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ABSTRACT

Hybrid dynamic systems include both continuous and discrete state variables. Properties of hy-
brid systems, which have an infinite state space, can often be verified using ordinary model checking
together with a finite-state abstraction. Model checking can be inconclusive, however, in which case
the abstraction must be refined. This paper presents a new procedure to perform this refinement op-
eration for abstractions of hybrid systems. Following an approach originally developed for finite-state
systems [11, 25], the refinement procedure constructs a new abstraction that eliminates a counterexam-
ple generated by the model checker. For hybrid systems, analysis of the counterexample requires the
computation of sets of reachable states in the continuous state space. We show how such reachability
computations with varying degrees of complexity can be used to refine hybrid system abstractions ef-
ficiently. Examples illustrate our counterexample-guided refinement procedure. Experimental results
for a prototype implementation indicate significant advantages over existing methods.

Keywords:Abstraction, Model Checking, Infinite-State Systems, Hybrid Systems, Refinement, Veri-
fication.

1. Introduction

Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for com-
plex systems such as manufacturing processes, automobiles, and transportation networks,
there is an urgent need for more powerful analysis tools, especially for safety critical ap-
plications. Tools developed so far for the automated analysis of hybrid systems are re-
stricted to low-dimensional continuous dynamics [29]. The reason for this limitation is the
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difficulty of representing and computing sets of reachable states for continuous dynamic
systems. Recent publications have proposed two general approaches to deal with the com-
plexity of hybrid system analysis, namely modular analysis (e.g., [21, 15]) and abstraction
(e.g., [3, 1, 30]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [3]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [1, 30]. Existing tools often do
not take into account the specification itself when building an abstract model. Rather, an
abstract representation is constructed for the entire hybrid system using a degree of detail
which seems to be appropriate. If the abstraction is not suitable to analyze the property,
then the abstract model is globally refined [7].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially violate
the property, and (c) iteratively refines the abstract model until verification reveals whether
or not the property in question is satisfied. A framework that follows this general scheme
of abstraction, refinement, and analysis, iscounterexample-guided abstraction refinement
(CEGAR)[11, 13, 25]: For a given system the initial abstraction leads to a conservative
model that is guaranteed to include all behaviors of the original system. Model check-
ing [12, 8, 9] is then applied to the abstract model. If the property is violated, the model
checker produces acounterexampleas anexecution pathof the abstract model for which
the property is not true. If this counterexample corresponds to a genuine behavior of the
original system, then the property does not hold for the original system. Otherwise, the
information provided by the counterexample is then used torefinethe abstract model, i.e.,
some detail is added to the abstract model in order to obtain a more accurate, yet conserva-
tive, representation of the original model. In particular, the refined model is constructed so
as to exclude thespuriouscounterexample. The procedure of alternating between model
checking and refinement is continued until the property is confirmed or refuted.

This procedure has recently been applied successfully to finite-state systems in a vari-
ety of areas, and in particular in the verification of digital circuits [11, 13]. Earlier work
based on the use of counterexamples includes the localization reduction in the context of
concurrent systems [25], and recent work has seen the application of the technique to the
verification of C programs [5, 19]. Another related abstraction refinement approach for pro-
grams [24] is not based on counterexamples but uses backward and forward reachability to
decide how to refine an abstract model.

This paper extends counterexample-guided model refinement to hybrid systems, which
include both continuous and discrete state variables and thus have an infinite state space.
We provide effective means of coping with the difficulties of computing reachable sets
for hybrid systems. In particular, we employ reachable set computations with varying
degrees of accuracy to refine hybrid system abstractions efficiently. This flexibility cannot
easily be achieved with other verification tools for hybrid systems. The approach most
closely related to ours, pursued independently by Alur et al. [2], also makes use of spurious
counterexamples to refine the state space of a hybrid system. This refinement differs from
ours in that it isglobal rather than location-specific. Moreover, Alur et al. currently restrict
themselves to so-calledlinear hybrid systems, and use different sets of heuristics in their
refinement step.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe the CEGAR verification
approach that refines abstract models based on counterexamples. We introduce hybrid sys-
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tems in Section 4, and apply CEGAR to hybrid systems in Section 5. Section 6 summarizes
the contributions of this paper.

2. Preliminaries

We introduce the notions of abstraction and counterexample-guided refinement for gen-
eral transition systems, defined as follows:

Definition 1 Transition System.A transition system is a tripleTS = (S ,S0 ,E ) with a
(possibly infinite) state setS, an initial setS0 ⊆ S, and a set of transitionsE ⊆ S × S. ¦

A pathof a transition system is a finite sequence(s0, s1, . . . , sm) with s0 ∈ S0, each
si ∈ S, and each pair of successive states(si, si+1) ∈ E.

Given two transition systemsA andC, A is said to be anabstract modelof C if the
following relation can be established.

Definition 2 Abstraction.A transition systemA = (Ŝ, Ŝ0, Ê) with a finite set of stateŝS
is an abstract model of a transition systemC = (S, S0, E), denotedA º C, if there exists
an abstraction functionα : S → Ŝ such that:

• the initial set isŜ0 = α(S0) = {ŝ0 | ∃s0 ∈ S0 : ŝ0 = α(s0)}, and

• Ê ⊇ α(E) = {(ŝ1, ŝ2) | ∃s1, s2 ∈ S : (s1, s2) ∈ E, ŝ1 = α(s1), ŝ2 = α(s2)}. ¦
Note: In general, it is possible—and sometimes desirable—to consider an abstractionre-
lation α rather than a mere abstraction function. The work presented here can easily be
adapted to this more general case, however for simplicity we shall stick to the above defi-
nition.

Sometimes the termsimulationis used in the literature to describe the abstraction re-
lation. In contrast to the definitions of abstraction in [11, 13], Defn. 2 allowsA to include
spurious transitions, i.e., the set̂E may contain elements that do not correspond to transi-
tions inC. Spurious transitions arise in the construction of abstractions of hybrid systems
because in most cases sets of reachable states for continuous systems cannot be represented
and computed exactly [7].

Abstract models will be used to analyze properties of a given transition system. Through-
out the paper, we will call the given systemC theconcrete system.

In order to construct a more detailed model from a given abstract model, we define the
following concept ofmodel refinement.

Definition 3 Refinement of Abstract Models.Given a concrete systemC = (S, S0, E) and
an abstract modelA = (Ŝ, Ŝ0, Ê) such thatC ¹ A, with abstraction functionα : S → Ŝ,
a modelA′ = (Ŝ′, Ŝ′0, Ê

′) is called a refined abstract model ofC with respect toA if there
are two abstraction functionsα′ : S → Ŝ′ andα′′ : Ŝ′ → Ŝ, i.e., ifC ¹ A′ ¹ A. ¦
Properties (or specifications) are verified for the concrete modelC using an abstract model
A. In this paper we consider the verification of safety properties, defined as follows.

