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Abstract
A sequence is holonomic if its terms obey a linear recurrence relation with polynomial coefficients.
In this paper we consider the Positivity Problem for second-order holonomic sequences with linear
coefficients, i.e., the question of determining, for a given sequence ⟨un⟩n obeying the recurrence
(a1n + a0)un = (b1n + b0)un−1 + (c1n + c0)un−2, whether all terms of ⟨un⟩n are non-negative. Our
main result establishes decidability in the case of two distinct rational characteristic roots. We
achieve this by leveraging recent results on effective transcendence of values of E-functions and
1-periods, which are integrals playing a central role in the theory of algebraic curves.
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1 Introduction

1.1 Background
Holonomic (or P-recursive) sequences are those whose terms satisfy a linear recurrence with
polynomial coefficients; equivalently, their ordinary generating functions are D-finite, meaning
they satisfy a linear differential equation with polynomial coefficients. Formally, a rational-
valued sequence ⟨un⟩n is holonomic (of order k and degree d) if there exist polynomials
pk+1, . . . , p1 ∈ Q[x] of degree at most d with p1(x), pk+1(x) non-zero polynomials such that

pk+1(n)un = pk(n)un−1 + · · · + p1(n)un−k .

Subject to the standard assumption that pk+1(n) ̸= 0 for non-negative integers n, the above
recurrence uniquely defines an infinite sequence ⟨un⟩∞

n=0 once the k initial values u0, . . . , uk−1
are specified.1

The class of holonomic sequences is very general; e.g., C-finite sequences (such as the
Fibonacci sequence) are holonomic of degree 0, while hypergeometric sequences are holonomic
of order 1. At the same time, the class is closed under sums, products, and many other
standard transformations, and it supports algorithms for term computation, asymptotics,
and identities (for example via the technique of so-called creative telescoping). Holonomic
sequences find applications across computer science and mathematics, particularly in analysis
of algorithms and data structures, formal languages and power series, combinatorics, number
theory, and special functions [40, 11, 14, 28, 47].

The Positivity Problem for holonomic sequences has as input a recurrence and initial
values, and asks to determine whether all terms of the resulting sequence are non-negative.
Motivation to study this problem comes from a wide variety of areas, including number
theory [45], combinatorics [42], and special-function theory [19]. Nevertheless, in contrast
to the rich literature around automatic procedures for proving identities among holonomic
sequences [40, 47], Kauers and Pillwein remark that “. . . there are almost no algorithms
available for inequalities” [29].

There have been a number of works on the Positivity Problem in the intervening years
since [29]. Ouaknine and Worrell [38, 39] show decidability of the problem for C-finite
recurrences of order at most 5. Hagihara and Kawamura [21], generalising earlier work
of [36], give an algorithm to decide positivity of a class of second-order holonomic sequences
un = p(n)un−1 + q(n)un−2 for arbitrary p, q ∈ Q[x], and all initial values u0, u1 outside an
exceptional line. The references [30, 37] contain conditional decidability results for positivity
of inhomogeneous first-order recurrences. Ibrahim and Salvy [26] give a method to certify the
positivity of holonomic sequences of arbitrary order and degree, subject to the restriction that
there be a single dominant positive real characteristic root and that the initial conditions are
assumed to lie outside of an exceptional hyperplane; see [25] for a generalisation of this work.

The present paper gives a decision procedure for the Positivity Problem for a subclass
of second-order degree-one recurrences, with no restrictions on the initial conditions. The
exceptional initial values in the work of [21] are those that lead to so-called minimal sequences,
that is, sequences ⟨un⟩n such that for any other independent solution ⟨vn⟩n of the recurrence,
one has un/vn → 0 as n → ∞. Kenison et al. [31] showed that Positivity reduces to
Minimality for second-order holonomic sequences. The central contribution of the present

1 In the sequel, it will in fact often be convenient to start the sequence at u−1 instead of u0, in keeping
with standard conventions from the literature.
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paper is an algorithm to solve the Minimality Problem on a sub-class of second-order
holonomic recurrences. Efficient numerical methods to approximate minimal solutions to
second-order recurrences appear in a number of sources [17, 18, 16, 9, 2, 10] — see also the
references therein. However these methods do not suffice to solve the Minimality Problem.
Instead, as we explain below, our results rely on recent advances on transcendence of period
integrals and values of E-functions.

1.2 Main Results
The Positivity Problem for first-order holonomic sequences is straightforward to decide.
Indeed, for such a sequence ⟨un⟩n, we have that un

un−1
= p1(n)

p2(n) is a rational function and
hence has eventually constant sign. In this paper we focus on second-order sequences, for
which the Positivity Problem already appears to be very challenging. Our results concern
second-order sequences whose coefficient polynomials have degree at most one; that is, we
consider recurrences of the form

(α1n + α0)un = (β1n + β0)un−1 + (γ1n + γ0)un−2 (1)

in which the numerical constants αi, βi, and γi are rational. The case that α1 = β1 = γ1 = 0
corresponds to order-two C-finite sequences, where the Positivity Problem is known to be
decidable [22], and we henceforth assume without loss of generality that at least one of
α1, β1, γ1 is non-zero. In this general case the characteristic polynomial p(x) := α1x2−β1x−γ1
of the recurrence (1) is not identically zero.

Our main result is as follows:

▶ Theorem 1. The Positivity and Minimality Problems are decidable for the class of degree-
one second-order holonomic recurrences with two distinct rational characteristic roots.

The technical development combines a number of significant elements, as we now briefly
discuss. First, we rely on the theory of polynomial continued fractions. An example of such,
given in the so-called Kettenbruch notation, is the expression

4
π

= 1 +
∞

K
n=1

(2n − 1)2

2 .

Bowman and Mc Laughlin [7] (see also [35]) coined the term polynomial continued fraction for
such constructions. For deg(an) ≤ 2 and deg(bn) ≤ 1, Lorentzen and Waadeland [33, §6.4]
express the polynomial continued fraction K(an/bn) in terms of values of hypergeometric
functions evaluated at algebraic points.

