denoted byI'T'S = AG—z, iff for all traces o there is nos € o with
s = (zp, x) for somer € X. We writeTTS = AG—z, otherwise. o

The extension of the analysis task to multiple initial locations, multiple unsafe loca-
tions, and locations containing both safe and unsafe states are straightforward but omitted
here for simplicity.

Example. As a motivating example, we consider a simple controller that steers a car
along a straight road. The car is assumed to drive at a constant speed, and its
motion is modeled by the distanaefrom the middle of the road«(= 0 corresponds to

the middle) and the heading anglé€y = 0 corresponds to moving straight ahead). Fig. 3
shows a scenario in which the car is initially on the road. The controller is able to detect
whether the car is on the left or right border (we< —1, z > 1). Whenever the car enters
the left border, the controller forces it to turn right until the car is back on the road again.

10

YNV
avod
YNV
avod
YNV
avod

s
-

Figure 3:i) Initially, the car drives on the road with heading angleii) If the controller
detects that the car has left the road, it corrects the heading by turning right to avoid the
canal.iii) Once the car is back on the road, a left turn is initiated until the car moves straight
again.

) ii) i)

Then a left turn is initiated, and continued until the car is again going straight ahead in the
direction of the road, i.e. when the heading is aligned with the reag- (0). A similar
strategy is employed when the car enters the right border.

Fig. 4 shows a hybrid automaton model for this example. Besides the pasitdod
the heading angle, the description includes an internal timerthat the controller uses
to time the steering maneuvers. The differential equations for these three continuous vari-
ables depend on the location: we have- —r - sin(y) in all locations excepib _canal .

The derivative ofy varies when a border is reached. On the border the motion of the car
describes an arc with the angular velogjty —w = —7/4 (orw = /4 respectively), i.e.,

the arc is part of a circle with radiugw. The timerc measures the time period which the

car spends on the border. In the correction modes the timer decreases with double rate, i.e.,
the correction takes half the time as that spent previously by the car on the border. Since
the sign ofy is reversed when the car moves back on the road, the angle has the value zero
when the correction mode is left & 0), i.e., the car then moves along the road. During

this correction it might, however, happen that the other border is reached, which means that
the controller then switches to the strategy of the corresponding location.

The three continuous variables are initializedté@ < z < 1 (the car is on the
road), —7/4 < v < w/4, andc = 0. It has to be verified for this set of initial states
whether the given control strategy guarantees that the unsafe loeatiamal (z;) is never
reached. The following sections explain how this task can be solved by abstraction-based
and counterexample-guided verification.

5. Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to hybrid systems. We present
specific solutions for the two crucial stepslMFINITE-STATE-CEGAR, validationandre-
finement The key to the validation step is the computation of successor states for a given
set of states in the trace transition system. Starting from the initial set, the validation proce-
dure computes the successors along the counterexample until either the unsafe lgcation
is reached or a transition is determined to be spurious. The computation of sets of successor
states is usually the most expensive step in hybrid system verification. Successor sets can be
computed and representegactlyonly for certain sub-classes of hybrid systems [27, 20].
However, several approaches to over-approximate successor sets have been published, as
e.g., successor set approximations by hyper-rectangles [14], general polyhedra [6], projec-

11

correct _left correct _right

@& = —rsin(y) straight _ahead @& = —rsin(y)

left _border

right _border
in _canal

z =0

& = —rsin(y) & = —rsin(y)

v =—w Y=w
e=1

x> 1

5 =0
¢=0

e=1

Y € [—m/4, /4]
c=0

Figure 4: Hybrid automaton that models the car steering example.

tions to lower dimensional polyhedra [17], or ellipsoids [26]. Most of these approaches
aim at providing an efficient way to obtain conservative but tight approximations to sets of
reachable states for hybrid systems.

