
Chapter 29
Model Checking Real-Time Systems

Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
Joël Ouaknine, and James Worrell

Abstract This chapter surveys timed automata as a formalism for model checking
real-time systems. We begin with introducing the model, as an extension of finite-
state automata with real-valued variables for measuring time. We then present the
main model-checking results in this framework, and give a hint about some recent
extensions (namely weighted timed automata and timed games).

29.1 Introduction

Timed automata were introduced by Rajeev Alur and David Dill in the early
1990s [13] as finite-state automata equipped with real-valued variables for mea-
suring time between transitions in the automaton. These variables all evolve at the
same rate; they can be reset along some transitions, and used as guards along other
transitions or invariants to be preserved while letting time elapse in locations of the
automaton.

Timed automata have proven very convenient for modeling and reasoning about
real-time systems: they combine a powerful formalism with advanced expressive-
ness and efficient algorithmic and tool support, and have become a model of choice

P. Bouyer · N. Markey (B)
LSV, CNRS & ENS Paris-Saclay, Cachan, France
e-mail: nicolas.markey@irisa.fr

N. Markey
IRISA, CNRS & INRIA & Univ. Rennes 1, Rennes, France

U. Fahrenberg
École Polytechnique, Palaiseau, France

K.G. Larsen
Aalborg University, Aalborg, Denmark

J. Ouaknine · J. Worrell
University of Oxford, Oxford, UK

J. Ouaknine
Max Planck Institute for Software Systems, Saarbrücken, Germany

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_29

1001

mailto:nicolas.markey@irisa.fr
http://dx.doi.org/10.1007/978-3-319-10575-8_29

1002 P. Bouyer et al.

Fig. 1 A timed automaton

in the framework of verification of embedded systems. The timed-automata formal-
ism is now routinely applied to the analysis of real-time control programs [85, 127]
and timing analysis of software and asynchronous circuits [60, 146, 150]. Simi-
larly, numerous real-time communication protocols have been analysed using timed
automata technology, often with inconsistencies being revealed [95, 144]. During
the last few years, timed-automata-based schedulability and response-time anal-
ysis of multitasking applications running under real-time operating systems have
received substantial research effort [61, 78, 80, 109, 156]. Also, for optimal plan-
ning and scheduling, (priced) timed automata technology has been shown to pro-
vide competitive and complementary performances with respect to classical ap-
proaches [1, 2, 32, 86, 97, 108, 119]. Finally, controller synthesis from timed games
has been applied to a number of industrial case studies [6, 71, 110].

The handiness of this formalism is exemplified in Fig. 1, modeling a (simplified)
computer mouse: this automaton receives press events, corresponding to an action
of the user on the button of the mouse. When two such events are close enough (less
than 300 milliseconds apart), this is translated into a double_click event.

Because clock variables are real-valued, timed automata are in fact infinite-state
models, where a configuration is given by a location of the automaton and a valua-
tion of the clocks. Timed automata have two kinds of transitions: action transitions
correspond to firing a transition of the automaton, and delay transitions correspond
to letting time elapse in the current location of the automaton. Section 29.2 pro-
vides the definitions of this framework. The main technical ingredient for dealing
with this infinity of states is the region abstraction, as we explain in Sect. 29.3.
Roughly, two clock valuations are called region equivalent whenever they satisfy
the exact same set of constraints of the form x− y �� c, where the difference of two
clocks x and y is compared to some integer c (no greater than some constant M).
This abstraction can be used to develop various algorithms, in particular for decid-
ing bisimilarity (Sect. 29.4) or model checking some quantitative extensions of the
classical temporal logics CTL and LTL (Sect. 29.6). We also show that some prob-
lems are undecidable, most notably language containment (Sect. 29.5) and model
checking the full quantitative extension of LTL. On the practical side, regions are in
some sense too fine-grained, and another abstraction, called zones, is preferred for
implementation purposes. Roughly, zones provide a way of grouping many regions
together, which is often relevant in practical situations. We explain in Sect. 29.7 how
properties of timed automata can be verified in practice.

Finally, we conclude this chapter with two powerful extensions of timed au-
tomata: first, weighted timed automata allow for modeling quantitative constraints
beyond time; since resource (e.g., energy) consumption is usually tightly bound to
time elapsing, timed automata provide a convenient framework for modeling such

29 Model Checking Real-Time Systems 1003

quantitative aspects of systems. Unlike hybrid systems (see Chap. 30), weighted
timed automata still enjoy some nice decidability properties (in restricted settings
though), as we explain in Sect. 29.8. Then in Sect. 29.9 we present timed games,
which are very powerful and convenient for dealing with the controller synthesis
problem (see Chap. 27) in a timed framework. Timed games also provide an inter-
esting way of modeling uncertainty in real-time systems, assuming worst-case reso-
lution of the uncertainty while still trying to benefit from non-worst-case situations.

29.2 Timed Automata

In this chapter, we consider as time domain the set R≥0 of non-negative reals. While
discrete time might look reasonable for representing digital systems, it assumes syn-
chronous interactions between the systems. We refer to [17, 27, 67, 102] for more
discussions on this point.

Let Σ be a finite set of actions. A time sequence is a finite or infinite non-
decreasing sequence of non-negative reals. A timed word is a finite or infinite se-
quence of pairs (a1, t1) . . . (ap, tp) . . . such that ai ∈Σ for every i, and (ti)i≥1 is a
time sequence. An infinite timed word is converging if its time sequence is bounded
above (or, equivalently, converges).

We consider a finite set C of variables, called clocks. A (clock) valuation over C

is a mapping v : C → R≥0 which assigns to each clock a real value. The set of all
clock valuations over C is denoted R

C
≥0, and 0C denotes the valuation assigning 0

to every clock x ∈ C.
Let v ∈ R

C
≥0 be a valuation and t ∈ R≥0; the valuation v + t is defined by

(v + t)(x) = v(x) + t for every x ∈C. For a subset r of C, we denote by v[r]
the valuation obtained from v by resetting clocks in r ; formally, for every x ∈ r ,
v[r](x)= 0 and for every x ∈ C \ r , v[r](x)= v(x).

The set Φ(C) of clock constraints over C is defined by the grammar

Φ(C) � ϕ ::= x �� k | ϕ1 ∧ ϕ2
(
x ∈C, k ∈ Z and �� ∈ {<,≤,=,≥,>}).

We will sometimes make use of diagonal clock constraints, which additionally allow
constraints of the form x − y �� k. We write Φd(C) for the extension of Φ(C)

with diagonal constraints. If v ∈ R
C
≥0 is a clock valuation, we write v |= ϕ when v

satisfies the clock constraint ϕ, and we say that v satisfies x �� k whenever v(x) �� k

(similarly, v satisfies x − y �� k when v(x)− v(y) �� k). If ϕ is a clock constraint,
we write [[ϕ]]C for the set of clock valuations {v ∈R

C
≥0 | v |= ϕ}.

Definition 1 ([13]) A timed automaton is a tuple (L, �0,C,Σ, I,E) consisting of
a finite set L of locations with initial location �0 ∈ L, a finite set C of clocks, an
invariant1 mapping I : L→Φ(C), a finite alphabet Σ and a set E ⊆ L×Φ(C)×
Σ × 2C × L of edges. We shall write �

ϕ,a,r−−−→ �′ for an edge (�,ϕ, a, r, �′) ∈ E;

1The original definition of timed automata [13] did not contain invariants in locations, but had
Büchi conditions to enforce liveness. Invariants were added by [103]. Several other convenient
extensions have been introduced since then, which we discuss in Sect. 29.3.2.

1004 P. Bouyer et al.

Fig. 2 Model of a process that acquires and releases two resources. Here and in the rest of this
chapter, transitions are decorated with their associated guards (e.g., xj > 0), letters of the alphabet
(e.g., release!), and resets (written e.g., as xj := 0); invariants (if any) are written in brackets
below their corresponding locations

formula ϕ is the guard of the transition (and has to be satisfied when the transition
is taken), and r is the set of clocks that are set to zero after taking that transition.

Later for defining languages accepted by timed automata we may add final or
repeated (Büchi) locations, and for defining logical satisfaction relations we may
add atomic proposition labeling to timed automata. However for readability reasons
we omit them here.

Example 1 Figure 2 shows timed automata models for processes and resources.
Processes can use resources, but mutual exclusion is expected. The model for pro-
cess Pi is given in the upper part of the figure, whereas the model for resource Rj

is given in the lower part of the figure. Starting in the idle location, the process
should start within one to two time units requesting a resource. After two time units
it must abort its request, unless before two time units it acquires the resource and
goes to the working location. The resource is released when the process is done
working with it.

Our model for a resource has two locations, and when the resource is available,
it can be acquired and should be released within one time unit.

The operational semantics of a timed automaton A = (L, �0,C,Σ, I,E) is the
(infinite-state) timed transition system [[A]] = (S, s0,R≥0×Σ,T) given as follows:

S = {
(�, v) ∈ L×R

C
≥0

∣∣ v |= I (�)
}

s0 = (�0,0C)

T = {
(�, v)

d,a−−→ (
�′, v′

) ∣∣ ∀d ′ ∈ [0, d] : v + d ′ |= I (�),

and ∃� ϕ,a,r−−−→ �′ ∈E : v+ d |= ϕ, and v′ = (v + d)[r]}

29 Model Checking Real-Time Systems 1005

In words, one can jump from one state (�, v) to another one (�′, v′) by selecting
a delay to be elapsed in � (provided that the invariant of location � is fulfilled in the
meantime) and an edge of the automaton, which is taken after the delay, provided
that its guard is satisfied at that time. In this semantics, a transition combines both
a delay and (followed by) the application of an edge of the automaton. A slightly
different semantics is sometimes used, which distinguishes pure-delay transitions

(denoted
d−→, for d ∈R≥0) and pure-action transitions (denoted

a−→ with a ∈Σ).
A (finite or infinite) run of a timed automaton A is a (finite or infinite) path

ρ = (�0, v0)
d1,a1−−−→ (�1, v1)

d2,a2−−−→ · · · in the transition system [[A]], which starts with

v0 = 0C . Given a run ρ = (�0, v0)
d1,a1−−−→ (�1, v1)

d2,a2−−−→ (�2, v2) . . . , we say that it
reads the timed word w = (a1, t1)(a2, t2) . . . where for every i, ti =∑

j≤i dj . A run
is time-divergent if its time sequence (ti)i diverges. A timed automaton is non-Zeno
if any finite run can be extended into a time-divergent run.

Example 2 The process R1 given in Fig. 2 has a single clock x1, and has as set of
states S = {available1} ×R≥0 ∪ {in_use1} × [0,1] where we identify valua-
tions (for the single clock x1) with the value of x1. We give below a possible run for
the resource R1:

(available1,0)
5.4,acquire?−−−−−−−−→ (in_use1,0)

0.8,release!−−−−−−−−→ (available1,0.8)

1.4,acquire?−−−−−−−−→ (in_use1,0)→ ·· ·
In location in_use, the invariant is satisfied in this run because the value of x1
never exceeds 0.8 (hence satisfies the constraint x1 ≤ 1).

We now define the parallel composition of timed automata, which allows us to
define systems in a compositional way [23, 107]. Let (Ai)1≤i≤n be n timed au-
tomata, where Ai = (Li, �

i
0,Ci,Σi, Ii,Ei). Assume that all Σi ’s are disjoint, and

all Ci ’s are disjoint. If Σ is a new alphabet, given a (partial) synchronization func-
tion f : ∏n

i=1(Σi ∪ {−})→Σ , the synchronized product (or parallel composition)
(A1 ‖ A2 ‖ · · · ‖ An)f is the timed automaton A = (L, �0,C,Σ, I,E) where L =
L1× · · ·×Ln, �0 = (�1

0, . . . , �
n
0), C = C1 ∪ · · · ∪Cn, I ((�1, . . . , �n))=∧n

i=1 Ii(�i)

for every (�1, . . . , �n) ∈ L1× · · · ×Ln, and the set E is composed of the transitions

(�1, . . . , �n)
ϕ,a,r−−−→ (�′1, . . . , �′n) whenever

1. there exists (α1, . . . , αn) ∈∏n
i=1(Σi ∪ {−}) such that f (α1, . . . , αn)= a;

2. if αi =−, then �′i = �i ;

3. if αi �= −, then there is a transition �i
ϕi ,αi ,ri−−−−→ �′i in Ei

4. ϕ =∧{ϕi | αi �= −} and r =⋃{ri | αi �= −}

Example 3 We build on the system given in Fig. 2. The process and the resources
are not expected to run independently, but they are part of a global system where
the process should synchronize with the resources. Hence for this system we have a
natural synchronization function f defined by Table 1.

1006 P. Bouyer et al.

Table 1 The synchronization function f

P1 P2 R1

start! – – → start1

– start! – → start2

abort! – – → abort1

– abort! – → abort2

acquire! – acquire? → acquire1

– acquire! acquire? → acquire2

release? – release! → release1

– release? release! → release2

Fig. 3 The global system (P1 ‖ P2 ‖ R1)f , where “ij ” (resp. “aj ”, “wj ”) stands for location
“idlej ” (resp. “attemptingj ”, “workingj ”) in Pj , and “a1” (resp. “u1”) stands for location
“available1” (resp. “in_use1”) in R1

The global system (P1 ‖ P2 ‖ R1)f (more precisely the part which is reachable
from the initial state) is depicted in Fig. 3. This automaton is rather complex, and the
component-based definition as (P1 ‖ P2 ‖ R1)f is much easier to understand. Fur-
thermore this allows addition of other processes and other resources to the system
without any effort.