Related to the reduction of the Positivity Problem to the Minimality Problem, we
reduce the question of determining positivity of second-order holonomic sequences to that
of determining whether the value of a given polynomial continued fraction is greater than
a given rational threshold. By the above-mentioned work of Lorentzen and Waadeland,
this problem in turn reduces to the question of determining the value of a hypergeometric
function with rational parameters at a rational argument. Such values are, in general, not
algebraic numbers, but they respectively fall in two broader classes of numbers that still
admit effective equality-testing procedures. Specifically, we rely on an algorithm of Fischler
and Rivoal [12] for determining all polynomial relations between the values of given family
of so-called E-functions evaluated at a common algebraic point. Secondly, we use a new
algorithm of Sertöz, Ouaknine, and Worrell [43] for determining linear relations between
values of 1-period integrals. Very briefly, E-functions are a generalisation of the exponential
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function (see Sec. 2.3), introduced by Siegel [44], while 1-periods are integrals of algebraic
functions of a single variable (see Sec. 2.4). We also highlight some cases, beyond the scope
of Thm. 1, in which the Minimality Problem reduces to the task of determining zeroness
of exponential 1-periods, an important open problem in algebraic geometry (see Sec. 2.4 for
more on this).

2 Mathematical Background

2.1 Continued Fractions and Minimal Solutions
A continued fraction

∞

K
n=1

an

bn
:=

a1

b1 +
a2

b2 +
a3

b3 + .. .

is defined by an ordered pair of sequences ⟨an⟩n and ⟨bn⟩n of real numbers where an ̸= 0 for
each n ∈ N. Comprehensive accounts on the theory of continued fractions are given in [33, 34].
A continued fraction converges to a value f = K(an/bn) if its sequence of approximants
⟨fn⟩∞

n=1 converges to f in R̂ = R ∪ {∞}. The sequence ⟨fn⟩n is recursively defined by the
following composition of linear fractional transformations. For w ∈ R̂, define

sn(w) = an

bn + w
for each n ∈ {1, 2, . . .} .

We set fn := s1 ◦ · · · ◦ sn(0) so that fn = Kn
m=1

am

bm
. In App. A we collect together a number

of results on the convergence of continued fractions that will be used in the sequel.
The following observation establishes a connection between continued fractions and

second-order recurrences. Let ⟨An⟩∞
n=−1 and ⟨Bn⟩∞

n=−1 satisfy the recurrence relation un =
bnun−1 + anun−2 with initial values A−1 = 1, A0 = 0, B−1 = 0, and B0 = 1. As a pair,
⟨An⟩∞

n=−1 and ⟨Bn⟩∞
n=−1 form a basis for the solution space of the recurrence. We call ⟨An⟩n

and ⟨Bn⟩n the sequences of canonical numerators and canonical denominators of K(an/bn)
because fn = An/Bn for each n ∈ N.

A non-trivial solution ⟨un⟩∞
n=−1 of the recurrence

un = bnun−1 + anun−2 (2)

is minimal provided that, for all other linearly independent solutions ⟨vn⟩∞
n=−1 of the same

recurrence, we have limn→∞ un/vn = 0. Since the vector space of solutions has dimension
two, it is equivalent for a sequence ⟨un⟩∞

n=−1 to be minimal for there to exist a linearly
independent sequence ⟨vn⟩∞

n=−1 satisfying the above property. In such cases the solution
⟨vn⟩n is called dominant.

Note that if ⟨un⟩n and ⟨vn⟩n are linearly independent solutions of the above recurrence
such that un/vn ∼ C ∈ R̂ then the recurrence relation has a minimal solution [33]. If, in
addition, ⟨un⟩n is minimal then all solutions of the form ⟨cun⟩n where c ≠ 0 are also minimal.
If ⟨un⟩n and ⟨vn⟩n are respectively minimal and dominant solutions of the recurrence, then
together they form a basis of the solution space.

The following result of Pincherle [41] gives a sufficient and necessary condition for the
existence of a minimal solution of a given second-order recurrence.
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▶ Theorem 2 (Pincherle). Let ⟨an⟩∞
n=1 and ⟨bn⟩∞

n=1 be real-valued sequences such that each
of the terms an is non-zero. First, the recurrence un = bnun−1 + anun−2 has a minimal
solution if and only if the continued fraction K(an/bn) converges in R̂. Second, if ⟨un⟩n is a
minimal solution of this recurrence then the limit of K(an/bn) is −u0/u−1.2

2.2 Hypergeometric Functions
In our applications, the values of the continued fractions arising from Pincherle’s Theorem
will admit expressions in terms of values of hypergeometric functions.

A series
∑

ckxk is called hypergeometric if it has the form

∞∑
k=0

ckxk = c0

∞∑
k=0

(a1)k · · · (aj)k

(b1)k · · · (bℓ)k

xk

k! ,

where, for ρ ∈ C, the (rising) Pochhammer symbol (ρ)n is defined as (ρ)0 = 1, and (ρ)n =∏n−1
j=0 (ρ + j) for n ≥ 1. Here the parameters bm do not lie in {0, −1, −2, . . .} for otherwise

the denominator would vanish for some k. The series terminates if any of the parameters
am is zero or a negative integer. We let jFℓ(a1, . . . , aj ; b1, . . . , bℓ; x) denote the series on the
right-hand side. This converges absolutely for all x if j ≤ ℓ, and for |x| < 1 if j = ℓ + 1. By
abuse of notation, we let jFℓ(a1, . . . , aj ; b1, . . . , bℓ; x) denote the analytic function defined by
the corresponding series in its radius of convergence.

Of special interest to us are the functions 1F1(a; b; x) and 2F1(a, b; c; x) for rational
parameters a, b, c. In order to algorithmically treat values of these functions, we will use
recent results about E-functions and 1-periods.

2.3 E-Functions
In extending the Lindemann-Weierstrass theorem, Siegel [44] introduced the class of E-
functions as generalisations of the exponential function.

▶ Definition 3. A power series g(z) =
∑∞

n=0 cn
zn

n! , where cn ∈ Q, is an E-function if the
following conditions hold:

1. The series g(z) is the solution of a linear differential equation with coefficients in Q(z);
2. There exists C > 0 such that |cn| ≤ Cn+1 for all n;
3. There exists D > 0 and integers 1 ≤ dn ≤ Dn+1 such that dncm is an integer for all

0 ≤ m ≤ n.

The power series in the above defines an entire function on the complex numbers.
As shown by Siegel [44] (see also [13, Sec. 1]), the hypergeometric function 1F1(a, b; z) is

an E-function for a, b ∈ Q with b ̸∈ {0, −1, −2, . . .}.
We will use the following result of Fischler and Rivoal [12] that computes all polynomial

relations among the values of a given collection of E-functions at a rational point. For
algorithmic purposes, an E-function g is specified by (i) a linear differential equation with
coefficients in Q(z) that is satisfied by g; (ii) sufficiently many coefficients of the Taylor
expansion of f to uniquely determine g among solutions of the above equation; (iii) a
certificate that g satisfies the growth conditions in Items 2 and 3.

