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Abstract

We prove transcendence of the Hecke-Mahler series
∑∞

n=0 f(⌊nθ+α⌋)β−n, where f(x) ∈ Z[x] is
a non-constant polynomial, α is a real number, θ is an irrational real number, and β is an algebraic

number such that |β| > 1.

1 Introduction

This paper concerns Hecke-Mahler series of the form

∞∑
n=0

f(⌊nθ + α⌋)β−n , (1)

where f(x) ∈ Z[x] is a non-constant polynomial, α and θ are real numbers, and β is an algebraic

number such that |β| > 1. It straightforward that (1) is algebraic if θ is rational. Henceforth we

assume that θ is irrational and seek to prove transcendence of (1).

Transcendence of (1) in the case α = 0 was proved by Loxton and Van der Poorten [7, Theorem 7].

Transcendence with α unrestricted and f(x) = x was recently shown by Bugeaud and Laurent [3] and

by the present authors [8]. The papers [3, 7] use the Mahler method to prove transcendence, while [8]

relies on the p-adic Subspace Theorem. Linear independence over Q of expressions of the form (1),

again with f(x) = x, is studied in [2, 8]. Meanwhile, Masser [9] proves algebraic independence results

for Hecke-Mahler series of the form
∑∞

n=0⌊nθ⌋β−n in case θ is a quadratic irrational number.

Our main result shows the transcendence of (1) for any non-constant polynomial f and all real α:
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Theorem 1. Let θ, α ∈ R, with θ irrational, and let β be an algebraic number with |β| > 1. Given a

non-constant polynomial f(x) ∈ Z[x], the Hecke-Mahler series
∑∞

n=0 f(⌊nθ+α⌋)β−n is transcendental.

To prove Theorem 1 we introduce a new combinatorial condition on a sequence of numbers u =

⟨un⟩∞n=0 that, via the p-adic Subspace Theorem, entails transcendence of the sum
∑∞

n=0 unβ
−n for

algebraic β with |β| > 1. This condition is a development of those presented in [5, 8] (which are in

turn inspired by [1, 4]), but with significant new elements. satisfies a linear recurrence of a prescribed

form.

2 Preliminaries

Let K be a number field of degree d over Q and let M(K) be the set of places of K. We divide M(K)

into the collection of Archimedean places, which are determined either by an embedding of K in R or

a complex-conjugate pair of embeddings of K in C, and the set of non-Archimedean places, which are

determined by prime ideals in the ring OK of integers of K.

For a ∈ K and v ∈ M(K), define the absolute value |a|v as follows: |a|v := |σ(a)|1/d if v corresponds

to a real embedding σ : K → R; |a|v := |σ(a)|2/d if v corresponds to a complex-conjugate pair of

embeddings σ, σ : K → C; and |a|v := N(p)−ordp(a)/d if v corresponds to a prime ideal p in OK and

ordp(a) is the order to which p divides the ideal aO. With the above definitions we have the product

formula:
∏

v∈M(K) |a|v = 1 for all a ∈ K×. Given a set of places S ⊆ M(K), the ring OS of S-integers

is the subring comprising all a ∈ K such |a|v ≤ 1 for all non-Archimedean places v ̸∈ S.

For m ≥ 1 the absolute Weil height of the projective point a = [a0 : a1 : · · · : am] ∈ Pm(K) is

H(a) :=
∏

v∈M(K)

max(|a0|v, . . . , |am|v) .

This definition is independent of the choice of the field K containing a0, . . . , am. We define the height

H(a) of a ∈ K to be the height H([1 : a]) of the corresponding point in P1(K). For a non-zero Laurent

polynomial f = xn
∑m

i=0 aix
i ∈ K[x, x−1], where m ≥ 1 and n ∈ Z, following [6] we define its height

H(f) to be the height H([a0 : · · · : am]) of the vector of coefficients.