Definition 4 Safety.Given a transition systemTS = (S ,S0 ,E ), let the setB ⊆ S \ S0

specify a set of bad states. We say that TS is safe with respect toB, denoted byTS |=
AG¬B iff there is no path in the transition system from an initial state inS0 to a bad state
in B. Otherwise we say TS is unsafe, denoted byTS |6= AG¬B . ¦
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Definition 5 Counterexamples.A pathσ = (s0, s1, . . . , sm) of TS = (S ,S0 ,E ) with
sm ∈ B is called a counterexample ofTS with respect to the safety propertyTS |=
AG¬B . Given a concrete transition systemC, an abstract transition systemA, and a
counterexampleσ in C, we say that̂σ = (ŝ0, ŝ1, ŝ2, . . . , ŝm) is the corresponding abstract
counterexample of the abstract systemA, if ŝi = α(si) holds for alli ∈ {0, . . . ,m}. Given
a counterexamplêσ of A, σ is called a corresponding concrete counterexample if for alli,
ŝi = α(si) and(si, si+1) ∈ E. If a counterexamplêσ of A has no corresponding concrete
counterexample forC, σ̂ is called a spurious counterexample. ¦

Lemma 1 Given a concrete modelC = (S, S0, E), and an abstract modelA = (Ŝ, Ŝ0, Ê)
of C with an abstraction functionα, let B ⊆ S \ S0, and chooseB̂ ⊂ Ŝ such that
B̂ ⊇ α(B) = {b̂ | ∃ b ∈ B : b̂ = α(b)}. If A |= AG¬B̂, thenC |= AG¬B. ¥

If A |= AG¬B̂ can be verified, it can immediately be concluded from Lemma 1 (i.e.,
without applying verification to the concrete systemC) that C |= AG¬B. On the other
hand, the converse of Lemma 1 with respect to theAG-property does not hold. If the
verification ofA revealsA |6= AG¬B̂, then we cannot conclude thatC is not safe with
respect toB, since the counterexample forA may be spurious. We call a method that
checks whether or not a counterexample is spurious avalidation method. If the validation
method discovers that the counterexample is spurious, then the counterexample is used to
refineA. We now introduce a scheme forcounterexample-guided abstraction refinement
(CEGAR)to verify safety properties for a given concrete model. The basic principle is to
repeat the following sequence of steps until the property is verified or refuted [11]. The
starting point is a concrete modelC and an abstract modelA (we propose in Sec. 5.1 a
specific way to obtain an initial abstract model for hybrid systems). The first step is then
to analyzeA |= AG¬B̂ by model checking. If this property holds it can immediately be
concluded from Lemma 1 thatC is safe, too. Otherwise a counterexample is obtained, and
we must verify whether it has a corresponding real counterexample inC. If so, then the
safety property does not hold forC. Otherwise, i.e., when the counterexample is spurious,
the counterexample is used to refine the modelA. That is, a new and more detailed model
A′ with C ¹ A′ ¹ A is produced, which excludes the spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refuted forC. The
pseudo-code in Fig. 1 summarizes this procedure:

The crucial steps in theCEGAR procedure aremodel checking, validation, andrefine-
ment. With respect to model checking, standard algorithms forAG-properties can be used
[12].

For validating a counterexample, the important ingredient is the computation of succes-
sors of states. We define an operatorsucc that determines the successor states from a given
setS̃ ⊆ S by succ(S̃ ) = {s ∈ S | ∃s̃ ∈ S̃ : (̃s, s) ∈ E}. This set may not be exactly com-
putable for a given concrete modelC, i.e. only over-approximationssucc(S̃) ⊃ succ(S̃ )
may be available. We first assume thatsucc(S̃ ) is computable.

A counterexamplêσ = (ŝ0, . . . , ŝm) of A is then validated as follows: LetSk =
α−1(ŝk), k ∈ {0, . . . , m} denote the sets of concrete states corresponding to an element
of σ̂. The reachable parts of these sets are recursively defined bySreach

0 := S0, Sreach
k :=

succ(S reach
k−1 ) ∩ Sk , k ∈ {1, . . . , m}. The counterexample is spurious iffSreach

k = ∅ for at
least onek, and we saythe counterexample is refuted. Otherwise, the counterexample is
validated, andB is reachable.

4



ALGORITHM: Counterexample-Guided Abstraction Refinement:CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA (bad states are called̂B)
Generate counterexampleσ̂ (if one exists) by model checkingA wrt B̂
WHILE σ̂ existsDO

Validation ofσ̂
IF σ̂ validatedTHENterminate with “B reachable”
ELSE

Generate refined modelA′ using counterexamplêσ
A := A′

Generate next̂σ by model checkingA wrt B̂
ENDIF

ENDDO
Terminate with “B not reachable”

Figure 1:CEGAR: Scheme for verifying/falsifyingC |= AG¬B based on counterexample-
guided abstraction refinement

If the counterexample is refuted withSreach
k = ∅, the modelA is refined into a new

finite abstract modelA′ = (Ŝ′, Ŝ′0, Ê
′) (cf. Defn. 3). The refined model should take into

account that there are no concrete transitions from states inSreach
k−1 to states inSk. We there-

fore require that the set̂E′ of A′ not contain transitions in the set{(α′(s1), α′(s2)) | ∃ s1 ∈
Sreach

k−1 , s2 ∈ Sk}. Thus, successive refined models will exclude previously explored coun-
terexamples. A method for the refinement of abstract models for infinite-state systems will
be presented in the next section.

3. Refinement of Abstract Models

This section presents a specific method for refining an abstract modelA. The main
idea is to directly use the information obtained from the validation procedure to refine
certain abstract states. Assume that the abstract model includes a transition betweenŝ1 and
ŝ2, while the validation of the counterexample has revealed that only a subset of concrete
states inS2 := α−1(ŝ2) is reachable from concrete states inS1 := α−1(ŝ1). In this case
we refineA by splittingŝ2 into two new states. The first one, denoted byŝreach

2 , represents
the reachable subset ofS2, given bySreach

2 := succ(S1 ) ∩ S2 . The second one, denoted
by ŝcomp

2 , represents the complement of the reachable part, given byScomp
2 := S2 \Sreach

2 .
In addition, the abstraction function that maps concrete states to abstract ones also has to
be refined.

Definition 6 State Splitting.Consider a concrete modelC = (S, S0, E) and an abstract
modelA = (Ŝ, Ŝ0, Ê) with an abstraction functionα : S → Ŝ. Let (ŝ1, ŝ2) ∈ Ê be
a transition of a counterexamplêσ. Then, we defineρsplit to be a function that mapsA,
α, and (ŝ1, ŝ2) ∈ Ê onto both an abstract modelA′ = (Ŝ′, Ŝ′0, Ê

′) and an abstraction
functionα′ : S → Ŝ′, i.e.,(A′, α′) = ρsplit(A,α, (ŝ1, ŝ2)), defined as follows:

• Ŝ′ = (Ŝ \ {ŝ2}) ∪ {ŝreach
2 , ŝcomp

2 }
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• α′(s) =





α(s) if s 6∈ S2

ŝreach
2 if s ∈ Sreach

2

ŝcomp
2 if s ∈ Scomp

2

• Ŝ′0 = {ŝ′ ∈ Ŝ′|α′′(ŝ′) ∈ Ŝ0}
• Ê′ = {(ŝ′1, ŝ′2) ∈ Ŝ′ × Ŝ′|∃ŝ1, ŝ2 ∈ Ŝ : (ŝ1, ŝ2) ∈ Ê ∧ ŝ1 = α′′(ŝ′1) ∧ ŝ2 =

α′′(ŝ′2)} \ {(ŝ1, ŝ
comp
2 )}

whereα′′ : Ŝ′ → Ŝ mapsŝ′ to itself if ŝ′ 6∈ {ŝreach
2 , ŝcomp

2 }, and toŝ2 otherwise. ¦
Notice that, while this definition is very general in scope, for practical purposes (and in

particular computer implementation) it is necessary to place restrictions on the abstraction
functions as well as the various sets we compute to insure that the subsequent calculations
be feasible. For instance, in our case all sets are represented by polyhedra, although other
types of representations are possible.