29 Model Checking Real-Time Systems 1007

29.3 Checking Reachability

In this section we are interested in the most basic problem regarding timed automata,
namely reachability. This problem asks, given a timed automaton A, whether a dis-
tinguished set of locations F of A is reachable or not.

29.3.1 Region Equivalence

For the rest of this section we fix a timed automaton A= (L, �0,C,Σ, I,E) and a
set of target locations F . For every clock x ∈ C we let Mx be the maximal constant
clock x is compared to in A.

Two valuations v, v′ : C → R≥0 are said to be region equivalent w.r.t. maximal
constants M = (Mx)x∈C , denoted v ∼=M v′, if 2

• for all x ∈ C, �v(x)� = �v′(x)� or v(x), v′(x) > Mx , and
• for all x ∈ C with v(x)≤Mx , 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, and
• for all x, y ∈ C with v(x) ≤Mx and v(y) ≤My , 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤
〈v′(y)〉.
The equivalence classes of valuations with respect to∼=M are called regions (with

maximal constants M). The number of regions is finite and is bounded above by
n! · 2n ·∏x∈C(2Mx + 2). Region equivalence of valuations is extended to states
of A by declaring that (�, v) ∼=M (�′, v′) whenever � = �′ and v ∼=M v′. We write
[�, v]∼=M

for the equivalence class of (�, v).
Region equivalence enjoys nice properties, the most important of which is that it

is a time-abstracted bisimulation in the following sense:

Definition 2 A relation R on the states of A is a time-abstracted bisimulation if
(�1, v1)R(�2, v2) and (�1, v1)

d1,a−−→ (�′1, v′1) for some d1 ∈ R≥0 and a ∈ Σ imply

(�2, v2)
d2,a−−→ (�′2, v′2) for some d2 ∈R≥0, with (�′1, v′1)R(�′2, v′2) and vice versa.

In other words, from two equivalent states, the automaton can take the same tran-
sitions, except that the values of the delays might have to be changed. This funda-
mental property has important consequences, like the construction of an interesting
finite abstraction for A.

Definition 3 The region automaton R∼=M
(A)= (S, s0,Σ,T) associated with A has

as set of states the quotient S = (L×R
C
≥0)/∼=M

, as initial state s0 = [�0,0C]∼=M
, and

as transitions all the [�, v]∼=M

a−→ [�′, v′]∼=M
for which (�, v)

d,a−−→ (�′, v′) for some
d ∈R≥0. The target set of R∼=M

(A) is defined as SF = {[�, v]∼=M
| � ∈ F }.

2For d ∈R≥0 we write �d� and 〈d〉 for the integral and fractional parts of d , i.e., d = �d� + 〈d〉.

1008 P. Bouyer et al.

Fig. 4 Clock regions for the
system (P1 ‖R1)f1

The region automaton R∼=M
(A) is a finite automaton whose size is exponential

compared with the size of A. It can be used to check, e.g., reachability properties
(or equivalently language emptiness):

Proposition 1 The set of locations F is reachable in A from �0 iff SF is reachable
in R∼=M

(A) from s0.

The region automaton has exponentially larger size, but checking a reachability
property can be done on the fly, hence this can be done in polynomial space. One
of the most fundamental theorems in the model checking of timed automata can be
stated as follows.

Theorem 1 ([13]) The reachability problem in timed automata is PSPACE-
complete.

Example 4 Restricting our running example to process P1 and resource R1 (we as-
sume f1 is the synchronization function f restricted to those two processes), the
global system has two clocks, x1 and y1. The set of regions is then depicted in Fig. 4.
There are 28 regions. The (reachable part of the) corresponding region automaton
is depicted in Fig. 5. In this drawing we omit indices over names of locations since
they should all be 1; also, the thick “release” transition at the top corresponds to a
set of transitions from all the states on the right to all the states on the left.

29.3.2 Some Extensions of Timed Automata

Timed automata are the most basic model for representing systems with (quantita-
tive) real-time constraints. It is natural to extend the model with features that help
in modeling real systems. However decidability of the reachability problem remains
the fundamental property one wants to preserve. In this subsection we mention sev-
eral variants and extensions of timed automata that have been proposed in the liter-
ature.

Timed automata as defined in this chapter are the so-called diagonal-free timed
automata since only constraints of the form x �� k are used. Timed automata with
diagonal constraints (of the form x − y �� k) were also originally defined in the
seminal paper [13]. They can be analyzed using a slight refinement of the region
automaton, but with no extra complexity. Furthermore, diagonal constraints can be

29 Model Checking Real-Time Systems 1009

Fig. 5 Region automaton for (P1 ‖R1)f1

removed from the model, at the expense of a (possibly exponential) blowup in the
number of locations of the model [40].

Another useful extension of timed automata is obtained by allowing edges to set
clocks to arbitrary positive integers (x := k) instead of only 0, or even to synchronize
clock values (x := y). In [53] it is shown that any such updatable timed automaton
can be converted to a usual one, hence this class is no more expressive than timed
automata. If one also considers other updates however, like x := x + 1 or x :> k

(which non-deterministically sets x to some value larger than k), the situation is
much more complex [53] and decidability of reachability is no longer preserved.

One can also extend the timed-automata formalism by allowing richer clock con-
straints, such as, e.g., x + y ≤ 5 or 2x − 3y > 1. Most such attempted extensions
however lead to undecidability of the reachability problem, see for instance [41].

One can extend timed automata with urgency requirements [46]. For instance,
some locations might be labelled as urgent, which indicates that no time can be spent
in this location, it has to be left immediately when entered: an urgent location � can
easily be converted into a usual one by introducing an extra clock x which is reset
in any edge to � and has invariant x = 0 in �, hence location-urgency does not add
expressiveness to the class of timed automata. Some synchronization could be also
labelled as urgent: in that case, the corresponding action should be done as soon as
it is enabled. In our modeling of Example 1 the synchronization “acquire!/acquire?”
could be made urgent since it is natural that a process acquires the resource as soon
as it is available.

1010 P. Bouyer et al.

Another extension of timed automata we should mention is the stopwatch au-
tomata of [100]. Here timed automata are extended by allowing clocks to be stopped
during a delay. Even though reachability is also undecidable for this extension and
it has been shown to have the same expressive power as hybrid automata [72], stop-
watch automata have found some applications, e.g., in scheduling [3, 141] and per-
mit efficient over-approximate analysis [72]. Further extensions of the dynamics of
timed automata lead to rectangular automata [100] and eventually to general hybrid
automata [12, 98].

Finally, another interesting direction in which timed automata have been ex-
tended consists in adding parameters. Parameters can be used in lieu of numeri-
cal constants in the timed automaton, with the aim of deciding the existence of
(and computing) values for the parameters for which a given property holds true.
The use of parameters simplifies the modeling phase, but unfortunately the ex-
istence of valid parameters turns out to be undecidable in general [19]. Several
decidable classes have been identified, including one-clock parametric timed au-
tomata [19, 129] and L/U automata, where each parameter can be used either in
lower-bound constraints or in upper-bound constraints [106].

29.4 (Bi)simulation Checking

29.4.1 (Bi)simulations for Timed Automata

As detailed in Sect. 29.2, the operational semantics of timed automata is given in
terms of timed transition systems, which in fact can be viewed as standard labelled
transition systems, with labels (d, a) comprising a delay and a letter. Hence any
behavioral equivalence and preorder defined on labelled transition systems may be
interpreted over timed automata. In particular the classical notions of simulation and
bisimulation [130, 138] give rise to the following notion of timed (bi)simulation:

Definition 4 Let A = (L, �0,C,Σ, I,E) be a timed automaton. A relation R ⊆
L×R

C
≥0 × L×R

C
≥0 is a timed simulation provided that for all (�1, v1) R (�2, v2),

for all (�1, v1)
d,a−−→ (�′1, v′1) with d ∈R≥0 and a ∈Σ , there exists some (�′2, v′2) such

that (�′1, v′1) R (�′2, v′2) and (�2, v2)
d,a−−→ (�′2, v′2).

A timed bisimulation is a timed simulation which is also symmetric, and two
states (�1, v1), (�2, v2) ∈ [[A]] are said to be timed bisimilar, written (�1, v1) ∼
(�2, v2), if there exists a timed bisimulation R for which (�1, v1) R (�2, v2).

Note that ∼ is itself a timed bisimulation on A (indeed the greatest such), which
is easily shown to be an equivalence relation and hence transitive, reflexive, and
symmetric. Also—as usual—timed bisimilarity may be lifted to an equivalence be-
tween two timed automata A and B by relating their initial states.

29 Model Checking Real-Time Systems 1011

Fig. 6 Four timed automata A, X, U and D

Consider the four automata A, X, U and D in Fig. 6 (identifying the automata
with the names of their initial locations). Here (U, v) and (D,v) are timed bisimilar

as any transition (U, v)
d,a−−→ (V , v′) may be matched by either (D,v)

a−→ (G,v′) or
(D,v)

a−→ (E,v′) depending on whether v(y) > 2 or not after delay d . In fact, it may
easily be seen that U and D are the only locations of Fig. 6 that are timed bisimilar
(when coupled with the same valuation of y). E.g., A and X are not timed bisimilar

since the transition (X,0)
1.5,a−−−→ (Y,1.5) cannot be matched by (A,0) by a transition

with exactly the same duration. Instead A and X are related by the weaker notion
of time-abstracted bisimulation, which does not require equality of the delays (see
Definition 2). It may be seen that A and X are both time-abstracted simulated by
U and D but not time-abstracted bisimilar to U and D. Also, U and D are time-
abstracted bisimilar, which follows from the following easy fact:

Theorem 2 Any two automata being timed bisimilar are also time-abstracted
bisimilar.

29.4.2 Checking (Bi)simulations

As we now explain, timed and time-abstracted (bi)similarity are decidable for timed
automata.

Theorem 3 Time-abstracted similarity and bisimilarity are decidable for timed au-
tomata.

For proving this result, one only needs to see that time-abstracted (bi)simulation
in the timed automaton is the same as ordinary (bi)simulation in the associated re-
gion automaton; indeed, any state in [[A]] is untimed bisimilar to its image in [[A]]∼=.
The result follows by finiteness of the region automaton.

1012 P. Bouyer et al.

For timed bisimilarity, decidability—as we shall see in Sect. 29.9—is obtained by
playing a game on a product construction, yielding an exponential-time algorithm
for checking timed bisimilarity.

Theorem 4 ([73]) Timed similarity and bisimilarity are decidable for timed au-
tomata.

29.5 Language-Theoretic Properties

29.5.1 Language of a Timed Automaton

This section introduces the notion of (timed) language associated with timed au-
tomata, and focusses on basic decision problems such as language emptiness and
inclusion, as well as standard Boolean operations on languages.

Properties of languages associated with various computational models are a clas-
sical object of study in computer science; moreover, many model-checking, refine-
ment, and verification problems can often be stated in terms of languages, notably
by translating them into language emptiness or language inclusion problems.

In this section we consider timed automata augmented with sets of accepting
locations. Given a timed automaton A= (L, �0,C,Σ, I,E,F), where F ⊆ L is the
set of accepting locations, a finite run

ρ = (�0, v0)
d1,a1−→(�1, v1)

d2,a2−→ . . .
dn,an−→(�n, vn)

of A is accepting if �n ∈ F . The language L(A) of A consists of all finite timed
words over alphabet Σ∗ generated by accepting runs of A.

The language of infinite words accepted by a timed automaton is defined anal-
ogously; the relevant acceptance condition is that the underlying infinite run visits
locations in F infinitely often. We write Lω(A) to denote the set of infinite timed
words accepted by A.

29.5.2 Timed Automata with ε-Transitions

Silent transitions are transitions of the form (q, g, ε, r, q ′), where ε is the empty
word. In other terms, they are transitions carrying no letter. Silent transitions offer
a convenient way of modeling, e.g., internal actions. In the setting of finite-state
automata, it is well known that such transitions can be removed, by merging them
with the possible subsequent actions.

The question whether the above result extends to the timed setting was settled
in [42], with a negative answer: to see this, simply consider the automaton in Fig. 7;
its language L(A) contains precisely those timed words in which all timestamps

29 Model Checking Real-Time Systems 1013

Fig. 7 A timed automaton
with ε-transitions

Fig. 8 Automaton accepting
words with finitely many a’s
or finitely many b’s

are even integer numbers. Towards a contradiction, assume that there exists a timed
automaton B , without ε-transitions, such that L(A)= L(B); write m for the max-
imal integer constant appearing in the timing constraints of B . Then the one-letter
word (σ,2m) is accepted by B , since it is accepted by A. Since B has no silent
transition, it must have a σ -transition from an initial state to an accepting one. The
guard on this transition can only involve constants less than or equal to m, so that B

must accept (σ, k) for all k > m, which is a contradiction.

Theorem 5 ([42]) Silent transitions strictly increase the expressive power of timed
automata.

It can be proved that in the case when ε-transitions do not reset any clock, they
do not add expressiveness. Finally, let us mention that the question whether a timed
automaton with silent transitions is equivalent (i.e., accepts the same language) to
some timed automaton without such transitions is undecidable [56].

In the sequel, we consider timed automata without ε-transitions.

29.5.3 Clock Constraints as Acceptance Conditions

Clock constraints can be used to enable or disable certain conditions along the runs
of a timed automaton. As such, they can be used to define acceptance conditions,
when added on top of a finite-state automaton.

