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Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic
sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of
a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is
doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials
used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these
polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a
matching lower bound.
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1 Introduction

An invariant set of a dynamical system is a set K such that every trajectory that starts in
K remains in K. Dually, an escape set K is one such that every trajectory that starts in K

eventually leaves K (either temporarily or permanently). While it is usually straightforward
to establish that a given set K is invariant, it can be challenging to decide whether it is an
escape set. Indeed, while the former problem amounts to showing that K is closed under the
transition function, the latter potentially involves considering entire orbits. In particular,
even in case K has a finite escape time (the maximum number of steps for an orbit to escape
the set), it can be highly non-trivial to establish an explicit upper bound on the escape time.

In this paper we focus on escape sets for (discrete-time) linear dynamical systems. Given
a rational matrix A ∈ Qn×n we say that K ⊆ Rn is an escape set for A if for all points
x ∈ K, there exists t ∈ N such that Atx ̸∈ K. The compact escape problem (CEP) asks to
decide whether a given compact semialgebraic set K is an escape set for a given matrix A.
Decidability of CEP was shown in [17] and its computational complexity was characterised
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2 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

in [9] as being interreducible with the decision problem for a certain fragment of the theory
of real closed fields.

The present paper focusses exclusively on positive instances (A, K) of CEP, that is, we
assume that we are given a compact semialgebraic escape set for a linear dynamical system.
In this situation it turns out, due to compactness of K, that there exists a finite time T such
that for all x ∈ K there exists t ≤ T with Atx ̸∈ K. The least such T is called the escape
time of (A, K). Our main result (Theorem 1, shown below) gives an explicit upper bound
on the escape time of (A, K) as a function of the length of the description of the matrix A

and semialgebraic set K. In general, it is recognised that bounded liveness is a more useful
property than mere liveness. Theorem 1 can be used to establish bounded liveness of several
kinds of systems. For example, the result gives an upper bound on the termination time
of a single-path linear loop with compact guard (cf. [22, 5]); it also gives a bound on the
number of steps to remain in a particular control location of a hybrid system before a given
(compact) state invariant becomes false, forcing a transition.

We next introduce some terminology to formalise our main contribution. We say that
a semialgebraic set S has complexity at most (n, d, τ) if it can be expressed by a boolean
combination of polynomial equations and inequalities P (x1, . . . , xn) ▷◁ 0 with ▷◁∈ {≤, =},
involving polynomials P ∈ Z[x1, . . . , xn] in at most n variables of total degree at most d with
integer coefficients bounded in bitsize by τ . Our main result is as follows:

▶ Theorem 1. There exists an integer function CompactEscape(n, d, τ) ∈ 2(dτ)nO(1)

with the
following property. If K ⊆ Rn is a compact semialgebraic set of complexity at most (n, d, τ)
that is an escape set for a matrix A ∈ Qn×n with entries of bitsize at most τ , then the escape
time of K is bounded by CompactEscape(n, d, τ).

As explained in the proof sketch below, Theorem 1 relies on the availability of certain
quantitative bounds within semialgebraic geometry and number theory, particularly concern-
ing quantifier elimination and Diophantine approximation. The latter results are crucial to
handling the case in which the matrix A has complex eigenvalues of absolute value one.

Note that the upper bound on the escape time in Theorem 1 is singly exponential in the
degrees and the bitsize of the coefficients of the polynomials used to define K and the bitsize
of the coefficients of A. It is doubly exponential in the dimension. In Section 8 we provide
two examples, one where A is an isometry and another in which all eigenvalues of A have
absolute value strictly greater than one, that yield a corresponding lower bound of this form.
It is moreover straightforward to give examples of non-compact escape sets for which the
escape time is infinite.

Proof Overview. Let us now give a high-level overview of the proof of Theorem 1. As
in the statement of the theorem, let K ⊆ Rn be a compact semialgebraic set of complexity
at most (n, d, τ) and let A ∈ Qn×n be a matrix with entries of bitsize bounded by τ , and
such that for all x ∈ K there exists t ∈ N such that Atx /∈ K.

To facilitate the analysis of the dynamical behaviour of A we first transform our system
into real Jordan normal form. A theorem of Cai [6] ensures that this step does not significantly
increase the complexity of the system.

The dynamics of A naturally decomposes into a rotational part, corresponding to eigen-
values of modulus one, and an expansive or contractive part, corresponding to eigenvalues of
absolute value different from 1 and to generalised eigenvalues of arbitrary moduli. Accord-
ingly, the ambient space Rn decomposes into two subspaces Vrec and Vnon-rec, such that A

exhibits rotational behaviour on Vrec and expansive or contractive behaviour on Vnon-rec. We
start by considering the special cases where either Vrec = 0 or Vnon-rec = 0, so that only one
of the two types of behaviours occurs.



J. D’Costa, E. Lefaucheux, E. Neumann, J. Ouaknine, and J. Worrell 3

First, assume that A has no complex eigenvalues of modulus 1. Since every trajectory
under A escapes K we have in particular that 0 /∈ K. A theorem due to Jeronimo, Perrucci
and Tsigaridas [14] shows that K is bounded away from zero by a function of the form
2−(dτ)nO(1)

and a theorem due to Vorobjov [23] establishes an upper bound on the absolute
value of every coordinate of every point in K of the form 2(dτ)nO(1)

. Furthermore, thanks to
a result of Mignotte [16], we can bound the eigenvalues of A away from 1 by a function of
the form 2τnO(1)

. This yields a doubly exponential bound on how long it takes for A to leave
the set K (either by converging to 0 or by converging to infinity in some eigenspace).

Now assume that all eigenvalues of A have modulus 1. This case is handled through a
combination of two bounds. For the first bound we start by noting that for every x ∈ K

the closure of the orbit OA(x) is a compact semialgebraic set that is not entirely contained
within K. In fact we show that for all x ∈ K there exists a point y ∈ OA(x) whose distance
to K is at least 2−(dτ)nO(1)

. This bound is achieved by applying [14, Theorem 1] to a
suitable polynomial on an auxiliary semialgebraic set, which is constructed using quantifier
elimination. The singly exponential bounds obtained in [13, 19] are crucial for this step
to work. The second step of the argument combines Baker’s theorem on linear forms in
logarithms with a quantitative version of Kronecker’s theorem on simultaneous Diophantine
approximation to obtain a bound of the form NP ∈ 2(τP )nO(1)

such that for all positive
integers P every point z ∈ OA(x) is within 2−P of a point of the form Atx with 0 ≤ t ≤ NP .
Combining the two bounds described above, we obtain a doubly exponential bound on the
escape time.

In the presence of both types of behaviour, the analysis of each case becomes more
involved. We select a parameter ε > 0 and partition K into three sets: Krec = K ∩ Vrec, K≥ε,
and K<ε. The matrix A exhibits purely rotational behaviour on Krec. Intuitively, on K≥ε

the expansive or contractive behaviour of A dominates the overall dynamics, while on K<ε

the rotational behaviour dominates the overall dynamics. We establish in Lemma 14 a bound
Nrec such that for each initial point x ∈ Vrec, one of its first Nrec iterates is bounded away
from K. In Lemma 15 we establish a bound N≥ε such that every x ∈ K≥ε either escapes or
enters K<ε ∪ Krec within at most N≥ε iterations. Finally, in Section 7, we establish a bound
on how often the system can switch from a state where rotational behaviour dominates to
one where expansive or non-expansive behaviour does and vice versa. We use this to combine
the two bounds to an overall bound on the escape time, proving Theorem 1.

Main Contributions. While decidability of CEP was already established in [17], the
proof given there was non-effective, combining two unbounded searches. To obtain a uniform
quantitative bound on the escape time, the argument given in [17] needs to be refined and
extended in two significant ways:

Firstly, one needs to establish non-trivial quantitative refinements of the techniques used
in the decidability proof: to bound the escape time for purely expanding or retracting systems,
we need to combine the sharp effective bounds on compact semialgebraic sets from real
algebraic geometry established in [23, 14] with Mignotte’s root separation bound [16]. The
case of purely rotational systems requires an original combination of a quantitative version
of Kronecker’s theorem on simultaneous Diophantine approximation [11] and a quantitative
version of Baker’s theorem on linear forms in logarithms [1]. All of these techniques were
completely absent from the decidability proof.

Secondly, to establish mere decidability of the problem, it was possible to study the
possible behaviours of the system – rotating, expanding, or retracting – in isolation. For
example, if the set K contains a point which has a non-zero component in an eigenspace
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of A for an eigenvalue whose modulus is strictly greater than one, then the system must
eventually escape. However, no uniform bound on the escape time may be derived in this
situation, for the component is allowed to be arbitrarily close to zero. Therefore, as outlined
above, it is necessary in our proof to subdivide K into pieces where rotational, retractive, and
expansive behaviour can be present simultaneously. The interaction of the three behaviours
significantly increases the difficulty of the analysis and requires completely new ideas.

2 Mathematical Tools

We use the following singly exponential quantifier elimination result given in [2]. For a
historical overview on this type of result see [2, Chapter 14, Bibliographical Notes].

▶ Theorem 2 ([2, Theorem 14.16]). Let S ⊆ Rk+n1+···+nℓ be a semialgebraic set of complexity
at most (k + n1 + n2 + · · · + nℓ, d, τ). Let Q1, . . . , Qℓ ∈ {∃, ∀} be a sequence of alternating
quantifiers. Consider the set S′ ⊆ Rk of all (x1, . . . , xk) ∈ Rk satisfying the first-order
formula

(Q1(x1,1, . . . , x1,n1)) . . . . (Qℓ(xℓ,1, . . . , xℓ,nℓ
)) .

((x1, . . . , xk, x1,1, . . . , x1,n1 , . . . , xℓ,1, . . . , xℓ,nℓ
) ∈ S)

Then S′ is a semialgebraic set of complexity at most (k, dO(n1·····nℓ), τdO(n1·····nℓ·k)).

The next theorem is due to Vorobjov [23]. See also [12, Lemma 9] and [3, Theorem 4].

▶ Theorem 3. There exists an integer function Bound(n, d, τ) ∈ 2τdO(n) with the following
property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ). Then K is contained
in a ball centred at the origin of radius at most Bound(n, d, τ).

A closely related result, due to [14], yields a lower bound on the minimum of a polynomial
over a compact semialgebraic set, provided the minimum is non-zero. The result in [14]
mentions explicit constants, which is more than we need.

▶ Theorem 4 ([14, Theorem 1]). There exists an integer function LowerBound(n, d, τ) ∈
2(τd)nO(1)

such that the following holds true:
Let P ∈ Q[x1, . . . , xn] be a polynomial of degree at most d, whose coefficients have

bitsize at most τ . Let K be a compact semialgebraic set of complexity at most (n, d, τ). If
minx∈K P (x) > 0 then minx∈K P (x) > 1/ LowerBound.

With the help of Theorem 2, Theorem 4 can be generalised to yield a lower bound on the
distance of two disjoint compact semialgebraic sets. A very similar result is proved in [20]
under more general assumptions. Unfortunately, the complexity bound stated there is not
sufficiently fine-grained for our purpose, since the author do not distinguish the dimension of
a set from the other complexity parameters.

▶ Lemma 5. There exists an integer function Sep(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let K and L be compact semialgebraic sets of complexity at most (n, d, τ). Assume that
every x ∈ K has positive euclidean distance to L. Then infx∈K d(x, L) > 1/ Sep(n, d, τ).

Proof. See Appendix E. ◀
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We require a version of Kronecker’s theorem on simultaneous Diophantine approximation.
See [18, Corollary 3.1] for a proof.

▶ Theorem 6. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m = 1} .