We note that the main difficulties introduced by hybrid systems—as opposed to finite-
state or discrete infinite-state systems such as the MIU-system—aoriginate from the fact that
the transition relation for hybrid systemsimplicit, derived from differential equations
which in general do not even have analytical solutions. Even when analytical solutions
are available, the representation and computation of successor sets is non-trivial, making
it difficult to manufacture reasonably tight over-approximations to the successor function.
Consequently, given an abstraction function, one has to construct the transition relation
by focusing on one transition at a time in the abstract system. By contrast, in the finite-
state and discrete infinite-state cases, one can usually define the transition relation for an
abstraction function globally—many transitions can be constructed simultaneously.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated by the
trade-off between the accuracy and the computational complexity of different methods. If,
e.g., a faster but maybe less accurate technique is sufficient to refute a counterexample,
then there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton can
be obtained, and then focus on the validation of counterexamples and refinement of abstract
models based on the use of different methods for computing successor states.

5.1. Abstraction of Hybrid Systems

For the first step of théNFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each locatiialofThis means that
two hybrid stategz;, ;) and(z;, z;) of TTS are mapped to the same abstract state if and
only if z; = z;. This rule applies for all but the initial location, for which we introduce
one abstract stat& to represent all initial hybrid states @f7'S, and another ones{) to
represent the remaining hybrid states corresponding to the locgtion

Definition 11 Initial Abstraction of Hybrid SystemsGiven a hybrid automatof/A with

12

Z = {z0,21,..., 2.}, l€t S denote the set of hybrid states as definedlin Fori €
{0,1,...,n.}, we define the abstraction functian: S — S by:

§0 ifi=0Axze€ XO
a(zi,z) =< § fi=0Az¢ X 2
5; otherwise

and the initial abstract modeA = (S, S, E) is defined byi(€ {0,1,...,n}, j €
{0,1,...,n.}):

o S =1{5),30,51,..,8n}

o So = {5}

o E={(5,8))(zi,2) € TYU{(80,3)|(20,2)) € TYU{(3:,%)|(2:,20) €T} o

The initial abstract model represents the discrete structure of the hybrid system without
regard to the continuous dynamics and guards. Given this definition, it has to be shown that
A is indeed an abstract model of the underlying trace transition system, i.e., that it fulfills
Defn. 2:

Lemma 6 For HA with trace transition systeri'TS = (S, Sy, E), let A = (5,5, E)
denote the initial abstract model f&FTS. Then,A = TTS. []

Example (cont.) Fig. 5 depicts the initial ab-

stract model of the hybrid system in Fig. 4. It @&@
is a copy of the discrete part of the hybrid sys- ?
tem, except that the initial location is divided into

two parts: §, represents the states in location A
go.ahead with z € [-1,1], v € [-7/4,7/4] and @ e‘-’.@

¢ = 0, and§;, all other states igo_ahead . The ab- @

stract state$; to s¢ represent the hybrid states of

the other locationsieft _border , right _border , Fig 5. Initial abstract model of the
correct _left , correct _right , straight _ahead hybrid system depicted in Fig. 4
andin _canal , respectively). ¢

5.2. Over-approximation of the Sets of Successors

We now turn to the question of computing sets of successor states, as required in the
validation and refinement steps. The goal is to use different over-approximations with
different precisions and different computational requirements. For technical reasons it is
convenient to definguce in terms of pairsS;, S C S, whereS, is a set ofsource states
andS; is a set ofpotential successor statesicc(S1, .S2) is a conservative approximation
of those successors of statesSinthat lie in.S,.

Definition 12 Over-approximation of successor statest HA be a hybrid automaton with
the trace transition syste®@7'S = (S, Sy, E), and letA anda be defined as in Defn. 11.
For a transition (51, §2) € E of A, we call$; := a~1(31) the set of hybrid source states
and S, := a~!(4,) the set of potential hybrid successor states. Them : (2% x 2°) —
2% is an over-approximation of the hybrid successor stateiiff the following holds:

13

e succ(Sy,S2) C Sy,
e succ(Sy,S2) 2 suce(Sy) N Sa. o

A possible explicit realization of the operatarce with respect to a given sét, com-
bines the following steps: (a) We approximate the continuous evolution starting with the
set.S;. Usually, this step is the most costly of the whole verification procedure. We then
compute the reachable part of the guardge}, wheret = (z1, z2) is a transition of the
hybrid automaton that corresponds to the abstract trangition). (b) We apply the jump
functionj(t, z) to this part of the guard set. (c) We then intersect the resulting image with
the setSs.

polyhedra.:

c enclosing all
15 2 A

trajectories ¢

c trajectories
originating in S

Figure 6: All trajectories that originate i, leave the invariant whea = 0, and none of
them comes close t6,. Figure () shows the result of the optimization method. Figurk (
the result of the method that enclose the trajectories by polyhedra.

Example (cont.) Our prototype implementation uses two different methG@s¢ .oqrse
and succgne, 10 Over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition fragirect _right toleft _border . For location
correct _right we chooseS; as subset of the plane= 1, and.S; as all states of location
left _border that satisfy the invariant2 < z < —1. Fig. 6 depictsS; and the face of
S, that coincides with the guard = —1. The transition is not spurious if there exists a
trajectory that starts i¥; and ends inS; without leaving the invariant oforrect _right
(-1 <z <1Ac>0). Fig. 6 (i) depicts a number of trajectories that starfin none of
which reachsS;.

The first methodsuce..qsc POSES the existence question for a trajectory betwien
andS; as an optimization problem. The distance between a trajectorngarsdefined as
the minimum distance between all points on the trajectory&ndf the global minimum
over all trajectories that start i} is strictly greater than zero, then no successor stas of
exists inSs. In this cas&uce coarse (S1, S2) returns an empty set. If the minimum distance
is zero, at least one corresponding concrete path exists@ng, .. (51, S2) returns the
entire setS; as an over-approximation of the set of successor states. The bold trajectory in
Fig. 6 (i) is the optimal trajectory. Its distance$e is greater than zero, and there is hence
no trajectory froms; to S,.

The second methagiice,;4,, computes polyhedra that enclose all trajectories that orig-
inate in.S;. This over-approximation with polyhedra is based on work presented in [6].

14

The set of successor stat@8<c;q,: (51, S2) is then obtained by intersecting the polyhedra
with S,. Fig. 6 (ii) shows that this intersection is empty, i.e. there are no successérs of
in Ss. ¢

5.3. Validation and Refinement

The INFINITE-STATE-CEGAR algorithm makes a clear distinction between the valida-
tion of a counterexample, and the refinement of the abstract model. For hybrid systems, we
propose a slightly different approach, in which the steps of validation and refinement are
interleaved. We assume to have a set of over-approximation techrigem®s. . . , succ,,
that can (but not necessarily need to) establish a hierarchy of coarse to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a coun-
terexample is shown in Fig. 7. Let = (S,..., $,) denote a counterexample of the
abstract modell. The algorithm consists of two nested loops. The outer loop corresponds
to checking each transition of the counterexample. The inner loop applies each of the over-
approximation techniques to the current transition of the counterexample, and, depending
on the result, one of the two refinement operations is executed: If an over-approximation
techniquesuce; reveals that the current transition is spurious, §g" = (), then the
transition is removed from the abstract modeldyy,,.. When a transition is removed, the
set of behaviors ofA does not include the current counterexample anymore, and thus the
combined validation and refinement of the current counterexample is completed.

FORkE =1,...,m

FORI=1,...,n
Sjeoch = sueer (SEs", o (51)
IE S}:each — (Z)

A= Ppurge (A7 «, (ék—la ék))
RETURN/jump out of both loops
ELSEIF Speach C a1(3y)
(A7 Oé) = psplit(Aa «, (ék—la ék))
ENDIF
ENDFOR

ENDFOR

Figure 7: Refinement and validation steps for hybrid systems.