In this setting, we consider the untimed language of timed automata: given a
timed automaton A, its untimed language (of infinite words) is the set Lu con-
taining exactly those words (ai)i∈N for which there is a diverging real-valued se-
quence (di)i∈N such that the timed word (ai, di)i∈N ∈ Lω(A). Notice that thanks to
the time-abstracted bisimulation between a timed automaton and its region automa-
ton, the untimed language of a timed automaton is easily seen to be ω-regular.

Conversely, any ω-regular language is the untimed language of a timed automa-
ton: as an example, consider the language of infinite words over {a, b, c} that have
finitely many a’s or finitely many b’s. The untimed language of the automaton
depicted in Fig. 8 precisely corresponds to that language: indeed, the a- and b-
transitions on the left can only be taken finitely many times, since we require time

1014 P. Bouyer et al.

Fig. 9 A non-comple-
mentable timed automaton

divergence. Hence one of the a- and the b-transitions at the bottom has to be taken.
But after this time, only the corresponding transition on the right is allowed (to-
gether with the ε-transition, which is always allowed). This construction can be
generalized, so that:

Theorem 6 ([101]) Given an ω-regular language L, there exists a (one-location)
timed automaton A such that Lu(A)= L.

The number of clocks and locations can be shown to define strict hierarchies of
(untimed) ω-regular languages.

More generally, given a finite-state automaton A and an ω-regular language L,
one can equip A with clocks and clock constraints in such a way that the untimed
language of the resulting timed automaton is the intersection of the language of A

with L [101].

29.5.4 Intersection, Union, and Complement

A (finite or infinite) language is said to be timed regular if it is accepted by some
timed automaton. Timed regular languages (both finite and infinite) are effectively
closed under intersection and union. They are however not closed under comple-
ment. We reproduce in Fig. 9 an example (taken from [13]) of a timed automaton A,
equipped with a single clock, that cannot be complemented: there does not exist
a timed automaton A′ such that Lω(A′) is the set of all timed words not accepted
by A. The complement of Lω(A) contains all timed traces in which no pair of a’s is
separated by exactly one time unit. Intuitively, since there is no bound on the num-
ber of a’s that can occur in any unit-duration time interval, any timed automaton
capturing the complement of Lω(A) would require an unbounded number of clocks
to keep track of the times of all the a’s within the past one time unit. A formal proof
that A cannot be complemented is given in [105].

Under some restrictions, timed automata can be made determinizable (hence
also complementable). Most notably, event-clock automata [16] enjoy this prop-
erty. In such timed automata, each letter a of the alphabet is associated with two
clocks xa and ya (and any clock is associated with some letter that way): clock xa

(called the event-recording clock of a) is used to measure the delay elapsed since
the last reset of event a (and is initially set to some special value +∞), while ya

(the event-predicting clock of a) is used to constrain the delay until the next oc-
currence of a. One can easily show that event-clock automata can be represented
as classical timed automata, though several clocks might be needed to encode each

29 Model Checking Real-Time Systems 1015

Fig. 10 An event-clock
automaton

event-recording clock. Figure 10 displays an example of an event-clock automaton
accepting those timed words containing two consecutive a’s separated by exactly
one time unit.

It must be remarked that, at any time during a run of an event-clock automaton on
some timed word w, the valuation of the clocks does not depend on the run, but only
on w. As a consequence, the classical subset construction for determinising finite-
state automata can be adapted to handle event-clock automata, which thus form an
(effectively) determinizable and complementable class of timed automata.

29.5.5 Language Emptiness, Inclusion

It follows immediately from Theorem 1 that the language-emptiness problem for
timed automata is PSPACE-complete [13]. Unfortunately the language-universality,
language-inclusion and language-equivalence problems for timed automata are all
undecidable. By contrast, recall from Theorem 4 that the related branching-time
counterparts to language inclusion and equivalence, namely similarity and bisimi-
larity, are both decidable on timed automata.

Theorem 7 ([13]) The language-inclusion problem for timed automata is undecid-
able, both over finite and infinite words.

The proof of Theorem 7 is by reduction from the Halting Problem for Turing
machines. This reduction involves encoding the valid halting computations of a
given Turing machine M as a timed language whose complement is recognized by
a timed automaton AM which can be effectively computed from M . Intuitively, dis-
crete computation steps of M are simulated over unit-duration time intervals, with
timed events used to encode the tape’s contents. The integrity of the tape in a valid
encoding of a computation is maintained by requiring that any given timed event
be preceded and followed at a distance of exactly one time unit by the same timed
event, and vice-versa (unless the corresponding character is to be modified by M

in the computation step). Figure 11 illustrates this encoding. Note that the density
of time enables one to accommodate arbitrarily large tape contents. The key idea is
that while no timed automaton can in general accurately capture the encodings of
valid computations of a Turing machine, AM can be engineered to recognise pre-
cisely all the invalid computations of M ; indeed, a computation is invalid if it fails
one of finitely many rules, the most interesting of which is to adequately preserve
the tape’s contents. The latter is easily detected, either by a timed automaton wit-
nessing a timed event with no predecessor one time unit earlier (corresponding to an

1016 P. Bouyer et al.

Fig. 11 Encoding computations of Turing machines as timed words

insertion error on the tape), or conversely by a timed automaton witnessing a timed
event with no successor one time unit later (corresponding to a deletion error on
the tape). Other rule failures can likewise be detected by small timed automata. Au-
tomaton AM is obtained as the disjunction of those finitely many timed automata.
The upshot is that M fails to have a valid halting computation iff AM accepts every
single timed trace. This shows that universality, and a fortiori language inclusion,
are indeed undecidable for timed automata.

Theorem 7 places a serious limitation on the algorithmic analysis of timed au-
tomata since many verification questions naturally reduce to checking language in-
clusion. In spite of this hindrance there has been a great deal of research on various
aspects of timed language inclusion, including [16, 102, 134] among many others.
Here we describe several approaches, involving syntactic and semantic restrictions
on timed automata, to obtaining positive decidability results for language inclusion.

Let us first notice that the classical approach to deciding language inclusion is
by testing emptiness of the intersection of the first language with the complement
of the second one. Thus whether Lω(A)⊆ Lω(B) is decidable as soon as B can be
complemented. For instance:

Theorem 8 ([15]) Given timed automata A and B , the language-inclusion problem
Lω(A)⊆ Lω(B) is decidable if B is an event-clock automaton.

Using more elaborate techniques (based on well-quasi-orderings and Higman’s
Lemma), we can prove:

Theorem 9 ([124, 134, 135]) Given timed automata A and B , the finite-word
language-inclusion problem L(A)⊆ L(B) is decidable and non-primitive recursive
provided B has at most one clock.

In the case of infinite words, the language-inclusion problem Lω(A) ⊆ Lω(B)

is undecidable even when B has only one clock. The proof of undecidability is by
reduction from the boundedness problem for lossy channel machines [4].

A natural semantic restriction on timed automata to recover decidability of
language inclusion involves adopting a discrete-time model. Given a timed lan-
guage L, let Z(L) denote the set of timed words (a1, t1) . . . (ap, tp) such that
each timestamp ti lies in Z. Given timed automata A and B , the discrete-time
language-inclusion problem is to decide whether Z(L(A)) ⊆ Z(L(B)). This prob-

29 Model Checking Real-Time Systems 1017

lem is EXPSPACE-complete: the exponential blow-up over the complexity of the
language-inclusion problem for classical non-deterministic finite automata arises
from the succinct binary representation of clock values in timed automata. Hard-
ness in EXPSPACE is proven in [28].

Using a technique called digitization [102] the discrete behaviors of timed au-
tomata can be used to infer conclusions about their dense-time behavior. For exam-
ple:

Theorem 10 ([102]) Let A be a closed timed automaton (i.e., having only non-strict
inequalities as clock constraints) and B an open timed automaton (i.e., having only
strict inequalities). Then L(A)⊆ L(B) if and only if Z(L(A))⊆ Z(L(B)).

To apply Theorem 10 one can imagine over-approximating a real-time model by
a closed timed automaton and under-approximating a specification by an open timed
automaton.

Rather than restricting the precision of the semantics we can instead consider
a time-bounded semantics in which we consider only finite timed words of total
duration at most N . Note that due to the density of time there is no bound on the
number of events that can be performed in a fixed time period. In this case, for the
whole class of timed automata, we have:

Theorem 11 ([133]) Over bounded time (i.e., considering only finite timed words
of total duration at most N , for some fixed time bound N), the language-inclusion
problem is 2-EXPSPACE-complete.

Theorem 11 was proven as a corollary of the decidability of satisfiability of
monadic second-order logic over structures of the form (I,<,+1), with I a
bounded interval of reals and +1 denoting the plus-one relation: +1(x, y) iff
y = x + 1.

Notwithstanding the positive decidability results Theorem 9 and Theorem 11,
neither one-clock timed automata nor automata over bounded time are closed under
complement. (The counterexample in Sect. 29.5.4 can still be used in both cases.)
To remedy this deficiency, the strictly more powerful model of alternating timed au-
tomata has been introduced [124, 135]. Alternating timed automata are a common
generalization of timed automata and alternating finite automata; they are closed
under all Boolean operations, but language inclusion remains decidable for alter-
nating timed automata with one clock or over bounded time. Unlike in the un-
timed setting, alternating timed automata are strictly more expressive than purely
non-deterministic timed automata. This extra expressiveness is crucially utilised
in [135] where it is shown how to translate formulas of Metric Temporal Logic
(see Sect. 29.6) into equivalent one-clock alternating timed automata.

1018 P. Bouyer et al.

29.6 Timed Temporal Logics

The whole theory of temporal-logic model checking has been extended to the setting
of timed automata, in order to express and check richer properties beyond emptiness/
reachability. We present the most significant results below.

29.6.1 Linear-Time Temporal Logics

The most natural way of extending LTL (see Chap. 2) with quantitative requirements
is by decorating modalities with timing constraints. We present the resulting logic,
called Metric Temporal Logic (MTL), below. Another extension consists in using
clocks in formulas, with a way of resetting them when some property is fulfilled
and checking their values at a later moment. The resulting logic is called Timed
Propositional Temporal Logic (TPTL). Due to lack of space, we don’t detail the
latter logic, and rather refer to [17, 18, 52] for more details about TPTL.

Given a set P of atomic propositions, the formulas of MTL are built from P

using Boolean connectives and time-constrained versions of the until operator U as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ ,

where I ⊆ (0,∞) is an interval of reals with endpoints in N ∪ {∞}. We sometimes
abbreviate U(0,∞) to U, calling this the unconstrained until operator.

Further connectives can be defined following standard conventions. In addition to
propositions� (true) and⊥ (false) and disjunction∨, we have the constrained even-
tually operator ♦I ϕ ≡�UI ϕ, and the constrained always operator �I ϕ ≡¬♦I¬ϕ.

Sometimes MTL is presented with past connectives (e.g., constrained versions of
the “since” connective from LTL) as well as future connectives [17]. However we do
not consider past connectives in this chapter.

Next we describe two commonly adopted semantics for MTL.

Continuous Semantics

Given a set of propositions P , a signal is a function f : R≥0 → 2P mapping t ∈R≥0
to the set f (t) of propositions holding at time t . We say that f has finite variabil-
ity if its set of discontinuities has no accumulation points (in other words, on any
finite interval the value of f can only change a finite number of times). In this chap-
ter, we require that all signals be finitely variable. Given an MTL formula ϕ over
the set of propositional variables P , the satisfaction relation f |= ϕ is defined in-
ductively, with the classical rules for atomic propositions and Boolean operators,
and with the following rule for the “until” modality, where f t denotes the signal
f t (s)= f (t + s):

f |= ϕ1UI ϕ2 iff for some t ∈ I, f t |= ϕ2 and f u |= ϕ1 for all u ∈ (0, t).

29 Model Checking Real-Time Systems 1019

Pointwise Semantics

In the pointwise semantics MTL formulas are interpreted over timed words. Given
a (finite or infinite) timed word w = (a1, t1), . . . , (an, tn) over alphabet 2P and an
MTL formula ϕ, the satisfaction relation w, i |= ϕ (read “w satisfies ϕ at position i”)
is defined inductively, with the classical rules for Boolean operators, and with the
following rule for the “until” modality:

w, i |= ϕ1UI ϕ2 iff there exists j such that i < j < |w|,w, j |= ϕ2,

tj − ti ∈ I, and w,k |= ϕ1 for all k with i < k < j.

The pointwise semantics is less natural if one thinks of temporal logics as en-
coding fragments of monadic logic over the reals. On the other hand it seems more
suitable when considering MTL formulas as specifications on timed automata. In this
vein, when adopting the pointwise semantics it is natural to think of atomic propo-
sitions in MTL as referring to events (corresponding to location changes) rather than
to locations themselves.

Consider our example of Fig. 2. Using LTL, we can express the property that
Process Pi will try to get the resource infinitely many times, by writing �♦start!.
With MTL, we can be more precise and write �♦≤4start!, stating that whatever
the current state, within four time units Process P1 will start trying to acquire the
resource. MTL can also be used to express bounded-time response properties, such
as �(start!⇒ ♦≤10acquire!).

29.6.2 Verification of Linear-Time Temporal Logics

Model checking timed automata can be carried out under either pointwise or con-
tinuous semantics. For the latter, it is necessary to alter our definitions to associate a
language of signals with a timed automaton rather than a language of timed words.
In turn, this requires a notion of timed automata in which locations are labelled by
atomic propositions. A full development of this semantics can be found, e.g., in [14].

Theorem 12 ([13]) Model checking and satisfiability for LTL, over both the point-
wise and continuous semantics, are PSPACE-complete.