The following version of the p-adic Subspace Theorem of Schlickewei [10] is one of the main

ingredients of our approach.1

Theorem 2. Let S ⊆ M(K) be a finite set of places of K that contains all Archimedean places. Let

v0 ∈ S be a distinguished place and choose a continuation of | · |v0 to Q, also denoted | · |v0 . Given

m ≥ 2, let L(x1, . . . , xm) be a linear form with algebraic coefficients and let i0 ∈ {1, . . . ,m} be a

distinguished index such that xi0 has non-zero coefficient in L. Then for any ε > 0 the set of solutions

a = (a1, . . . , am) ∈ (OS)
m of the inequality

|L(a)|v0 ·

( ∏
(i,v)∈{1,...,m}×S

(i,v)̸=(i0,v0)

|ai|v

)
≤ H(a)−ε

is contained in a finite union of proper linear subspaces of Km.

1We formulate the special case of the Subspace Theorem in which all but one of the linear forms are coordinate

variables.
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We will also need the following additional proposition about roots of univariate polynomials.

Proposition 3. [6, Proposition 2.3] Let f ∈ K[x, x−1] be a Laurent polynomial with at most k + 1

terms. Assume that f can be written as the sum of two polynomials g and h, where every monomial

of g has degree at most d0 and every monomial of h has degree at least d1. Let β be a root of f that

is not a root of unity. If d1 − d0 >
log(kH(f))
logH(β) then β is a common root of g and h.

3 A Transcendence Condition

In this section we introduce a condition on a sequence u that implies that the number
∑∞

m=0 umβ−m

is transcendental. Intuitively the condition says that u almost satisfies a linear recurrence.

Example 4. Let the sequence u = ⟨um⟩∞m=0 be given by um :=
⌊

m+1
2+

√
2

⌋
. Consider also the sequence

⟨rn⟩∞n=0 = ⟨1, 3, 7, 17, 41, 99, 239, . . .⟩ of numerators of the convergents of the continued fraction expan-

sion of
√
2. For all n ∈ N define the sequence wn = ⟨wn,m⟩∞m=0 by wn,m := um+2rn − 2um+rn − um.

Then wn becomes increasing sparse for successively larger n. For example, for n = 2 it holds that

wn,m is zero for m ∈ {0, . . . , 70} \ {9, 16, 26, 33, 50, 57, 67}, for n = 3 we have that wn,m is zero for

m ∈ {0, . . . , 70} \ {23, 40, 64}, while for n = 4 we have that wn,m is zero for m ∈ {0, . . . , 70} \ {57}.

The following definition aims to capture the above behaviour. Here, given f, g : A → R≥0, we

write f ≪ g if there exists a constant c > 0 such that f(a) ≤ cg(a) for all a ∈ A.

Definition 5. An integer sequence u = ⟨um⟩∞m=0 satisfies Condition (*) if there exist σ ≥ 0,

b0, . . . , bσ ∈ Z, and an increasing integer sequence ⟨rn⟩∞n=0 such that, defining for each n ∈ N the

sequence ⟨wn,m⟩∞m=0 by wn,m :=
∑σ

i=0 bium+irn , the following two properties are satisfied:

1. Expanding Gaps: for all n ∈ N, the set ∆n := {m : wn,m ̸= 0} is infinite and the minimum

distance µn between any two elements of ∆n satisfies µn ≫ rn.

2. Polynomial Variation: there exists c0 ≥ 0 such that for all n ∈ N and all m′ > m in ∆n,

|wn,m′ | ≪ (m′ −m)c0 + |wn,m|.

Theorem 6. Let the integer sequence u = ⟨um⟩∞m=0 satisfy Condition (*) and be such that |um| ≪ mc1

for some c1 ≥ 0. Then for any algebraic number β such that |β| > 1, the sum α :=
∑∞

m=0
um
βm is

transcendental.

Proof. Suppose that α is algebraic. We will use the Subspace Theorem to obtain a contradiction.