If on the other handsuce; returns a non-empty séf . and this set is a true subset of
the states correspondingdp, the functiorp,,;; dividess,, into two states;***" ands;"""*
(cf. Defn. 6). In this case however= (5o, ...,..., 81, §Z€“Ch, Sk41-..,8,) remains a
counterexample of the refined model. Thus the algorithm continues with the next transition
(k+1) until eitherSyeech = () or until the last transition of the counterexample is validated.
There is some freedom in combining the steps of validation and refinement, i.e., the
scheme in Fig. 7 is just one possible implementation. In addition there is a trade-off be-
tween the availability of multiple methods and the risk of unnecessarily refining our ab-

15

(viii)

Figure 8: Counterexample-guided abstraction illustrated for the car steering problem.

straction, and therefore the particular choice is a matter of heuristics.

The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved
that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it cannot
be guaranteed that this abstract counterexample corresponds to a concrete one. In this
case, under-approximations of sets of successor states can possibly be used to prove that a
counterexample exists: Assume that the procedure terminates with a counterexample
(0,81,--,8k,-..,5m), NO transition of which could be refuted. Similarly to Defn. 12,
we can define aonder-approximationf successor stateét " = succ(S;e™", a1 ()
which returns a sef}e** C a~1(3;) guaranteed to contain only true successors;6fc".

If this operator is applied along the counterexample (ffom 1to k = m) andS/ea" £ (),
there exists at least one path for the hybrid system which violates the safety property.

As noted earlier, when using over-approximations, there is no guarantee that a spuri-
ous counterexample can be refuted. The likelihood of refuting spurious counterexamples
can be increased, however, by using tighter polyhedral approximations. When the over-
approximations are tight, the presence of an unrefuted yet spurious counterexample is in-
dicative of a very slim error margin separating the reachable states from the bad ones. We
would argue that when an unrefuted spurious counterexample is encountered, it may be bet-
ter to redesign the implementation of our hybrid system so as to increase the error margin,
rather than risk facing an actual failure in a real-world implementation of this system.

If we compare the verification algorithm for hybrid systems presented here to similar
approaches in the literature such as [7], we note that the main advantage of our method is
that, in relying on spurious counterexamples to refine our successive abstract models, we
are focusing on thiocal properties of our system that are relevant to establish or invalidate
a particular specification. This leaves us free, for instance, to employ cheap gross over-
approximations of successor states in irrelevant areas of the hybrid system.

16

Example (cont.) The requirement that the hybrid model in Fig. 4 should never enter the
locationin _canal translates into the reachability question for stitef the abstract model

in Fig. 5. The first counterexample for the initial abstract modethis= (5o, 51, 5¢) (See

Fig. 8 (i)). The validation procedure considers first the transiti@n ;) which corre-
sponds to the transition betwegtahead andleft _border in the hybrid automaton. As

a first step,succ oarse (So, a1 (31)) is computed with the result that the minimum dis-
tance over all initial states is zero. This is obvious from the fact that those states of the
initial set for whichz = —1 enable the transition guard immediately. ThE&C .oqrse
returns the entire invariant of locatio#it _border as setS,. The next step is to compute
Sreach = gueeigni(So, @ 1(31)). The algorithm then split$; so thats; represents the set
Szeach "and the new abstract staterepresentss, \ Siee (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the trangiticig) is consid-
ered next. Method@uce,...s. finds that the minimal distance between the trajectories that
start in S5ea¢h and the guard: = —2 is greater than zero. This means that no trajectory
reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).

The procedure continues with the next counterexample= (3o, $2, 84, 81, §¢), as
depicted in Fig. 8 (iv). As for the first counterexample, the abstract $tdasesplit into the
states that are reachable from the initial Sgt and the remainder (Fig. 8 (v)). Then, the
procedure moves forward one transition and splits stages a result of applyinguccyign: -

The reachable part is representedshqyin Fig. 8 (vi). Methodsucc oqrs then finds that
one cannot reach any state that is represented bpm this set, and the transitidd,, §|)
can be deleted from (Fig. 8 (vii)).