The PSPACE upper bound in Theorem 12 can be established in the same manner
as in the untimed case, by translating the negated formula to a Büchi automaton, and
performing an on-the-fly reachability check on the product of this automaton with
the region graph of the model.

Theorem 13 ([135–137]) Model checking and satisfiability for MTL in the point-
wise semantics over finite words are decidable but non-primitive recursive. Over
infinite words, both problems are undecidable.

1020 P. Bouyer et al.

As explained in Sect. 29.5.5, the decidability results are essentially obtained by
translating MTL formulas into one-clock alternating timed automata, and rephrasing
the model-checking or satisfiability problems as instances of language emptiness in
one-clock alternating timed automata.

The undecidability result proceeds by reduction from the recurrent reachability
problem for channel machines with insertion errors: the infinite runs of such a ma-
chine can be encoded as timed words, which in turn are easily characterized by an
MTL formula [136].

Theorem 14 ([14]) Model checking and satisfiability for MTL in the continuous
semantics (over both finite and infinite signals) are undecidable.

The extra expressiveness of the continuous semantics enables a more direct proof
of undecidability than in Theorem 13. In this case, one can directly encode the
computations of a Turing machine as timed signals, which again can be captured by
an MTL formula, following a scheme similar to that of Theorem 7.

A key ingredient of the undecidability proof of Theorem 14, as well as the non-
primitive recursive complexity in Theorem 13, is the ability of MTL to express
punctuality, i.e., the requirement that two events be separated by an exact dura-
tion. A fragment of MTL that syntactically disallows punctuality, known as Metric
Interval Temporal Logic (MITL), was proposed by Alur et al. in [14]. In MITL, one
requires that all instances of the interval I appearing in uses of the constrained until
operator UI be non-singular. The main result of [14] is as follows:

Theorem 15 ([14]) For both the pointwise and continuous semantics, model check-
ing and satisfiability for MITL are EXPSPACE-complete, over both finite and infinite
behaviors.

This theorem was obtained by translating MITLformulas into equivalent timed au-
tomata of potentially exponential size. In contrast, it is easy to write an MTL formula
that has no equivalent timed automaton: for example, the formula ¬♦(a ∧ ♦=1a)

captures the complement of the language of automaton A in Fig. 9.
Another decidable fragment of MTL can be obtained by adapting the idea of

event clocks to temporal logics [140]: here, timing constraints can only refer to the
next (or previous) occurrence of an event. Hence ECTL (standing for Event-Clock
Temporal Logic) extends LTL with �I ϕ and �I ϕ. For instance, that there are two
consecutive a’s separated by one time unit is written in ECTL as ♦(a ∧ �=1a).

Theorem 16 ([140]) Satisfiability and model checking are PSPACE-complete for
ECTL, in either the pointwise or continuous semantics.

Not surprisingly, deciding ECTLis achieved by a translation to event-clock au-
tomata (see Sect. 29.5.4). However, event-clock automata are not powerful enough
to precisely capture ECTL, and require the use of timed Hintikka sequences. Intu-
itively, given a formula ϕ in ECTL, a timed Hintikka sequence is a timed word on

29 Model Checking Real-Time Systems 1021

sets of subformulas of ϕ, required to satisfy local consistency conditions. Compare
to a timed word, a timed Hintikka sequence contains more information about the
truth value of the subformulas of ϕ, which will help the event-clock automaton de-
cide whether the underlying timed word is to be accepted. We refer to [140] for
more details, and to [104] for an extension of event-clock automata that encom-
passes ECTL.

Rather than imposing syntactical restrictions, an alternative approach to recover-
ing decidability is to consider a time-bounded semantics, i.e., in which either timed
words or signals are observed over a fixed, bounded time interval:

Theorem 17 ([133]) Model checking and satisfiability for MTL over bounded time,
in either the pointwise or continuous semantics, are EXPSPACE-complete.

The main technique used in the proof of Theorem 17 is an exponential trans-
formation from MTL formulas, given a fixed time bound, into equisatisfiable LTL
formulas.

29.6.3 Branching-Time Temporal Logics

Given a set P of atomic propositions, TCTL* formulas are state-formulas obtained
as formulas ϕs from the following grammar:

ϕs ::= p | ¬ϕs | ϕs ∧ ϕs | Eϕp |Aϕp

ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | ϕpUI ϕp

Compared to CTL*, TCTL* has a time-constrained until, requiring as for MTL that
the right-hand side formula should be fulfilled within that time. The same shorthands
as for MTL can be defined, such as ♦I ϕ or �I ϕ.

As for the linear-time temporal logics, the semantics of TCTL* comes in (at least)
two flavours: continuous and pointwise. The continuous semantics is defined on
dense trees, which naturally extend classical discrete trees to the continuous set-
ting [7, 89] and represent the set of signals of timed automata; this semantics extends
the continuous-time semantics of MTL with path quantifiers.

The pointwise semantics is defined over discrete (but infinite-branching) trees,
which can be used to represent the timed words generated by timed automata. This
corresponds to evaluating TCTL* formulas over the operational semantics of timed
automata, as defined in Sect. 29.2.

Finally, as for the untimed case, the fragment of TCTL* where each temporal
modality is under the immediate scope of a path quantifier is of particular interest,
and will be called TCTL.

Before turning to the algorithmic part, let us show how TCTLcan be used to
express desirable properties of the timed system modeled in Fig. 2. Mutual exclusion
(in a setting with two processes P1 and P2 and one resource R1) is expressed as

1022 P. Bouyer et al.

¬E♦(working1 ∧ working2): two processes will never be working (i.e., using the
resource) at the same time. We can also express timing requirements, such as the
fact that Process Pi will never be working continuously for more than one time unit:
A�(A♦≤1¬workingi).

29.6.4 Verification of Branching-Time Temporal Logics

Since TCTL* embeds MTL, there is no hope that its model checking and satisfiability
will be decidable. On the lower side, CTL model checking is clearly decidable over
timed automata: CTL is invariant under bisimulation, so that any property to be
checked on a timed automaton can equivalently be checked on its corresponding
finite-state region automaton.

Concerning TCTL, model checking can be shown to be decidable. Actually, this
can easily be shown on the explicit-clock version of TCTL (using formula clocks),
which strictly subsumes TCTL. For this logic, the important property is that any two
region-equivalent states satisfy the same formulas: this can be proven by induction
on the structure of the formula. Consider for instance the formula ζ = EϕUIψ , as-
suming that ϕ and ψ are compatible with region (i.e., if they hold true in some state,
then they also hold true in any region-equivalent state). Given a timed automaton A,
consider the automaton At obtained by adding an extra clock t to A, which does not
modify its behavior. Then if (�, v) |= ζ in A, then (�, vt) |= EϕU(ψ ∧ t ∈ I) where
vt extends v by mapping clock t to zero and “t ∈ I” (which is not a TCTL formula
but whose meaning is rather clear) is also compatible with regions. In the end, the
set of states in At where formula EϕU(ψ ∧ t ∈ I) is a union of regions, so that it is
also the case for the set of states of A where ζ holds.

Using this result, TCTL model checking can be achieved by labeling states of the
region automaton with the subformulas they satisfy. This applies for both semantics,
with slight differences. It should be noticed that this extends to the explicit-clock
version of TCTL, and even to the fragment of explicit-clock TCTL* where formula-
clocks are only reset at the level of path quantifiers [66].

While labeling the region automaton requires exponential space, the algorithm
can be implemented in a space-efficient manner so as to only use polynomial space.
Reachability being already PSPACE-hard, we get the following theorem:

Theorem 18 ([9]) TCTL model checking is PSPACE-complete.

TCTL (as well as CTL) suffers from not being able to express useful properties,
in particular fairness (see Chap. 2 on temporal logics). One way to solve this prob-
lem is by decorating path quantifiers with fairness requirements [7, 152]. One can
then apply classical algorithms for CTL with fairness [75] or adapt fixpoint charac-
terizations. Another approach is to consider TCTL defined with formula clocks as
sketched above, and to have it include CTL*. The resulting logic is very expressive
while still enjoying a PSPACE model-checking algorithm [66].

29 Model Checking Real-Time Systems 1023

These positive results about model checking do not extend to satisfiability:

Theorem 19 ([9]) TCTL satisfiability is undecidable.

The proof follows the same ideas as for undecidability of MTLsatisfiability, by
associating universal path-quantifiers with each temporal modality. As for the linear-
time case, it suffices to ban equality constraints to recover decidability [117, 118].
This can be proved by lifting tree-automata techniques to the timed setting.

29.7 Symbolic Algorithms, Data Structures, Tools

29.7.1 Zones and Operations

As shown in the previous sections, the regions introduced in Sect. 29.3 provide a
finite and elegant abstraction of the infinite state space of timed automata, enabling
us to prove decidability of a wide range of problems, including (timed and untimed)
bisimilarity, untimed language equivalence and language emptiness, as well as TCTL
model checking.

Unfortunately, the number of states obtained from the region partitioning is
extremely large. Indeed, it is exponential in the number of clocks as well as in
(the binary representation of) the maximal constants of the timed automaton [13].
Efforts have been made to develop more efficient representations of the state
space [34, 39, 103, 121], using the notion of zones introduced below as a coarser
and more compact representation of the state space.

For a finite set C of clocks, a subset Z ⊆ R
C
≥0 is called a zone if there exists

ϕ ∈ Φd(C) for which Z = [[ϕ]]C . For reachability analysis, we need the following
operations on zones: for a zone Z ⊆R

C
≥0 and r ⊆ C, let us denote

• the delay of Z by Z↑ = {v+ d | v ∈Z,d ∈R≥0} and
• the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 1 ([103, 157]) Let Z, Z′ be zones over C and r ⊆ C. Then Z↑, Z[r], and
Z ∩Z′ are also zones over C.

Definition 5 The zone automaton associated with a timed automaton A = (L, �0,

C,Σ, I,E) is the transition system [[A]]Z = (S, s0,Σ ∪ {δ}, T) given as follows:

S = {
(�,Z)

∣∣ � ∈ L,Z ⊆R
C
≥0 is a zone

}
s0 =

(
�0, [[v0]]

)

T = {
(�,Z)

δ�
(
�,Z↑ ∩ [[

I (�)
]]

C

)}

∪ {
(�,Z)

a�
(
�′,

(
Z ∩ [[ϕ]]C

)[r] ∩ [[
I
(
�′

)]]
C

) ∣
∣ �

ϕ,a,r−−−→ �′ ∈E
}

Analogously to Proposition 1, we have:

1024 P. Bouyer et al.

Proposition 2 ([157]) A location � in a timed automaton A = (L, �0,F,C,Σ,

I,E) is reachable if and only if there is a zone Z ⊆ R
C
≥0 for which (�,Z) is reach-

able in [[A]]Z .

A priori, however, the zone automaton defined above is infinite, hence another,
finite, abstraction is needed. This is provided by normalization using region equiv-
alence ∼=M : for a maximal constant M , the normalization of a zone Z ⊆R

C
≥0 is the

set {v : C→R≥0 | ∃v′ ∈Z : v ∼=M v′}. The normalization of a zone is not in general
a zone, hence in practice other normalization operators are used (see Sect. 29.7.3).

The normalized zone automaton is defined analogously to the zone automaton
defined above, and in case the timed automaton to be verified does not contain di-
agonal clock constraints of the form x − y �� k, Proposition 2 also holds for the
normalized zone automaton. Hence we can obtain a reachability algorithm by ap-
plying any search strategy (depth-first, breadth-first, or another) on the normalized
zone automaton.

For timed automata that contain diagonal clock constraints x − y �� k, however,
it can be shown [38, 48] that normalization as defined above does not give rise
to a sound and complete characterization of forward reachability. Instead, one can
apply a refined normalization which depends on the difference constraints used in
the timed automaton, see [38].

29.7.2 Symbolic Datastructures

A zone, given by a conjunction of elementary clock constraints, may be represented
using a directed weighted graph, where the nodes correspond to the clocks in C

together with an extra “zero” clock x0, and an edge xi
k−→ xj corresponds to a con-

straint xi − xj ≤ k (if there is more than one upper bound on xi − xj , k is the
minimum of all these constraints’ right-hand sides). The extra clock x0 is fixed at
value 0, so that a constraint xi ≤ k can be represented as xi − x0 ≤ k. Lower bounds
on xi −xj are represented as (possibly negative) upper bounds on xj −xi , and strict
bounds xi − xj < k are represented by adding a flag to the corresponding edge.

The weighted graph in turn may be represented by its adjacency matrix, which
in this context is known as a difference-bound matrix or DBM. The above technique
was introduced in [87] (the main ideas were already present in [43]). Figure 12
gives an illustration of an extended clock constraint together with its representation
as a difference-bound matrix. Note that the clock constraint contains superfluous
information.

On zones represented using DBMs, efficient (in time cubic in the number of
clocks in C) algorithms are available for computing delays, resets and intersections.
For reachability checking, other necessary operations inclusion checking whether
Z ⊆ Z′, and emptiness checking, Z = ∅; these can also be computed efficiently us-
ing DBMs.

29 Model Checking Real-Time Systems 1025

Fig. 12 Graph representation
of extended clock constraint

For these computations, a canonical representation obtained as the shortest-path
closure of the DBM graph is used. Another useful canonical form is the shortest-
path reduction described in [120]. Whereas the shortest-path closure form gives all
derived constraints, the shortest-path reduced form provides a memory-efficient rep-
resentation, containing only a minimal set of constraints. Figure 13 shows the two
canonical forms of the DBM of Fig. 12. Given the shortest-path closure of the DBM
graph, the shortest-path reduced form is obtained by partitioning the set of clocks
according to zero cycles in the DBM graph; in the DBM of Fig. 13, {x1, x2, x3} con-
stitutes one such class, and {x0} is another one. The reduced form is now obtained
by maintaining a minimal set of constraints for each class, essentially a simple cycle
of the clocks of the class, and only keeping constraints between representatives of
different classes, here x1 and x0.