2 In particular, the sequence of canonical denominators ⟨Bn⟩∞
n=−1 is a minimal solution if and only if the

value of K(an/bn) is ∞ ∈ R̂.
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▶ Theorem 4 (Fischler and Rivoal [12]). There exists an algorithm to perform the following
task. Given as input E-functions g1(z), . . . , gk(z) and α ∈ Q, it outputs generators of the
ideal of all polynomials in Q[x1, . . . , xk] that vanish on (g1(α), . . . , gk(α)).

2.4 1-Periods
A 1-period is the value of an integral

∫ b

a
f(x) dx, where a, b are real algebraic numbers and

the integrand f(x) : [a, b] → C is a complex-valued algebraic function.3

▶ Theorem 5 (Sertöz, Ouaknine, and Worrell [43]). For any finite tuple of 1-periods, one can
effectively compute a basis for the vector space of linear relations between them with complex
algebraic coefficients.

The theorem above makes explicit the result of Huber and Wüstholz [24, Thm. 13.3]
which states that there are no linear relations between 1-periods beyond those that have an
algebro-geometric origin.

For c > b > 0 and |x| < 1, the value of the hypergeometric function 2F1(a, b; c; x) has the
form

Γ(c)
Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − xt)a
dt , (3)

where tb, (1 − t)c−b−1, and (1 − xt)−a have their principal values. When a, b, c are rational
parameters, the fact that the integral appearing in (3) is a 1-period will be critical for our
purposes.

All of this is part of a much larger conjectural framework regarding periods. Kontsevich
and Zagier [32] define a period as a complex number whose real and imaginary parts are the
values of absolutely convergent integrals of the form∫

σ

f(x1, . . . , xn) dx1 · · · dxn (4)

where the domain σ ⊆ Rn is semi-algebraic and the integrand f(x1, . . . , xn) is algebraic,
both defined using polynomials with algebraic coefficients. Periods appear in many seemingly
different but ultimately equivalent formulations, see [23, §12].

Just like the periods themselves, the expectation is that identities between periods should
correspond to algebro-geometric constructions and should, therefore, be decidable. This is
expressed by the Kontsevich-Zagier Period Conjecture (cf. [32, Conj. 1]) which, in different
guises [20, 4, 5], is one of the central questions of the field.

In this paper we will also refer to exponential 1-periods, see [32, §4.3] and [6, 15]. Briefly, a
real exponential period is an integral as in (4) but where the integrand is allowed to be of the
form e−f(x1,...,xn)g(x1, . . . , xn) dx1 · · · dxn with f, g algebraic over real algebraic numbers.

The Period Conjecture can be extended to a decidability statement on identities over
exponential periods, generalising other well-known conjectures in transcendental number
theory which have stood the test of time [15, §1.3]. Note that, unlike the situation with
1-periods, the decidability of zeroness for exponential 1-periods remains an important open
problem in algebraic geometry.

3 A function f : [a, b] → C is algebraic if it is continuous over [a, b] and moreover solves some polynomial
equation P (x, f(x)) = 0 over [a, b], where P ∈ Q[x, y] is a non-zero polynomial with complex algebraic
coefficients.
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3 The Positivity and Minimality Problems for Degree-One
Second-Order Holonomic Sequences

In this section we prove the main result of the paper:

▶ Theorem 6. The Positivity and Minimality Problems are both decidable for the class of
degree-one second-order holonomic recurrences with two distinct rational characteristic roots.
In the case of a single characteristic root, the Positivity and Minimality Problems reduce to
the task of determining zeroness of exponential 1-periods.

The proof proceeds in three steps:

1. We reduce the Positivity Problem to the Minimality Problem for the class of degree-one
second-order recurrences.

2. Using Pincherle’s Theorem, we reduce the Minimality Problem to the problem of verifying
certain rational linear relations between values of hypergeometric functions.

3. We use a procedure for verifying the zeroness of 1-periods and values of E-functions to
solve instances in Step 2 that arise from recurrences with distinct rational characteristic
roots. The remaining cases (either a repeated characteristic root, or the characteristic
polynomial has degree 1) are handled by recourse to an oracle for deciding zeroness of
exponential 1-periods.

Throughout this section we work with a second-order degree-one recurrence

(α1n + α0)un = (β1n + β0)un−1 + (γ1n + γ0)un−2 (5)

with rational constants αi, βi and γi, such that α1, β1, γ1 are not all zero. Note that we can
assume, without loss of generality, that none of the polynomial coefficients is identically zero
(for otherwise we are essentially dealing with order-1 recurrences, for which the Positivity
Problem is straightforwardly handled, as discussed in Sec. 1). By considering a shifted
recurrence relation, we can also assume that each polynomial coefficient has constant (non-
zero) sign. In particular, we have that α0, β0, γ0 are non-zero. In this case we can equivalently
write the recurrence in the form

un = bnun−1 + anun−2 (6)

for rational functions bn := (β1n + β0)/(α1n + α0) and an := (γ1n + γ0)/(α1n + α0), that
are defined for all n ≥ 0. We define the signature of the recurrence (6) to be the ordered
pair (sign(bn), sign(an)), which is independent of n.

3.1 Positivity Reduces to Minimality at Low Degrees
The results of this section make no assumption about the rationality of the characteristic
roots of (5).

▶ Lemma 7. For the class of second-order degree-one recurrences, the Positivity Problem
reduces to the Minimality Problem.

For second-order holonomic sequences, Kenison et al. [31] proved that Positivity reduces
to Minimality for second-order holonomic recurrences. However their reduction does not
preserve the degrees of the polynomial coefficients in the case of recurrences of signature
(−, +). We therefore treat this case separately below.
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▶ Proposition 8. Suppose that ⟨un⟩n satisfies recurrence (6) with signature (−, +). Assume
that u−1 > 0 and write fn = Kn

m=1
am

bm
. Then for even n ∈ N, we have un > 0 if and only if

fn > −u0/u−1. For odd n ∈ N, we have un > 0 if and only if fn < −u0/u−1.