The final counterexample is3 = (8o, 81, 83, 85, 84, 81, 8¢). The states; was already
split for the first counterexample. Similarly to the procedure for the counterexarmple
abstract statds is split as depicted in Fig. 8 (viii). It can then be shown that transition
(83, 8%) is spurious, which eliminates the last counterexample (Fig. 8 (ix)). Consequently,
the abstract stat®; is not reachable, and thus the same applies for the locatioanal of
the hybrid automaton. ¢

5.4. Validation and Refinement of Fragments of Counterexamples

The initial abstraction of the example in Fig. 5 contains oy counterexamples
without cycles,(5o, 1, §6) and (8o, $2, $4, $1, $6). However, to show that no bad state is
reachablethreecounterexamples in the series of abstractions were considered and refuted
(cf. Fig. 8). Hence, refining an abstract model, to eliminate a particular counterexam-
ple, may introduce new counterexamples. In this subsection we show that considering
fragments of counterexamples, rather than complete counterexamples, can reduce the total
number of counterexample that have to be considered. This often results in a significant
speed-up of the verification process.

The main reason for considering fragments is as follows. The validation and refinement
routine that we presented in the previous subsection typically refutes a counterexample (in-
deed, when a counterexample is not refuted, the algorithm stops). The case of refuting
a counterexample can be made more efficient by the following observation. In the previ-
ous subsection, a (spurious) counterexanfple. .., $,,) is refuted by showing that no
corresponding concrete pathy, ..., s,,) exists. Interestingly, showing that any one of
the transitiong3;, $;11) in the counterexample is spurious is a sufficient condition for the
non-existence of a corresponding concrete path.

Alternatively, we can also conclude that a counterexample is spurious if one of the

17

R
9. ol @
@@ @y G é“’e @y

Figure 9. Validation and refinement of fragments illustrated for a counterexample of the
car steering problem.

fragments($;, 8,11, 8;42) IS spurious, in other words if there is no corresponding concrete
path(s;, s;+1, si+2) in the concrete model. In general, one can define spurious fragments
of lengthn. Validation and refinement of such fragments of counterexamples can be done
in a similar way as for complete counterexamples.

We now illustrate that validation and refinement of short fragments can increase the effi-
ciency of the verification process. Clearly, if one can refute a fragment of a counterexample,
e.g., a single transition, then the entire counterexample is spurious. If a counterexample can
be refuted by considering a fragment of lengthit can surely be refuted by considering
fragments of length + 1. However, using a fragment of length4- 1 may have the unde-
sirable side-effect of introducing new counterexamples, or at least more counterexamples
than the method based on fragments of length

Example (cont.) Consider as an example Fig. 9 (i), which depicts part of the abstract
model in Fig. 8 (iv) and contains the counterexample. Note that there is a loop that enters
the counterexample &t and leaves it at,. For this car steering example it can be shown
that the fragments,, $4, 8|) is spurious, even though neither of the transitions is spurious
on its own. This means that validation and refinement of fragments of length 2 removes the
counterexample as depicted in Fig. 9 (ii).

If we consider the complete counterexample instead, we also find that the counterex-
ample is spurious. But in this case we would also splitwhich introduces an additional
counterexample that exploits the loop, as shown in Fig. 9(iii). In general, whenever we split
all abstract states between the entry and exit points of a loop, it will ‘open’ the loop, and
inevitably create an additional counterexample.

There is little choice if these states have to be split to refute the counterexample. Con-
sider for instance the first counterexample in Fig. 8 (i). This counterexample can only be
eliminated by splittings;. But if it is possible to refute a short fragment, rather than a
long one, this should be preferred. If we apply validation and refinement to fragments of
length 2 of the counterexample in Fig. 8 (iv), we are guaranteed that it will not introduce
new counterexamples. If it then succeeds, we can be sure that the number of counterex-
amples decreases. In this particular case, refuting fragféert,, ;) eliminates all other
counterexamples, as they also include this fragment.

5.5. Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We apply the prototype first to the car steering example
that was discussed throughout this paper. Then a larger and more challenging example
on an adaptive cruise control system that was put forward in the MoBIES project [28] is
discussed. We compare our results on the latter example with an analysis performed with
CheckMate.