To combat state-space explosion in zone graphs, several optimizations are used.
One such approach is to detect whether a state (�,Z) reached through the algorithm
is contained in another state (�,Z′) which has already been explored. In this case,
exploration of (�,Z) will be unnecessary.

Another such optimization is to work with unions of zones. If states (�,Z) and
(�,Z′) are found to reachable during the analysis, then we know that altogether
the state (�,Z ∪ Z′) is reachable. Unfortunately, unions of zones are not generally
themselves zones, so cannot be efficiently represented using DBMs.

For representing unions of zones, or federations as they are called in this context,
a data structure inspired by decision diagrams called clock difference diagrams or
CDDs is used [121]. However, no efficient algorithms are known to compute delays

Fig. 13 Canonical representations

1026 P. Bouyer et al.

or resets of federations using CDDs, so in practice reachability analysis using CDDs
is done by extracting the zones from the CDD and performing the operations on
them one by one.

Other promising data structures in this context are numerical decision dia-
grams [24], difference decision diagrams [132], clock-restriction diagrams [154],
max-plus polyhedra [5], constraint matrix diagrams [88], and time-darts [111]; gen-
erally, the design of efficient data structures for symbolic exploration of timed au-
tomata is a field of active research.

29.7.3 Practical Efficiency

Symbolic, zone-based exploration of the (reachable) state-space of timed automata
using the DBM data structure is key to their analysis. However, a number of addi-
tional algorithmic techniques have been developed for gaining efficiency in practice.
In the following we indicate a number of these.

As described in Sect. 29.7.1, normalization of zones with respect to the maxi-
mum constant M appearing in the given timed automata ensures finiteness of the
zone graph and hence termination of algorithms searching the zone graph. Here,
a practical problem is that the normalization of a zone is in general not a zone it-
self, but rather a finite union of such. However, given a representation of the zone
as a shortest-path-closed DBM, a syntactic extrapolation operation that removes
bounds that are larger than the maximum constant may be easily performed: any
upper bound constraint of the form xi − xj < k where k > M is removed, and any
lower bound of the form xi − xj > k where k <−M is replaced by xi − xj >−M .
Clearly, under extrapolation, only a finite number of DBMs will be encountered,
ensuring termination. Furthermore, the correctness is based on the fact that extrapo-
lation of a zone (based on its DBM representation) is included in its normalization,
as shown in [29, 48].

Coarser, yet complete, notions of extrapolation have been obtained by perform-
ing the operation with respect to clock- and location-dependent maximum con-
stants [29] and further differentiating the maximum constant used in upper or lower
bound comparisons [30, 31]. In fact, this last extrapolation yields performance com-
parable to that of the overapproximate convex hull abstraction [81].

Several of the algorithmic problems presented in this chapter—e.g., reachability,
model checking, and equivalence checking, as well as notions of optimal reacha-
bility and controllability, which will be described in later sections—have a fixed-
point characterization. Though easy to implement, this leads to backwards itera-
tive algorithms, requiring one to consider and classify states which are possibly
not even reachable. Thus, for most problems, so-called on-the-fly algorithms have
been devised, where the satisfaction of the given property by the initial state is at-
tempted to be concluded in as local a fashion as possible, only exploring the state
space when needed. For the analysis of timed-automata-based models, such on-the-
fly algorithms have been proposed for instance for reachability [120, 157], live-

29 Model Checking Real-Time Systems 1027

ness checking [147, 151], model checking with respect to TCTL [47], time-abstract
bisimulation checking [149], and controller synthesis for timed game automata [69].

Despite the above efforts in applying aggressive (yet complete) abstractions, the
analysis of timed-automata-based models suffers from the state-space explosion
problem. Thus, complementary techniques have been proposed and implemented
for reducing space consumption at the expense of time performance [35, 120].
Also, various AI-inspired techniques have been developed for efficient guidance
of the symbolic exploration of timed automata towards specified error states [114–
116]. Similarly, the technique of symmetry reduction has been developed and im-
plemented for networks of timed automata with several symmetric components,
potentially yielding an exponential gain in performance [96]. Moreover, so-called
time-convexity analysis provides significant performance improvement [153].

Finally, several attempts have been made to extend the technique of partial-
order reduction to networks of timed automata. In contrast to the proved effect in
the finite-state setting, early attempts [37, 131] did not show any improvement in
performance compared with regular symbolic exploration. In fact, being a strong
synchronizer in a timed-automata network, time reduces the number of indepen-
dent transitions, which are key for partial-order reduction to have effect. In later
work [36, 125, 126], it was found that the union of all zones reached by different in-
terleavings of the same set of transitions is convex, providing the basis of substantial
improvement.

Also, bounded model-checking techniques have been developed for timed au-
tomata using difference logics, though with a limited performance improvement [76,
77].

29.7.4 Tools and Applications

Timed automata and their extensions have been applied to the modeling, analysis
and optimization of numerous real-time applications. In this section we give a few
examples, not aiming at being exhaustive but rather to illustrate the wide range of
application domains.

A variety of mature tools are available which provide important computer-aided
support for applications. Well-known tools include UPPAAL [122], KRONOS [158],
RED [155] and HyTech [99]. A larger number of other tools related to the anal-
ysis of timed automata have emerged over the years including Else [159], Rab-
bit [44], Verics [84], and TAME [22] as well as tools for analyzing other timed
formalisms based on translation to timed automata including Times [21] (task au-
tomata), Moby [145] (PLC programs), SART [45] (Safety Critical Java), ART [93]
(task graphs), Romeo [91] and TAPALL [68] (Time and Timed-arc Petri Nets), and
VeSTA [112] (component integration checking).

The timed-automata formalism is now routinely applied to the modeling and
analysis of real-time control programs, including a wide class of Programmable
Logic Controller (PLC) control programs [85, 127] and timing analysis and code

1028 P. Bouyer et al.

generation of vehicle control software [150]. The timed-automata approach has also
demonstrated its viability in the timing analysis of certain classes of asynchronous
circuits [60].

Similarly, numerous real-time communication protocols have been analyzed us-
ing timed automata technology, often with inconsistencies being revealed: e.g., us-
ing real-time model checking, the cause of a ten-year-old bug in the IR-link protocol
used by Bang & Olufsen was identified and corrected [95]. Most recently, real-time
model checking has been applied to the clock synchronization algorithm currently
used in a wireless sensor network that has been developed by the Dutch company
CHESS [144]. Here it is shown that in certain cases a static, fully synchronized net-
work may eventually become unsynchronized if the current algorithm is used, even
in a setting with infinitesimal clock drifts.

During the last few years, timed automata modeling of multitasking applica-
tions running under real-time operating systems has received substantial research
effort. Here the goals are multiple: to obtain less-pessimistic worst-case response
time analysis compared with classical methods for single-processor systems [156];
to relax the constraints of period task arrival times of classical scheduling theory to
task arrival patterns that can be described using timed automata [90]; to allow for
schedulability analysis of tasks in terms of concurrent objects executing on multi-
processor or distributed platforms (e.g., MPSoC) [61, 80, 109].

Just as symbolic reachability checking of finite-state models has led to very effi-
cient planning and scheduling algorithms, reachability checking for (priced) timed
automata has demonstrated competitive and complementary performance with re-
spect to classical approaches such as MIPL on optimal scheduling problems in-
volving real-time constraints, e.g., job-shop and task-graph scheduling [1, 32] and
aircraft landing problems [119]. In fact a translation of the variant PDDL3 of
PDDL (Planning Domain Definition Language) into priced timed automata has
been made [86] allowing optimal planning questions to be answered by cost-optimal
reachability checking. Industrial applications include planning a wafer scanner from
the semiconductor industry [97] and computation of optimal paper paths for print-
ers [108].

Most recently, computation of winning strategies for timed games has been ap-
plied to controller synthesis for embedded systems, including synthesis of most gen-
eral non-preemptive online schedulers for real-time systems with sporadic tasks [6],
synthesis of climate control for pig shed provided by the company Skov [110], and
automatic synthesis of robust and near-optimal controllers for industrial hydraulic
pumps [71].

29.8 Weighted Timed Automata

Time is not the only quantity one may want to measure when checking an embedded
system: one may need to keep track of the battery charge or of the level of oil in a
tank. Hybrid automata [98, 100] extend timed automata with extra variables that can

29 Model Checking Real-Time Systems 1029

Fig. 14 Example of a weighted timed automaton

help measure such quantities. Unfortunately, reachability is undecidable for these
models, even with two-slope hybrid variables. Weighted timed automata [20, 33] is
an intermediary model, extending timed automata with hybrid observer variables:
these variables cannot appear in the guards of the automaton, but they can be used,
for example, for optimization purposes. The special case where the observer is a
stopwatch (computing the accumulated delay in some locations) was already intro-
duced and solved in [11].

Formally, a weighted timed automaton is a pair (A,w) where A is a timed au-
tomaton and w labels the locations and edges of A with an integer (or a vector of
integers for automata with multiple observer variables). For a transition t , w(t) is
the value by which the value of the observer variable is increased, while for a loca-
tion �, w(�) is the rate by which the variable increases w.r.t. time (in other words,
the observer variable p follows the differential equation dp/dt =w(�)).

The semantics of a weighted timed automaton (A,w) is that of the underlying
timed automaton A. Each run of A is decorated with the value of the observer vari-
able. Figure 14 shows an example of a weighted timed automaton,3 and a run of this
automaton. This run reaches the rightmost location within 3 time units, and with a
total weight of 19.7.

29.8.1 Cost-Optimal Schedules

Natural questions on this family of models include optimal reachability of a given
location, or optimal mean-cost of infinite runs. Formally, the associated decision
problems respectively ask whether the target location can be reached with total
weight less than a given threshold, and whether there is an infinite run along which
the average weight is less than the given bound.

3Notice that the labeling in the second location is a clock invariant (enforcing that no time will
elapse in that location). The rate of p is not given in that location as no time will elapse anyway.

1030 P. Bouyer et al.

Fig. 15 Two different runs in the corner-point abstraction

These problems turn out to be decidable. The main technique used in the algo-
rithms is a refinement of the region equivalence of Sect. 29.3 called corner-point
equivalence [50]. Intuitively, for these two optimization problems, optimal sched-
ules will amount to staying as long as possible in interesting locations. Corner-
point regions extend classical regions with an extra corner of this region, i.e., an
integer valuation that belongs to the closure of the region. A corner-point (r, c) rep-
resents a clock valuation v that is close to the corner c but lies within the region r .
The corner-point automaton is the weighted automaton C M = (S, s0,Σ,T) where
S ⊆ L×R×{0, . . . ,M}C is the set of states (writing R for the set of regions), with
three kinds of transitions:

• action transitions: there is a transition from (�,R, c) to (�′,R′, c′) if there is a
transition t = (�,ϕ, a, r, �′) in A such that R ⊆ [[ϕ]]C , with R′ = R[r] and c′ =
c[r]. The weight of this transition is w(t).

• ε-delay transitions: these are transitions from (�,R, c) to (�,R′, c), where R′
is the immediate time-successor of R sharing corner c. Such a transition corre-
sponds to a very small delay, and its corresponding weight is set to zero.

• 1-delay transitions: these are transitions from (�,R, c) to (�,R, c′), where c′ =
c+1. This corresponds to spending (almost) one time unit in region (�,R). Notice
that such a transition is only available if c and c+ 1 are corners of R. The weight
of this transition is w(�).

Figure 15 displays two sequences of delay transitions in the corner-point automaton;
while both sequences depart from the same region and visit the same sequence of lo-
cations, the accumulated weight evolves very differently along the two sequences—
which explains why we have to refine regions.

The corner-point automaton enjoys the following properties: if there is a run
from some location � to some location �′ with total weight m in a given weighted
timed automaton, then there is a run from (�,0,0) to some (�′,R, c) with total
weight at most m in the corresponding corner-point automaton; in other words, run-
ning through corner-points is always better when trying to optimize the value of
the total weight. Conversely, for any positive ε, if there is a run from (�,0,0) to

29 Model Checking Real-Time Systems 1031

Fig. 16 Module for testing whether y = 2x

some (�′,R, c) with weight m in the corner-point automaton, then there is a run in
the original weighted timed automaton from � (with initial valuation 0) to �′, with
total weight at most m+ ε.

This statement can be extended in various ways, so as to handle optimization of
the ratio between two variables along finite or infinite runs. In the end:

Theorem 20 ([50]) The optimal-reachability and the optimal-ratio problems are
PSPACE-complete.

Other related problems have been considered in the literature, such as conditional
optimal reachability on multi-weighted timed automata [123]. The aim in this set-
ting is to minimize the value of one variable under some conditions on the other
variables. We refer to [123], where the problem is shown to be decidable.