Let (β1, . . . , βs) be a basis of L. Let Tm = {(z1, . . . , zm) ∈ Cm | |zj | = 1} denote the complex
unit m-torus. Then the closure of the set

{
(λk

1 , . . . , λk
m) ∈ Tm | k ∈ N

}
is the set S ={

(z1, . . . , zm) ∈ Tm | ∀j ≤ s.(z1, . . . , zm)βj = 1
}

.
Moreover, for all ε > 0 and all (z1, . . . , zm) ∈ S there exist infinitely many indexes k

such that |λk
j − zj | < ε for j = 1, . . . , m.

Moreover, the integer multiplicative relations between given complex algebraic numbers
in the unit circle can be elicited in polynomial time. For a proof see [7, 15]. We assume the
standard encoding of algebraic numbers, see [8] for details.

▶ Theorem 7. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m } .

Then one can compute in polynomial time a basis (β1, . . . , βs) ∈ (Zm)s for L. Moreover, the
integer entries of the basis elements βj are bounded polynomially in the size of the encodings
of λ1, . . . , λm.

We need to be able to bound away the modulus of eigenvalues that fall outside the unit
circle away from 1. This is achieved by combining a classic result due to Mignotte [16] on
the separation of algebraic numbers with a bound on the height of the resultant of two
polynomials, proved in [4, Theorem 10].

▶ Lemma 8. Let λ be a complex algebraic number whose minimal polynomial has degree
at most d and coefficients bounded in bitsize by τ . Assume that |λ| ≠ 1. Then we have
||λ| − 1| > 2−(τd)O(1)

.

Proof. See Appendix C. ◀

3 Preliminaries

3.1 Converting the matrix to real Jordan normal form
To obtain a bound on the escape time it will be important to work with instances of the
Escape Problem in real Jordan normal form. In the following, let A denote the field of
algebraic numbers. We establish the following reduction to this case:

▶ Lemma 9. Let (K, A) be an instance of the Compact Escape Problem. Assume that
K is given by a formula involving s polynomial equations and equalities P ▷◁ 0 where
P ∈ Z[x1, . . . , xn] is a polynomial in n variables of degree at most d whose coefficients are
bounded in bitsize by τ .

Let γ1, . . . , γm ∈ R denote the real and imaginary parts of the eigenvalues of A. Let δ be
a bound on the degrees of γ1, . . . , γm.
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Then there exists an equivalent instance (J, K ′) of the Compact Escape Problem where
J ∈ A(n+m)×(n+m) is in real Jordan normal form and K ′ is given by a formula involving
at most s + 3m polynomial equations and equalities P ▷◁ 0 where P ∈ Z[x1, . . . , xn+m] is a
polynomial in n + m variables of degree at most δ · d whose coefficients are bounded in bitsize
by τ + d(log(2n) + log(δ + 1) + σ), where σ depends polynomially on n and the bitsize of the
entries of A.

Proof. See Appendix B. ◀

3.2 Decomposing K

Let K ⊆ Rn be a compact semialgebraic set. Let A ∈ Rn×n be a matrix in real Jordan
normal form,

A =

J1
. . .

Jm

 .

Here, each Ji is a real Jordan block of the form

Ji =


Λi Ii

. . . . . .
Λi Ii

Λi

 ,

where Λi,1 is either a real number or a 2 × 2 real matrix of the form
(

ai −bi

bi ai

)
and,

accordingly, Ii is either the real number 1 or the 2 × 2 identity matrix. The elements Λi

correspond to real or complex eigenvalues λi ∈ C of A. By slight abuse of language we call
|λi| the modulus of Λi. By further slight abuse of language we define the “eigenspace” of
Λi as the one- or two-dimensional space spanned by the vectors that correspond to the first
entry of the Jordan block Ji. The “generalised eigenspaces” for Λi are defined analogously.

Write Rn as the direct sum of two spaces Rn = Vrec ⊕ Vnon-rec where Vrec is the direct
sum of the eigenspaces for eigenvalues of modulus 1, and Vnon-rec is the direct sum of the
eigenspaces and generalised eigenspaces for eigenvalues of modulus ̸= 1 and the generalised
eigenspaces for eigenvalues of modulus 1. By convention, if A has no eigenvalues of modulus
1 we let Vrec = 0. Similarly, if A has only eigenvalues of modulus 1 and no generalised
eigenvalues we let Vnon-rec = 0. Thus, we decompose the state space Rn into a part Vrec on
which A exhibits purely rotational behaviour, and a part Vnon-rec where A is additionally
expansive or contractive.

We will work with several different norms throughout this paper. In addition to the
familiar ℓ2 and ℓ∞ norms we introduce a third norm, depending on the matrix A, that
combines features of the two. It facilitates block-wise arguments while ensuring that the
restriction of A to Vrec is an isometry.

Write Rn as a direct sum Rn = V1 ⊕· · ·⊕Vs ⊕W1 ⊕· · ·⊕Wt, where V1, . . . , Vs correspond
to the Jordan blocks of A associated with real eigenvalues and W1, . . . , Wt correspond to
the Jordan blocks of A associated with non-real eigenvalues. Let πWj

: Rn → Wj and
πVj : Rn → Vj denote the orthogonal projections onto Wj and Vj respectively.

For a vector x ∈ Vi, let ∥x∥Vi

J = ∥x∥∞ . For a vector x = (x1, y1, . . . , xk, yk) ∈ Wi, let

∥x∥Wi

J = max
j=1,...,k

(√
x2

j + y2
j

)
.
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For a vector x ∈ Rn, let

∥x∥J = max
{

max
j=1,...,s

∥∥πVj
(x)
∥∥Vj

J
, max

j=1,...,t

∥∥πWj
(x)
∥∥Wj

J

}
.

Call ∥x∥J the Jordan norm of x. Observe that ∥x∥J depends on the choice of the Vi’s and
Wi’s. The Jordan norm compares to the ℓ2- and ℓ∞- norms as follows:

n−1/2 ∥x∥J ≤ n−1/2 ∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥J ≤ ∥x∥2 ≤ n1/2 ∥x∥∞ ≤ n1/2 ∥x∥J .

Let ε > 0. Consider the ball BJ (0, ε) ⊆ Rn about 0 with respect to the distance induced
by the ∥·∥J -norm. We partition K into three sets:

Krec = K ∩ Vrec

K<ε = K ∩ (Vrec ⊕ ((Vnon-rec ∩ BJ(0, ε)) \ {0}))
K≥ε = K ∩ (Vrec ⊕ (Vnon-rec \ BJ(0, ε)))

4 A quantitative version of Kronecker’s theorem for complex
algebraic numbers

Our central tool for bounding the escape time in the recurrent case is a quantitative version
of Kronecker’s theorem for complex algebraic numbers.

Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Our goal is to find for
all ε > 0 a bound N such that for all (α1, . . . , αm) ∈ Tm contained in the closure of the
sequence (λt

1, . . . , λt
m)t∈N there exists t ≤ N such that |λt

j − αj | < ε for all j = 1, . . . , m.
We first consider the case where the λj ’s do not admit any integer multiplicative relations.

In this case we can employ the following quantitative version of the continuous formulation
of Kronecker’s theorem, proved in [11]:

▶ Theorem 10 ([11, Theorem 4.1]). Let φ1, . . . , φN and ζ1, . . . , ζN be real numbers. Let
ε1, . . . , εN be positive real numbers with εj < 1/2 for all j. Let Mj =

⌈
1
εj

log N
εj

⌉
. Let

φ = (φ1, . . . , φN ). Let δ = min
{

|φ · m| | m ∈ ZN , |mj | < Mj , m ̸= 0
}

. Assume that δ > 0.
Then in any interval I of length T ≥ 4/δ there is a real number t such that ∥φjt − ζj∥ < εj ,

where ∥·∥ denotes distance to the nearest integer.

Intuitively, the number δ in Theorem 10 is a quantitative measure of the linear independ-
ence of the φj ’s, as it bounds away from zero all integer linear combinations of the φj ’s with
suitably bounded coefficients. In our case we consider the numbers φj = log λj . For our
purpose we need to obtain a bound on t, and thus a bound on δ, in terms of the algebraic
complexity of the numbers λ1, . . . , λm. This is achieved by invoking a quantitative version
of Baker’s theorem on linear forms in logarithms due to Baker and Wüstholz [1]. Recall
that any algebraic number µ is the root of a unique irreducible polynomial pµ with pairwise
coprime integer coefficients. The height of an algebraic number µ is the maximum of the
absolute values of the coefficients of pµ. The degree of µ is the degree of pµ. Recall that a
field E is called an extension of a field F if E contains F as a subfield. The degree of a field
extension E ⊇ F is the dimension of E as an F -vector space.

▶ Theorem 11. Let µ1, . . . , µN be algebraic numbers, none of which is equal to 0 or 1. Let

L(z1, . . . , zN ) = b1z1 + · · · + bN zN
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be a linear form with rational integer coefficients b1, . . . , bN . Let B be an upper bound on the
absolute values of the bj ’s. For j = 1, . . . , N , let Aj ≥ exp(1) be a bound on the height of µj .
Let d be the degree of the field extension Q(µ1, ,̇µN ) generated by µ1, . . . , µN over Q. Fix a
determination of the complex logarithm log. Let Λ = L(log µ1, . . . , log µN ). If Λ ̸= 0 then

log |Λ| > −(16Nd)2(N+2) log A1 · · · · · log AN log B.

Finally, in the case where the λj ’s admit integer multiplicative relations, we employ
Theorem 7 to bound their complexity. We arrive at the following result:

▶ Theorem 12. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Assume that the
numbers 2πi, log λ1, . . . , log λs are linearly independent over the rationals, where 0 ≤ s ≤ m.
Let d be the degree of the field extension Q(λ1, . . . , λs). Let A1, . . . , As ≥ exp(1) be upper
bounds on the heights of λ1, . . . , λs. Let ℓ ∈ N, and εs+1, . . . , εm ∈ Zs be such that

λℓ
j = (λ1, . . . , λs)εj

for all j = s + 1, . . . , m. By convention, if s = 0 the right-hand side of the above equation is
to be taken equal to 1.

Let

L = max
{

ℓ,

s∑
k=1

|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

Let α1, . . . , αm ∈ Tm be such that any rational linear relation between the numbers
2πi, log λ1, . . . , log λm is also satisfied by the numbers 2πi, log α1, . . . , log αm. Let ε > 0.
Then there exists a positive integer

t ≤ 8πℓ
( 2πL

ε

)s (2s 2πL
ε

⌈ 4πL
ε log 4πsL

ε

⌉)(16(s+1)d)2(s+3) log A1·····log As + ℓ

such that
∣∣λt

j − αj

∣∣ < ε for j = 1, . . . , m.

Proof. An outline of the proof is sketched above. See Appendix D for a full proof. ◀

For the purpose of bounding the escape time, the following coarse bound suffices:

▶ Corollary 13. There exists an integer function Kron(n, τ, P ) ∈ 2(τP )nO(1)

, such that the
following holds true:

Let λ1, . . . , λn be algebraic numbers of modulus 1. Assume that the degree of each λj is
bounded by n. Let τ be a bound on the bitsize of the coefficients of the minimal polynomials of
the λj ’s. Let P be a positive integer. Let α1, . . . , αn be complex numbers which are contained
in the closure of the sequence (λt

1, . . . , λt
n)t∈N. Then there exists a t ≤ Kron(n, τ, P ) such

that |αj − λt
j | < 2−P for all j ∈ {1, . . . , n}.

Proof. By Kronecker’s theorem, any integer multiplicative relation between the λj ’s is also
satisfied by the αj ’s. Theorem 12 hence yields a bound on t such that |αj − λt

j | < 2−P holds
for all j ∈ {1, . . . , n}.