18

5.5.1. Car Steering Example

For the car steering example we take as basélireNI TE-STATE-CEGAR as described
in Subsection 5.3 with the only successor operaiar,;,,;. We refer to this method as
INFINITE-STATE-CEGAR-I. For the car steering example this method computes the same
number ofsuccygn: Operations as a breadth-first application of the successor operator.
Breadth-first application is the most prevalent method used for model checking hybrid sys-
tems.

We compare this method with two instanced RFINITE-STATE-CEGAR. INFINITE-
STATE-CEGAR-II refines and validates complete counterexamples using the two different
methods, as described in Subsection 5.3. The third instaraITE-STATE-CEGAR-III
first validates all single transitions usiB@cc ..rsc. Next, it considers all fragments of
length 2, usingsucc oqrse. Finally, the third validation and refinement scheme considers
the fragments of length 2 too, but us@scc,4,. for the first transition, anduce coarse
for the second. If these three schemes fail to refute the counterexample, the complete
counterexample is considered, using the same routine as the second instanma I0E -
STATE-CEGAR.

For the car steering example the following results are obtained when run on a Pen-
tium 4, 1.4GHz. INFINITE-STATE-CEGAR-| considers three counterexamples, computes
Succygn: five times, and takes 185 seconds to verify that the car steering example is safe.
INFINITE-STATE-CEGAR-II considers the same counterexamples but compaies,; .
only three times, and finishes in 69 seconterINITE-STATE-CEGAR-III considers only
two counterexamples, and computsc,;,,; only once. Since, this particular successor
was easy to compute, the overall time drops to 20 seconds.

5.5.2. MoBIES Adaptive Cruise Control System

The model that we use for the adaptive control experiments is based on a Simulink/
Stateflow model [16]. The adaptive cruise control is part of a vehicle-to-vehicle coordi-
nation system. The part of this system that we consider comprises two modes: the cruise
control mode (cc-mode) in which a car tries to keep a constant speed, and an adaptive
cruise control mode (acc-mode), in which the car tries to stay a safe distance behind a vehi-
cle ahead of it. The acc-controller switches into acc-mode whenever the distance between
the car and a vehicle ahead falls below a certain threshold. This threshold depends linearly
on car speed.

The system also includes an automatic transmission system with four gears. Depending
on the speed of the car it will switch between the different gears. The hybrid automaton
that models both the acc-controller and the automatic transmission has 8 locations for the
normal operation and one additional state that is entered on collisions, when the distance
between the cars is zero. Obviously, this is the location that should not be reachable.
The model takes into account the distance between two cars, their relative velocity and
the velocity of the following car. The differential equations that describe the continuous
behavior are non-linear, mainly due to saturation; for each gear there are upper and lower
bounds on the possible acceleration.

For the adaptive cruise control example the hybrid model checker CheckMate[29] is
used as a baseline, since it is possible for this case study to generate a CheckMate model
that exhibits the exact same behavior as our nfodel

¢Note that other tools, such as HyTech [22], d/dt [4], and the Alur et al. tool [2] cannot handle this example as
it contains non-linear dynamics.

19

CheckMate takes 728 seconds to verify that the system is safe. We compare this
result to our two approachdsiFINITE-STATE-CEGAR-II and INFINITE-STATE-CEGAR-
[ll. INFINITE-STATE-CEGAR-II considers 46 counterexamples, and computes 11 times
Succgnt, IN 495 seconds. The resulting safe abstraction has 29 stateislITE-STATE-
CEGAR-IIl only considers 10 potential counterexamples, compEii@s;;,; just once, and
takes only 43 seconds. The resulting abstraction has just 15 states. Five of the counterexam-
ples have been refuted by considering single transitions; for example, when the following
car is in first gear and in acc-mode, then it cannot collide with the leading car. All other
counterexamples were refuted by considering segments of length 2. For example, one such
refuted counterexample corresponds to the case when the car is in third gear and switches
to acc-mode—this cannot lead to a collision.