Lemma 2 Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with abstraction
functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume thatSreach

2 6= ∅. Then
(A′, α′) := ρsplit(A,α, (ŝ1, ŝ2)) is a refinement ofA, i.e.,A º A′ º C. ¥

The idea of splitting an abstract state has also been considered by Jeannet et al. [24].
However, their method does not address hybrid systems, and it uses forward and backward
reachability on the abstract model rather than counterexamples to decide which state to
split. One advantage (among others) of a counterexample-based approach is that it termi-
nates quickly when a discovered counterexample is not spurious and thus proving that the
safety property does not hold for the concrete system.

As a next step, we consider the case where the set of successors ofS1 and the setS2

are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Transition Purging.The functionρpurge maps a given abstract modelA =
(Ŝ, Ŝ0, Ê), an abstraction functionα : S → Ŝ and a transition(ŝ1, ŝ2) ∈ Ê to A′ =
(Ŝ, Ŝ0, Ê

′) with Ê′ = Ê \ {(ŝ1, ŝ2)}. ¦

Lemma 3 Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with the abstrac-
tion functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume thatSreach

2 = ∅.
ThenA′ := ρpurge(A,α, (ŝ1, ŝ2)) is a refinement ofA, i.e.,A º A′ º C. ¥

Based on these results, we now present a more specific formulation of theCEGAR

algorithm in Fig. 2, calledINFINITE-STATE-CEGAR, which uses the functionsρsplit and
ρpurge for refinement.

Correctness of the algorithm is implied by the following lemma.a Note that termination
of the algorithm cannot be guaranteed as the number of states in the concrete model may
be infinite, and a finite abstract model to verify (or disprove) the given property may not
exist [18].

Lemma 4 If the algorithm terminates with “B reachable”, thenC |6= AG¬B, and if the
algorithm terminates with “B not reachable”, thenC |= AG¬B. ¥

aThe proofs of all lemmas in the paper can be found in the appendix.
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ALGORITHM: INFINITE-STATE-CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA and abstraction functionα
B̂ := α(B)
Generate counterexampleσ̂ = (ŝ0, . . . , ŝm) by model checking ofA wrt B̂
Sreach

0 := α−1(ŝ0)
WHILEσ̂ existsDO

// validation of counterexample
k := 0
WHILESreach

k 6= ∅ ANDk < m DO
k := k + 1
Sreach

k := succ(S reach
k−1 ) ∩ α−1 (ŝk )

ENDDO
// if counterexample is validated, then terminate, else refine
IF Sreach

k ∩B 6= ∅ THENterminate with “B reachable”
ELSE

FORl = 1, . . . , k
// split abstract statêsl into two: one that corresponds
// to Sreach

l and one that corresponds toα−1(ŝl) \ Sreach
l

IF Sreach
l 6= α−1(ŝl)

THEN(A,α) := ρsplit(A,α, (ŝl−1, ŝl))
ENDIF

ENDFOR
// remove spurious transition betweenŝk−1 andŝk

A := ρpurge(A,α, (ŝk−1, ŝk))
Generatêσ by model checking ofA wrt B̂

ENDIF
ENDDO
Terminate with “B not reachable”

Figure 2:INFINITE-STATE-CEGAR.

The proposed procedure of validating counterexamples and refining abstract models is
based on the computation of successor states. Alternatively, one could formulate a similar
algorithm that uses sets of predecessors, or even a combination of both as presented in [11]
and [13].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that sets
of successor states are exactly computable. Unfortunately, this rarely occurs in practice
for hybrid systems, and one must settle for anover-approximationsucc to the successor
functionsucc. In this case, the counterexample validation step may become overly conser-
vative, in that the algorithm may fail to refute a spurious counterexample.b On the other
hand, we have:

bWe discuss this point in greater detail in the next section.
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Lemma 5 If the INFINITE-STATE-CEGAR algorithm using over-approximations in com-
puting successor states terminates with “B not reachable”, thenC |= AG¬B. ¥

Example. Let us borrow Hofstadter’s “MU-puzzle”[23] to illustrate the salient issues at
hand.

The MIU-system is a simple rewrite system over alphabetΣ = {M, I, U}, with initial
stringMI, and production rules

1. xI −→ xIU

2. Mx −→ Mxx

3. xIIIy −→ xUy

4. xUUy −→ xy

wherex, y ∈ Σ∗ are arbitrary finite strings, and string concatenation is denoted as simple
juxtaposition. For example, from the initial stringMI, one can derive the new stringMIU
through an application of Rule 1.

The MU-puzzle asks whether this rewrite system can ever derive the stringMU.
We model this as a safety property over an infinite transition systemC = (S, S0, E),

as follows. LetS = Σ∗, S0 = {MI}, and

E = {(xI, xIU), (Mx, Mxx), (xIIIy, xUy), (xUUy, xy) | x, y ∈ Σ∗} .

Let B = {MU}. It is clear thatC ² AG¬B if and only if the MU-puzzle cannot be solved,
in other words if the stringMU cannot be derived in the MIU-system.

The abstract models ofC that we shall consider ‘lump together’ states (i.e.,Σ-strings)
of S. The first step is to choose an initial abstract model. The only obligatory requirement
is that this model should separate the initial state(s) from the bad state(s). An additional
desirable property of the initial partition is that it should also be reasonably coarse, so as
to minimize the number of abstract states and correspondingly allow for efficient model
checking.

Let us first introduce some auxiliary definitions. Forx ∈ Σ∗, let ]Ix represent the
number of times the symbolI appears inx, modulo 3. Next, forj = 0, 1, 2, let S≡j =
{s ∈ S | ]Is = j}. Our initial abstract model isA1 = ({S≡1, S≡0,2}, {S≡1}, E1), where
S≡0,2 = S≡0 ∪ S≡2 and the transition relationE1 is depicted below:

//
º¹ ¸·³´ µ¶S≡1

,,§§ º¹ ¸·³´ µ¶S≡0,2
§§

kk .

The abstraction functionα1 : S → {S≡1, S≡0,2} satisfiesα1(s) = S≡1 if ]Is = 1, and
α1(s) = S≡0,2 otherwise. Our set of abstract bad states isB1 = α1(B) = α1({MU}) =
{S≡0,2}.