Let S comprise all the Archimedean places of Q(β) and all non-Archimedean places corresponding to

prime ideals p of OQ(β) such that ordp(β) ̸= 0. Let v0 ∈ S be the place corresponding to the inclusion

of Q(β) in C. Recall that | · |v0 = | · |1/deg(β), where | · | denotes the usual absolute value on C. Let

κ ≥ 2 be an upper bound of |β|v for all v ∈ S.

By the assumption that u satisfies Condition (*), there is an integer sequence ⟨rn⟩∞n=0 and

b0, . . . , bσ ∈ Z such that the family of sequences ⟨wn,m⟩∞m=0 defined by wn,m :=
∑σ

i=0 bium+irn satisfies

the Expanding-Gaps and Polynomial-Variation conditions from Definition 5.

Define ρ := 2σ|S|deg(β) log κ
log |β| . For each n ∈ N, let 0 ≤ mn,1 < mn,2 < · · · be an increasing

enumeration of {m : wn,m ̸= 0}. Since µn ≫ rn, we may define δ ≥ 1 to be least such that mn,δ > ρrn
for infinitely many n ∈ N. We also define sn := mn,δ+1−1 for all n ∈ N and note that sn−mn,δ ≫ rn.
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For n ∈ N, define an := (an,0, . . . , an,σ+δ+1) ∈ (OS)
σ+δ+2 by

an,i := βirn for i ∈ {0, . . . , σ} an,σ+1 :=
∑σ

i=0

∑irn−1
m=0 biumβirn−m

an,σ+1+j := wn,mn,j β
−mn,j for j ∈ {1, . . . , δ} .

(2)

and consider the linear form

L(x0, . . . , xσ+δ+1) := α

σ∑
i=0

bixi −
σ+δ+1∑
i=σ+1

xi .

Then for all n ∈ N we have

L(an) =
σ∑

i=0

∞∑
m=0

biumβirn−m −
σ∑

i=0

irn−1∑
m=0

biumβirn−m −
δ∑

i=1

wn,mn,i β
−mn,i =

∞∑
m=sn+1

wn,mβ−m (3)

By the assumption that |um| ≪ mc1 , there exists c2 ≥ 0 such that |wn,m| ≪ (m+ rn)
c2 . By (3),

|L(an)| =
∣∣∑∞

m=sn+1wn,mβ−m
∣∣≪∑∞

m=sn+1(m+ rn)
c2 |β|−m ≪ sc2n |β|−sn . (4)

For v ∈ S, recalling that |β|v ≤ κ, there is a constant c3 such that

|an,σ+1|v ≪ rc3n κσrn . (5)

By the product formula we have
∏

v∈S |an,i|v = 1 for i ∈ {0, . . . , σ} and

δ∏
j=1

∏
v∈S

|an,σ+1+j |v =

δ∏
j=1

|wn,mn,j | ≪ sc2δn . (6)

The bounds (4), (5), and (6), imply that there is a constant c4 such that for all n,

|L(an)|v0 ·
∏

(i,v)∈{0,...,σ+δ+1}×S
(i,v)̸=(σ+1,v0)

|ai,n|v ≤ κσrn|S|sc4n |β|−sn/deg(β)

≤ sc4n |β|−sn/2deg(β) ,
(7)

where the second inequality follows from the fact that, since sn ≥ ρrn and ρ = 2σ|S|deg(β) log κ
log |β| , we

have κσrn|S| = |β|ρrn/2deg(β) ≤ |β|sn/2deg(β). On the other hand, there exists a constant c5 > 0 such

that the height of an satisfies H(an) ≪ |β|c5sn . Thus there exists ε > 0 such that the right-hand

side of (7) is at most H(an)
−ε for n sufficiently large. We can therefore apply Theorem 2 to obtain

a non-zero linear form F (x0, . . . , xσ+δ+1), with coefficients in Q, such that F (an) = 0 for infinitely

many n.

By Claim 7, below, the support of F contains variable xσ+1 but omits variable xσ+δ+1. Thus, by

subtracting a suitable multiple of F from L we obtain a linear form L′ whose support includes xσ+δ+1

but not xσ+1 and such that L′(an) = L(an) for infinitely many n.