This bound is given in terms of quantities s, d, ℓ, εs+1, . . . , εm ∈ Zs, A1, . . . , As, and L.
It remains to show that these quantities can be chosen to be suitably bounded in terms of n

and τ .
Proposition 26 in Appendix D, which is mainly based on Theorem 7, shows that numbers

ℓ and ε1, . . . , εm can be computed in polynomial time. In particular, the absolute size of L

and ℓ is of the form 2(nτ)O(1) . The numbers log Ai are bounded by τ by assumption. We
have s ≤ m ≤ n by definition. Finally, we have assumed that each λj has degree at most n.
It follows that the degree d of the field extension Q(λ1, . . . , λs) is bounded by nn. The result
follows from Theorem 12. ◀
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5 The recurrent eigenspace

The next lemma establishes as a special case an escape bound for all initial values x ∈ Krec.
In order to combine the recurrent and the non-recurrent case we need a stronger result,
however. Thus, we establish not only a bound on the escape time for all initial values
x ∈ Krec, but a bound N such that every x ∈ Vrec – not just in Krec – has distance at least
1/N – not just positive distance – from K. Further, note that Lemma 14 is still applicable
in the special cases where Krec = ∅ or Vrec = 0.

▶ Lemma 14. There exists an integer function Rec(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let A ∈ An×n be a matrix in real Jordan normal form with algebraic entries. Assume
that the minimal polynomial of A has rational coefficients whose bitsize is bounded by τ .
Let K ⊆ Rn be a compact semialgebraic set of complexity at most (n, d, τ). If every point
x ∈ Krec escapes K under iterations of A then for all x ∈ Vrec there exists t ≤ Rec(n, d, τ)
such that

distℓ2(Atx, K) >

√
n

Rec(n, d, τ) .

Proof. The full proof is given in Appendix F. We only sketch an outline here.
We first prove the result for initial points x ∈ Krec. For these points, the closure of the

orbit OA(x) of x under A is a compact semialgebraic set. We employ Corollary 13 to obtain
for all ε > 0 a doubly exponential bound N such that for all x ∈ Krec and all y ∈ OA(x)
there exists t ≤ N such that ∥Atx − y∥2 < ε. We then use Theorem 4 to obtain a uniform
at most doubly exponentially small lower bound on the quantity

inf
x∈Krec

sup
y∈OA(x)

inf
z∈K

∥y − z∥2
2 .

In order to apply this theorem we construct an auxiliary semialgebraic set, whose complexity
is controlled by Theorem 2. Combining these two steps, we obtain a function Rec0 that
satisfies the statement of the lemma for all initial points x ∈ Krec.

Finally, we extend the result to all initial points x ∈ Vrec. The special case where Krec = ∅
is treated using Theorem 4.

In the case where Krec is non-empty we obtain from Lemma 5 that every x ∈ Vrec which
is doubly exponentially close to K with a sufficiently large constant in the third exponent
is already doubly exponentially close to Krec, with a slightly smaller constant in the third
exponent. Now, any point that is sufficiently far away from K trivially satisfies the claim.
By the preceding discussion, points x ∈ Vrec that are sufficiently close to K are already
sufficiently close to Krec, so that there exists an escaping orbit OA(x′) with x′ ∈ Krec which
is close to the orbit of x since A is an isometry on Vrec. This allows us to reduce the result
to the already established result for initial values in Krec. ◀

6 The non-recurrent eigenspace

The next lemma concerns the subset K≥ε of K containing the points in K that are bounded
away from Vrec by some ε > 0.

For any such point, there exist coordinates (or pairs of coordinates if the corresponding
eigenvalues are not real) whose contribution to the Jordan norm is greater than ε. Moreover,
the contribution to the Jordan norm of these coordinates does not stay constant under
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applications of A. If the contribution to the norm of at least one such coordinate is increasing
under applications of A, the orbit will eventually leave K, since K is compact. Moreover,
Theorem 3 yields an upper bound on the escape time.

Coordinates whose contribution to the norm is decreasing under applications of A will,
after sufficiently many iterations, contribute less than ε. We establish a uniform upper bound
on the number of iterations required to ensure this for all such coordinates. Combining this
with the previous bound, we obtain a number N such that after at most N applications of
A, every x ∈ K≥ε has either escaped K, entered K<ε ∪ Krec, or it remains in K≥ε because
it has a component whose contribution to the norm was initially smaller than ε, but grew
beyond ε under iteration of A. In the last case, the point will grow in norm beyond the
bound established in Theorem 3 and thus escape K after a further N applications of A. This
yields a uniform bound on the number of iterations that are required for any point x ∈ K≥ε

to either leave K entirely or move into K<ε ∪ Krec.
The overall structure of this proof closely follows the one given in [10], where the

assumptions allow the authors to restrict the discussion to real eigenvalues.

▶ Lemma 15. There exists an integer function NonRec(n, d, τ, P ) ∈ 2(dτP )nO(1)

with the
following property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ). Let A ∈ An×n be
a matrix in real Jordan normal form. Assume that the characteristic polynomial of A has
rational coefficients whose bitsize is bounded by τ . Let P be a positive integer.

Then for all x ∈ K≥2−P there exists t ≤ NonRec(n, d, τ, P ) such that Atx /∈ K≥2−P .

Proof. See Appendix G for details. ◀

7 Proof of Theorem 1

In the previous two sections, we successively showed how to establish a bound on the escape
time for an instance (A, K) when the orbit remains in the recurrent eigenspace and how the
orbit behaves when it starts away from the recurrent eigenspace. In this section, we show
how to combine both results in order to establish an escape bound for any starting point in
K. This will thus prove Theorem 1.

Let (A0, K0) be an instance of the compact escape problem, where K0 ⊆ Rn is a compact
semialgebraic set of complexity at most (n0, d0, τ0) and A0 ∈ Qn×n is a square matrix with
rational entries whose bitsize is bounded by τ0. Assume that every point x ∈ K0 escapes K0
under iterations of A0.

Apply Lemma 9 to convert the instance (A0, K0) into an equivalent instance (A, K) such
that A ∈ An×n is in real Jordan normal form. Then the set K has complexity at most
(n, d, τ), were n = 2n0, d = n0d0, and τ = (n0τ0d0)Cτ for some absolute constant Cτ . By
construction, the characteristic polynomial of A has rational coefficients of bitsize at most τ .

Let Rec be the function from Lemma 14. Let ε = 1
Rec(n,d,τ) and Nrec = Rec(n, d, τ). Let

x ∈ K. If x ∈ Krec then x escapes within Nrec steps. Suppose that x ∈ K<ε.
Then there are two possibilities:

1. We have Atx /∈ K≥ε for all t ≤ Nrec.
2. We have Atx ∈ K≥ε for at least one t ≤ Nrec.
In the first case, the orbit of x remains close to Vrec for long enough that we can rely on
Lemma 14. Indeed, let x0 denote the orthogonal projection of x onto Vrec. Let t ≤ Nrec be
such that distℓ2(Atx0, K) >

√
nε. Since Atx /∈ K≥ε, we have ∥Atx − Atx0∥J < ε, so that
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∥Atx − Atx0∥2 <
√

nε. Let y ∈ K. Then∥∥Atx − y
∥∥

2 ≥
∥∥Atx0 − y

∥∥
2 −

∥∥Atx − Atx0
∥∥

2 >
√

nε −
√

nε = 0.

Thus, x escapes K under iterations of A.
In the second case, let t1 be such that At1x ∈ K≥ε. Let NonRec be the function from

Lemma 15. Let N≥ε = NonRec(n, d, τ, ⌈log(1/ε)⌉). By Lemma 15 there exists t2 ≤ N≥ε such
that At2At1x is contained either in K<ε ∪ Krec or in the complement of K. In the latter case
we are done. In the former case we apply the initial case distinction: either for all t ≤ Nrec
we have AtAt2At1x /∈ K≥ε or we have At3At2At1x ∈ K≥ε for at least one t3 ≤ Nrec. Once
again, in the first case, the point has escaped. By repeating this reasoning, we construct a
(finite or infinite) sequence t1, t2, . . . such that ti ≤ Nrec if i is odd and ti ≤ N≥ε if i is even
and

Ats · · · · · At1x ∈

{
K<ε ∪ Krec if s is even,
K≥ε if s is odd.

We claim that the sequence t1, t2, . . . is finite and contains at most n3 elements.
Consider a real Jordan block of A of size m ≤ n associated to the eigenvalue Λ. Denote

by xJ the orthogonal projection of x onto the dimensions associated with this block.
Assume first that Λ is a real eigenvalue (as opposed to a 2 × 2 block representing a

complex eigenvalue). If Λ = 0, then clearly
∥∥JkxJ

∥∥
J

is monotonically decreasing. Thus,
assume in the sequel that Λ ̸= 0.

Let j ∈ {1, . . . , m}. The m − j + 1’th component of the vector JkxJ , viewed as a function
of t, is an exponential polynomial Ej(t) = ΛtP (t), where P ∈ R[z] is a real polynomial of
degree j − 1. Consider the real function

(Ej(·))2 : R → R, (Ej(t))2 = |Λ|2t |P (t)|2.

This function is differentiable in t with derivative

d
dt (Ej(t))2 = Λ2t

(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
.

This derivative vanishes if and only if the factor
(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
vanishes. This

factor is a polynomial of degree 2j − 2, so that it has at most 2j − 2 real zeroes. It follows
that there exist numbers tj,1, . . . , tj,mj

with mj ≤ 2j − 2 such that the function (Ej(t))2 − ε2

does not change its sign in any of the open intervals

(0, tj,1), (tj,1, tj,2), . . . , (tj,mj−1, tj,mj
), (tj,mj

, +∞).

Thus, the norm ∥J txJ∥J changes from smaller than ε to bigger than ε at most

m∑
j=1

(2j − 2) = 2
m∑

j=1
j − 2m = (m + 1)m − 2m = m2 − m

times.
The case where Λ represents a complex eigenvalue λ is similar. However, we now consider

the evolution of the two coordinates corresponding to one Λ-block simultaneously.
For j ∈ {1, . . . , m}, write Ej(t) for the m− j +1’th component of the vector J txJ , viewed

as a function of t. We have for all j ∈ {1, . . . , m/2} that the function

Fj(t) = (E2j(t))2 + (E2j−1(t))2
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is an exponential polynomial Fj(t) = |λ|tPj(t), where Pj ∈ R[z] is a real polynomial of
degree j − 1. Therefore, exactly as in case where Λ is a real eigenvalue, the derivative of Fj

vanishes at most 2j − 2 times. From which we can deduce that the norm ∥J txJ∥J crosses
the ε-threshold at most m2 − m times.

Estimating generously, we have at most n Jordan blocks of size at most n, each of which
crosses the ε-threshold at most n2 − n times. In total, we cross the threshold at most n3 − n2

times. The total escape bound is hence n3 max{Nrec, N≥ε}. By the same argument, the same
escape bound holds true when the initial point x lies in K≥ε.

Substituting the constants Nrec, N≥ε, n, d, and τ with their definitions, we obtain the
upper bound

CompactEscape(n0, d0, τ0) =

(2n0)3 max
{

Rec
(

2n0, n0d0, (n0d0τ0)Cτ

)
,

NonRec
(

2n0, n0d0, (n0d0τ0)Cτ , log
⌈
Rec

(
2n0, n0d0, (n0d0τ0)Cτ

)⌉)}
.

One easily verifies that CompactEscape(n, d, τ) ∈ 2(dτ)nO(1)

as claimed.