6. Conclusions

This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered in
this paper is to compute the reachable states for the hybrid system using a breadth-first
application of the successor operatarc. Itis apparent that thenNFINITE-STATE-CEGAR
procedure can be faster than breadth-first reachability when the safety property does not
hold for the concrete system, since in this case it is possible for the model checker to quickly
find a true counterexample. On the other hand, if the safety property holds, refuting one
counterexample may implicitly refute others. However, tReINITE-STATE-CEGAR pro-
cedure continues until all possible counterexamples have been explored (and indeed, may
not terminate), which is in some cases equivalent to the breadth-first reachability computa-
tion. Nevertheless, we have shown here thaNITE-STATE-CEGAR offers the possibility
of using multiple methods for computing approximations to the successor states.

References

1. R. Alur, T. Dang, and F. Ivatic. Reachability analysis of hybrid systems via predicate ab-
straction. INHSCG volume 2289 oL NCS pages 35-48. Springer, 2002.

2. R. Alur, T. Dang, and F. Ivatic. Counter-example guided predicate abstraction of hybrid
system. INTACAS volume 2619 o NCS Springer, 2003.

3. R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions of hybrid
systems.Proceedings of the IEEB8(7):971-984, 2000.

4. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate reachability analysis of
piecewise-linear dynamical systems.H8CGC volume 1790 ot NCS Springer, 2000.

5. T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. IPLDI, SIGPLAN 36(5), 2001.

6. A. Chutinan and B.H. Krogh. Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations. HSCGC volume 1569 of NCS pages 76—90. Springer,
1999.

7. A.Chutinan and B.H. Krogh. Verification of infinite-state dynamic systems using approximate
quotient transition systems.|EEE Transactions on Automatic Contyel6(9):1401-1410,
2001.

8. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. Inogic of Programsvolume 131 oLLNCS Springer, 1981.

9. E.M. Clarke, E.A. Emerson, and A. Prasad Sistla. Automatic verification of finite state con-

20

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

current systems using temporal logic specifications: A practical approa¢tORi, 1983.

E.M. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Verification of
hybrid systems based on counterexample-guided abstraction refinemePACKS volume
2619 ofLNCS Springer, 2003.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. INCAV, volume 1855 o NCS pages 154-169. Springer, 2000.

E.M. Clarke, O. Grumberg, and D.A. Pelelodel Checking MIT Press, 1999.

E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using
ILP and machine learning techniques.GAV, volume 2404 o NCS Springer, 2002.

T. Dang and O. Maler. Reachability analysis via face liftingH®CGC volume 1386 o£NCS

pages 96—109. Springer, April 1998.

G. Frehse, O. Stursberg, S. Engell, R. Huuck, and B. Lukoschus. Modular analysis of discrete
controllers for distributed hybrid systems. IFAC World Congress2002.

A.R. Girard, J.B. de Souza, J.A. Misener, and J.K. Hedrick. A control architecture for inte-
grated cooperative cruise control and collision warning systenBrdecedings of the Control
and Decision Conferen¢cpages 1-1, Florida, December 2001.

M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projections. In
HSCC volume 1569 oL NCS pages 103-116. Springer, 1999.

T.A. Henzinger. The theory of hybrid automata. $3ymp. on Logic in Computer Science
pages 278-292. IEEE Computer Society Press, 1996.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.Syimp. on
Principles of Programming Languaggsages 58—70. ACM Press, 2002.

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid au-
tomata? IrSymposium on Theory of Computipgges 373—-382. ACM Press, 1995.

T.A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchical
hybrid systems. ItHSCGC volume 2034 of NCS pages 275-290. Springer, 2001.

T.A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the HyTech experience. In
Proceedings of the 40th Annual Conference on Decision and CofBE Press, 2001.

D.R. Hofstadter.Godel, Escher, Bach: An Eternal Golden BraiBasic Books, 1989.

B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical
properties. IrStatic Analysis Symposiywolume 1694 of NCS Springer, 1999.

R. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic ApproachPrinceton University Press, 1994.