Proof. Recall the canonical solution sequences ⟨An⟩∞
n=−1 and ⟨Bn⟩∞

n=−1. Then un = Anu−1+
Bnu0 for each n ∈ {−1, 0, . . .}. For recurrences with signature (−, +), it is easy to show by
induction that Bn < 0 for each odd n ∈ N, and Bn > 0 for each even n ∈ N. Thus for even
n ∈ N we have that un > 0 if and only if An/Bn + u0/u−1 = fn + u0/u−1 > 0. The case for
odd n ∈ N is handled in a similar fashion. ◀

Another consequence of the work by Kenison et al. shows that, for our purposes, it is
sufficient to consider only those recurrence relations whose associated continued fraction
K(an/bn) converges to a finite limit. This claim is justified by the following observation
(due to [31]): the positive solutions of a second-order holonomic recurrence relation with
signature (−, +) are precisely those solutions that are minimal. Without loss of generality we
can assume the limit of the associated continued fraction is finite due to Pincherle’s Theorem.
Thus all that remains is to prove the following proposition.

▶ Proposition 9. Suppose that ⟨un⟩n with initial values u−1, u0 > 0 is a solution sequence for
a degree-1 recurrence (6) with signature (−, +) whose associated continued fraction K(an/bn)
converges to a finite limit f . The following statements are equivalent:

1. the sequence ⟨un⟩n is positive,
2. the sequence ⟨un⟩n is minimal, and
3. −u0/u−1 = f .

Proof. The sequence ⟨−fn⟩∞
n=1 is the sequence of approximants associated with K(an/− bn).

This is a positive continued fraction and so, by Lem. 16, the subsequences ⟨−f2n⟩∞
n=1 and

⟨−f2n−1⟩∞
n=1 converge to finite limits −ℓ1 and −ℓ2, respectively. By Prop. 8, a solution

sequence ⟨un⟩n is positive if and only if ℓ2 ≤ −u0/u−1 ≤ ℓ1. The Stern-Stolz series (Thm. 18)
associated with K(an/− bn) diverges due to our assumption that each of the coefficients in
(6) is a polynomial with degree in {0, 1}. We conclude that ℓ1 = ℓ2. Thus ⟨un⟩n is positive
if and only if −u0/u−1 is equal to f = ℓ1 = ℓ2. From Thm. 2, a solution sequence ⟨un⟩n is
minimal if and only if −u0/u−1 is the value of the continued fraction K(an/bn). ◀

We thus obtain the desired result, Lem. 7.

3.2 Parameterising the Minimality Problem
In the sequel it is helpful to parameterise the Minimality Problem as follows:

▶ Problem 1 (Minimal(j, k, ℓ)). Given a solution ⟨vn⟩∞
n=−1 to the recurrence (5) where

deg(α1n + α0) = j, deg(β1n + β0) = k, and deg(γ1n + γ0) = ℓ, determine whether ⟨vn⟩n is
minimal.

Given our assumption that none of the polynomial coefficients in (5) is identically zero, we
may suppose that j, k, ℓ ∈ {0, 1}.

3.3 Interreductions for Minimal(j, k, ℓ)
Consider problem Minimal(0, 0, 0): determine whether a sequence that satisfies a second-order
C-finite recurrence is a minimal solution. Since this problem is a special case of Minimal(1, 1, 1)
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(multiply each of the coefficients by (n + 1)) we make no further mention of Minimal(0, 0, 0)
in the sequel. Thus we need only consider the seven remaining cases associated with
Minimal(j, k, ℓ). We first reduce the number of problems to five by establishing interreductions
between instances of Minimal(j, k, ℓ). Next we employ minimality-preserving transformations
to obtain canonical instances of each of the remaining problems (Cor. 11).

Proposition 10 presents the cases we need to consider to establish the Minimality Problem
at low degrees. The proposition uses the notation α := α0/α1 in case α1 ̸= 0. The (routine)
proof of Prop. 10 is relegated to App. B.

▶ Proposition 10.

1. Minimal(0, k, 1) and Minimal(1, k, 0) are interreducible.
2. Minimal(1, 0, 0) reduces to Minimal(1, 1, 1).
3. Minimal(1, 1, 1) reduces to the Minimality Problem for a recurrence of the form

un = β1n + β0

n + α
un−1 + γ1n + γ0

n + α
un−2 , (7)

where α, β0, β1, γ0, γ1 ∈ Q, β1 > 0, and |γ1| = β1. The characteristic roots associated to
the recurrence are (β1 ±

√
β2

1 + 4γ1)/2. If β2
1 + 4γ1 = 0, then we have a further reduction

to the Minimality Problem for solutions to

un = 2n + β0

n + α
un−1 − n + γ0

n + α
un−2 , (8)

where α, β0, γ0 ∈ Q and the recurrence has a single repeated characteristic root 1.
4. Minimal(1, 0, 1) reduces to the Minimality Problem for solutions to a recurrence of the

form4

un = β0

n + α
un−1 + n + γ0

n + α
un−2 , (9)

where α, γ0 ∈ Q and β0 ∈ Q ∩ R>0. The characteristic roots associated to the recurrence
are ±1.

Let λ and µ be the roots of the associated characteristic polynomial such that |λ| ≤ |µ|. In
recurrences (7)–(9), γ1 is not zero so we have λ, µ ̸= 0. Further, by setting µ = 1 for (9), we
have that µ > 0 for the associated recurrences (7)–(9), as the coefficient β1 > 0 in the first
two.

We shall treat recurrences (7) and (8) as distinct cases in the sequel. That is to say, in
the former we shall always assume that β2

1 + 4γ1 ̸= 0 (so that the characteristic roots are
distinct).

The following corollary is an immediate application of Prop. 10.

▶ Corollary 11. For j, k, ℓ ∈ {0, 1}, decidability of problem Minimal(j, k, ℓ) reduces to proving
decidability of Minimal(0, 1, 0), Minimal(0, 1, 1), and decidability of the Minimality Problem for
solutions to recurrences (7)–(9).

The next lemma gives necessary and sufficient conditions for the relevant recurrences to
admit minimal solutions. The straightforward proof, which uses Pincherle’s Theorem and
standard results on the convergence of continued fractions stated in the Preliminaries, is
given in App. C. In particular, in the sequel we shall assume that the characteristic roots of
a recurrence relation are real-valued.

4 Notice that sequences satisfying (9) are not necessarily holonomic as β0 can be a real algebraic number.
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▶ Lemma 12.

1. A recurrence un = (β1n + β0)un−1 + (γ1n + γ0)un−2 with β0, β1, γ0, γ1 ∈ Q, with
β0, β1, γ0 ̸= 0, admits minimal solutions.

2. A recurrence of the form (7) or (9) admits minimal solutions if and only if the associated
characteristic roots are real.