By Claim 7(i) we have |L′(an)| ≫ |an,σ+δ+1| =
∣∣wn,mn,δ

β−mn,δ
∣∣. Expanding L′(an) = L(an) as

in (3), for infinitely many n we have

∣∣wn,mn,δ
β−mn,δ

∣∣≪ ∣∣L′(an)
∣∣ = ∣∣∣∣ ∞∑

j=δ+1

wn,mn,jβ
−mn,j

∣∣∣∣ . (8)
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The Polynomial-Variation Condition gives |wn,mn,j | ≪ (mn,j − mn,δ)
c0 + |wn,mn,δ

| for all j ≥ δ + 1.

Applying this upper bound to the right-hand sum in (8) and dividing through by |wn,mn,δ
|, we obtain∣∣β−mn,δ

∣∣≪ ∣∣(mn,δ+1 −mn,δ)
c0β−mn,δ+1

∣∣ .
But this contradicts the fact that mn,δ+1 −mn,δ → ∞ as n → ∞.

Claim 7. Let F (x0, . . . , xσ+δ+1) =
∑σ+δ+1

i=0 αixi be a non-zero linear form with coefficients in Q.

We have (i) if ασ+1 = 0 then |F (an)| ≫ |an,σ+δ+1|; (ii) if F (an) = 0 for infinitely many n, then

ασ+δ+1 = 0.

Proof. Let i, j ∈ {1, . . . , δ} be such that i < j. By the Polynomial-Variation Condition, for all n,∣∣∣∣an,σ+1+j

an,σ+1+i

∣∣∣∣ = ∣∣∣∣wn,mn,j

wn,mn,i

∣∣∣∣ |β|−(mn,j−mn,i) ≪ (mn,j −mn,i)
c0 |β|−(mn,j−mn,i) .

But as n → ∞ we have mn,j − mn,i → ∞ and hence
∣∣∣an,σ+1+j

an,σ+1+i

∣∣∣ → 0. Recalling that an,i = βirn for

i ∈ {0, . . . , σ}, we can say more generally that limn→∞
|an,j |
|an,i| = 0 for i, j ∈ {0, . . . , σ + δ + 1} \ {σ + 1}

with i < j. Item (i) immediately follows.

We next show Item (ii). For all n ∈ N, by (2) we have F (an) = Pn(β) for the polynomial

Pn(x) ∈ Q[x, x−1] defined by

Pn(x) :=
σ∑

i=0

αix
irn + ασ+1

σ∑
i=0

irn−1∑
m=0

biumxirn−m +
δ∑

j=1

ασ+1+jwn,mn,jx
−mn,j .

Suppose that Pn(β) = 0 for infinitely many n. We will apply Proposition 3 to show that ασ+δ+1 = 0.

To this end, write Qn := ασ+δ+1x
−mn,δ and Rn := Pn − ασ+δ+1x

−mn,δ . Then Pn = Qn + Rn,

every monomial in Qn has degree at most −mn,δ, and every monomial in Rn has degree at least

−mn,δ−1. By the Expanding-Gaps condition we have mn,δ −mn,δ−1 ≫ rn. Moreover Pn has at most

kn := (σ + 1)rn + δ ≪ mn,δ −mn,δ−1 monomials. Next, from the bounds |um| ≪ mc1 and |wn,m| ≪
(m+ rn)

c1 , established in the proof of Theorem 6, we see that Pn has height bounded polynomially in

mn,δ. But mn,δ = mn,δ −mn,δ−1+mn,δ−1 ≪ mn,δ −mn,δ−1, since mn,δ−1 ≤ ρrn ≪ mn,δ −mn,δ−1. We

thus have mn,δ −mn,δ−1 >
log(knH(Pn))

logH(β) provided that n is sufficiently large. Since Pn(β) = 0, applying

Proposition 3 we have Qn(β) = 0 and hence ασ+δ+1 = 0.