8 A matching lower bound on escape time

In Theorem 1 we established a uniform upper bound on the escape time for all positive
instances of the Compact Escape Problem. Our bound is doubly exponential in the ambient
dimension and singly exponential in the rest of the data. We will now show that this bound
cannot be significantly improved by showing that a doubly exponential bound cannot be
avoided even for purely rotational systems. A second example displaying a doubly exponential
lower bound is presented in Appendix H.

▶ Example 16. For (n, d, τ) ∈ N3, let K(n,d,τ) ⊆ Rn+2 be the set of all points (x, y, u1, . . . , un)
satisfying the (in)equalities: x2 + y2 = 1, u1 = 2−τ , (x − 1)2 + y2 ≥ un and for 1 ≤ i ≤
n − 1, ui+1 = (ui)d.

Hence, K(n,d,τ) =
(

S1 \ B
(

(1, 0), 2−τdn−1
))

×
{(

2−τ , 2−τd, . . . , 2−τdn−1
)}

, where S1 ⊆
R2 is the unit circle. Let a = 3

5 , b = 4
5 . Let

A(n,d,τ) =

a −b 0
b a 0
0 0 In


where In is the n × n- identity matrix. It is easy to see that the complex number 3

5 + i 4
5 has

modulus 1 and is not a root of unity. It follows from Dirichlet’s theorem on simultaneous
Diophantine approximation that the orbit of A is equal to S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
,

so that every initial point escapes under A.
We claim that there exists a point x ∈ K(n,d,τ) that requires 2τdn−1 steps to escape.

Indeed, let x0 ∈ K(n,d,τ) be an arbitrary initial point. Consider the orbit xt = Atx0. Let
N < 2τdn−1 . By the pigeonhole principle, the finite set of points x0, . . . , xN contains at least
one consecutive pair of points xi, xj on the circle such that the points xi and xj are joined
by an arc of the circle of length strictly greater than 2/N . It follows that we can ensure that
none of the points x1, . . . , xN is outside of K(n,d,τ) by applying a suitable planar rotation to
all points. Since all planar rotations commute, there exists for each angle θ an initial point
xθ ∈ S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
, such that the orbit of xθ under A is equal to the

orbit of x0 under A rotated by θ. This proves the claim.
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A Computing real JNF in polynomial time

Given a matrix A with rational entries, we discuss how to compute the real Jordan normal
form J of A and the associated change of basis matrix Q in polynomial time. First compute,
in polynomial time, the (complex) Jordan normal form J ′ and change of basis matrix T such
that A = TJ ′T −1 using the algorithm from [6].

Computing J : Suppose, without loss of generality, that

J ′ = diag(J ′
1, J ′

2, . . . , J ′
2k−1, J ′

2k, J ′
2k+1, . . . , J ′

2k+z)

where for 1 ≤ j ≤ k, the Jordan blocks J ′
2j−1 and J ′

2j have the same dimension and have
conjugate eigenvalues λj = aj +bji and λ = aj −bji, respectively. The blocks J ′

2k+1, . . . , J ′
2k+z,

on the other hand, have real eigenvalues. J is obtained by replacing, for each 1 ≤ j ≤ k,

diag(J ′
2j−1, J ′

2j) with a real Jordan block of the same dimension with Λ =
[
a −b

b a

]
and

keeping the blocks J ′
2k+1, . . . , J ′

2k+z unchanged.

Computing Q: Let κ(j) denote the multiplicity of the Jordan block J ′
i for 1 ≤ i ≤ 2k + z,

and v1
1 , . . . , v1

κ(1), . . . , v2k
1 , . . . , v2k

κ(2k), . . . , v2k+z
1 , . . . , v2k+z

κ(2k+z) ∈ Cm be the columns of T . It

will be the case that for all 1 ≤ j ≤ k and l, v2j−1
l = v2j

l in the sense that v2j−1
l = xj

l + yj
l i

and v2j
l = xj

l −yj
l i for vectors xj

l , yj
l ∈ Rm. Moreover, for j > 2k, v2j

l ∈ Rm. Finally, columns
of Q are obtained from columns of T as follows. For 1 ≤ j ≤ k and all l, replace v2j−1

l with
xj

l and v2j
l with yj

l and keep v2k+z
l for all l and m > 0 unchanged, in the same way the proof

of existence of real Jordan normal form proceeds.

B Proof of Lemma 9

▶ Lemma 9. Let (K, A) be an instance of the Compact Escape Problem. Assume that
K is given by a formula involving s polynomial equations and equalities P ▷◁ 0 where
P ∈ Z[x1, . . . , xn] is a polynomial in n variables of degree at most d whose coefficients are
bounded in bitsize by τ .

Let γ1, . . . , γm ∈ R denote the real and imaginary parts of the eigenvalues of A. Let δ be
a bound on the degrees of γ1, . . . , γm.

Then there exists an equivalent instance (J, K ′) of the Compact Escape Problem where
J ∈ A(n+m)×(n+m) is in real Jordan normal form and K ′ is given by a formula involving
at most s + 3m polynomial equations and equalities P ▷◁ 0 where P ∈ Z[x1, . . . , xn+m] is a
polynomial in n + m variables of degree at most δ · d whose coefficients are bounded in bitsize
by τ + d(log(2n) + log(δ + 1) + σ), where σ depends polynomially on n and the bitsize of the
entries of A.

By Appendix A we can compute in polynomial time real algebraic numbers γ1, . . . , γm

and a matrix Q ∈ Q(γ1, . . . , γm)n×n such that A = QJQ−1, where J is in real Jordan normal
form.

More precisely, we can compute in polynomial time:
1. Univariate polynomials with integer coefficients f1, . . . , fm such that fj(γj) = 0 for all

j = 1, . . . , m.
2. Rational numbers a1, b1, . . . , am, bm, such that γj is the unique root of fj in the interval

[aj , bj ]..
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3. For i = 1, . . . , n and j = 1, . . . , n polynomials of degree at most δ Qi,j ∈ Q[x] and indexes
ℓi,j such that the matrix Q at row i and column j is given by the algebraic number
Qi,j(γℓi,j

).

Let σ ∈ N be a common bound on the following quantities:

1. The bitsize of the coefficients of f1, . . . , fm.
2. The bitsize of the endpoints of the isolating intervals [aj , bj ].
3. The bitsize of the coefficients of the polynomials Qj,k.

Then σ is computable in polynomial time from A, so that it depends polynomially on n

and the bitsize of the entries of A.
We fix K ′ = (Q−1K) × {γ1, . . . , γm}1 and note that Akx ∈ K if and only if

(J × Im)k(Q−1x, (γ1, . . . , γm)) ∈ (Q−1K) × {(γ1, . . . , γm)}.

Thus, it remains to show that there exists a description of the set K ′ with the claimed
complexity.

Let Φ(x1, . . . , xn) be the formula that describes K. We introduce fresh variables z1, . . . , zm

and consider the formula

Ψ(z1, . . . , zm) ∧ Φ̂(x1, . . . , xn, z1, . . . , zm)

where Ψ(z1, . . . , zm) is the conjunction of the terms

fj(zj) = 0 ∧ zj ≥ aj ∧ zj ≤ bj

which ensures zj = γj for j = 1, . . . , m, and Φ̂ is obtained from Φ by replacing each atom
P (x1, . . . , xn) ▷◁ 0 in Φ by the atom

P

(
n∑

k=1
Q1,k(zℓ1,k

)xk, . . . ,

n∑
k=1

Qn,k(zℓn,k
)xk,

)
▷◁ 0.

It is not hard to see that this new formula describes the set K ′. Evidently, the number of
variables in this description is n + m. The formula Ψ involves 3m polynomials of degree at
most δ whose coefficients are bounded in bitsize by σ.

It remains to determine the complexity of the formula Φ̂. We claim that the degrees of
the polynomials in Φ̂ are bounded by δ · d and that the bitsize of their coefficients is bounded
by τ + d(log(n) + log(δ + 1) + σ). This is established by a straightforward but cumbersome
calculation. We recall the multinomial theorem:

▶ Lemma 17 (Multinomial theorem). Let R be a ring. Let N be a positive integer. Let
z1, . . . , zN ∈ R. Then(

N∑
k=1

zk

)e

=
∑

j1+···+jN =e

(
e

j1, . . . , jN

) N∏
t=1

xjt

t ,

where(
e

j1, . . . , jN

)
= e!

j1! · · · · · jN ! .

1 The last m coordinates are added to allow us to manipulate these constants within the description of
K′ through a formula.
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It will be convenient to make use of the following straightforward application of the
distributivity law of multiplication over addition:

▶ Lemma 18. Let I be a finite set. Let J be a set-valued function that sends each i ∈ I to a
finite set J(i). Let R be a ring. For all (i, j) ∈ I ×

∐
i∈I J(i), let ai,j be an element of R.

Then we have∏
i∈I

∑
j∈J(i)

ai,j =
∑

f

∏
i∈I

ai,f(i)

where f ranges over all functions

f : I →
∐
i∈I

J(i)

satisfying f(i) ∈ J(i) for all i ∈ I.

Now, let P (x1, . . . , xn) ▷◁ 0 be an atom in Φ. This atom is a sum of monomials

C · xe1
1 · · · · · xen

n

with log |C| ≤ τ and e1 + · · · + en ≤ d. It suffices to bound the degrees and the bitsize of the
coefficients of the polynomials that are obtained by applying our substitution of variables to
monomials of this form.

Under our substitution such a monomial becomes:

C ·

 n∑
j=1

Q1,j(zℓ1,j )xj

e1

· · · · ·

 n∑
j=1

Qn,j(zℓn,j )xj

en

= C

n∏
k=1

 n∑
j=1

Qk,j(zℓk,j
)xj

ek

.

Apply the multinomial theorem to the expressions
(∑n

j=1 Qk,j(zℓk,j
)xj

)ek

to obtain:

C ·
n∏

k=1

 ∑
jk,1+···+jk,n=ek

(
ek

jk,1, . . . , jk,n

) n∏
t=1

(
Qk,t(zℓk,t

)xt

)jk,t


Write

Qk,t(zℓk,t
) =

δ∑
p=0

αk,t,pzp
ℓk,t

.

Applying the multinomial theorem to the terms

(
Qk,t(zℓk,t

)xt

)jk,t =
(

δ∑
p=0

αk,t,pzp
ℓk,t

xt

)jk,t

we obtain

(
Qk,t(zℓk,t

)xt

)jk,t =
∑

r0+···+rδ=jk,t

(
jk,t

r0, . . . , rδ

) δ∏
s=0

αrs

k,t,szsrs

ℓk,t,s
xrs

t .

The full expression is hence:

C ·
n∏

k=1

 ∑
jk,1+···+jk,n=ek

(
ek

jk,1, . . . , jk,n

) n∏
t=1

∑
r0+···+rδ=jk,t

(
jk,t

r0, . . . , rδ

) δ∏
s=0

αrs

k,t,szsrs

ℓk,t,s
xrs

t

 .
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Write this as:

C ·
n∏

k=1

∑
jk,1+···+jk,n=ek

(
ek

jk,1, . . . , jk,n

) n∏
t=1

∑
r0+···+rδ=jk,t

ck,jk,1,...,jk,n,t,r0,...,rδ
.

Apply Lemma 18 to move out the innermost sum, thus obtaining an equal expression:

C ·
n∏

k=1

 ∑
jk,1+···+jk,n=ek

∑
f

(
ek

jk,1, . . . , jk,n

) n∏
t=1

ck,jk,1,...,jk,n,t,f(t)

 .

where the sum
∑

f ranges over all functions f : {1, . . . , n} → Nδ with f(t) = (r0, . . . , rδ)
satisfying r0 + · · · + rδ = jk,t.