3. A recurrence of the form (8) admits minimal solutions if and only if β0 − α − γ0 ≥ 0.

3.4 Reduction to Equality Checking
We next reduce the Minimality Problem to the respective problems of verifying zeroness of
values of E-functions, 1-periods, and exponential 1-periods.

▶ Theorem 13. For the class of recurrences with rational characteristic roots, we have:

1. Minimal(0, 1, 1) reduces to the problem of verifying that an E-function vanishes at a
rational argument.

2. Minimality for recurrences (7) and (9) reduces to the problem of verifying the zeroness of
a 1-period.

3. Minimal(0, 1, 0) reduces to the problem of verifying the zeroness of an exponential 1-period.
4. Minimality for recurrence (8) reduces to the problem of verifying the zeroness of an

exponential 1-period.

We devote the remainder of the section to the proof of Thm. 13(2). The remaining items
appear in App. C. The lynchpin in deciding minimality is Pincherle’s Theorem (Thm. 2),
which, as explained in Sec. 2, transforms such problems into questions about the convergence
of polynomial continued fractions. The remainder of our approach to the proof of Thm. 13 is
via techniques of Lorentzen and Waadeland in [33, §VI.4.1], which express the limits of certain
continued fractions as quotients of hypergeometric functions. These functions admit, after
suitable transformations, either representations as E-functions or integral representations
that involve periods or exponential periods.

We note that the evaluation of low-degree polynomial continued fractions by Lorentzen
and Waadeland does not extend to the continued fractions associated with recurrences of
the form (8). As far as we are aware, our analysis is the first to complete this gap in the
literature.

Proof of Thm. 13(2). Consider recurrence (7). Recall that µ and λ are the (rational) roots
of the characteristic polynomial of recurrence, with µ > |λ| > 0. Let ⟨un⟩n be a minimal
solution to the recurrence. By Thm. 2, −u0/u−1 = K(an/bn). Now K(an/bn) is equivalent
to the continued fraction

1
αδ2

∞

K
n=1

(γ1n + γ0)(n + α − 1)δ2

(β1n + β0)δ

by applying Thm. 15 with r0 = 1, rn = δ(n + α) for n ∈ N, and δ a non-zero real number.
Setting δ = 1/µ, x = λ/µ, and either

a = λ2α − λβ0 − γ0

λ(λ − µ) , b = α − 1, c = a + γ0

γ1
; or

a = µ2α − µβ0 − γ0

µ(λ − µ) + 1, b = γ0

γ1
, c = a + α − 1
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we obtain, by substitution, the continued fraction

µ2

α

∞

K
n=1

−(c − a + n)(b + n)x
c + n + (b − a + 1 + n)x . (10)

Here we note that γ1 = −λµ and β1 = λ + µ. Notice here that |x| < 1 by construction.
Furthermore, shifting the sequence appropriately, the parameter a does not change, but b

and c are shifted by an integer value. Hence we may assume that c is a positive number.
Finally, a, b, c, x are all rational. By Lorentzen and Waadeland’s work [33, §VI, Thm. 4(A)],

− α

µ2
u0

u−1
= c 2F1(a, b; c; x)

2F1(a, b + 1; c + 1; x) − β0

µ
. (11)

Let us first show that the equality problem is decidable if a, b, c − a, or c − b is a negative
integer, or if either a = 0, or c − b = 0. If either a = 0, or that either a or b is a negative
integer, then both the hypergeometric series terminate. Thus equality testing reduces to
checking equality of rational numbers. Moreover, we have Euler’s transformation (cf. [3,
Eq. 2.2.7]):

2F1(a, b; c; x) = (1 − x)c−a−b
2F1(c − a, c − b; c; x) ,

which implies that if c − b = 0 or one of c − a and c − b is a negative integer then again the
series terminates, and the problem reduces to checking equality between rational numbers.
Thus for the remainder of the proof we assume that a, b, c − a, c − b are not negative integers
and, in addition, that both a and c − b are non-zero.

Consider the sequence ⟨Pn(x)⟩n defined by

P2n(x) = 2F1(a + n, b + n; c + 2n; x) and
P2n+1(x) = 2F1(a + n, b + n + 1; c + 2n + 1; x) .

Let ⟨sn⟩∞
n=1 be the sequence of linear fractional transformations given by sn(w) := anx/(1 + w)

such that a2n+1 and a2n are given by

−(a + n)(c − b + n)
(c + 2n)(c + 2n + 1) and −(b + n)(c − a + n)

(c + 2n − 1)(c + 2n) ,

respectively. It can be shown that

P0(x)
P1(x) = s1 ◦ · · · ◦ sn

(
Pn(x)

Pn+1(x)

)
(see [33, § VI.1]). Under the aforementioned assumptions we have ai ̸= 0 for each i = 1, . . . , n,
and so the composition of the si is an invertible linear fractional transformation. It follows
that

P0(x)
P1(x) = XnPn+1(x) + YnPn(x)

ZnPn+1(x) + WnPn(x) , (12)

where the sequences ⟨Wn⟩n, ⟨Xn⟩n, ⟨Yn⟩n, ⟨Zn⟩n are over Q and satisfy XnWn − YnZn ̸= 0.
Take N ∈ N to be both even and sufficiently large such that c + 2N > b + N . Substituting
(12) into (11) with n = N and rearranging, we obtain the equation aN PN+1(x) = bN PN (x),
where aN and bN are defined by

XN − ZN
β0µ − αu0/u−1

cµ2 and β0µ − αu0/u−1

cµ2 WN − YN ,
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respectively. Observe now that Euler’s integral representation (3) holds for both PN+1 and
PN . By linearity of the integral, we see that deciding Minimality for recurrences of the form
(7) reduces to checking whether the integral∫ 1

0

tb+N−1(1 − t)c−b+N−1

(1 − xt)a+N

(
aN

(c+2N)
b+N t − bN

)
dt (13)

vanishes. This integral is a period, so we are done for this part.
Now consider recurrence (8). In a similar manner to previous arguments, a solution

⟨un⟩n of (8) is minimal if −αu0/u−1 is equal to the continued fraction in (10) when one sets
x = −1, and either

a = 1
2(α + β0 − γ0), b = α − 1, c = 1

2(α + β0 + γ0); or

a = 1
2(β0 + γ0 − α) + 1, b = γ0, c = 1

2(β0 + γ0 + α) .