4 Hecke-Mahler Series

Write I := [0, 1) for the unit interval. Every r ∈ R can be written uniquely in the form r = ⌊r⌋+ {r},
where ⌊r⌋ ∈ Z is the integer part of r and {r} ∈ I is the fractional part of r. Write also ∥r∥ for the

distance of r to the nearest integer. Let 0 < θ < 1 be an irrational number and define the rotation

map R = Rθ : I → I by R(r) = {r + θ}.
Write [a0, a1, a2, a3, . . .] for the simple continued-fraction expansion of θ. Given n ∈ N, we write

pn/qn := [a0, a1, . . . , an] for the n-th convergent. It is well known that for all n ∈ N we have

1

(an+1 + 2)qn
< |qnθ − pn| <

1

an+1qn
. (9)

We moreover have the law of best approximation: q ∈ N occurs as one of the qn just in case ∥qθ∥ < ∥q′θ∥
for all q′ with 0 < q′ < q.
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Theorem 8. Let θ, α ∈ (0, 1) with θ irrational. Given a non-constant polynomial f(x) ∈ Z[x], the
series u = ⟨un⟩∞n=0 given by un := f(⌊nθ + α⌋) satisfies Condition (*).

Proof. Referring to Definition 5, we define the sequence ⟨rn⟩∞n=0 via the continued-fraction expansion

[a0, a1, a2, a3, . . .] of θ. If the expansion is unbounded, then choose ℓ1 < ℓ2 < · · · , either all odd or all

even, such that aℓn+1 ≥ am for all n ∈ N and all m ≤ ℓn. If the expansion is bounded, then choose

ℓ1 < ℓ2 < · · · to be the even natural numbers. In either case, there exists a constant ε > 0 such that

for all n ∈ N and m ≤ ℓn, we have
aℓn+1

am+1+2 ≥ ε. Now define rn to be the denominator qℓn of the

ℓn-th convergent. Since the rn all have the same parity, we have either that ∥rnθ∥ = {rnθ} for all n

or ∥rnθ∥ = 1 − {rnθ} for all n. We assume the former case; the reasoning in the latter case requires

minor modifications.

Let σ := deg(f) + 1 and define the sequence wn = ⟨wn,m⟩∞m=0 by wn,m :=
∑σ

k=0 bkum+krn where

bk := (−1)k
(
σ
k

)
for k ∈ {0, . . . , σ}. We rely on the following two claims, whose proofs are given below.

Claim 9. For 0 ≤ q < rn, if ∥qθ∥ < σ∥rnθ∥ then q ≥ ε
σ rn.

Claim 10. Let n ∈ N be sufficiently large that σ{rnθ} < 1. Then there exist M ≥ 0 and ε1, ε2 > 0

such that for all m ∈ N,

1. if {mθ + α}+ {σrnθ} < 1, then wn,m = 0;

2. if m > Mrn and {mθ+ α}+ {ℓrnθ} < 1 < {mθ+ α}+ {(ℓ+ 1)rnθ} for some ℓ ∈ {0, . . . , σ− 1},
then ε1m

σ−2 ≤ |wn,m| ≤ ε2m
σ−2.

For n ∈ N let 0 ≤ mn,1 < mn,2 < be an increasing enumeration of ∆n := {m : wn,m ̸= 0}.
Note that by Item 2 of Claim 10 and equidistribution of the sequence {mθ + α}, for all n the set

∆n is infinite. Moreover, by Item 1 of Claim 10, for j ∈ {1, 2, . . .} we have ∥mn,jθ + α∥ < σ∥rnθ∥
and ∥mn,j+1θ + α∥ < σ∥rnθ∥ and hence ∥(mn,j+1 − mn,j)θ∥ < σ∥rnθ∥. By Claim 9 it follows that

mn,j+1 −mn,j ≥ εrnσ
−1, which establishes the Expanding-Gaps condition in Definition 5.

It remains to show the Polynomial-Variation property: there exists c0 ≥ 0 such that for all m′ > m

in ∆n we have |wn,m′ | ≪ (m′ −m)c0 + |wn,m|. We rely on Item 2 of Claim 10. There are two cases.