Write the result as:

C ·
n∏

k=1

∑
jk,1+···+jk,n=ek

∑
f

dk,jk,1,...,jk,n,f .

Apply Lemma 18 again to obtain that this is equal to:∑
g

C ·
n∏

k=1
dk,g(k),

where g ranges over all functions g : {1, . . . , n} → Nn×(Nδ){1,...,n} with g(k) = (jk,1, . . . , jk,n, f)
satisfying jk,1 + · · · + jk,n = ek and f as above.

Thus, the final result is a sum of monomials of the form

C ·
n∏

k=1
dk,g(k) = C ·

n∏
k=1

(
ek

jk,1, . . . , jk,n

) n∏
t=1

ck,jk,1,...,jk,n,t,f(t)

= C ·
n∏

k=1

(
ek

jk,1, . . . , jk,n

) n∏
t=1

(
jk,t

r0(t), . . . , rδ(t)

) δ∏
s=0

α
rs(t)
k,t,s z

srs(t)
ℓk,t,s

x
rs(t)
t ,

Where jk,1 +· · ·+jk,n = ek and r0(t), . . . , rδ(t) are functions of t satisfying r0(t)+· · ·+rδ(t) =
jk,t.

The degrees of these monomials are bounded by δ · d.
Let us compute a bound on the bitsize of the coefficients. We have:

log
(

|C| ·
n∏

k=1

(
ek

jk,1, . . . , jk,n

) n∏
t=1

(
jk,t

r0(t), . . . , rδ(t)

) δ∏
s=0

|αk,t,s|rs(t)

)

≤ τ +
n∑

k=1
log
(

ek

jk,1, . . . , jk,n

)
+

n∑
k=1

n∑
t=1

log
(

jk,t

r0(t), . . . , rδ(t)

)
+

n∑
k=1

n∑
t=1

δ∑
s=0

rs(t)σ.

Use the estimate
(

f
k1,...,km

)
≤ mf to obtain:

log
(

|C| ·
n∏

k=1

(
ek

jk,1, . . . , jk,n

) n∏
t=1

(
jk,t

r0(t), . . . , rδ(t)

) δ∏
s=0

|αk,t,s|rs(t)

)

≤ τ +
n∑

k=1
ek log(n) +

n∑
k=1

n∑
t=1

jk,t log(δ + 1) +
n∑

k=1

n∑
t=1

δ∑
s=0

rs(t)σ.

≤ τ + d log(n) + d log(δ + 1) + dσ.

= τ + d(log(n) + log(δ + 1) + σ).

Thus, everything is shown.
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C Proof of Lemma 8

Recall the following classic theorem due to Mignotte [16].

▶ Theorem 19 (Mignotte). Let P ∈ Z[x] be a square-free univariate polynomial of degree at
most d, whose coefficients have absolute value bounded by H. Let α ≠ β be distinct roots of
P . Then

|α − β| >

√
3

(d + 1)d+2Hd−1 .

We obtain the following more explicit version of Lemma 8:

▶ Lemma 20. Let λ be a complex algebraic number of degree d and height H. Assume that
|λ| ≠ 1. Then

||λ| − 1| >
1√

3(2d + 2)2d+322d(d!)2d(d + 1)2d(d−1)H2d2 .

Proof. The numbers λ and λ̄ are roots of the same minimal polynomial P of degree d

and height H. It follows that the number |λ|2 = λλ̄ is a root of the polynomial Q(x) =
resz

(
P (x), xdP (z/x)

)
, where resz(A, B) denotes the resultant of the polynomials A, B ∈

Q[x][z] with coefficients in the integral domain Q[x], cf. e.g. [8, p. 159].
The degree of Q(x) is at most 2d. By [4, Theorem 10] the height of Q(x) is bounded by

H ′ = d!(d + 1)d−1Hd.

The polynomial Q(x)(x − 1) has degree at most 2d + 1 and height at most 2H ′.
It follows from Theorem 19 that

∣∣|λ|2 − 1
∣∣ >

√
3

(2d + 2)2d+3(2H ′)2d
.

Note that
∣∣|λ|2 − 1

∣∣ = ||λ| − 1| · ||λ| + 1|. If |λ| > 2 then the claim is trivial, so we may
assume that ||λ| + 1| ≤ 3, yielding

||λ| − 1| >

√
3

3(2d + 2)2d+3(2H ′)2d
= 1√

3(2d + 2)2d+322d(d!)2d(d + 1)2d(d−1)H2d2 .

◀

D Proof of Theorem 12

Recall Dirichlet’s theorem on simultaneous Diophantine approximation:

▶ Theorem 21 (Dirichlet). Let φ1, . . . , φN ∈ R be arbitrary real numbers. Let M ∈ R with
M ≥ 1. Then there exist integers q, p1, . . . , pN with 1 ≤ q ≤ M such that

|qφj − pj | < 1
qM1/N .

Throughout this section, let ∥·∥ denote the distance to the closest integer. We recall that
Kronecker’s theorem has two equivalent formulations: a discrete one and a continuous one.
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▶ Theorem 22 (Kronecker’s Theorem - Discrete Formulation). Let φ1, . . . , φN be real numbers,
linearly independent over Q. Let ζ1, . . . , ζN be arbitrary real numbers. Let ε > 0. Then there
exists a real number t such that for all j:

∥φjt − ζj∥ < ε.

▶ Theorem 23 (Kronecker’s Theorem - Continuous Formulation). Let 1, φ1, . . . , φN be real
numbers, linearly independent over Q. Let ζ1, . . . , ζN be arbitrary real numbers. Let ε > 0.
Then there exists an integer t such that for all j:

∥φjt − ζj∥ < ε.

The standard proof of equivalence of the two formulations in particular allows us to
translate a quantitative version of the continuous formulation into a Quantitative version of
the discrete formulation:

▶ Corollary 24. Let φ1, . . . , φN and ζ1, . . . , ζN be arbitrary real numbers. Let ε > 0. Let
q, p1, . . . , pN be integers such that |qφj − pj | < ε. If there exists a real number 0 ≤ t ≤ T

such that for all j we have

∥(qφj − pj)t − ζj∥ < ε/2,

then there exists an integer k ≤ |q|T such that for all j we have

∥φjk − ζj∥ < ε.

Proof. By assumption there exist integers r1, . . . , rN such that we have

|(qφj − pj)t − ζj − rj | < ε/2.

Write t = ℓ + δ with ℓ ∈ Z and |δ| ≤ 1
2 . We obtain:

|qℓφj + qδφj − ℓpj − δpj − ζj − rj | < ε/2.

It follows that

∥qℓφj − ζj∥ ≤ |qℓφj − ℓpj − ζj −rj | ≤ |qℓφj + qδφj − ℓpj − δpj − ζj −rj |+ |qδφj − δpj | < ε.

Thus, we may let k = qℓ. ◀

▶ Theorem 25. Let λ1, . . . , λN and α1, . . . , αN be complex numbers of modulus 1. Let
1/2 > ε > 0 be a positive real number. Assume that λ1, . . . , λN are algebraic numbers such
that the numbers log λ1, . . . , log λN , 2πi are linearly independent over Q. Let d be the degree
of the field extension Q(λ1, . . . , λN ) over Q . Let A1, . . . , AN ≥ exp(1) be upper bounds on
the heights of λ1, . . . , λN . Then there exists a positive integer

t ≤ 8π
( 2π

ε

)N
(

2N
( 2π

ε

)N ⌈ 4π
ε log 4πN

ε

⌉)(16(N+1)d)2(N+3) log A1·····log AN

such that |λt
j − αj | < ε for all j ∈ {1, . . . , N}.

Proof. Let log denote the determination of the logarithm where the imaginary part of log z

is in the interval [0, 2π). Write log λj = 2πiϑj and log αj = 2πiβj . Let B =
( 2π

ε

)N . Using
Theorem 21, choose integers q, p1, . . . , pN with 1 ≤ q ≤ B such that

|qϑj − pj | < 1
B1/N = ε

2π .
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Let

M =
⌈ 4π

ε log 4πN
ε

⌉
.

Let m ∈ ZN \ {0} with |m| ≤ M . Then

|m1(qϑ1 − p1) + · · · + mN (qϑN − pN )|
= 1

2π |m1(q2πiϑ1 − p12πi) + · · · + mN (q2πiϑN − pN 2πi)|
= 1

2π |qm12πiϑ1 + · · · + qmN 2πiϑN − (m1p1 + · · · + mN pN )2πi|
= 1

2π |qm1 log λ1 + · · · + qmN log λN − 2(m1p1 + · · · + mN pN ) log(−1)| .

By assumption the above quantity is non-zero, so Theorem 11 yields a uniform lower bound

δ = 1
2π B−(16(N+1)d)2(N+3) log A1·····log AN ,

where B is a bound on the size of the coefficients qmj and 2(m1p1 + · · · + mN pN ). We have
by construction |q| ≤ B and |mj | ≤ M . Since θj ≤ 1 we may choose pj ≤ q ≤ B. It follows
that we may choose B = 2NMB.

We have hence established an estimate

|m1(qϑ1 − p1) + · · · + mN (qϑN − pN )| > δ > 0

for all m ∈ ZN \ {0} with |m| ≤ M . Now, Theorem 10 asserts the existence of a real number
t0 ∈ [0, 4/δ] and integers s1, . . . , sN ∈ Z such that

|(qϑj − pj)t0 − βj − sj | < ε
4π .

Corollary 24 yields the existence of a positive integer t ≤ 4
δ

( 2π
ε

)N and r1, . . . , rN ∈ Z such
that

|ϑjt − βj − rj | < ε
2π .

By the mean value inequality it follows that

|λt − αj | < ε.

◀

D.1 Admitting integer multiplicative relations
▶ Proposition 26. Given complex algebraic numbers λ1, . . . , λm of modulus 1 we can compute
in polynomial time positive integers 1 ≤ s ≤ m, 1 ≤ j1 ≤ · · · ≤ js ≤ m, ℓ ∈ N, and multi-
indexes εj ∈ Zs for j = 1, . . . , m such that λj1 , . . . , λjs

do not admit any integer multiplicative
relations and λℓ

j = (λj1 , . . . , λjs
)εj for j = 1, . . . , m.

Proof. By Theorem 7 we can compute in polynomial time a finite sequence of multi-indexes
β1, . . . , βm−s such that the free Abelian group

L = {α ∈ Zm | (λ1, . . . , λm)α = 1}

is generated by β1, . . . , βm. Further, the size of the βj ’s is bounded polynomially in the sum
of the heights and degrees of λ1, . . . , λm.



J. D’Costa, E. Lefaucheux, E. Neumann, J. Ouaknine, and J. Worrell 21

Bring the matrix with rows β1, . . . , βm−s into upper triangular form. This can be
done in polynomial time. This yields indexes j1, . . . , js, positive numbers ℓ1, . . . , ℓm, and
multi-indexes η1, . . . , ηm such that

λ
ℓj

j = (λj1 , . . . , λjs
)ηj .

Let ℓ = lcm(ℓ1, . . . , ℓm) and εj = ℓ/ℓjηj . ◀

Note that the bitsize of ℓ and ε1, . . . , εm are bounded polynomially in the input data, but
their total size may be exponential.

▶ Proposition 27. Let 1 ≤ s ≤ m be positive integers. Let ℓ ∈ Z. Let εs+1, . . . , εm ∈ Zs be
multi-indexes. Let

f : Ts → Tm, f(z1, . . . , zs) =
(
zℓ

1, . . . , zℓ
s, (z1, . . . , zs)εs+1 , . . . , (z1, . . . , zs)εm

)
.