As c + a − b − 1 = β0 > 0 and the parameters are real-valued, by [33, §VI, Thm. 4(A)] the
continued fraction converges to (11). The remainder of the proof follows similarly. ◀

Theorem 6 follows by combining the reduction of the different variants of the Minimality
Problem, given in Prop. 10, with the procedure for determining zeroness of 1-periods in
Thm. 5 and the algorithm for determining polynomial relations between values of E-functions
in Thm. 4. In particular, the case of two distinct rational characteristic roots falls under
either Minimal(1, 1, 0) (which is interreducible with Minimal(0, 1, 1) by Prop. 10) or the cases
of Minimal(1, 0, 1) and Minimal(1, 1, 1) corresponding to recurrences (9) and (7). These are all
covered by Items 1 and 2 of Thm. 13, and thus can be solved unconditionally. Not only is
there an algorithm for the decision version of the Minimality Problem, but we also have a
procedure to solve the following function version of the problem:

▶ Theorem 14. There is a procedure that inputs a second-order degree-one recurrence (5)
with distinct rational characteristic roots, and either outputs algebraic initial values u−1, u0
giving rise to a minimal solution, or reports that no such algebraic values exist.

Proof. First, we can determine whether the recurrence admits a minimal solution using
Pincherle’s Theorem (Thm. 2) and the Stern-Stolz convergence criterion (Thm. 17). If there
is a minimal solution, it remains to see that there exists one with algebraic elements.

Consider Case 2 in the proof of Thm. 13. Here, a sequence is minimal if and only if its
initial values are such that the integral (13) vanishes. Observe that the constants aN and bN

in this integral depend linearly on u0/u−1. Treating u0 and u−1 as indeterminates, multiply
the expression (13) by u−1 to make it homogenous linear on u0 and u−1 we deduce that
minimality is equivalent to the equation

u−1p−1 + u0p0 = 0 (14)

where p’s are 1-periods. We can now use the main result of [43], see Thm. 5, to compute the
space of solutions to (14) over algebraic u−1, u0.

Next, consider Case 1 of the proof of Thm. 13. Here, minimality reduces to the vanishing
of a linear expression in u−1 and u0 whose coefficients are the values of two E-functions at
a common rational point. The algorithm of Thm. 4 allows one to compute the set of all
algebraic such solutions u−1, u0. ◀
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Note, as an immediate corollary, that we can also decide whether there exist rational
initial values u−1, u0 giving rise to a minimal solution: indeed, the latter will hold if and
only if there exist algebraic u−1, u0 giving rise to a minimal solution whose ratio is moreover
rational.
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A Continued Fractions

Two continued fractions are equivalent if they share the same sequence of approximants. The
following theorem gives a procedure to move between equivalent continued fractions [33, 34].

▶ Theorem 15. The continued fractions K(an/bn) and K(cn/dn) are equivalent if and
only if there exists a sequence ⟨rn⟩∞

n=0 with r0 = 1 and rn ̸= 0 for each n ∈ N such that
cn = rnrn−1an and dn = rnbn for each n ∈ N.

A continued fraction K(an/bn) is positive if an > 0 and bn ≥ 0 for each n ∈ N. We
will use the following monotonicity result for the odd and even approximants of positive
continued fractions [33, 34].

▶ Lemma 16. Suppose that for each n ∈ N the sequences ⟨an⟩n and ⟨bn⟩n are positive. Let
⟨fn⟩n be the sequence of approximants associated with K∞

n=1(an/bn). Then f2 ≤ f4 ≤ · · · ≤
f2m ≤ · · · ≤ f2m+1 ≤ · · · ≤ f3 ≤ f1. If, in addition, b1 > 0 then the subsequences ⟨f2n⟩n and
⟨f2n+1⟩n converge to finite, non-negative limits.
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The following theorem collects together results from the literature concerning the con-
vergence of continued fractions; the first statement follows as a consequence of Worpitzky’s
Theorem (see [34, Thm. 3.29]) and the convergence results in [27], whilst the second statement
follows from the Lane–Wall characterisation of convergence [34, Thm. 3.3].

▶ Theorem 17. Let K(κn/1) be a continued fraction with ⟨κn⟩n a function in Q(n). If
κn < 0 for all sufficiently large n ∈ N, then K(κn/1) converges to a value in R̂ if and only
if, either

limn→∞ κn exists and is strictly above −1/4, or
limn→∞ κn = −1/4 and moreover κn ≥ −1/4 − 1/(4n)2 − 1/(4n log n)2 for all sufficiently
large n.

We recall a necessary and sufficient criterion for convergence of a positive continued
fraction [34, Thm. 3.14].

▶ Theorem 18 (Stern-Stolz Theorem). A positive continued fraction K(an/bn) converges if
and only if its Stern-Stolz series

∑∞
n=1

∣∣∣bn

∏n
k=1 a

(−1)n−k+1

k

∣∣∣ diverges to ∞.

B Proof of Proposition 10

In the work that follows it will be useful to normalise recurrence (2). Our normalisation is
an equivalence transformation (in the sense of Thm. 15). Set b0 = 1, κn := an/(bnbn−1), and
consider

wn = wn−1 + κnwn−2 . (15)

Then ⟨wn⟩n with w−1 = u−1 and wn := un/(
∏n

k=1 bk) is a solution to (15) if and only if
⟨un⟩n is a solution to (2).

Proof of Proposition 10.

1. The result follows immediately from the equivalence transformation between (2) and (15).
2. Division by α1 normalises the recurrence in the following way:

(n + α)un = βun−1 + γun−2 . (16)

We shall assume that α := α0/α1 > 1 (this can be achieved by shifting as appropriate).
Suppose that ⟨un⟩n is a solution of the normalised recurrence. We use the updated
reduction argument in Sec. 3 to obtain a second recurrence. We have

(2n + α)(2n + α − 1)u2n = (β2 + γ(4n + 2α − 3))u2n−2 − γ2u2n−4 . (17)

This defines a second-order recurrence with solutions ⟨vn⟩∞
n=0 given by vn := u2n. The

mapping n 7→ 2n establishes a one-to-one correspondence between the solutions of
recurrences (16) and (17) and we claim this correspondence preserves minimality. In order
to prove this claim we show that linear independence and the asymptotic equalities are
preserved. For linear independence one direction is trivial: if ⟨un⟩n and ⟨vn⟩n are linearly
dependent solutions of (16), then ⟨u2n⟩n and ⟨v2n⟩n are linearly dependent solutions of
(17). For the converse, suppose that ⟨un⟩n and ⟨vn⟩n are linearly independent. Assume,
for a contradiction, that there exists an ℓ ∈ R such that u2n = ℓv2n for each n. We study
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the sequence ⟨un − ℓvn⟩∞
n=−1. By assumption 0 ̸= u−1 − ℓv−1 and 0 = u0 − ℓv0. Using