29.8.2 Weighted Temporal Logics

Unfortunately, the encouraging results above do not extend to richer properties that
could be expressed in weighted extensions of classical temporal logics.4 While this
is not surprising for linear-time temporal logics (as these logics are already mostly
undecidable in the timed setting), this also holds for weighted extensions of CTL,
be it with modalities decorated with weight constraints (writing E♦≤10T to express
that T can be reached within total cost less than 10), or with explicit constraints as
atomic formulas (writing E♦(T ∧ c ≤ 10) to express the same property) [49, 63].
Undecidability can be proved by encoding the halting problem for a two-counter
machine, where each counter is encoded by a clock of the timed automaton. The
central trick in the reduction is the ability to multiply the value of a clock by some
constant (while preserving the value of the other clocks). This is achieved by the au-
tomaton depicted in Fig. 16, in which we enforce the condition that location T must
be reachable from S with total cost exactly 1: indeed, the total cost accumulated
from S to T is precisely 1+ 2x0 − y0, where x0 and y0 are the values of clocks x

4Even if we restrict to nonnegative weights, which is what we assume in this subsection on tempo-
ral logics.

1032 P. Bouyer et al.

Fig. 17 A weighted timed automaton under energy constraints

and y in S. This provides us with a way of doubling the value of clock x, by letting
clock y play the role of x afterwards. Using this module, it is easy to build a com-
plete reduction involving four clocks, which can be further improved to only three
clocks.

Theorem 21 ([49, 63]) WCTL model checking is undecidable (on weighted timed
automata with at least three clocks).

Notice that the standard restriction to non-punctual constraints in the logic does
not help, as the above reduction can be carried out using only inequality constraints.
One way of recovering decidability is to restrict to one-clock weighted timed au-
tomata. These automata enjoy several special properties which allow us to prove
that refining regions to a small granularity (in O(C−h(ϕ)) where C is the maximal
rate in the automaton and h(ϕ) is the temporal height of the formula being checked)
provides a correct finite-state abstraction on which ϕ can be checked. It follows:

Theorem 22 ([57]) WCTL model checking is PSPACE-complete on one-clock
weighted timed automata.

29.8.3 Energy Constraints

Recently, weighted timed automata have been pushed one step closer to hybrid au-
tomata, with the introduction of energy constraints [55, 74]. These constraints aim
at modeling, for example, autonomous robots, which often must take care of their
battery charge level, and ensure that they never run out of energy. This is modeled
with weighted timed automata, with the constraint that the accumulated value of the
variable must never drop below 0 (or any lower bound). The same problem can of
course be considered with an additional upper-bound constraint. Notice that this is
a departure from the motto that the cost variable is an observer. Figure 17 displays
an example of a weighted timed automaton, together with the evolution of the vari-
able along one particular run. This corresponds to a feasible (prefix of a) run, as the
variable remains between the lower bound L and upper bound U .

29 Model Checking Real-Time Systems 1033

Fig. 18 A linear weighted
automaton

Only a few results have been obtained so far. Let us begin with the untimed
case [55]: for lower-bound constraints, the problem still amounts to optimizing the
accumulated cost, with the extra energy constraint. In that setting, the Bellman–
Ford algorithm can be used to compute the maximal accumulated cost that can be
achieved from the initial state, with the extra energy constraint. This provides a
polynomial-time algorithm for solving reachability under lower-bound constraints.
In case we also have an upper-bound constraint, the problem can be solved in expo-
nential time by augmenting the state space with the explicit value of the variable.

In the timed setting, the only known positive results concern one-clock weighted
timed automata under lower-bound constraints [54]. The central technique is the
computation of an optimal schedule through a finite linear automaton (i.e., visiting
all its locations with a fixed, linear order), such as the one depicted in Fig. 18.
Notice that along such runs, we allow lower-bound constraints (written ≥ bi) on
each transition. Along such a path, one can prove that the optimal policy is to spend
no time in a location ri if

• either ri−1 > ri (in which case it is more profitable to spend time in location ri−1);
• or ri+1 ≥ ri and bi−1+pi−1 ≥ bi (in which case it is possible to directly jump to

the more profitable location ri+1).

If any of these conditions is fulfilled, location ri can be dropped, and replaced
by a transition from ri−1 to ri+1 with weight pi−1 + pi+1 and cost-constraint
≥max(bi−1, bi − pi−1). This provides us with a linear automaton along which the
rates are increasing. The optimal policy along such a path can be proved to be to
exit a location as soon as the cost constraint ≥ bi is fulfilled. This gives a way of
computing the optimal achievable energy level at the end of the path as a function of
the initial credit. This extends to one-clock automata by composing such functions.
In the end:

Theorem 23 ([54]) Optimal reachability is decidable in one-clock weighted timed
automata under lower-bound constraints.

Unfortunately, this algorithm does not extend to n-clock automata: indeed, one
can easily come up with a small module to increase or decrease the value of the
cost variable by the value of a clock (see Fig. 16), thus providing a way of checking
linear constraints between several clocks. As a consequence:

Theorem 24 ([58]) Optimal reachability is undecidable in four-clock weighted
timed automata under lower-bound constraints.

Weighted timed automata under energy constraints are a very recent and active
topic with many open problems. Several directions are currently being explored,

1034 P. Bouyer et al.

such as the extension to exponential variables, where the variable follows the dif-
ferential equation dp/dt =w(�) ·p, or the inclusion of imprecisions in clock values
or variable growth.

29.9 Timed Games

Games provide a nice framework for modeling and reasoning about the interac-
tions between various agents (a reactive system and its environment, several com-
ponents, etc.). We refer to Chap. 27 for details about games and their use for syn-
thesizing correct models.

We consider two-player timed games, in which transitions are partitioned into
controllable and uncontrollable (i.e., under the control of an environment). The
problem is then to synthesize a strategy telling when to take which (enabled) con-
trollable transitions in order that a given objective is guaranteed regardless of the
behavior of the environment.

Definition 6 A timed game is a tuple G = (L, �0,C,Σc,Σu, I,E) with
Σc ∩Σu = ∅ for which the tuple AG = (L, �0,C,Σ = Σc ∪Σu, I,E) is a timed
automaton. We require this automaton to be deterministic (so that from any state, an
action in Σ corresponds to a unique transition). Edges with actions in Σc are said
to be controllable, those with actions in Σu are uncontrollable.

We shall again assume a set F of accepting locations to be given for the rest
of this section. A strategy in a timed game G provides instructions as to which
controllable edge to take, or whether to wait, in a given state. Hence it is a mapping σ

from finite runs of the underlying timed automaton AG to Σc ∪ {δ}, where δ /∈Σ ,
such that for any run ρ = (�0, v0)→ ·· ·→ (�k, vk),

• if σ(ρ)= δ, then (�, v)
d−→ (�, v+ d) is a transition in [[AG]] for some d > 0, and

• if σ(ρ)= a, then (�, v)
a−→ (�′, v′) is a transition in [[AG]].

An outcome of a strategy is any run which adheres to its instructions. Such an
outcome is said to be maximal if it stops in an accepting location, or if no control-
lable actions are available at its end. An underlying assumption is that uncontrollable
actions cannot be forced, hence a maximal outcome which does not end in a final
location may “get stuck” in a non-final location. The aim of reachability games is to
find strategies all of whose maximal outcomes end in an accepting location; the aim
of safety games is to find strategies all of whose (not necessarily maximal) outcomes
avoid accepting locations:

Definition 7 A strategy is said to be winning for the reachability game if any of its
maximal outcomes is an accepting run. It is said to be winning for the safety game
if none of its outcomes are accepting.

29 Model Checking Real-Time Systems 1035

Fig. 19 A timed game with one clock. Controllable edges (with actions from Σc) are solid, un-
controllable edges (with actions from Σu) are dashed

Example 5 Figure 19 provides a simple example of a timed game. Here, Σc =
{c1, c2, c3, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are drawn with
solid lines, the uncontrollable ones with dashed lines. The following memoryless
strategy is winning for the reachability game:

σ(�1, v)=
{

δ if v(x) �= 1

c1 if v(x)= 1
σ(�2, v)=

{
δ if v(x) < 2

c2 if v(x)≥ 2

σ(�3, v)=
{

δ if v(x) < 1

c3 if v(x)≥ 1
σ(�4, v)=

{
δ if v(x) �= 1

c4 if v(x)= 1

Theorem 25 ([25, 26, 65, 128]) The (time-optimal) reachability and safety games
are decidable for timed games. They are EXPTIME-complete.

A key ingredient in the proof of the above theorem is the fact that for reachability
as well as safety games, it is sufficient to consider memoryless strategies, which
only observe the last configuration of a run. This is not the case for other, more
subtle, control objectives (e.g., counting properties modulo some N) as well as for
the synthesis of winning strategies under partial observability. The other ingredient
is the region abstraction: if there is a winning strategy, then there is one that only
depends on the current region. This provides an exponential-time algorithm, which
can be proved to be optimal.

A problem with the above approach is that the safety game can be won by pre-
venting time from diverging. In order to rule out such behaviors, a solution was
proposed in [82]; it uses a more symmetric presentation of games, in which both
players have a strategy which proposes at the same time the amount of time this
player wants to delay, and the transition she wants to take afterwards. At each step,
the player with the shortest delay is chosen and her choice is performed. With this
definition, if time converges along an outcome, then the player(s) who have applied
their choices infinitely many times must have proposed converging sequences of de-
lays. By adding a fairness requirement to the winning condition, we can declare this
kind of behavior losing. Deciding the existence of winning strategies for reachability
and safety objectives remains EXPTIME-complete in this context.

1036 P. Bouyer et al.

Fig. 20 Two states of a timed automaton

Fig. 21 Timed bisimilarity
as a timed game

The field of timed games is a very active research area. From the region-based
decidability results, efficient on-the-fly algorithms have been developed [69, 148]
and implemented in UPPAAL. In [70] these algorithms have been extended to timed
games under partial observability. Research has also been conducted towards the
synthesis of optimal winning strategies for reachability games on weighted timed
games. In [8, 51] computability of optimal strategies is shown under a certain con-
dition of strong cost non-Zenoness, requiring that the total weight diverges at a given
minimum rate per time. Later undecidability results [49, 64] show that for weighted
timed games with three or more clocks, this condition (or a similar one) is necessary.
It is proved in [59] that optimal reachability strategies are computable for one-clock
weighted timed games, though there is an unsettled (large) gap between the known
lower bound complexity and an upper bound of 3-EXPTIME, which was recently
lowered to EXPTIME [94, 142].

We conclude this section by illustrating how timed games can be used to decide
timed bisimilarity of two states of a timed automaton. This provides a simple proof
of Theorem 4, which we explain on a small example: consider the states of Fig. 20.
That two states (p, v) and (q,w) (where v and w are two valuations of the same set
of clocks C) are timed bisimilar means that any transition from either state can be
mimicked from the other one, ending up in states that are again bisimilar. We can see
this as a game on the product of two copies of the automaton (see Fig. 21): from the
joint state ((p, q), (v,w)), the first player chooses to apply one transition from one
of the states (p, v) and (q,w), and the second player has to respond (immediately)
with an appropriate move from the other state. The second player has a strategy to
always avoid the Bad state if, and only if, the starting states are timed bisimilar. This
provides an exponential-time algorithm for checking timed bisimilarity [10].

29 Model Checking Real-Time Systems 1037

29.10 Ongoing and Future Challenges

In this chapter, we have surveyed timed automata and the theoretical developments
that have led to their being widely accepted as a model for modeling and reason-
ing about real-time systems. Many developments are still ongoing: we briefly list
here some important topics which we think are among the important avenues to be
explored during the coming years:

• Robustness (in the timed setting) and implementability [83, 92, 139, 143] address
the problem of reconciling the semantics of timed automata (with real-valued
clocks) with the models they represent (which usually run at a finite frequency).

• Statistical model checking consists in checking several runs of the model against
a given property, and compute statistics to get an estimate of the correctness of the
model. The approach has recently been studied and implemented in the setting of
stochastic timed automata, where it provides interesting results, even for problems
that are otherwise undecidable [79].

• Games on timed automata have received a lot of attention over the last ten years,
as they are a convenient formalism for the automated synthesis of real-time sys-
tems. Recent extensions to non-zero-sum games [62, 113], where the players have
their own objectives, open a rich and promising area of research for synthesizing
complex systems.

Acknowledgements We thank the reviewers for their numerous comments, remarks and addi-
tional references, which greatly helped us improve this chapter.