Then, with respect to the ℓ∞-norm, f is Lipschitz-continuous with Lipschitz constant

max
{

ℓ,

s∑
k=1

|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

Proof. Observe that f extends to a differentiable function of type Cs → Cm. Let (z1, . . . , zs) ∈
Ds be a point in the unit polydisk. Let Df(z1, . . . , zs) denote the Jacobian of f at (z1, . . . , zs).
By the mean value inequality it suffices to compute a bound on the operator norm of
Df(z1, . . . , zs). An elementary calculation shows

∥Df(z1, . . . , zs)∥∞ = max
{

ℓ,

s∑
k=1

|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

◀

▶ Proposition 28. Let 1 ≤ s ≤ m be positive integers. Let ℓ ∈ Z. Let εs+1, . . . , εm ∈ Zs be
multi-indexes. Let λ1, . . . , λs be complex algebraic numbers of modulus 1 which do not admit
any integer multiplicative relations. Let

f : Ts → Tm, f(z1, . . . , zn) =
(
zℓ

1, . . . , zℓ
s, (z1, . . . , zs)εs+1 , . . . , (z1, . . . , zs)εm

)
.

Then the closure of the sequence (f(λt
1, . . . , λt

s))t∈N is equal to the range of f over Ts.

Proof. By Kronecker’s theorem 6 the sequence ((λt
1, . . . , λt

s))t∈N is dense in the torus Ts.
Let A = {(λt

1, . . . , λt
s) | t ∈ N}. Since f is continuous we have f(A) ⊇ f(A). Since Ts

is compact, the range f(Ts) is closed, so that we have f(Ts) ⊇ f(A). It follows that
f(A) = f(Ts) = f(A). ◀

▶ Theorem 29. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Assume that the
numbers 2πi, log λ1, . . . , log λs are linearly independent over the rationals, where 0 ≤ s ≤ m.
Let d be the degree of the field extension Q(λ1, . . . , λs). Let A1, . . . , As ≥ exp(1) be upper
bounds on the heights of λ1, . . . , λs. Let ℓ ∈ N, and εs+1, . . . , εm ∈ Zs be such that

λℓ
j = (λ1, . . . , λs)εj

for all j = s + 1, . . . , m. By convention, if s = 0 the right-hand side of the above equation is
to be taken equal to 1.
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Let

L = max
{

ℓ,

s∑
k=1

|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

Let α1, . . . , αm ∈ Tm be such that any rational linear relation between the numbers
2πi, log λ1, . . . , log λm is also satisfied by the numbers 2πi, log α1, . . . , log αm. Let ε > 0.
Then there exists a positive integer

t ≤ 8πℓ
( 2πL

ε

)s (2s 2πL
ε

⌈ 4πL
ε log 4πsL

ε

⌉)(16(s+1)d)2(s+3) log A1·····log As + ℓ

such that
∣∣λt

j − αj

∣∣ < ε for j = 1, . . . , m.

Proof. Divide the sequence (λt
1, . . . , λt

m)t∈N into ℓ disjoint subsequences

(λℓt+j
1 , . . . , λℓt+j

m )t∈N = (λj
1λℓt

1 , . . . , λj
sλℓt

s , λj
s+1(λ1, . . . , λs)tεs+1 , . . . , λj

m(λ1, . . . , λs)tεm)t∈N.

for j = 0, . . . , ℓ − 1.
By Proposition 27, the closure of the sequence (λℓt+j

1 , . . . , λℓt+j
m )t is the set

Cj =
{

(λj
1ze

1, . . . , λj
sze

s , λj
s+1(z1, . . . , zs)εs+1 , . . . , λj

m(z1, . . . , zs)tεm) | (z1, . . . , zs) ∈ Ts
}

.

Hence, the closure of the sequence (λt
1, . . . , λt

m)t is the union of the sets Cj .
Let (z1, . . . , zm) be contained in the closure of the sequence (λt

1, . . . , λt
m). Let j be such

that (z1, . . . , zm) ∈ Cj .
Since the numbers λj have modulus 1, the function

fj(z1, . . . , zs) =
(

λj
1zℓ

1, . . . , λj
szℓ

s, λj
s+1(z1, . . . , zs)εs+1 , . . . , λj

m(z1, . . . , zs)εm

)
is Lipschitz-continuous with Lipschitz constant L. Let t(ε) denote the bound from Theorem
25, as a function of ε. By definition there exists t ≤ t(ε/L) such that

|fj(λt
1, . . . , λt

s) − (z1, . . . , zm)| < ε.

We have fj(λt
1, . . . , λt

s) = (λℓt+j
1 , . . . , λℓt+j

m ). The sequence index ℓt + j is smaller than
ℓ (t(ε/L) + 1). ◀

E Proof of Lemma 5

▶ Lemma 30. There exists an integer function Sep(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let K and L be compact semialgebraic sets of complexity at most (n, d, τ). Assume that
every x ∈ K has positive euclidean distance to L. Then infx∈K distℓ2(x, L) > 1/ Sep(n, d, τ).

Proof. If either K or L are empty then the result is trivial. Thus, let us assume that both
sets are non-empty.

Consider the semialgebraic set

S =
{

(x, y) ∈ K × L | ∀z ∈ L.
(

∥x − z∥2
2 ≥ ∥x − y∥

)}
.

By Theorem 2 the set S has complexity (2n, (dτ)nO(1)
, (d, τ)nO(1)

). By compactness, the
distance distℓ2(x, L) is attained in a point y ∈ L for all x ∈ K, so that for all x ∈ K there
exists y ∈ L such that (x, y) ∈ S.
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We clearly have

inf
x∈K

distℓ2(x, L) = inf
(x,y)∈S

∥x − y∥2
2 . (1)

The right-hand side of (1) is a polynomial, so that the result follows from Theorem 4. ◀

F Proof of Lemma 14

We will first prove the following weaker version of Lemma 14, where we only establish an
escape bound and a lower bound on the distance to K for initial points in Krec.

▶ Lemma 31. There exists an integer function Rec0(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let A ∈ An×n be a matrix in real Jordan normal form. Assume that the minimal
polynomial of A has rational coefficients whose bitsize is bounded by τ . Let K ⊆ Rn be a
semialgebraic set of complexity at most (n, d, τ). If every point x ∈ Krec escapes K under
iterations of A then for all x ∈ Krec there exists t ≤ Rec0(n, d, τ) such that

distℓ2(Atx, K) >

√
n

Rec0(n, d, τ) .

For x ∈ Vrec, let

OA(x) =
{

Atx | t ∈ N
}

denote the orbit of x under A. Let OA(x) denote its closure. By Kronecker’s theorem 6, the
set OA(x) is semialgebraic.

The sequence (Atx)t∈N is dense in OA(x) by definition. A combination of Theorem 12
and Theorem 3 yields a quantitative refinement of this qualitative statement:

▶ Lemma 32. There exists an integer function D(n, d, τ, P ) ∈ 2(τP d)nO(1)

with the following
property:

Let A be a matrix in real Jordan normal form. Assume that the characteristic polynomial
of A has rational coefficients whose bitsize is bounded by τ . Let K be a compact semialgebraic
set of complexity at most (n, d, τ). Let P be a positive integer. Then for all x ∈ Krec and all
y ∈ OA(x) there exists t ≤ D(n, d, τ, P ) such that∥∥Atx − y

∥∥
2 < 2−P .

Proof. Let Kron(n, τ, P ) ∈ 2(τP )nO(1)

be the function from Corollary 13. Let Bound(n, d, τ) =
2τdβ(n+1) , where β is the constant from Theorem 3.

Put

D(n, d, τ, P ) = Kron (n, τ, P + ⌈log(n) + log (Bound(n, d, τ))⌉) .

It is easy to see that D(n, d, τ, P ) ∈ 2(τP d)nO(1)

as claimed.
To prove that D has the desired properties, let A and K be a matrix and a compact

semialgebraic set as above. Let P be a positive integer. For a matrix Q = (qi,j)n
i,j=1 ∈ Rn×n

Let

∥Q∥F =

 n∑
i=1

n∑
j=1

q2
i,j

1/2
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denote the Frobenius norm of Q. The Frobenius norm is sub-multiplicative and hence satisfies

∥Q · x∥2 ≤ ∥Q∥F · ∥(x, . . . , x)∥F = ∥Q∥F ·
√

n · ∥x∥2

for all x ∈ Rn.
Let C = Bound(n, d, τ). Let x ∈ Krec. Let y ∈ OA(x). Then, by Corollary 13, there exist

t ≤ Kron(n, τ, P + ⌈log(n) + log (Bound(n, d, τ))⌉) and Q ∈ Rn×n such that y = Qx and∥∥At − Q
∥∥

F
< 2−P −⌈log(n)+log(C)⌉ ≤ 2−P

√
nC

Hence:∥∥Atx − y
∥∥

2 =
∥∥(At − Q)x

∥∥
2 ≤

∥∥At − Q
∥∥

F
·
√

n · |x| < 2−P .

The last inequality uses that by 3 we have |x| ≤ C. ◀

Let A ∈ An×n be a matrix in real Jordan normal form. Assume that the characteristic
polynomial of A has rational coefficients of bitsize at most τ . Let K ⊆ Rn be a compact
semialgebraic set of complexity at most (n, d, τ). Assume that every point x ∈ Krec escapes
K under iterations of A.

By definition, a point x ∈ Krec escapes K under iterations of A if and only if there exists
y ∈ OA(x) such that distℓ2(y, K) > 0. Our next goal is to sharpen this to a uniform lower
bound on infx∈K sup

y∈OA(x) distℓ2(y, K). The main idea is to employ Theorem 4. Since
the function g(x) = sup

y∈OA(x) distℓ2(y, K) is not a polynomial, we construct an auxiliary
compact semialgebraic set in higher dimension that allows us to reduce the problem of
finding a uniform lower bound on g(x) to the problem of finding a uniform lower bound on a
polynomial. The idea is essentially the same as that of the proof of Lemma 5.

Let

OA =
{

(x, y) ∈ R2n | x ∈ Krec, y ∈ OA(x)
}

.

Let

S =
{

(x, y, z) ∈ R3n | x ∈ Krec, y ∈ OA(x), z ∈ K
}

= OA × K.

By compactness of K, the number

η = min
x∈Krec

max
y∈OA(x)

min
z∈K

∥y − z∥2
2 (2)

is strictly positive. Letting D(n, d, τ, P ) denote the function from Lemma 32, observe that
every point x ∈ Krec escapes K under at most

D (n, d, τ, ⌈log (1/η)⌉)

iterations of A. To obtain a bound on the escape time it hence suffices to obtain a bound of
(2) away from zero. This is achieved by expressing (2) as the minimum of a polynomial over
a compact semialgebraic set. To this end, we consider the set

S′ =
{

(x, y, z) ∈ R3n | x ∈ Krec, y ∈ OA(x), z ∈ K, ∀w ∈ OA(x). distℓ2(y, K) ≥ distℓ2(w, K)
}

.

Observe that

min
x∈Krec

max
y∈OA(x)

min
z∈K

∥y − z∥2
2 = min

(x,y,z)∈S′
∥y − z∥2

2 . (3)

This leads to two problems:
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1. Bound the complexity of OA (and thus of S) in terms of the complexity of A and K.
2. Bound the complexity of S′ in terms of the complexity of S.

Let us first bound the complexity of OA in terms of that of A and K.
Up to suitably permuting the dimensions, which does not affect the complexity, we may

assume that A takes the following form:

A =



Im1×m1

−Im2×m2

Λ1
. . .

Λm3

B


(4)

where Im×m is the m × m identity matrix, Λ1, . . . , Λm3 are 2 × 2 matrices corresponding
to the genuinely complex eigenvalues of A of modulus 1, and B is some matrix. With this
convention, Krec is the set of all x ∈ K with xj = 0 for j > m1 + m2 + m3.