(16) we then compute

u1 − ℓv1 = γ

1 + α
(u−1 − ℓv−1) and

u2 − ℓv2 = β

2 + α
(u1 − ℓv1) ̸= 0 ,

a contradiction to our assumption.
We turn our attention to minimality. Suppose that ⟨un⟩n and ⟨vn⟩n are minimal and
dominant solutions of (16), respectively. Then limn→∞ un/vn = limn→∞ u2n/v2n = 0.
Since ⟨u2n⟩n and ⟨v2n⟩n are linearly independent by the above, ⟨u2n⟩n is necessarily a
minimal solution of (17). Conversely, assume that ⟨un⟩n and ⟨vn⟩n are linearly independ-
ent solutions such that ⟨u2n⟩n is a minimal solution of (17) (recall that the existence of
minimal solutions is decidable for each recurrence). Since ⟨v2n⟩n is linearly independent
of ⟨u2n⟩n, limn→∞ u2n/v2n = 0. Since recurrence (16) must also admit minimal solutions,
one easily deduces that ⟨un⟩n is likewise minimal.
Notice that the Minimality Problem for ⟨vn⟩n is an instance of Minimal(2, 1, 0) where the
polynomial g3 has rational roots. The equivalence transformations between (2) and (15)
give the reduction to Minimal(1, 1, 1) under this assumption.

3. A solution sequence ⟨un⟩n satisfies a normalised recurrence of the form

un = β1n + β0

n + α
un−1 + γ1n + γ0

n + α
un−2 .

If β1 = |γ1| then we are done. If not, consider the sequence ⟨vn⟩n with terms given by
vn := (sign(γ1)β1/γ1)nun. Not only is it evident that ⟨vn⟩n satisfies a recurrence of the
desired form, but the sequence ⟨vn⟩n is also a minimal solution if and only if ⟨un⟩n is a
minimal solution.
Assume now that β2

1 + 4γ1 = 0 in (7). As |γ1| = |β1|, it follows immediately that
β1 = 4 = −γ1. Now the sequence ⟨(1/2)nun⟩n satisfies a recurrence of the form (8) and
minimality is clearly preserved by this transformation.

4. In this case the recurrence admits minimal solutions if and only if γ1α1 > 0 (compare to
Lem. 12). This follows by an application of Theorem 17 as the standard normalisation
(15) has κn = (γ1n + γ0)(α1(n − 1) + α0)/β2

0 . The reduction to (9) follows by considering
the sequence ⟨(sign(β0)

√
α1/γ1)nun⟩n. ◀

C Proof of Theorem 13 Continued

Let us first prove Lem. 12.

Proof of Lem. 12. First, it is useful to normalise the recurrences using the normalisation in
(15) so that one can determine whether a minimal solution exists using the criteria in Thm. 17
and Thm. 2. Under our assumptions, this normalisation does not change the signature of the
recurrence. Second, recall that the characteristic roots of a recurrence are real if and only if
β2

1 + 4γ1 ≥ 0. Further, the characteristic roots are distinct if and only if β2
1 + 4γ1 ̸= 0.

1. Regardless of whether γ1 = 0 or not, when the recurrence has signature (−, +) it is
clear that limn→∞ κn = 0. When the recurrence has signature (+, +) it is clear that∑∞

n=2 1/(nκn) = ∞ and so the associated Stern-Stolz series (Theorem 18) diverges to ∞.
These conditions are sufficient to prove the statement.
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2. First, let us consider recurrence (7) under the assumption that β2
1 + 4γ ̸= 0. When (7)

has signature (−, +) there are minimal solutions if and only if 1 + 4γ1/β2
1 > 0 if and

only if λ, µ ∈ R. When (7) has signature (+, +) it is clear that limn→∞ κn = γ1/β2
1 > 0

and so always admits minimal solutions. Finally, recurrence (9) also always admits
minimal solutions: here the recurrence has signature (+, +) and the Stern-Stolz series
(Theorem 18) diverges to ∞ since

∑∞
n=2 1/

√
κn = ∞.

3. The normalisation of (8) is of the form wn = wn−1 + κnwn−2 with

κn = −1
4 − α − β0 + γ0

4n
− ε

16n2 + O(1/n3)

and ε = 4β0(β0 − α − γ0) + 4α(1 + γ0) − β0(β0 + 2). There are two cases to consider. If
β0 −α−γ0 ̸= 0 then the recurrence admits minimal solutions if and only if β0 −α−γ0 > 0.
Otherwise β0 = α + γ0, in which case κn simplifies as follows:

κn := −1
4 − −(α − γ)(α − γ − 2)

16n2 + O(1/n3) .

Since −x(x − 2) ≤ 1 for each x ∈ R, by Theorem 17, we deduce that this subcase always
admits minimal solutions. ◀

We move on to complete the proof of Theorem 13.

Proof of Theorem 13(1). Consider an instance of Minimal(0, 1, 1). Without loss of generality
it is of the form un = (β1n+β0)un−1+(γ1n+γ0)un−2. By shifting the sequence appropriately,
we may assume that β0

β1
+ γ1

β2
1

is positive. Let ⟨un⟩n be a minimal solution. Then −u0/u−1 is
equal to

∞

K
n=1

γ1n + γ0

β1n + β0
=

(β0 + γ1
β1

) 1F1( γ0
γ1

; β0
β1

+ γ1
β2

1
; γ1

β2
1
)

1F1( γ0
γ1

+ 1; β0
β1

+ γ1
β2

1
+ 1; γ1

β2
1
)

− β0 .

Here the value on the right-hand side is given in [33, §VI.4].
Let a = γ0/γ1, b = β0/β1 + γ1/β2

1 , and x = γ1/β2
1 , then Minimal(0, 1, 1) reduces to

checking the equality

1F1(a; b; x)
1F1(a + 1; b + 1; x) = (u−1β0 − u0)

u−1(β0 + γ1
β1

) .