References

1. Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput. Sci.
354(2), 272–300 (2006)

2. Abdeddaïm, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry, G., Comon,
H., Finkel, A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2102,
pp. 478–492. Springer, Heidelberg (2001)

3. Abdeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch automata. In:
Katoen, J.-P., Stevens, P. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 2280, pp. 113–126. Springer, Heidelberg (2002)

4. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results
for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) International Colloquium on Automata, Languages and Pro-
gramming (ICALP). LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)

5. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using max-plus
polyhedra. In: Alpuente, M., Vidal, G. (eds.) Intl. Symp. on Static Analysis (SAS). LNCS,
vol. 5079, pp. 189–204. Springer, Heidelberg (2008)

6. Altisen, K., Gößler, G., Pnueli, A., Sifakis, J., Tripakis, S., Yovine, S.: A framework for
scheduler synthesis. In: Symposium on Real-Time Systems (RTSS), pp. 154–163. IEEE,
Piscataway (1999)

7. Alur, R.: Techniques for automatic verification of real-time systems. PhD thesis, Stanford
University (1991)

1038 P. Bouyer et al.

8. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed games.
In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) International Colloquium on
Automata, Languages and Programming (ICALP). LNCS, vol. 3142, pp. 122–133. Springer,
Heidelberg (2004)

9. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput.
104(1), 2–34 (1993)

10. Alur, R., Courcoubetis, C., Henzinger, T.A.: The observational power of clocks. In: Jons-
son, B., Parrow, J. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 836,
pp. 162–177. Springer, Heidelberg (1994)

11. Alur, R., Courcoubetis, C., Henzinger, T.A.: Computing accumulated delays in real time
systems. Form. Methods Syst. Des. 11(2), 137–155 (1997)

12. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode,
A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems (HSCC). LNCS, vol. 736, pp. 209–229.
Springer, Heidelberg (1993)

13. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235
(1994)

14. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

15. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed
automata. In: Dill, D.L. (ed.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 818, pp. 1–13. Springer, Heidelberg (1994)

16. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed
automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999)

17. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput.
104(1), 35–77 (1993)

18. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
19. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Kosaraju, S.R.,

Johnson, D.S., Aggarwal, A. (eds.) Symposium on the Theory of Computing (STOC),
pp. 592–601. ACM, New York (1993)

20. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Domenica
Di Benedetto, M., Sangiovani-Vincentelli, A.L. (eds.) Int. Workshop on Hybrid Systems:
Computation and Control (HSCC). LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg
(2001)

21. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times—a tool for modelling
and implementation of embedded systems. In: Katoen, J.-P., Stevens, P. (eds.) Intl. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS,
vol. 2280, pp. 460–464. Springer, Heidelberg (2002)

22. Archer, M., Heitmeyer, C.L., Riccobene, E.: Using TAME to prove invariants of automata
models: two case studies. In: Per, M., Heimdahl, E. (eds.) Workshop on Formal Methods in
Software Practice (FMSP), pp. 25–36. ACM, New York (2000)

23. Arnold, A., Nivat, M.: The metric space of infinite trees. Algebraic and topological proper-
ties. Fundam. Inform. 3(4), 445–476 (1980)

24. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-structures for the
verification of timed automata. In: Maler, O. (ed.) International Workshop on Hybrid and
Real-Time Systems (HART). LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)

25. Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata. In:
Vaandrager, F., van Schuppen, J.H. (eds.) Int. Workshop on Hybrid Systems: Computation
and Control (HSCC). LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

26. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-
tems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Systems II (HSCC).
LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

29 Model Checking Real-Time Systems 1039

27. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital
circuits. In: Sangiorgi, D., de Simone, R. (eds.) Intl. Conf. on Concurrency Theory (CON-
CUR). LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

28. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable?
In: Albers, S., Alberto, M., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) International Col-
loquium on Automata, Languages and Programming (ICALP). LNCS, vol. 5557, pp. 43–54.
Springer, Heidelberg (2009)

29. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata
verification. In: Garavel, H., Hatcliff, J. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 2619, pp. 254–270. Springer,
Heidelberg (2003)

30. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone-
based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2988,
pp. 312–326. Springer, Heidelberg (2004)

31. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone-based
abstractions of timed automata. Int. J. Softw. Tools Technol. Transf. 8(3), 204–215 (2006)

32. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.: Efficient guid-
ing towards cost-optimality in Uppaal. In: Margaria, T., Yi, W. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2031,
pp. 174–188. Springer, Heidelberg (2001)

33. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager,
F.: Minimum-cost reachability for priced timed automata. In: Domenica Di Benedetto, M.,
Sangiovani-Vincentelli, A.L. (eds.) Int. Workshop on Hybrid Systems: Computation and
Control (HSCC). LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

34. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability anal-
ysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg
(1999)

35. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt, W.A. Jr, Somenzi,
F. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2725, pp. 433–445.
Springer, Heidelberg (2003)

36. Ben Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Her-
manns, H. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 4137, pp. 465–
476. Springer, Heidelberg (2006)

37. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In:
Sangiorgi, D., de Simone, R. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS,
vol. 1466, pp. 485–500. Springer, Heidelberg (1998)

38. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reachability analysis
of timed automata. In: Dong, J.S., Woodcock, J. (eds.) International Conference on Formal
Engineering Methods (ICFEM). LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)

39. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 2098, pp. 87–
124. Springer, Heidelberg (2004)

40. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent
transitions in timed automata. Fundam. Inform. 36(2–3), 145–182 (1998)

41. Bérard, B., Dufour, C.: Timed automata and additive clock constraints. Inf. Process. Lett.
75(1–2), 1–7 (2000)

42. Bérard, B., Gastin, P., Petit, A.: Timed automata with non-observable actions: expressive
power and refinement. In: Puech, C., Reischuk, R. (eds.) Symposium on Theoretical Aspects
of Computer Science (STACS). LNCS, vol. 1046, pp. 257–268. Springer, Heidelberg (1996)

43. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri nets. In:
Mason, R.E.A. (ed.) IFIP World Computer Congress (WCC), pp. 41–46. North-Holland/IFIP,
Amsterdam (1983)

1040 P. Bouyer et al.

44. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: a tool for BDD-based verification of real-time
systems. In: Hunt, W.A. Jr, Somenzi, F. (eds.) Intl. Conf. on Computer-Aided Verification
(CAV). LNCS, vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

45. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-based schedu-
lability analysis of safety critical hard real-time Java programs. In: Bollella, G., Locke, C.D.
(eds.) International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES), vol. 343, pp. 106–114. ACM, New York (2008)

46. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de Roever, W.-P.,
Langmaack, H., Pnueli, A. (eds.) International Symposium on Compositionality: The Signif-
icant Difference (COMPOS). LNCS, vol. 1536, pp. 103–129. Springer, Heidelberg (1998)

47. Bouajjani, A., Tripakis, S., Yovine, S.: On-the-fly symbolic model checking for real-time sys-
tems. In: Symposium on Real-Time Systems (RTSS), pp. 25–35. IEEE, Piscataway (1997)

48. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) Symposium on The-
oretical Aspects of Computer Science (STACS). LNCS, vol. 2607, pp. 620–631. Springer,
Heidelberg (2003)

49. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed au-
tomata. Inf. Process. Lett. 98(5), 188–194 (2006)

50. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. Form. Methods
Syst. Des. 32(1), 2–23 (2008)

51. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game au-
tomata. In: Kamal, L., Mahajan, M. (eds.) Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). LNCS, vol. 3328, pp. 148–160. Springer,
Heidelberg (2004)

52. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput.
208(2), 97–116 (2010)

53. Bouyer, P., Dufour, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci.
321(2–3), 291–345 (2004)

54. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under
energy constraints. In: Johansson, K.H., Yi, W. (eds.) Int. Workshop on Hybrid Systems:
Computation and Control (HSCC), pp. 61–70. ACM, New York (2010)

55. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted
timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) International Confer-
ence on Formal Modelling and Analysis of Timed Systems (FORMATS). LNCS, vol. 5215,
pp. 33–47. Springer, Heidelberg (2008)

56. Bouyer, P., Haddad, S., Reynier, P.-A.: Undecidability results for timed automata with silent
transitions. Fundam. Inform. 92(1–2), 1–25 (2009)

57. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed automata.
Log. Methods Comput. Sci. 4(2), 1–28 (2008)

58. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted timed au-
tomata. In: Int. Conf. on Quantitative Evaluation of Systems (QEST), pp. 128–137. IEEE,
Piscataway (2012)

59. Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies in one-
clock priced timed automata. In: Arun-Kumar, S., Garg, N. (eds.) Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS). LNCS, vol. 4337,
pp. 345–356. Springer, Heidelberg (2006)

60. Bozga, M., Jianmin, H., Maler, O., Yovine, S.: Verification of asynchronous circuits using
timed automata. In: Asarin, E., Maler, O., Yovine, S. (eds.) Workshop on Theory and Prac-
tice of Timed Systems (TPTS). Electronic Notes in Theoretical Computer Science, vol. 65,
pp. 47–59. Elsevier, Amsterdam (2002)

61. Brekling, A.W., Hansen, M.R., Madsen, J.: Models and formal verification of multiprocessor
system-on-chips. J. Log. Algebraic Program. 77(1–2), 1–19 (2008)

62. Brenguier, R.: Nash equilibria in concurrent games—application to timed games. PhD thesis,
Lab. Spécification & Vérification, ENS Cachan, France (2012)

29 Model Checking Real-Time Systems 1041

63. Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed automata. In:
Lakhnech, Y., Yovine, S. (eds.) Joint Int. Conf. on Formal Modelling and Analysis of Timed
Systems (FORMATS) and Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT). LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)

64. Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Pettersson, P., Yi,
W. (eds.) International Conference on Formal Modelling and Analysis of Timed Systems
(FORMATS). LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg (2005)

65. Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.-F.: Minimum-time reachability in
timed games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) International Collo-
quium on Automata, Languages and Programming (ICALP). LNCS, vol. 4596, pp. 825–837.
Springer, Heidelberg (2007)

66. Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game structures. In:
Caires, L., Vasconcelos, V.T. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS,
vol. 4703, pp. 445–459. Springer, Heidelberg (2007)

67. Brzozowski, J.A., Seger, C.-J.H.: Advances in asynchronous circuit theory part II: bounded
inertial delay models, MOS circuits, design techniques. Bull. Eur. Assoc. Theor. Comput.
Sci. 43, 199–263 (1991)

68. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: editor, simulator and verifier of timed-arc Petri
nets. In: Liu, Z., Ravn, A.P. (eds.) Intl. Symp. Automated Technology for Verification and
Analysis (ATVA). LNCS, vol. 5799, pp. 84–89. Springer, Heidelberg (2009)

69. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for
the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Intl. Conf. on Concurrency
Theory (CONCUR). LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

70. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with observation
based and stuttering invariant strategies. In: Namjoshi, K., Yoneda, T., Higashino, T., Oka-
mura, Y. (eds.) Intl. Symp. Automated Technology for Verification and Analysis (ATVA).
LNCS, vol. 4762, pp. 192–206. Springer, Heidelberg (2007)

71. Cassez, F., Jensen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic synthesis of
robust and optimal controllers—an industrial case study. In: Majumdar, R., Tabuada, P. (eds.)
Int. Workshop on Hybrid Systems: Computation and Control (HSCC). LNCS, vol. 5469,
pp. 90–104. Springer, Heidelberg (2009)

72. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.)
Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1877, pp. 138–152. Springer,
Heidelberg (2000)

73. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: von
Bochmann, G., Probst, D.K. (eds.) Intl. Workshop on Computer-Aided Verification (CAV).
LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993)

74. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur,
R., Lee, I. (eds.) Int. Conf. on Embedded Software (EMSOFT). LNCS, vol. 2855, pp. 117–
133. Springer, Heidelberg (2003)

75. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–
263 (1986)

76. Cotton, S., Asarin, E., Maler, O., Niebert, P.: Some progress in satisfiability checking for
difference logic. In: Lakhnech, Y., Yovine, S. (eds.) Joint Int. Conf. on Formal Modelling and
Analysis of Timed Systems (FORMATS) and Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT). LNCS, vol. 3253, pp. 263–276. Springer, Heidelberg (2004)

77. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:
Biere, A., Gomes, C.P. (eds.) International Conference on Theory and Applications of Satis-
fiability Testing (SAT). LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006)

78. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-Planck revis-
ited using statistical model checking. In: Margaria, T., Steffen, B. (eds.) International Sym-
posium on Leveraging Applications of Formal Methods (ISoLA). LNCS, vol. 7610, pp. 293–
307. Springer, Heidelberg (2012)

1042 P. Bouyer et al.

79. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model
checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg
(2011)

80. David, A., Larsen, K.G., Rasmussen, J.I., Skou, A.: Model-based design for embedded sys-
tems. In: Nicolescu, G., Mosterman, P.J. (eds.) Model-Based Design for Embedded Systems.
Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC Press, Boca Ra-
ton (2009)

81. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstrac-
tions. In: Steffen, B. (ed.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998)

82. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of
surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) Intl. Conf. on Concurrency Theory
(CONCUR). LNCS, vol. 2761, pp. 142–156. Springer, Heidelberg (2003)

83. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form.
Methods Syst. Des. 33(1–3), 45–84 (2008)

84. Dembinski, P., Janowska, A., Janowski, P., Penczek, W., Pólrola, A., Szreter, M., Woźna,
B., Zbrzezny, A.: Verics: a tool for verifying timed automata and Estelle specifications. In:
Garavel, H., Hatcliff, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 2619, pp. 278–283. Springer, Heidelberg (2003)

85. Dierks, H.: PLC-automata: a new class of implementable real-time automata. Theor. Comput.
Sci. 253(1), 61–93 (2001)

86. Dierks, H.: Finding optimal plans for domains with continuous effects with UPPAAL Cora.
In: ICAPS Workshop on Verification and Validation of Model-Based Planning and Schedulin
Systems (VV&PS) (2005)

87. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis,
J. (ed.) International Workshop on Automatic Verification Methods for Finite State Systems
(AVMFSS). LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

88. Ehlers, R., Fass, D., Gerke, M., Peter, H.-J.: Fully symbolic timed model checking using
constraint matrix diagrams. In: Symposium on Real-Time Systems (RTSS), pp. 360–371.
IEEE, Piscataway (2010)

89. Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: Symp. on Logic in Computer
Science (LICS), pp. 167–176. IEEE, Piscataway (2002)

90. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of fixed-priority
systems using timed automata. Theor. Comput. Sci. 354(2), 301–317 (2006)

91. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time Petri nets.
In: Etessami, K., Rajamani, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005)

92. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) Inter-
national Workshop on Hybrid and Real-Time Systems (HART). LNCS, vol. 1201, pp. 331–
345. Springer, Heidelberg (1997)

93. Hansen, M.R., Madsen, J., Brekling, A.W.: Semantics and verification of a language for mod-
elling hardware architectures. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods
and Hybrid Real-Time Systems, Essays in Honor of Dines Bjørner and Zhou Chaochen on
the Occasion of Their 70th Birthdays. LNCS, vol. 4700, pp. 300–319. Springer, Heidelberg
(2007)