We now observe thatA1 2 AG¬B1 since there is a path (consisting of a single transi-
tion) from the initial stateS≡1 to the bad stateS≡0,2 ∈ B1. However, upon validation over
the concrete systemC, we find that this counterexample is in fact spurious, since the only
one-step transitions from the single initial stateMI ∈ S0 areMI −→ MIU (as per Rule 1)
andMI −→ MII (Rule 2). In other words,MU ∈ B is not reachable in one step.

We must now refine our initial abstraction in such a way as to exclude this counterex-
ample. As discussed above, we would normally base our next refinement on the successor
function succ. Unfortunately, not only issucc(S≡1 ) difficult to compute, but in fact it
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turns out that iterating the refinement-counterexample-validation cycle withsucc would
never terminate, and thus would never allow us to decide whetherC ² AG¬B or not.

Fortunately, we are able to rely on an over-approximationsucc of the successor states:
succ(s) = {u ∈ S | ]Iu = ]Is ∨ ]Iu ≡ 2]Is}. Glancing at the production Rules 1–4, it
is clear thatsucc is indeed an over-approximation ofsucc; for example, Rule 3 removes
threeI’s from one term to the next (and therefore leaves the same number ofI’s modulo 3),
whereas Rule 2 doubles the number ofI’s of a term.

We then obtain the second abstractionA2 = ({S≡0, S≡1, S≡2}, {S≡1}, E2), where
E2 is depicted below:

//
º¹ ¸·³´ µ¶S≡1

++§§ º¹ ¸·³´ µ¶S≡2
§§

kk

º¹ ¸·³´ µ¶S≡0
§§

.

The abstraction functionα2 : S → {S≡0, S≡1, S≡2} takess ∈ S to S≡]Is. We
have split the previous abstract stateS≡0,2 into the two statesS≡0 andS≡2, and updated
our transition relation accordingly. Our set of abstract bad states is nowB2 = α2(B) =
α2({MU}) = {S≡0}.

We observe straightaway thatA2 ² AG¬B2. Lemma 5 then implies thatA ² AG¬B,
and hence that the MIU-system cannot derive the stringMU.

In general, as this example demonstrates, finding an initial abstraction, a suitable over-
approximation of the successor function, and performing efficient model refinements, can
be difficult and subtle tasks. In particular, these choices may require a good deal of insight.
However, we show in Section 5 that for hybrid systems one can find effective heuristics to
handle these problems.

4. Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid automata,
which are used to model hybrid systems. We will illustrate these definitions with an exam-
ple that models a simple car controller. The same example will be used in later sections to
illustrate the CEGAR approach to the verification of hybrid systems.

Definition 8 Syntax of the Hybrid AutomatonHA. A hybrid automaton is a tupleHA =
(Z , z0 ,X , inv ,X0 ,T , g , j , f ) where

• Z is a finite set of locations with an initial locationz0 ∈ Z.

• X ⊆ Rn is the continuous state space.

• inv : Z → 2X assigns to each locationz ∈ Z an invariant of the forminv(z ) ⊆ X .

• X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states of HA
is thus given by the set of states{z0} ×X0.

• T ⊆ Z × Z is the set of discrete transitions between locations.

• g : T → 2X assigns a guard setg((z1, z2)) ⊆ X to (z1, z2) ∈ T .

• j : T ×X → 2X assigns to each pair(z1, z2) ∈ T andx ∈ g((z1, z2)) a jump set
j((z1, z2), x) ⊆ X.
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• f : Z → (X → Rn) assigns to each locationz ∈ Z a continuous vector field
f(z). We use the notationfz for f(z). The evolution of the continuous behavior in
locationz is governed by the differential equationχ̇(t) = fz(χ(t)). We assume that
the differential equation has a unique solution for each initial valueχ(0) ∈ inv(z ). ¦

The semantics ofHA is defined by means of a trace transition system. Each state(z, x)
in the trace transition system corresponds to a continuous statex within locationz. Two
such states,(z1, x1) and(z2, x2), are connected by a transition in the trace transition system
if and only if state(z2, x2) can be reached from state(z1, x1) by a continuous evolution
within locationz1 followed by a discrete transition to locationz2.

Definition 9 Semantics of the Hybrid AutomatonHA. The semantics of a hybrid automa-
tonHA is a transition systemTTS = (S ,S0 ,E ) with:

• the set of all hybrid states(z, x) of HA,

S =
⋃

z∈Z

⋃

x∈inv(z)

{(z, x)} (1)

• the set of initial hybrid statesS0 = {z0} ×X0,

• transitions(s1, s2) ∈ E with s1 = (z1, x1), s2 = (z2, x2), iff there exists(z1, z2) ∈
T and a trajectoryχ : [0, τ ] → X for someτ ∈ R>0 such that:

– χ(0) = x1, χ(τ) ∈ g((z1, z2)),

– x2 ∈ j((z1, z2), χ(τ)),

– χ̇(t) = fz1(χ(t)) for t ∈ [0, τ ],

– χ(t) ∈ inv(z1 ) for t ∈ [0, τ ],

– x2 ∈ inv(z2 ).

A pathσ = (s0, s1, s2, . . . , sm) of TTS is called a trace ofHA, and we refer toTTS as
thetrace transition systemof HA. ¦

Definition 10 Safety of a Hybrid Automaton.For a hybrid automatonHA with a seman-
tics as in Defn. 9, letzb ∈ Z \ {z0} denote an unsafe location.HA is said to be safe
with respect tozb, denoted byTTS |= AG¬zb iff for all tracesσ there is nos ∈ σ with
s = (zb, x) for somex ∈ X. We writeTTS |6= AG¬zb otherwise. ¦

The extension of the analysis task to multiple initial locations, multiple unsafe loca-
tions, and locations containing both safe and unsafe states are straightforward but omitted
here for simplicity.

Example. As a motivating example, we consider a simple controller that steers a car
along a straight road. The car is assumed to drive at a constant speedr = 2, and its
motion is modeled by the distancex from the middle of the road (x = 0 corresponds to
the middle) and the heading angleγ (γ = 0 corresponds to moving straight ahead). Fig. 3
shows a scenario in which the car is initially on the road. The controller is able to detect
whether the car is on the left or right border (i.e.x ≤ −1, x ≥ 1). Whenever the car enters
the left border, the controller forces it to turn right until the car is back on the road again.
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Figure 3: i) Initially, the car drives on the road with heading angleγ. ii) If the controller
detects that the car has left the road, it corrects the heading by turning right to avoid the
canal.iii) Once the car is back on the road, a left turn is initiated until the car moves straight
again.

Then a left turn is initiated, and continued until the car is again going straight ahead in the
direction of the road, i.e. when the heading is aligned with the road (γ = 0). A similar
strategy is employed when the car enters the right border.