A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysisHS@GC
volume 1790 oLNCS pages 203-213. Springer, 2000.

G. Lafferriere, G.J.. Pappas, and S. Yovine. A new class of decidable hybrid systems. In
HSCC volume 1569 oL NCS pages 103-116. Springer, 1999.

MoBIES. DARPA project. http://vehicle.me.berkeley.edu/mobies/vehicle/.

B.l. Silva, O. Stursberg, B. Krogh, and S. Engell. An assessment of the current status of
algorithmic approaches to the verification of hybrid systemdEEE Conf. on Decision and
Control, pages 2867-2874, 2001.

A. Tiwari and G. Khanna. Series of abstractions for hybrid automatalS@C volume 2289
of LNCS pages 465-478. Springer, 2002.

21

Appendix A:

Proof of Lemma 1.

Proof. By contradiction: IfC' f£ AG—B, then at least one path= (so, s1,...,b) with

b € B must exist forC. From Defn. 2, it follows that the corresponding abstract coun-
terexamples = (8o, 81, - - -, B) of A is a counterexample which contradicts the premise
A= AG-B. O
Proof of Lemma 2.

Proof. (i) A = A’. It follows straightforwardly thatd is an abstract model od’ with
abstraction functiom”” as defined in Defn. 6.

(i) A’ = C. From the above definitions of’ = (5, S}, E') and«/, it follows that A’
would be an abstract model 6f, if £’ also included the transitiof;, 55°). However,
since S5eech and S5°™" are disjoint, this abstract transition does not correspond to any
concrete transition and can therefore be omitted. |

Proof of Lemma 3.

Proof. (i) A = A’. The corresponding abstraction function is the identity. SiAdeas
just an additional transition it is an abstract modelof

(i) A’ = C. The abstraction function for this abstractioncis We can then omit the
abstract transitiofi$,, $2), since it does not correspond to any concrete transition. [

Proof of Lemma 4.

Proof. (i) If the algorithm terminates withB reachable”, then the set of reachable states

in the concrete model is non-empty along the path of the last checked counterexample.
Formally,Sreach =£ (), k = 0, ..., m due to the conditions in the IF statemeSfC<*NB #

() and the WHILE statemens(** # () ANDk < m).

We can now show that the last checked counterexample in the algorithm is not spurious.
To do so, we first show that for eaéh all s;, € S,:mh can be reached by paths in the
concrete model. The proof is done by induction/onFor k = 0, eachs, € S can
be reached by a path of length zero. For> 0, for eachs;, € S;e*° there exists an
sp—1 € Sreach such thatsy—1, sx) € E (by definition of thesuccoperator). By induction,
sg—1 Is reachable by some concrete path, ..., s;x—_1), hences; is reachable via the
concrete patffso, . . ., s).

Since for eachk, all s, € Spe" can be reached by paths in the concrete model,

there are pathésg, s1, . . ., ,,) With s, € S7?" 0 B. Each such path corresponds to a
counterexample in the concrete model. Thig= AG-B.
(ii) If the algorithm terminates with B not reachable”, then it was not possible to find any
counterexample for the current abstract madleBut sinceA is in each step an abstraction
of C' we can conclude by Lemma 1 thét|= AG—B holds.

The proof of Lemma 5 follows similar lines and is therefore omitted. a

Proof of Lemma 6.
Proof. We show thatv as defined in Defn. 11 is an abstraction function. The first condition
in Defn. 2 follows directly from the definition ak. To show the second condition, it must
be proved that

E = {(5,8))(zi,2) € T} U{(50,5;)|(20,2;) € T} U{(8:,80)I(zi,20) € T} 2
{(5:,8)) Fsi, 55 € S : (si,85) € E, 5 = asi), 85 = afs;) }.

Assume(s;, s;) € E, ands; = (z;, z;) ands; = (z;, z;) with z;, 2; € X andi, j # 0.
Then, it follows from the definition of in Defn. 9 that(z;, z;) € T. Thus,(3;, ;) € E.
The other cases & 0 or j = 0) can be shown in a similar way. |

22