First suppose that m > Mrn for M as in the claim. Then

|wn,m′ | ≪ (m′)σ−2 = (m′ −m+m)σ−2 ≪ (m′ −m)σ−2 +mσ−2 ≪ (m′ −m)σ−2 + |wn,m| .

The second case is that m ≤ Mrn. Since m
′−m ≥ εσ−1rn we have m′−m ≥ ε

ε+σMm′. From the fact

that |wn,m′ | ≪ (m′ + rn)
c0 for some c0 ≥ 0, it follows that |wn,m′ | ≪ (m′ −m)c0 .

It remains to prove the two claims in the body of the proof of Theorem 8.

Proof of Claim 9. Assume that ∥qθ∥ < σ∥rnθ∥. Choose the largest m such that qm ≤ q. By the law

of best approximation we have ∥qmθ∥ ≤ ∥qθ∥ < σ∥rnθ∥ = σ∥qℓnθ∥. Then (9) gives

1

(am+1 + 2)qm
≤ ∥qmθ∥ ≤ σ∥qℓnθ∥ ≤ σ

aℓn+1qℓn

and hence qm ≥ aℓn+1qℓn
σ(am+1+2) . We also have m < ℓn, since qm ≤ q < rn = qℓn ; thus, by the defining

property of ℓn, we have
aℓn+1

σ(am+1+2) ≥
ε
σ . Combining the two previous bounds gives

q ≥ qm ≥ aℓn+1qℓn
σ(am+1 + 2)

≥ ε

σ
qℓn =

ε

σ
rn .
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This concludes the proof.

Proof of Claim 10. Given y ∈ Z, define the difference operator ∆y : Z[x] → Z[x] by ∆y(g)(x) =

g(x) − g(x + y). Since ∆y(g) has degree strictly less than that of g, we have that (∆y)
σ(f)(x) =∑σ

k=0 bkf(x+ yk) is identically zero. We now prove the two items of the claim.

1. If {mθ + α}+ {σrnθ} < 1, then

wn,m =

σ∑
k=0

bkf(⌊(m+ krn)θ + α⌋)

=

σ∑
k=0

bkf(⌊mθ + α⌋+ ⌊krnθ⌋)

=
σ∑

k=0

bkf(⌊mθ + α⌋+ k⌊rnθ⌋)

= 0 .

2. If {mθ + α}+ {ℓrnθ} < 1 < {mθ + α}+ {(ℓ+ 1)rnθ} for some ℓ ∈ {0, . . . , σ − 1}, then

wn,m =
σ∑

k=0

bkf(⌊(m+ krn)θ + α⌋)

=

ℓ∑
k=0

bkf(⌊mθ + α⌋+ k⌊rnθ⌋) +
σ∑

k=ℓ+1

bkf(⌊mθ + α⌋+ 1 + k⌊rnθ⌋)

=
ℓ∑

k=0

bk(f(⌊mθ + α⌋+ k⌊rnθ⌋)− f(⌊mθ + α⌋+ 1 + k⌊rnθ⌋)) .

Define p ∈ Z[x, y] by p(x, y) :=
∑ℓ

k=0 bk(f(x + ky) − f(x + 1 + ky)). The equation above can be

written wn,m = p(⌊mθ+α⌋, ⌊rnθ⌋). Since f has degree σ− 1, p has total degree at most σ− 2. (Note

that σ ≥ 2 since f is not constant.) By direct calculation, the coefficient of xσ−2 in p is the product

of the leading coefficient of f and

(1− σ)

ℓ∑
k=0

bk = (1− σ)

ℓ∑
k=0

(−1)k
(
σ

k

)
= (−1)ℓ(1− σ)

(
σ − 1

ℓ

)
̸= 0 .

Thus forM suitably large, there exist ε1, ε2 > 0 such that x ≥ My implies ε0x
σ−2 ≤ |p(x, y)| ≤ ε2x

σ−2.

The claim follows.

Combining Theorems 6 and 8 we obtain our main result, Theorem 1.
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