Fig. 4 shows a hybrid automaton model for this example. Besides the positionx and
the heading angleγ, the description includes an internal timerc, that the controller uses
to time the steering maneuvers. The differential equations for these three continuous vari-
ables depend on the location: we haveẋ = −r · sin(γ) in all locations exceptin canal .
The derivative ofγ varies when a border is reached. On the border the motion of the car
describes an arc with the angular velocityγ̇ = −ω = −π/4 (or ω = π/4 respectively), i.e.,
the arc is part of a circle with radiusr/ω. The timerc measures the time period which the
car spends on the border. In the correction modes the timer decreases with double rate, i.e.,
the correction takes half the time as that spent previously by the car on the border. Since
the sign ofγ̇ is reversed when the car moves back on the road, the angle has the value zero
when the correction mode is left (c = 0), i.e., the car then moves along the road. During
this correction it might, however, happen that the other border is reached, which means that
the controller then switches to the strategy of the corresponding location.

The three continuous variables are initialized to−1 ≤ x ≤ 1 (the car is on the
road),−π/4 ≤ γ ≤ π/4, andc = 0. It has to be verified for this set of initial states
whether the given control strategy guarantees that the unsafe locationin canal (zb) is never
reached. The following sections explain how this task can be solved by abstraction-based
and counterexample-guided verification.

5. Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to hybrid systems. We present
specific solutions for the two crucial steps inINFINITE-STATE-CEGAR, validationandre-
finement. The key to the validation step is the computation of successor states for a given
set of states in the trace transition system. Starting from the initial set, the validation proce-
dure computes the successors along the counterexample until either the unsafe locationzb

is reached or a transition is determined to be spurious. The computation of sets of successor
states is usually the most expensive step in hybrid system verification. Successor sets can be
computed and representedexactlyonly for certain sub-classes of hybrid systems [27, 20].
However, several approaches to over-approximate successor sets have been published, as
e.g., successor set approximations by hyper-rectangles [14], general polyhedra [6], projec-
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Figure 4: Hybrid automaton that models the car steering example.

tions to lower dimensional polyhedra [17], or ellipsoids [26]. Most of these approaches
aim at providing an efficient way to obtain conservative but tight approximations to sets of
reachable states for hybrid systems.

We note that the main difficulties introduced by hybrid systems—as opposed to finite-
state or discrete infinite-state systems such as the MIU-system—originate from the fact that
the transition relation for hybrid systems isimplicit, derived from differential equations
which in general do not even have analytical solutions. Even when analytical solutions
are available, the representation and computation of successor sets is non-trivial, making
it difficult to manufacture reasonably tight over-approximations to the successor function.
Consequently, given an abstraction function, one has to construct the transition relation
by focusing on one transition at a time in the abstract system. By contrast, in the finite-
state and discrete infinite-state cases, one can usually define the transition relation for an
abstraction function globally—many transitions can be constructed simultaneously.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated by the
trade-off between the accuracy and the computational complexity of different methods. If,
e.g., a faster but maybe less accurate technique is sufficient to refute a counterexample,
then there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton can
be obtained, and then focus on the validation of counterexamples and refinement of abstract
models based on the use of different methods for computing successor states.

5.1. Abstraction of Hybrid Systems

For the first step of theINFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each location ofHA. This means that
two hybrid states(zi, xi) and(zj , xj) of TTS are mapped to the same abstract state if and
only if zi = zj . This rule applies for all but the initial location, for which we introduce
one abstract statês0 to represent all initial hybrid states ofTTS , and another one (ŝ′0) to
represent the remaining hybrid states corresponding to the locationz0:

Definition 11 Initial Abstraction of Hybrid Systems.Given a hybrid automatonHA with
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Z = {z0, z1, . . . , znz}, let S denote the set of hybrid states as defined in(1). For i ∈
{0, 1, . . . , nz}, we define the abstraction functionα : S → Ŝ by:

α(zi, x) =





ŝ0 if i = 0 ∧ x ∈ X0

ŝ′0 if i = 0 ∧ x /∈ X0

ŝi otherwise
(2)

and the initial abstract modelA = (Ŝ, Ŝ0, Ê) is defined by (i ∈ {0, 1, . . . , n}, j ∈
{0, 1, . . . , nz}):

• Ŝ = {ŝ′0, ŝ0, ŝ1, . . . , ŝn}
• Ŝ0 = {ŝ0}
• Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ

′
0)|(zi, z0) ∈ T} ¦

The initial abstract model represents the discrete structure of the hybrid system without
regard to the continuous dynamics and guards. Given this definition, it has to be shown that
A is indeed an abstract model of the underlying trace transition system, i.e., that it fulfills
Defn. 2:

Lemma 6 For HA with trace transition systemTTS = (S ,S0 ,E ), let A = (Ŝ, Ŝ0, Ê)
denote the initial abstract model forTTS . Then,A º TTS . ¥

Example (cont.) Fig. 5 depicts the initial ab-
stract model of the hybrid system in Fig. 4. It
is a copy of the discrete part of the hybrid sys-
tem, except that the initial location is divided into
two parts: ŝ0 represents the states in location
go ahead with x ∈ [−1, 1], γ ∈ [−π/4, π/4] and
c = 0, andŝ′0 all other states ingo ahead . The ab-
stract stateŝs1 to ŝ6 represent the hybrid states of
the other locations (left border , right border ,
correct left , correct right , straight ahead

andin canal , respectively). ¨

^
0s

^
1ŝ

^
3s

ŝ
^

4s

ŝ
^

0s’
s 2

5

6

Fig 5. Initial abstract model of the
hybrid system depicted in Fig. 4

5.2. Over-approximation of the Sets of Successors

We now turn to the question of computing sets of successor states, as required in the
validation and refinement steps. The goal is to use different over-approximations with
different precisions and different computational requirements. For technical reasons it is
convenient to definesucc in terms of pairsS1, S2 ⊆ S, whereS1 is a set ofsource states
andS2 is a set ofpotential successor states. succ(S1, S2) is a conservative approximation
of those successors of states inS1 that lie inS2.

Definition 12 Over-approximation of successor states.LetHA be a hybrid automaton with
the trace transition systemTTS = (S ,S0 ,E ), and letA andα be defined as in Defn. 11.
For a transition(ŝ1, ŝ2) ∈ Ê of A, we callS1 := α−1(ŝ1) the set of hybrid source states
andS2 := α−1(ŝ2) the set of potential hybrid successor states. Thensucc : (2S × 2S) →
2S is an over-approximation of the hybrid successor states inS2 iff the following holds:
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• succ(S1, S2) ⊆ S2,

• succ(S1, S2) ⊇ succ(S1 ) ∩ S2 . ¦
A possible explicit realization of the operatorsucc with respect to a given setS2 com-

bines the following steps: (a) We approximate the continuous evolution starting with the
setS1. Usually, this step is the most costly of the whole verification procedure. We then
compute the reachable part of the guard setg(t), wheret = (z1, z2) is a transition of the
hybrid automaton that corresponds to the abstract transition(ŝ1, ŝ2). (b) We apply the jump
functionj(t, x) to this part of the guard set. (c) We then intersect the resulting image with
the setS2.

i) ii)

Figure 6: All trajectories that originate inS1 leave the invariant whenc = 0, and none of
them comes close toS2. Figure (i) shows the result of the optimization method. Figure (ii )
the result of the method that enclose the trajectories by polyhedra.