Notice here that a > 0 and b > 0 by assumption. This equation expresses a linear relation
between the values of two E-functions, as required by the proposition. ◀

Proof of Theorem 13(3). Our objective is to show that Minimal(0, 1, 0) reduces to the task
of determining whether an exponential period vanishes. If ⟨un⟩n is a minimal solution of the
recurrence un = (β1n + β0)un−1 + γ0un−2 then, by Theorem 2, −u0/u−1 is equal to

∞

K
n=1

(
γ0

β1n + β0

)
= β0

0F1(; β0/β1; γ0/β2
1)

0F1(; β0/β1 + 1; γ0/β2
1) − β0

(see [33, §VI.4.1]). Hence the Minimality Problem for the above recurrence reduces to
checking the equality

(β0u−1 − u0) 0F1

(
; β0

β1
+ 1; γ0

β2
1

)
= β0 0F1

(
; β0

β1
; γ0

β2
1

)
.
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The Bessel functions of the first kind, sometimes called cylinder functions, Js(z) are a family
of functions that solve Bessel’s differential equation [8]. For z, s ∈ C the function Js(z) is
defined by the hypergeometric series [1, equation 9.1.69]

Js(z) :=
∞∑

k=0

(−1)k

k!Γ(s + k + 1)

(z

2

)2k+s

= 1
Γ(s + 1)

(z

2

)s

0F1(; s + 1; −z2/4).

We obtain the principal branch of Js(z) by assigning (z/2)s its principal value. When
Re(s) > −1/2 we have the following integral representation [3, equation 4.7.5],

Js(z) = 1√
πΓ(s + 1/2)

(z

2

)s
∫ 1

−1
eizt(1 − t2)s−1/2 dt.

Hence for Re(s) > −1/2, we have the following integral representation

0F1(; s + 1; z) = Γ(s + 1)√
πΓ(s + 1/2)

∫ 1

−1
e−2

√
zt(1 − t2)s−1/2 dt.

Let us return to minimal solutions of the aforementioned recurrence relation. By substitution
and linearity of the integral, we see that Minimal(0, 1, 0) reduces to checking whether the
following integral∫ 1

−1
e

−2√
γ0t

β1 (1 − t2)
β0
β1

− 3
2

(
2(β0u−1 − u0)

2β0 − 1 (1 − t2) − 1
)

dt

vanishes. To ensure that the integral converges absolutely note that we can shift the recurrence
so that β0/β1 > 3/2. The integral is an exponential period, which completes the proof. ◀

Before presenting the proof of Theorem 13(4), we need some auxilliary lemmas. We first
deal with a simple case that turns out to be decidable. To this end, we use the following
well-known determinant lemma (see, for example, [33, Lem. 4, §IV]).

▶ Lemma 19. Suppose that ⟨un⟩n and ⟨vn⟩n are both solutions to the recurrence relation
un = bnun−1 + anun−2. Then

unvn−1 − un−1vn = (u0v−1 − u−1v0)
n∏

k=1
(−ak) .

▶ Lemma 20. Let ⟨un⟩n be a non-trivial solution to (8) with β0 = α + γ0. If α ≤ γ0 + 1
then ⟨un⟩n is minimal if and only if u0/u−1 = 1. If α > γ0 + 1 then ⟨un⟩n is minimal if and
only if u0/u−1 = (γ0 + 1)/α.

Proof. If β0 = α + γ0, then the constant sequence ⟨1⟩n is a solution to the recurrence by
inspection. Hence ⟨1⟩n and ⟨Bn⟩n defined by B−1 = 0, B0 = 1 are linearly independent
solutions and, by Lemma 19,

Bn =
n∑

k=0

k∏
m=1

m + γ0

m + α
=

n∑
k=0

(γ0 + 1)k

(α + 1)k
.

By a straightforward application of Stirling’s approximation, (γ0 + 1)n/(α + 1)n ∼ nγ0−α as
n → ∞. Hence if γ0 − α ≥ −1 the series diverges (by comparison to the harmonic series)
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from which we deduce that ⟨1⟩n is minimal. If γ0 − α < −1, then limn→∞ Bn converges to
the value

∞∑
k=0

(γ0 + 1)k(1)k

(α + 1)k

1
k! = 2F1(γ0 + 1, 1; α + 1; 1) = Γ(α + 1)Γ(α − γ0 − 1)

Γ(α − γ0)Γ(α) = α

α − γ0 − 1 .

In the second equality we use [3, Thm. 2.2.2]. It follows that ⟨un⟩n = α
α−γ0−1 ⟨1⟩n − ⟨Bn⟩n is

a minimal solution, and we may compute u0/u−1 = (γ0 + 1)/α. ◀

Proof of Theorem 13(4). The case when β0 = α + γ0 is decidable by Lemma 20, so we
consider the case β0 > α + γ0; otherwise the recurrence admits no minimal solutions by
Lemma 12.

The function U(a, b, x), the confluent hypergeometric function of the second kind, is
defined for all a, b, x ∈ C with Re(a), Re(x) > 0 as

U(a, b, x) = 1
Γ(a)

∫ ∞

0
e−xtta−1(1 + t)b−a−1 dt .

As noted by Temme in [46], the sequence ⟨un⟩∞
n=−1 given by u−1 = 1

a−1 U(a − 1, b, x),
un := (a)nU(a + n, b, x) is a minimal solution of the recurrence

un = 2n + x + 2a − b − 2
n + a − b

un−1 − n + a − 2
n + a − b

un−2 (18)

(assuming that a ̸= 1 and a − b is not a negative integer). Notice that the recurrence holds
also for n = 1 because

(2a + x − b)U(a, b, z) − U(a − 1, b, z) = a(1 + a − b)U(a + 1, b, c) .

Consider now recurrence (8): un = 2n+β0
n+α un−1 − n+γ0

n+α un−2. When one substitutes the
values a = γ0 + 2, b = γ0 + 2 − α, and x = β0 − γ0 − α into (8) one obtains recurrence
(18). Subject to an initial shift of the sequence, we may assume that have a > 2. We also
have x > 0 by assumption (shifting the sequence has no effect on x). Hence, a minimal
solution to (8) satisfies u0/u−1 = (a − 1)U(a, b, x)/U(a − 1, b, x). We may apply the integral
representation for U immediately. Since the parameters involved are rational numbers, the
integrals obtained are exponential periods, and the claim follows. ◀


	1 Introduction
	1.1 Background
	1.2 Main Results

	2 Mathematical Background
	2.1 Continued Fractions and Minimal Solutions
	2.2 Hypergeometric Functions
	2.3 E-Functions
	2.4 1-Periods

	3 The Positivity and Minimality Problems for Degree-One Second-Order Holonomic Sequences
	3.1 Positivity Reduces to Minimality at Low Degrees
	3.2 Parameterising the Minimality Problem
	3.3 Interreductions for Min(j,k,l)
	3.4 Reduction to Equality Checking

	A Continued Fractions
	B Proof of Proposition 10
	C Proof of Theorem 13 Continued