Let

A0 =



Im1×m1

−Im2×m2

Λ1
. . .

Λm3

0


where 0 is the zero matrix of the same dimensions as B in (4). Clearly, the orbits OA(x)
and OA0(x) coincide for all x ∈ Krec.

Let

L =
{

(α1, . . . , αm3) ∈ Zm3 | Λα1
1 · · · · · Λαm3

m3 = I2×2
}

.

By Theorem 7 the abelian group L has a basis β1, . . . , βℓ with the magnitudes of β1, . . . , βℓ

bounded polynomially in the data that is used to describe the algebraic entries of the
matrices Λ1, . . . , Λm3 . Thus, by our assumption on the characteristic polynomial of A, we
have

∑
i,j |βi,j | = (τn)O(1).

By Kronecker’s theorem (Theorem 6), the closure of the set (At
0)t∈N in Rn×n is given by

the set of all matrices of the form

Im1×m1

σ · Im2×m2

Z1
. . .

Zm3

0


,

where σ ∈ {−1, 1} and Z1, . . . , Zm3 are 2 × 2 matrices satisfying

Z
βi,1
1 · · · · · Z

βi,m3
m3 = I2×2 (5)

for all i = 1, . . . , ℓ.
The size of the polynomials required to describe the relation (5) can be bounded by the

following straightforward lemma:
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▶ Lemma 33. Let M1, . . . , MN be 2×2 matrices with entries in a polynomial ring Z[x1, . . . , xk].
Let d be a bound on the total degree of all matrix entries. Let τ be a bound on the bitsize of
the coefficients of all matrix entries. Then the entries of the product M1 · · · · · MN have total
degree at most Nd and coefficients bounded in bitsize by Nτ + k(N − 1) log (d + 1).

Thus, the closure M of (At
0)t∈N is an algebraic set that can be described using at most

n2 polynomials in n2 variables, each of which has its degree bounded by a polynomial in n

and τ , and coefficients bounded in bitsize by a polynomial in n and τ .
We can hence describe OA by the following formula:

∃a1,1, . . . , a1,n, . . . , an,1, . . . , an,n.(x1, . . . , xn) ∈ K ∧

(
n∧

i=m1+m2+m3+1
(xi = 0)

)
∧ (ai,j)i,j=1,...,n ∈ M ∧

 n∧
i=1

yi =
n∑

j=1
ai,jxj

 .

This formula involves polynomials in n2 + n variables. Their degrees are bounded by
an expression in (dnτ)O(1) and their coefficients are bounded in bitsize by an expression
in (nτ)O(1). By applying singly-exponential quantifier elimination (Theorem 2) we obtain
that OA can be defined by a quantifier free formula involving polynomials of degree at most
(dτ)nO(1) whose coefficients have bitsize at most (dτ)nO(1) . The same bounds hold true for
the complexity of the set S = OA × K.

Let us now bound the complexity of the set S′. For w, y ∈ OA(x) the predicate
distℓ2(y, K) ≥ distℓ2(w, K) is expressed by the following first-order formula:

∃m, n, v. (v ∈ K ∧ n ∈ K ∧ v ∈ K ∧ (dℓ2(y, v) < dℓ2(y, m) ∨ dℓ2(w, v) < dℓ2(w, n) ∨ dℓ2(y, m) ≥ dℓ2(w, n))) .

Let us write this as ∃m, n, v.Φ(y, w, m, n, v). Hence, the predicate ∀w ∈ OA(x). distℓ2(y, K) ≥
distℓ2(w, K) can be written as

Ψ(x, y) = ∀w.∃m, n, v.
(

w /∈ OA(x) ∨ Φ(y, w, m, n, v)
)

.

Thus,

S′ =
{

(x, y, z) ∈ R3n | (x, y, z) ∈ S ∧ Ψ(x, y)
}

.

The formula Ψ(x, y) involves polynomials of degree at most (dτ)nO(1) and coefficients bounded
in bitsize by (dτ)nO(1) . Now, Theorem 2 yields a complexity bound for S′ of at most
(3n, (dτ)nO(1)

, (dτ)nO(1)).
By Theorem 4 we obtain the existence of a function

LowerBound′(n, d, τ) ∈ 2(dτ)nO(1)

such that the minimum of the polynomial (3) over the set S′ is bounded from below by
2

√
n

LowerBound′(n,d,τ) . This means that for all x ∈ Krec there exists y ∈ OA(x) such that

distℓ2(y, K) >
2
√

n

LowerBound′(n, d, τ)
.

Now, consider the function

Rec0(n, d, τ) = max{LowerBound′(n, d, τ), D(n, d, τ,
⌈
log
(
LowerBound′(n, d, τ)

)⌉
)} ∈ 2(dτ)nO(1)

.
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We claim that the function Rec0 has the property stated in Lemma 31. Let x ∈ Krec. Let
y ∈ OA(x) with distℓ2(y, K) > 2

√
n

LowerBound′(n,d,τ) . Then there exists t ≤ Rec0(n, d, τ) such
that∥∥Atx − y

∥∥
2 <

1
LowerBound′(n, d, τ)

≤
√

n

LowerBound′(n, d, τ)
.

For all z ∈ K we then have

∥∥Atx − z
∥∥

2 > ∥y − z∥2 −
∥∥Atx − y

∥∥
2 >=

√
n

LowerBound′(n, d, τ)
>

√
n

Rec(n, d, τ) .

This concludes the proof of Lemma 31. It remains to extend the result to all initial points
x ∈ Vrec. We first treat the special case where Krec is empty.

▶ Lemma 34. There exists an integer function EmptyBound(n, d, τ) ∈ 2(dτ)nO(1)

with the
following property:

Assume that Krec is empty. Let x ∈ Vrec. Then distℓ2(x, K) > 1/ EmptyBound(n, d, τ).

Proof. The function distℓ2(·, Vrec) is linear, and thus in particular a polynomial. By assump-
tion,

inf
x∈K

distℓ2(x, Vrec) > 0.

Now, Theorem 4 yields a lower bound of the desired shape. ◀

We begin with a technical lemma, which combines quantifier elimination with Lemma 5.

▶ Lemma 35. Assume that Krec is non-empty. Let C be a positive integer. Further assume
that Krec is contained in a ball of radius 2(dτ)nC

. Let x ∈ Vrec. If distℓ2(x, Krec) > 2−(dτ)nC

then distℓ2(x, K) > 2−(dτ)nC+O(1)

.

Proof. Consider the function distℓ2(x, K) on the set

L =
{

x ∈ Vrec | ∥x∥2 ≤ 2(dτ)nC

∧ distℓ2(x, Krec) ≥ 2−(dτ)nC
}

.

This set can be defined by the following first-order formula:

∀(y1, . . . , yn) ∈ Rn.∀(b0, . . . , bm) ∈ RnC

.((
(y1, . . . , yn) ∈ Krec ∧ b0 = 2 ∧ bi+1 = b

(dτ)
i

)
→ ∥x∥2

2 ≤ b2
m ∧ ∥x − y∥2

2 ≥ (1/bm)2
)

Applying quantifier elimination (Theorem 2), we find that the set L can be be defined by
a quantifier-free formula involving polynomials of degree (dτ)O(nC ) whose coefficients are
bounded in bitsize by (dτ)O(nC ).

It follows from Lemma 5 that every point in L has distance from K at least

1/ Sep(n, (dτ)O(nC), (dτ)O(nC )) = 2

(
−(dτ)O(nC )

)nO(1)

= 2−(dτ)nC+O(1)

◀
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Let us now turn to the proof of Lemma 5.
The function Rec(n, d, τ) is majorised by 2(dτ)nR

for some constant R. Let C ≥ R + 1
be such that K is contained in a ball of radius 2(dτ)nC

. Such a constant exists by Theorem
3. Let D be a constant such that all x ∈ Vrec with distℓ2(x, Krec) > 2−(dτ)nC

satisfy
distℓ2(x, K) > 2−(dτ)nC+D

. The constant D exists thanks to Lemma 35.
Let

Rec(n, d, τ) = max
{

EmptyBound(n, d, τ),
⌈√

n2(dτ)nC+D
⌉

,

⌈ √
n Rec0(n, d, τ)

√
n − 2−(dτ)nC Rec0(n, d, τ)

⌉}

Then, since we have chosen C ≥ R + 1, we have Rec(n, d, τ) ∈ 2(dτ)nO(1)

.
Let us now show that Rec has the desired property. If Krec is empty, then Rec has the

desired property by construction. Let us hence assume for the rest of the proof that Krec is
non-empty.

Let x ∈ Vrec. If distℓ2(x, K) > 2−(dτ)C+D then distℓ2(x, K) >
√

n/ Rec(n, d, τ)
Assume that distℓ2(x, K) ≤ 2−(dτ)C+D . Then by 35 we have distℓ2(x, Krec) ≤ 2−(dτ)nC

.
Choose y ∈ Krec such that ∥x − y∥2 < 2−(dτ)nC

. Then, by Lemma 31 there exists t ≤
Rec0(n, d, τ) such that

distℓ2(Aty, K) >
√

n/ Rec0(n, d, τ).

Since A is an isometry on Vrec, we have∥∥Atx − Aty
∥∥

2 = ∥x − y∥2 ≤ 2−(dτ)nC

.

It follows that

distℓ2(Atx, K) >
√

n/ Rec0(n, d, τ) − 2−(dτ)nC

>
√

n/ Rec(n, d, τ).

G Proof of Lemma 15

Let Jk be a real Jordan block of multiplicity k corresponding to either a real eigenvalue Λ or
a complex pair Λ = a ± ib. We use t to denote positive integer time-steps.

J t
k =


Λt tΛt−1 (

t
2
)
Λt−1 · · ·

(
t

k−1
)
Λt−k+1

0 Λt tΛt−1 · · ·
(

t
k−2
)
Λt−k+2

...
...

...
. . .

...
0 0 0 · · · tΛt−1

0 0 0 · · · Λt

 .

where Λ can be considered
[
a −b

b a

]
or a scalar quantity depending on the type of eigenvalue.

Thus we see that x(t) := J t
kx can be written component-wise as

xj(t) =
k∑

i=j

(
t

i − j

)
Λt−(i−j)xi,

where the ‘components’ x1 . . . xk refer to scalars (if the eigenvalue is real) or vectors (x(r)
j , x

(i)
j )

if the eigenvalue is complex.
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We will use absolute value signs to denote the Jordan norm ∥·∥J of a component xj . Note
this is the same as the ℓ2 norm since we consider only one component.

Then we have the following three lemmas, where we case split on the modulus of the
eigenvalue Λ, which we notate as γ, to obtain block-wise bounds on escape times for non-
recurrent eigenspaces:

These lemmas have the same structure as those in [10], however for convenience we
present the discrete case in full here, as [10] formulates them in the continuous case.

▶ Lemma 36 (Polynomially expanding Jordan block - γ = 1). Let C be a positive number
such that K is contained in the ℓ2-ball centred at 0 with radius C. Let x ∈ K. Assume there
exists j ≥ 2 with |xj | > ε in the Jordan block. Let N = 1

k

(
k2C

ε

)2k−1

. Then there exists j

and t ≤ N with |xj(t)| > C.

Proof. Given the set of equations

xj(t) =
k∑

i=j

(
t

i − j

)
Λt−(i−j)xi,

we want an N such that there exists j such that |xj(N)| > C.
Let j1 ≥ 2 be the smallest j such that |xj1 | > ε (we are given that such a component

exists). Consider the component

xj1−1(t) =
k∑

i=j1−1

(
t

i − j1 + 1

)
Λt−(i−j1+1)xi.