Example (cont.) Our prototype implementation uses two different methods,succcoarse

and succtight , to over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition fromcorrect right to left border . For location
correct right we chooseS1 as subset of the planex = 1, andS2 as all states of location
left border that satisfy the invariant−2 ≤ x ≤ −1. Fig. 6 depictsS1 and the face of
S2 that coincides with the guardx = −1. The transition is not spurious if there exists a
trajectory that starts inS1 and ends inS2 without leaving the invariant ofcorrect right

(−1 ≤ x ≤ 1 ∧ c ≥ 0). Fig. 6 (i) depicts a number of trajectories that start inS1, none of
which reachS2.

The first methodsucccoarse poses the existence question for a trajectory betweenS1

andS2 as an optimization problem. The distance between a trajectory andS2 is defined as
the minimum distance between all points on the trajectory andS2. If the global minimum
over all trajectories that start inS1 is strictly greater than zero, then no successor state ofS1

exists inS2. In this casesucccoarse(S1, S2) returns an empty set. If the minimum distance
is zero, at least one corresponding concrete path exists, andsucccoarse(S1, S2) returns the
entire setS2 as an over-approximation of the set of successor states. The bold trajectory in
Fig. 6 (i) is the optimal trajectory. Its distance toS2 is greater than zero, and there is hence
no trajectory fromS1 to S2.

The second methodsucctight computes polyhedra that enclose all trajectories that orig-
inate inS1. This over-approximation with polyhedra is based on work presented in [6].
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The set of successor statessucctight(S1, S2) is then obtained by intersecting the polyhedra
with S2. Fig. 6 (ii) shows that this intersection is empty, i.e. there are no successors ofS1

in S2. ¨

5.3. Validation and Refinement

TheINFINITE-STATE-CEGAR algorithm makes a clear distinction between the valida-
tion of a counterexample, and the refinement of the abstract model. For hybrid systems, we
propose a slightly different approach, in which the steps of validation and refinement are
interleaved. We assume to have a set of over-approximation techniquessucc1, . . . , succn

that can (but not necessarily need to) establish a hierarchy of coarse to tight approximations.
The proposed algorithm for the combined validation and refinement steps of a coun-

terexample is shown in Fig. 7. Letσ = (ŝ0, . . . , ŝm) denote a counterexample of the
abstract modelA. The algorithm consists of two nested loops. The outer loop corresponds
to checking each transition of the counterexample. The inner loop applies each of the over-
approximation techniques to the current transition of the counterexample, and, depending
on the result, one of the two refinement operations is executed: If an over-approximation
techniquesuccl reveals that the current transition is spurious, i.e.Sreach

k = ∅, then the
transition is removed from the abstract model byρpurge . When a transition is removed, the
set of behaviors ofA does not include the current counterexample anymore, and thus the
combined validation and refinement of the current counterexample is completed.

FORk = 1, . . . , m

FORl = 1, . . . , n

Sreach
k := succl(Sreach

k−1 , α−1(ŝk))
IF Sreach

k = ∅
A := ρpurge(A,α, (ŝk−1, ŝk))
RETURN//jump out of both loops

ELSEIF Sreach
k ( α−1(ŝk)

(A,α) := ρsplit(A,α, (ŝk−1, ŝk))
ENDIF

ENDFOR

ENDFOR

Figure 7: Refinement and validation steps for hybrid systems.

If on the other hand,succl returns a non-empty setSk
reach and this set is a true subset of

the states corresponding toŝk, the functionρsplit dividesŝk into two stateŝsreach
k andŝcomp

k

(cf. Defn. 6). In this case howeverσ = (ŝ0, . . . , . . . , ŝk−1, ŝ
reach
k , ŝk+1 . . . , ŝm) remains a

counterexample of the refined model. Thus the algorithm continues with the next transition
(k+1) until eitherSreach

k = ∅ or until the last transition of the counterexample is validated.
There is some freedom in combining the steps of validation and refinement, i.e., the

scheme in Fig. 7 is just one possible implementation. In addition there is a trade-off be-
tween the availability of multiple methods and the risk of unnecessarily refining our ab-
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1ŝ

^
3s

ŝ
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ŝ
^

0s’

^
1s’

s 2

5

6

(v)

^
0s

^
1ŝ
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ŝ
^

0s’

^
1s’

s 2

5

6

(viii)

^
0s

^
1ŝ
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Figure 8: Counterexample-guided abstraction illustrated for the car steering problem.

straction, and therefore the particular choice is a matter of heuristics.
The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved

that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it cannot
be guaranteed that this abstract counterexample corresponds to a concrete one. In this
case, under-approximations of sets of successor states can possibly be used to prove that a
counterexample exists: Assume that the procedure terminates with a counterexampleσ =
(ŝ0, ŝ1, . . . , ŝk, . . . , sm), no transition of which could be refuted. Similarly to Defn. 12,
we can define anunder-approximationof successor statesSreach

k = succ(Sreach
k−1 , α−1(ŝk))

which returns a setSreach
k ⊆ α−1(ŝk) guaranteed to contain only true successors ofSreach

k−1 .
If this operator is applied along the counterexample (fromk = 1 tok = m) andSreach

n 6= ∅,
there exists at least one path for the hybrid system which violates the safety property.

As noted earlier, when using over-approximations, there is no guarantee that a spuri-
ous counterexample can be refuted. The likelihood of refuting spurious counterexamples
can be increased, however, by using tighter polyhedral approximations. When the over-
approximations are tight, the presence of an unrefuted yet spurious counterexample is in-
dicative of a very slim error margin separating the reachable states from the bad ones. We
would argue that when an unrefuted spurious counterexample is encountered, it may be bet-
ter to redesign the implementation of our hybrid system so as to increase the error margin,
rather than risk facing an actual failure in a real-world implementation of this system.

If we compare the verification algorithm for hybrid systems presented here to similar
approaches in the literature such as [7], we note that the main advantage of our method is
that, in relying on spurious counterexamples to refine our successive abstract models, we
are focusing on thelocal properties of our system that are relevant to establish or invalidate
a particular specification. This leaves us free, for instance, to employ cheap gross over-
approximations of successor states in irrelevant areas of the hybrid system.
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Example (cont.) The requirement that the hybrid model in Fig. 4 should never enter the
locationin canal translates into the reachability question for stateŝ6 of the abstract model
in Fig. 5. The first counterexample for the initial abstract model isσ1 = (ŝ0, ŝ1, ŝ6) (see
Fig. 8 (i)). The validation procedure considers first the transition(ŝ0, ŝ1) which corre-
sponds to the transition betweengo ahead and left border in the hybrid automaton. As
a first step,succcoarse(S0, α

−1(ŝ1)) is computed with the result that the minimum dis-
tance over all initial states is zero. This is obvious from the fact that those states of the
initial set for whichx = −1 enable the transition guard immediately. Thus,succcoarse

returns the entire invariant of locationleft border as setS2. The next step is to compute
Sreach

2 = succtight(S0, α
−1(ŝ1)). The algorithm then splitŝs1 so that̂s1 represents the set

Sreach
2 , and the new abstract stateŝ′1 representsS2 \ Sreach

2 (Fig. 8 (ii)).
Since the counterexample has not been eliminated yet, the transition(ŝ1, ŝ6) is consid-

ered next. Methodsucccoarse finds that the minimal distance between the trajectories that
start inSreach

2 and the guardx = −2 is greater than zero. This means that no trajectory
reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).