94. Hansen, T.D., Ibsen-Jensen, R., Miltersen, P.B.: A faster algorithm for solving one-clock
priced timed games. In: D’Argenio, P.R., Melgratt, H.C. (eds.) Intl. Conf. on Concurrency
Theory (CONCUR). LNCS, vol. 8052, pp. 531–545. Springer, Heidelberg (2013)

95. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modelling and analysis of an audio/
video protocol: an industrial case study using Uppaal. In: Symposium on Real-Time Systems
(RTSS), pp. 2–13. IEEE, Piscataway (1997)

29 Model Checking Real-Time Systems 1043

96. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.: Adding symmetry
reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) Int. Workshop on Formal Modelling
and Analysis of Timed Systems (FORMATS). Lecture Notes in Computer Science, vol. 2791.
Springer, Heidelberg (2003)

97. Hendriks, M., van den Nieuwelaar, B., Vaandrager, F.: Model checker aided design of a
controller for a wafer scanner. Int. J. Softw. Tools Technol. Transf. 8(6), 633–647 (2006)

98. Henzinger, T.A.: The theory of hybrid automata. In: Symp. on Logic in Computer Science
(LICS), pp. 278–292. IEEE, Piscataway (1996)

99. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A user guide to HyTech. In: Brinksma, E., Cleave-
land, R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) Intl. Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1019, pp. 41–71.
Springer, Heidelberg (1995)

100. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What is decidable about hybrid au-
tomata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

101. Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In: Fülöp,
Z., Gecseg, F. (eds.) International Colloquium on Automata, Languages and Programming
(ICALP). LNCS, vol. 944, pp. 417–428. Springer, Heidelberg (1995)

102. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
International Colloquium on Automata, Languages and Programming (ICALP). LNCS,
vol. 623, pp. 545–558. Springer, Heidelberg (1992)

103. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real time
systems. Inf. Comput. 111(2), 193–244 (1994)

104. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) International Colloquium on Automata, Languages and
Programming (ICALP). LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)

105. Herrmann, P.: Timed automata and recognizability. Inf. Process. Lett. 65(6), 313–318 (1998)
106. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of

timed automata. J. Log. Algebraic Program. 52–53, 183–220 (2002)
107. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In: Meyer,

A.R., Taitslin, M.A. (eds.) Symposium on Logical Foundations of Computer Science. LNCS,
vol. 363, pp. 163–180. Springer, Heidelberg (1989)

108. Igna, G., Kannan, V., Yang, Y., Basten, T., Geilen, M.C.W., Vaandrager, F., Voorhoeve, M.,
de Smet, S., Somers, L.J.: Formal modeling and scheduling of datapaths of digital document
printers. In: Cassez, F., Jard, C. (eds.) International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS). LNCS, vol. 5215, pp. 170–187. Springer, Heidel-
berg (2008)

109. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-
time concurrent objects. J. Log. Algebraic Program. 78(5), 402–416 (2009)

110. Jensen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis for cli-
mate controller using UPPAAL Tiga. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) International
Conference on Formal Modelling and Analysis of Timed Systems (FORMATS). LNCS,
vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

111. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: a data structure for verification of closed
timed automata. In: Conference on Systems Software Verification (SSV). Electronic Pro-
ceedings in Theoretical Computer Science, vol. 102, pp. 141–155 (2012)

112. Julliand, J., Mountassir, H., Oudot, É.: VeSTA: a tool to verify the correct integration of a
component in a composite timed system. In: Butler, M.J., Hinchey, M.G., Larrondo-Petrie,
M.M. (eds.) International Conference on Formal Engineering Methods (ICFEM). LNCS,
vol. 4789, pp. 116–135. Springer, Heidelberg (2007)

113. Klimoš, M., Larsen, K.G., Štefaňák, F., Thaarup, J.: Nash equilibria in concurrent priced
games. In: Dediu, A.H., Martín-Vide, C. (eds.) Intl. Conf. on Language and Automata Theory
and Applications (LATA). LNCS, vol. 7183, pp. 363–376. Springer, Heidelberg (2012)

1044 P. Bouyer et al.

114. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A.,
Behrmann, G.: Uppaal/DMC—abstraction-based heuristics for directed model checking. In:
Grumberg, O., Huth, M. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 4424, pp. 679–682. Springer, Heidelberg (2007)

115. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via Russian doll
abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4963, pp. 203–217.
Springer, Heidelberg (2008)

116. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than Uppaal? In: Gupta,
A., Malik, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5123,
pp. 552–555. Springer, Heidelberg (2008)

117. La Torre, S., Napoli, M.: A decidable dense branching-time temporal logic. In: Kapoor, S.,
Prasad, S. (eds.) Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS). LNCS, vol. 1974, pp. 139–150. Springer, Heidelberg (2000)

118. La Torre, S., Napoli, M.: Timed tree automata with an application to temporal logic. Acta
Inform. 38(2), 89–116 (2001)

119. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.:
As cheap as possible: efficient cost-optimal reachability for priced timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

120. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time systems:
compact data structure and state-space reduction. In: Symposium on Real-Time Systems
(RTSS), pp. 14–24. IEEE, Piscataway (1997)

121. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J. Comput.
6(3), 271–298 (1999)

122. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf.
1(1–2), 134–152 (1997)

123. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced timed au-
tomata. Theor. Comput. Sci. 390(2–3), 197–213 (2008)

124. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Log. 9(2),
10:1–10:27 (2008)

125. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explo-
sion problem of timed automata. In: Jensen, K., Podelski, A. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2988,
pp. 296–311. Springer, Heidelberg (2004)

126. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion
problem of timed automata. Theor. Comput. Sci. 345(1), 27–59 (2005)

127. Mader, A., Wupper, H.: Timed automaton models for simple programmable logic controllers.
In: Euromicro Conference on Real-Time Systems (ECRTS), pp. 106–113. IEEE, Piscataway
(1999)

128. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems
(an extended abstract). In: Mayr, E.W., Puech, C. (eds.) Symposium on Theoretical Aspects
of Computer Science (STACS). LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

129. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid
automata. In: Lynch, N., Krogh, B.H. (eds.) Int. Workshop on Hybrid Systems: Computation
and Control (HSCC). LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000)

130. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)
131. Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M.,

Mauw, S. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1664, pp. 431–
446. Springer, Heidelberg (1999)

132. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision diagrams.
In: Flum, J., Rodríguez-Artalejo, M. (eds.) International Workshop on Computer Science
Logic (CSL). LNCS, vol. 1862, pp. 111–125. Springer, Heidelberg (1999)

29 Model Checking Real-Time Systems 1045

133. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavat-
taro, G. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 5710, pp. 496–
510. Springer, Heidelberg (2009)

134. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a
decidability gap. In: Symp. on Logic in Computer Science (LICS), pp. 54–63. IEEE, Piscat-
away (2004)

135. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Symp. on Logic in
Computer Science (LICS), pp. 188–197. IEEE, Piscataway (2005)

136. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty Turing machines. In: Aceto,
L., Ingólfsdóttir, A. (eds.) International Conference on Foundations of Software Science
and Computation Structure (FoSSaCS. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg
(2006)

137. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over
finite words. Log. Methods Comput. Sci. 3(1), 1–27 (2007)

138. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-Conference on Theoretical Computer Science (TCS). LNCS, vol. 104, pp. 167–183.
Springer, Heidelberg (1981)

139. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) Int.
Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT). LNCS,
vol. 1486, pp. 210–227. Springer, Heidelberg (1998)

140. Raskin, J.-F., Schobbens, P.-Y.: The logic of event-clocks: decidability, complexity and ex-
pressiveness. J. Autom. Lang. Comb. 4(3), 247–286 (1999)

141. Roux, O.F., Rusu, V.: Deciding time-bounded properties for ELECTRE reactive programs
with stopwatch automata. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid
Systems II (HSCC). LNCS, vol. 999, pp. 405–416. Springer, Heidelberg (1995)

142. Rutkowski, M.: Two-player reachability-price games on single-clock timed automata. In:
Workshop on Quantitative Aspects of Programming Languages (QAPL). Electronic Proceed-
ings in Theoretical Computer Science, vol. 57 (2011)

143. Sankur, O.: Robustness in timed automata: analysis, synthesis, implementation. PhD thesis,
Lab. Spécification & Vérification, ENS Cachan, France (2013)

144. Schuts, M., Zhu, Y., Heidarian, F., Vaandrager, F.: Modelling clock synchronization in the
Chess gMAC WSN protocol. In: Andova, S., McIver, A.K., D’Argenio, P.R., Cuijpers, P.J.L.,
Markovski, J., Morgan, C.C., Núñez, M. (eds.) Workshop on Quantitative Formal Methods:
Theory and Applications (QFM). Electronic Proceedings in Theoretical Computer Science,
vol. 13, pp. 41–54 (2009)

145. Tapken, J., Dierks, H.: MOBY/PLC—graphical development of PLC-automata. In: Ravn,
A.P., Rischel, H. (eds.) Int. Symp. on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT). LNCS, vol. 1486, pp. 311–314. Springer, Heidelberg (1998)

146. Tripakis, S.: Description and schedulability analysis of the software architecture of an auto-
mated vehicle control system. In: Sangiovani-Vincentelli, A.L., Sifakis, J. (eds.) Int. Conf.
on Embedded Software (EMSOFT). LNCS, vol. 2491, pp. 123–137. Springer, Heidelberg
(2002)

147. Tripakis, S.: Checking timed Büchi automata emptiness on simulation graphs. ACM Trans.
Comput. Log. 10(3), 15:1–15:19 (2009)

148. Tripakis, S., Altisen, K.: On-the-fly controller synthesis for discrete and dense-time systems.
In: Wing, J.M., Woodcock, J., Davies, J. (eds.) World Congress on Formal Methods (FM).
LNCS, vol. 1708, pp. 233–252. Springer, Heidelberg (1999)

149. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimulations.
Form. Methods Syst. Des. 18(1), 25–68 (2001)

150. Tripakis, S., Yovine, S.: Timing analysis and code generation of vehicle control software
using Taxys. In: Havelund, K., Roşu, G. (eds.) International Workshop on Runtime Verifica-
tion (RV). Electronic Notes in Theoretical Computer Science, vol. 55, pp. 277–286. Elsevier,
Amsterdam (2001)

1046 P. Bouyer et al.

151. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness efficiently.
Form. Methods Syst. Des. 26(3), 267–292 (2005)

152. Wang, F.: Model-checking distributed real-time systems with states, events, and multiple
fairness assumptions. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) International Con-
ference on Algebraic Methodology and Software Technology (AMAST). LNCS, vol. 3116,
pp. 553–567. Springer, Heidelberg (2004)

153. Wang, F.: Efficient model-checking of dense-time systems with time-convexity analysis.
Theor. Comput. Sci. 467, 89–108 (2013)

154. Wang, F., Huang, G.-D., Yu, F.: TCTL inevitability analysis of dense-time systems: from
theory to engineering. IEEE Trans. Softw. Eng. 32(7), 510–526 (2006)

155. Wang, F., Yao, L.-W., Yang, Y.-L.: Efficient verification of distributed real-time systems with
broadcasting behaviors. Real-Time Syst. 47(4), 285–318 (2011)

156. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications based on
timed automata model. Real-Time Syst. 38(1), 39–65 (2008)

157. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicating sys-
tems by constraint-solving. In: Hogrefe, D., Leue, S. (eds.) Intl. Conf. on Formal Description
Techniques (FORTE). IFIP Conference Proceedings, vol. 6, pp. 243–258. Chapman & Hall,
London (1995)

158. Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol.
Transf. 1(1–2), 123–133 (1997)

159. Zennou, S., Yguel, M., Niebert, Peter: ELSE: a new symbolic state generator for timed au-
tomata. In: Larsen, K.G., Niebert, P. (eds.) Int. Workshop on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS). LNCS, vol. 2791, pp. 273–280. Springer, Heidelberg
(2003)

	Chapter 29: Model Checking Real-Time Systems
	29.1 Introduction
	29.2 Timed Automata
	29.3 Checking Reachability
	29.3.1 Region Equivalence
	29.3.2 Some Extensions of Timed Automata

	29.4 (Bi)simulation Checking
	29.4.1 (Bi)simulations for Timed Automata
	29.4.2 Checking (Bi)simulations

	29.5 Language-Theoretic Properties
	29.5.1 Language of a Timed Automaton
	29.5.2 Timed Automata with epsilon-Transitions
	29.5.3 Clock Constraints as Acceptance Conditions
	29.5.4 Intersection, Union, and Complement
	29.5.5 Language Emptiness, Inclusion

	29.6 Timed Temporal Logics
	29.6.1 Linear-Time Temporal Logics
	Continuous Semantics
	Pointwise Semantics

	29.6.2 Veriﬁcation of Linear-Time Temporal Logics
	29.6.3 Branching-Time Temporal Logics
	29.6.4 Veriﬁcation of Branching-Time Temporal Logics

	29.7 Symbolic Algorithms, Data Structures, Tools
	29.7.1 Zones and Operations
	29.7.2 Symbolic Datastructures
	29.7.3 Practical Efﬁciency
	29.7.4 Tools and Applications

	29.8 Weighted Timed Automata
	29.8.1 Cost-Optimal Schedules
	29.8.2 Weighted Temporal Logics
	29.8.3 Energy Constraints

	29.9 Timed Games
	29.10 Ongoing and Future Challenges
	References