We set Nj1 = kC/ε. Observe that (note γ = 1)

|xj1−1(Nj1)| ≥ |(kC/ε)xj1 | − |xj1−1| −
k∑

i=j1+1

∣∣∣∣( Nj1

(i − j1 + 1)

)
Λt−(i−j1+1)xi

∣∣∣∣
Since the first term is larger than kC and the second term is smaller than C, the only way
|xj1−1(Nj1)| could be less than C (and thus not escape K) is if one of the later terms is
larger than C. Let j2 be the highest index such that

∣∣∣xj2

( Nj1
j2−j1+1

)∣∣∣ ≥ C. Note that j2 > j1.
We now have a lower bound on a higher index coefficient, namely |xj2 |

( Nj1
j2−j1+1

)
≥ C. We

now repeat the process with the component

xj2−1(t) = Λtxj2−1 +
(

t

1

)
Λt−1xj2 +

k∑
i=j2+1

(
t

i − j2 + 1

)
Λt−(i−j2+1)xi

We have |xj2 |
( Nj1

j2−j1+1
)

≥ C thus setting Nj2 > k
( Nj1

j2−j1+1
)

ensures that |Nj2xj2 | > kC.
Continuing this process, we will either find a component that escapes the set or move on

to a component with higher index, which can happen at most k − 1 times, because we have
the constraints j1 ≥ 2, ∀m, jm ≤ k, and jm > jm−1. This gives us a recursive definition for
the bound, which is

Njm
> k

(
Njm−1

jm − jm−1 + 1

)
We wish to find an upper bound on N = NM , the time by which we are guaranteed that

at least one component escapes, subject to the constraints j1 ≥ 2, jM ≤ k, and jm > jm−1.
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We can solve the recursive inequality by weakening it (since we only need an upper bound
on N) to

Njm
> (kNjm−1)jm−jm−1+1.

Note that pulling the constant k into the exponentiated part is valid because jm−jm−1+1 > 2
always. Setting Sjm

= kNjm
, we get Sjm

> S
jm−jm−1+1
jm−1

, Sj1 = k2C/ε, which reduces to

SjM
>

(
k2C

ε

)∏M

m=2
(jm−jm−1+1)

The term
∏M

m=2(jm − jm−1 + 1) is maximised when for all m, jm = jm−1 + 1, thus in the
worst case we have

SjM
>

(
k2C

ε

)2k−1

Thus we have a bound for a modulus-1-eigenvalue component to escape, which is

N = 1
k

(
k2C

ε

)2k−1

.

◀

▶ Lemma 37 (Exponentially expanding Jordan block - γ > 1). Let C be a positive number
such that K is contained in the ℓ2-ball centred at 0 with radius C. Let x ∈ K. Assume there
exists j ≥ 2 with |xj | > ε in the Jordan block. Let N = 2k−1 log(kC/ε)

log γ . Then there exists j

and t ≤ N with |xj(t)| > C.

Proof. The proof is very similar in structure to the modulus-1-eigenvalue case, though the
presence of an exponential factor gives us a much better bound.

By construction of ε, there exists j1 ≥ 2 such that |xj1 | > ε. Consider the component

xj1(t) =
k∑

i=j1

(
t

i − j1

)
Λt−(i−j1)xi.

Set Nj1 = log(kC/ε)
log γ and observe that

|xj1(Nj1)| ≥ |Λ
log(kC/ε)

log γ xj1 | −
k∑

i=j1+1

∣∣∣∣( Nj1

i − j1

)
ΛNj1 −(i−j1)xi

∣∣∣∣ .
Since the first term is larger than kC, the only way |xj1(Nj1)| can be less than C (and thus
not escape the set) is if one of the later terms is larger than C. Let j2 be the highest index
such that

∣∣∣( Nj1
j2−j1

)
ΛNj1 −(j2−j1)xj2

∣∣∣ ≥ C. Note that j2 > j1. We now have a lower bound on
a higher index coefficient, namely

( Nj1
j2−j1

)
γNj1 −(j2−j1) |xj2 | ≥ C. Now we repeat the process

with the component

xj2(t) = Λtxj2 +
k∑

i=j2+1

(
t

i − j2

)
Λt−(i−j2)xi
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We want |Λtxj2 | > kC, so it is enough to set

γNj2 > k

(
Nj1

j2 − j1

)
γNj1 −(j2−j1).

Similarly to the previous lemma, this gives us a recursive definition for the bound, which is

Njm − Njm−1 >
log
( Njm−1

jm−jm−1

)
log γ

+ log k

log γ
− (j2 − j1).

For N sufficiently larger than k (which we may easily assume), we can weaken this
inequality to

Njm > 2Njm−1 + log k

log γ
,

which is easily solved to get

NM > 2M−1Nj1 − log k

log γ
.

As M ≤ k and NJ1 = log(kC/ε)
log γ we have a bound for a positive-eigenvalue component to

escape, which is

N ≤ 2k−1 log(kC/ε)
log γ

.

◀

▶ Lemma 38 (Exponentially shrinking Jordan block: γ < 1). Let C ≥ n be a positive number
such that K is contained in the ℓ2-ball centred at 0 with radius C. Let x ∈ K. Let ε be a
positive real number. Let N = 4k

log(1/γ) log
(

2k
log(1/γ)

)
+ 2 log(kC/ε)

log(1/γ) . Then there exists t ≤ N

with |xj(t)| < ε for all j in the block.

Proof. If γ = 0 then we have xj(n) = 0 for all j in the block, so that we may assume γ > 0
for the rest of the proof.

We have the equations

xj(t) =
k∑

i=j

(
t

i − j

)
Λt−(i−j)xi,

For any j, we have the result

|xj(t)| ≤
k∑

i=j

(
t

i − j

)
· |Λt−(i−j)xi| < kC(et/k)kγt−k,

where the second inequality is obtained via standard bounds on binomial coefficients
In order to have |xj(t)| < ε, it is enough to have kC(et/k)kγt−k < ε, which is equivalent

(after weakening slightly by dropping irrelevant terms )to t > k
log(1/γ) log t + log(kC/ε)

log(1/γ) .
Here we need a small technical lemma.

▶ Lemma 39 ([21, Lemma A.1, Lemma A.2]). Suppose a ≥ 1 and b > 0, then t ≥ a log t + b

if t ≥ 4a log(2a) + 2b.
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Applying this lemma we get a bound on N such that for all j ≤ k, xj(N) < ε, namely

N ≤ 4k

log(1/γ) log
(

2k

log(1/γ)

)
+ 2 log(kC/ε)

log(1/γ) .

◀

We now show that the time to leave K≥ε is doubly exponential in the ambient dimension,
singly exponential in the rest of the input data, and inverse polynomial in ε.

▶ Lemma 40 (Non-recurrent overall bound). There exists a positive integer constant L with
the following property:

Let K be a semialgebraic set of complexity at most (n, d, τ). Let A ∈ An×n be a matrix
in real Jordan normal form. Assume that the characteristic polynomial of A has rational
coefficients, bounded in bitsize by τ . Let ε be a positive real number. Define a partition of K

into Krec, K<ε and K≥ε as described in Section 3. Let

N≥ε =
(

1
ε

)2n

· 2(τ ·d)Ln

.

Then for all x ∈ K≥ε there exists t ≤ N≥ε such that Atx /∈ K≥ε, which is to say, we have
either escaped the set K completely or moved into K<ε ∪ Krec.

Proof. Since x ∈ K≥ε, we start with at least one component greater than ε in Jordan norm.
This allows us to leverage the block-wise bounds.

Let N≥ε = 2 maxγ{Nγ}, where Nγ ranges over the possible bounds depending on the
size of the eigenvalues of A. Within a time N≥ε/2 = maxγ{Nγ}, thanks to the analysis of
the block-wise bounds, there are three possibilities:

the orbit has increased in size beyond C and has thus left K. This occurs if there was a
component associated to an expanding eigenvalue that was larger than ε in Jordan norm;
all components are now smaller than ε, thus leaving K≥ε (by entering K<ε );
some component corresponding to an expanding eigenvalue which was originally less than
ε has become greater than ε. In this case, waiting another N≥ε/2 amount of time puts
the trajectory in the first case, ensuring it escapes.

Thus in all cases the trajectory has escaped by time N≥ε.
We now explicitly compute N≥ε by using the complexity of K and A to bound the three

possibilities, namely

N = 4k

log(1/γ) log
(

2k

log(1/γ)

)
+ 2 log(kC/ε)

log(1/γ) .

(shrinking eigenvalue γ),

N = 2k−1 log(kC/ε)
log γ

.

(exponentially expanding eigenvalue γ) and

N = 1
k

(
k2C

ε

)2k−1

.

(modulus 1 eigenvalue), where k is the multiplicity of the Jordan block and thus k ≤ n, the
dimension.

We now compute bounds on log γ and C in terms of K and A.
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Bounding log γ: Let τ be a bound on the bitsize of the coefficients of the minimal polynomial
of the eigenvalues of A as well as a bound on the total bitsize of K.

Using the fact that x/2 < log(1 + x) < x for |x| << 1, Lemma 8 yields a constant R

satisfying 1
log γ < 2(τn)R .

Bounding C: Let d bound the degree of the polynomials defining K. Then from Theorem
3 we have the existence of a constant S satisfying C < 2(τ ·d)S(n+1) .

Plugging these bounds into the iteration bounds from the previous lemmas, and overap-
proximating for simplicity, we finally get the following bound: With a new constant Q based
on R and S, we have

N≥ε ≤
(

1
ε

)2n

· 2(2n·(τ ·d)S(n+1)) + (2 · τ · d)(τn)Q

+ log(1/ε) · 2(τn)Q

.

We can simplify this still further by amalgamating terms. Letting L be a new constant,
we set

N≥ε =
(

1
ε

)2n

· 2(τ ·d)Ln

.

Thus the time to leave K≥ε is doubly exponential in the dimension, singly exponential in the
rest of the input data, and inverse polynomial in ε. ◀

H Example of matching lower bound

In Section 8, we matched the bound using a rotational system which needed a doubly
exponential time to escape by the small hole in the circle. Here, we present another example
where the doubly exponential bound comes from the size of the set we define.

▶ Example 41. The construction of our first family of instances (K(n,d,τ), A(n,d,τ))(n,d,τ)∈N3

relies on the fact that one can define a compact semialgebraic set whose size is doubly-
exponential in the ambient dimension.

For (n, d, τ) ∈ N3, define K(n,d,τ) ⊆ Rn+1 as the set of all points (x1, . . . , xn, xu) satisfying
the (in)equalities:

xu = 1,

x1 = 2τ ,

For 1 ≤ i ≤ n − 2, xi+1 = xd
i ,

0 ≤ xn ≤ xd
n−1.

Thus, a point x ∈ Rn+1 belongs to K(n,d,τ) if and only if it is of the form
(

2τ , 2τd, . . . , 22τdn−2

, y, 1
)

where y ∈
[
0, 2τdn−1

]
.

We now define A(n,d,τ) to be the matrix which only adds 1 (through the coefficient xu)
to the penultimate coordinate:

A(n,d,τ) =


1 0 . . .

0 1 . . .
...

...
. . .

1 1
0 1
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Therefore, given an initial point x0 ∈ Kj , we have that xt = At
(n,d,τ)x0 = x0 + (0, . . . , 0, t, 0).

This sequence obviously escapes. The point (2τ , 2τd, . . . , 2τdn−2
, 0, 1) ∈ K(n,d,τ) requires

2τdn−1+1 iterations to escape. This is doubly exponential in the ambient dimension and
singly exponential in the rest of the data.
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