The procedure continues with the next counterexampleσ2 = (ŝ0, ŝ2, ŝ4, ŝ
′
1, ŝ6), as

depicted in Fig. 8 (iv). As for the first counterexample, the abstract stateŝ2 is split into the
states that are reachable from the initial setS0, and the remainder (Fig. 8 (v)). Then, the
procedure moves forward one transition and splits stateŝ4 as a result of applyingsucctight .
The reachable part is represented byŝ4 in Fig. 8 (vi). Methodsucccoarse then finds that
one cannot reach any state that is represented byŝ′1 from this set, and the transition(ŝ4, ŝ

′
1)

can be deleted fromA (Fig. 8 (vii)).
The final counterexample isσ3 = (ŝ0, ŝ1, ŝ3, ŝ

′
2, ŝ

′
4, ŝ

′
1, ŝ6). The statês1 was already

split for the first counterexample. Similarly to the procedure for the counterexampleσ2,
abstract statês3 is split as depicted in Fig. 8 (viii). It can then be shown that transition
(ŝ3, ŝ

′
2) is spurious, which eliminates the last counterexample (Fig. 8 (ix)). Consequently,

the abstract statês6 is not reachable, and thus the same applies for the locationin canal of
the hybrid automaton. ¨

5.4. Validation and Refinement of Fragments of Counterexamples

The initial abstraction of the example in Fig. 5 contains onlytwo counterexamples
without cycles,(ŝ0, ŝ1, ŝ6) and(ŝ0, ŝ2, ŝ4, ŝ1, ŝ6). However, to show that no bad state is
reachable,threecounterexamples in the series of abstractions were considered and refuted
(cf. Fig. 8). Hence, refining an abstract model, to eliminate a particular counterexam-
ple, may introduce new counterexamples. In this subsection we show that considering
fragments of counterexamples, rather than complete counterexamples, can reduce the total
number of counterexample that have to be considered. This often results in a significant
speed-up of the verification process.

The main reason for considering fragments is as follows. The validation and refinement
routine that we presented in the previous subsection typically refutes a counterexample (in-
deed, when a counterexample is not refuted, the algorithm stops). The case of refuting
a counterexample can be made more efficient by the following observation. In the previ-
ous subsection, a (spurious) counterexample(ŝ0, . . . , ŝm) is refuted by showing that no
corresponding concrete path(s0, . . . , sm) exists. Interestingly, showing that any one of
the transitions(ŝi, ŝi+1) in the counterexample is spurious is a sufficient condition for the
non-existence of a corresponding concrete path.

Alternatively, we can also conclude that a counterexample is spurious if one of the
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ŝ’2

^
3s

^
0s6ŝ
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Figure 9: Validation and refinement of fragments illustrated for a counterexample of the
car steering problem.

fragments(ŝi, ŝi+1, ŝi+2) is spurious, in other words if there is no corresponding concrete
path(si, si+1, si+2) in the concrete model. In general, one can define spurious fragments
of lengthn. Validation and refinement of such fragments of counterexamples can be done
in a similar way as for complete counterexamples.

We now illustrate that validation and refinement of short fragments can increase the effi-
ciency of the verification process. Clearly, if one can refute a fragment of a counterexample,
e.g., a single transition, then the entire counterexample is spurious. If a counterexample can
be refuted by considering a fragment of lengthn, it can surely be refuted by considering
fragments of lengthn + 1. However, using a fragment of lengthn + 1 may have the unde-
sirable side-effect of introducing new counterexamples, or at least more counterexamples
than the method based on fragments of lengthn.

Example (cont.) Consider as an example Fig. 9 (i), which depicts part of the abstract
model in Fig. 8 (iv) and contains the counterexample. Note that there is a loop that enters
the counterexample at̂s2 and leaves it at̂s4. For this car steering example it can be shown
that the fragment(ŝ2, ŝ4, ŝ

′
1) is spurious, even though neither of the transitions is spurious

on its own. This means that validation and refinement of fragments of length 2 removes the
counterexample as depicted in Fig. 9 (ii).

If we consider the complete counterexample instead, we also find that the counterex-
ample is spurious. But in this case we would also splitŝ2, which introduces an additional
counterexample that exploits the loop, as shown in Fig. 9(iii). In general, whenever we split
all abstract states between the entry and exit points of a loop, it will ‘open’ the loop, and
inevitably create an additional counterexample.

There is little choice if these states have to be split to refute the counterexample. Con-
sider for instance the first counterexample in Fig. 8 (i). This counterexample can only be
eliminated by splittinĝs1. But if it is possible to refute a short fragment, rather than a
long one, this should be preferred. If we apply validation and refinement to fragments of
length 2 of the counterexample in Fig. 8 (iv), we are guaranteed that it will not introduce
new counterexamples. If it then succeeds, we can be sure that the number of counterex-
amples decreases. In this particular case, refuting fragment(ŝ2, ŝ4, ŝ

′
1) eliminates all other

counterexamples, as they also include this fragment.

5.5. Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We apply the prototype first to the car steering example
that was discussed throughout this paper. Then a larger and more challenging example
on an adaptive cruise control system that was put forward in the MoBIES project [28] is
discussed. We compare our results on the latter example with an analysis performed with
CheckMate.
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5.5.1. Car Steering Example

For the car steering example we take as baselineINFINITE-STATE-CEGAR as described
in Subsection 5.3 with the only successor operatorsucctight . We refer to this method as
INFINITE-STATE-CEGAR-I. For the car steering example this method computes the same
number ofsucctight operations as a breadth-first application of the successor operator.
Breadth-first application is the most prevalent method used for model checking hybrid sys-
tems.

We compare this method with two instances ofINFINITE-STATE-CEGAR. INFINITE-
STATE-CEGAR-II refines and validates complete counterexamples using the two different
methods, as described in Subsection 5.3. The third instanceINFINITE-STATE-CEGAR-III
first validates all single transitions usingsucccoarse . Next, it considers all fragments of
length 2, usingsucccoarse . Finally, the third validation and refinement scheme considers
the fragments of length 2 too, but usessucctight for the first transition, andsucccoarse

for the second. If these three schemes fail to refute the counterexample, the complete
counterexample is considered, using the same routine as the second instance ofINFINITE-
STATE-CEGAR.

For the car steering example the following results are obtained when run on a Pen-
tium 4, 1.4GHz. INFINITE-STATE-CEGAR-I considers three counterexamples, computes
succtight five times, and takes 185 seconds to verify that the car steering example is safe.
INFINITE-STATE-CEGAR-II considers the same counterexamples but computessucctight

only three times, and finishes in 69 seconds.INFINITE-STATE-CEGAR-III considers only
two counterexamples, and computessucctight only once. Since, this particular successor
was easy to compute, the overall time drops to 20 seconds.

5.5.2. MoBIES Adaptive Cruise Control System

The model that we use for the adaptive control experiments is based on a Simulink/
Stateflow model [16]. The adaptive cruise control is part of a vehicle-to-vehicle coordi-
nation system. The part of this system that we consider comprises two modes: the cruise
control mode (cc-mode) in which a car tries to keep a constant speed, and an adaptive
cruise control mode (acc-mode), in which the car tries to stay a safe distance behind a vehi-
cle ahead of it. The acc-controller switches into acc-mode whenever the distance between
the car and a vehicle ahead falls below a certain threshold. This threshold depends linearly
on car speed.

The system also includes an automatic transmission system with four gears. Depending
on the speed of the car it will switch between the different gears. The hybrid automaton
that models both the acc-controller and the automatic transmission has 8 locations for the
normal operation and one additional state that is entered on collisions, when the distance
between the cars is zero. Obviously, this is the location that should not be reachable.
The model takes into account the distance between two cars, their relative velocity and
the velocity of the following car. The differential equations that describe the continuous
behavior are non-linear, mainly due to saturation; for each gear there are upper and lower
bounds on the possible acceleration.

For the adaptive cruise control example the hybrid model checker CheckMate[29] is
used as a baseline, since it is possible for this case study to generate a CheckMate model
that exhibits the exact same behavior as our modelc.

cNote that other tools, such as HyTech [22], d/dt [4], and the Alur et al. tool [2] cannot handle this example as
it contains non-linear dynamics.
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CheckMate takes 728 seconds to verify that the system is safe. We compare this
result to our two approachesINFINITE-STATE-CEGAR-II and INFINITE-STATE-CEGAR-
III. INFINITE-STATE-CEGAR-II considers 46 counterexamples, and computes 11 times
succtight , in 495 seconds. The resulting safe abstraction has 29 states.INFINITE-STATE-
CEGAR-III only considers 10 potential counterexamples, computessucctight just once, and
takes only 43 seconds. The resulting abstraction has just 15 states. Five of the counterexam-
ples have been refuted by considering single transitions; for example, when the following
car is in first gear and in acc-mode, then it cannot collide with the leading car. All other
counterexamples were refuted by considering segments of length 2. For example, one such
refuted counterexample corresponds to the case when the car is in third gear and switches
to acc-mode—this cannot lead to a collision.

6. Conclusions

This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered in
this paper is to compute the reachable states for the hybrid system using a breadth-first
application of the successor operatorsucc. It is apparent that theINFINITE-STATE-CEGAR

procedure can be faster than breadth-first reachability when the safety property does not
hold for the concrete system, since in this case it is possible for the model checker to quickly
find a true counterexample. On the other hand, if the safety property holds, refuting one
counterexample may implicitly refute others. However, theINFINITE-STATE-CEGAR pro-
cedure continues until all possible counterexamples have been explored (and indeed, may
not terminate), which is in some cases equivalent to the breadth-first reachability computa-
tion. Nevertheless, we have shown here thatINFINITE-STATE-CEGAR offers the possibility
of using multiple methods for computing approximations to the successor states.
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1. R. Alur, T. Dang, and F. Ivaňcić. Reachability analysis of hybrid systems via predicate ab-
straction. InHSCC, volume 2289 ofLNCS, pages 35–48. Springer, 2002.
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Appendix A:

Proof of Lemma 1.
Proof. By contradiction: IfC |6= AG¬B, then at least one pathσ = (s0, s1, . . . , b) with
b ∈ B must exist forC. From Defn. 2, it follows that the corresponding abstract coun-
terexamplêσ = (ŝ0, ŝ1, . . . , b̂) of A is a counterexample which contradicts the premise
A |= AG¬B̂. ¤
Proof of Lemma 2.
Proof. (i) A º A′. It follows straightforwardly thatA is an abstract model ofA′ with

abstraction functionα′′ as defined in Defn. 6.
(ii) A′ º C. From the above definitions ofA′ = (Ŝ′, Ŝ′0, Ê

′) andα′, it follows thatA′

would be an abstract model ofC, if Ê′ also included the transition(ŝ1, ŝ
comp
2 ). However,

sinceSreach
2 andScomp

2 are disjoint, this abstract transition does not correspond to any
concrete transition and can therefore be omitted. ¤
Proof of Lemma 3.
Proof. (i) A º A′. The corresponding abstraction function is the identity. SinceA has

just an additional transition it is an abstract model ofA′.
(ii) A′ º C. The abstraction function for this abstraction isα. We can then omit the
abstract transition(ŝ1, ŝ2), since it does not correspond to any concrete transition. ¤
Proof of Lemma 4.
Proof. (i) If the algorithm terminates with “B reachable”, then the set of reachable states
in the concrete model is non-empty along the path of the last checked counterexample.
Formally,Sreach

k 6= ∅, k = 0, . . . , m due to the conditions in the IF statement (Sreach
k ∩B 6=

∅) and the WHILE statement (Sreach
k 6= ∅ ANDk < m).

We can now show that the last checked counterexample in the algorithm is not spurious.
To do so, we first show that for eachk, all sk ∈ Sreach

k can be reached by paths in the
concrete model. The proof is done by induction onk. For k = 0, eachs0 ∈ Sreach

0 can
be reached by a path of length zero. Fork > 0, for eachsk ∈ Sreach

k there exists an
sk−1 ∈ Sreach

k−1 such that(sk−1, sk) ∈ E (by definition of thesuccoperator). By induction,
sk−1 is reachable by some concrete path(s0, . . . , sk−1), hencesk is reachable via the
concrete path(s0, . . . , sk).

Since for eachk, all sk ∈ Sreach
k can be reached by paths in the concrete model,

there are paths(s0, s1, . . . , sm) with sm ∈ Sreach
m ∩ B. Each such path corresponds to a

counterexample in the concrete model. Thus,C |= AG¬B.
(ii) If the algorithm terminates with “B not reachable”, then it was not possible to find any
counterexample for the current abstract modelA. But sinceA is in each step an abstraction
of C we can conclude by Lemma 1 thatC |= AG¬B holds.

The proof of Lemma 5 follows similar lines and is therefore omitted. ¤
Proof of Lemma 6.
Proof. We show thatα as defined in Defn. 11 is an abstraction function. The first condition
in Defn. 2 follows directly from the definition ofα. To show the second condition, it must
be proved that

Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ
′
0)|(zi, z0) ∈ T} ⊇

{(ŝi, ŝj)| ∃si, sj ∈ S : (si, sj) ∈ E, ŝi = α(si), ŝj = α(sj)}.
Assume(si, sj) ∈ E, andsi = (zi, xi) andsj = (zj , xj) with xi, xj ∈ X andi, j 6= 0.

Then, it follows from the definition ofE in Defn. 9 that(zi, zj) ∈ T . Thus,(ŝi, ŝj) ∈ Ê.
The other cases (i = 0 or j = 0) can be shown in a similar way. ¤
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