
Revisiting Digitization, Robustness, and Decidability for Timed Automata

Joël Ouaknine
Computer Science Department, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213, USA

Email: joelo@andrew.cmu.edu

James Worrell
Department of Mathematics, Tulane University

6823 St. Charles Ave., New Orleans LA 70118, USA

Email: jbw@math.tulane.edu

Abstract
We consider several questions related to the use of digitization tech-

niques for timed automata. These very successful techniques reduce
dense-time language inclusion problems to discrete time, but are ap-
plicable only when the implementation is closed under digitization and
the specification is closed under inverse digitization. We show that,
for timed automata, the former (whether the implementation is closed
under digitization) is decidable, but not the latter. We also investi-
gate digitization questions in connection with the robust semantics for
timed automata. The robust modelling approach introduces a timing
fuzziness through the semantic removal of equality testing. Since its
introduction half a decade ago, research into the robust semantics has
suggested that it yields roughly the same theory as the standard seman-
tics. This paper shows that, surprisingly, this is not the case: the robust
semantics is significantly less tractable, and differs from the standard
semantics in many key respects. In particular, the robust semantics
yields an undecidable (non-regular) discrete-time theory, in stark con-
trast with the standard semantics. This makes it virtually impossible to
apply digitization techniques together with the robust semantics. On
the positive side, we show that the robust languages of timed automata
remain recursive.

1. Introduction
Timed automata were introduced by Alur and Dill [2] and

have since become a standard modelling paradigm for real-time
systems. Unfortunately, the algorithmic analysis of timed au-
tomata is limited both by the (PSPACE-complete) complexity
of the emptiness problem (does a given timed automaton ac-
cept any timed trace?), and by the undecidability of the uni-
versality problem (does a given timed automaton accept every
timed trace?) [2]. Several attempts have been made to circum-
vent these difficulties, often by restricting or altering either the
syntax or the semantics of timed automata—see, e.g., [4], [15],
[3], [13].

Digitization techniques [17], [9], [8], [24], [7], [10], [20],
[21] have proved to be one of the most successful theoretical
and practical advances in tackling the problems at hand. Un-
der appropriate conditions, digitization techniques reduce the
dense-time language inclusion problem between two timed au-
tomata to discrete time, not only rendering it decidable but also

The first author was supported by the Defense Advanced Research Project
Agency (DARPA) and the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, and the Office of Naval Research (ONR) under contract
no. N00014-95-1-0520. The second author was supported by ONR and NSF.
The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of DARPA, ARO, ONR, NSF, the U.S. Government or any
other entity.

drastically speeding-up the verification process (see [12], [5],
[11], [25]). The twin prerequisites are that the implementa-
tion be ‘closed under digitization’, and that the specification be
‘closed under inverse digitization’.

It has often been noted that for real-world modelling and ver-
ification tasks, the restriction to implementations closed under
digitization is relatively unobtrusive, since any timed automa-
ton can always be safely infinitesimally over-approximated by
one that is closed under digitization (cf. Propositions 14 and
30). On the other hand, the most common specifications on
timed systems happen to be closed under inverse digitization
[17]. Nevertheless, it is clearly a problem of significant theoret-
ical and practical importance to be able to determine whether
a given timed automaton is closed under digitization and/or
closed under inverse digitization. One of the contributions of
this paper is a proof that the former is decidable, but not the
latter.

Another (related) complaint registered against the Alur-Dill
timed automata paradigm is the ‘excessive’ expressive power
timed automata derive through their ability to differentiate
points in time with infinite precision (see, e.g., [15], [23], [13],
[6], [14]). As a remedy, a robust semantics for timed automata
was proposed in [15], whereby a particular timed trace is ac-
cepted by a timed automaton if and only if neighbouring traces
are also accepted. It was originally believed that the robust se-
mantics might have a decidable universality problem, but this
was finally disproved in [18]. Up to now, the consensus has
since been that the robust semantics yields roughly the same
theory as the standard one [16], [15], [18]. In this paper, we
show that, surprisingly, this is not the case: the robust seman-
tics is significantly less tractable, and differs from the standard
semantics in many key respects, as we now detail.

The robust semantics for timed automata is based on a metric
on timed traces (sequences of visible events with real-valued
timestamps) whereby two timed traces are ‘close’ if each can
be obtained from the other by slight temporal perturbations of
the events’ timestamps. In the associated topology, open sets
of timed traces are termed ‘tubes’. The original formulation of
the robust semantics assigned sets of tubes to timed automata,
rather than sets of timed traces as in the standard (or precise)
semantics. It was postulated that a timed automaton should ac-
cept a given tube if and only if the set of timed traces it accepted
under the precise semantics was dense in the tube.

In order to facilitate the comparison between the robust and

precise semantics, it is preferable to work in a common setting.
We achieve this by considering the largest tube accepted by a
timed automaton, which we call the ‘robust language’ of the
automaton. Since an individual timed trace lies in the robust
language if and only if it belongs to some accepted tube, the
two formulations are equivalent.

Following this interpretation, we discover that the robust lan-
guages of timed automata closely resemble the precise lan-
guages of open timed automata. (A timed automaton is ‘open’
if all its clock constraints consist of positive boolean combina-
tions of strict inequalities, as in x < 3 rather than x 6 3.) In
both cases, whenever a timed trace is accepted, so are all other
neighbouring timed traces that are sufficiently close. As pointed
out in [18], the similarity between timed automata under the ro-
bust semantics and open timed automata can be made quite pre-
cise: the former restricts timed automata through the semantic
removal of (exact) equality testing, whereas the latter restricts
timed automata through the syntactic removal of equality. A
legitimate question is therefore whether the expressive powers
of these two formalisms are comparable. We show here, that,
surprisingly, the answer is negative: there are timed automata
whose robust languages cannot be captured as the precise lan-
guage of any timed automaton (and vice-versa).

The undecidability of the robust universality problem for
timed automata was established in [18], but the related mat-
ter of the universality problem for open timed automata was
left there as an open question. Very recently, we showed that
the answer depends on the monotonicity assumptions on time
[22]; more precisely, if time is assumed to be ‘strongly mono-
tonic’, in that no two events are allowed to occur at the same
time, then the universality problem for open timed automata
is undecidable. On the other hand, the problem becomes de-
cidable if time is assumed to be weakly monotonic. The crux
of this decidability result resides in the fact that, over weakly
monotonic time, open timed automata are closed under inverse
digitization.1 Note that the undecidability of the robust univer-
sality problem quoted above was obtained over strongly mono-
tonic time; since (as we shall see) robust timed automata are
also closed under inverse digitization over weakly monotonic
time, it seemed very likely that the corresponding universality
problem should too be decidable. We were very surprised to
discover that this was not the case.

Our ensuing investigation into the failure of digitization tech-
niques for timed automata under the robust semantics revealed
that the robust discrete-time languages of timed automata are
in general not regular; in particular, we show that the robust
discrete-time universality problem is undecidable, contrary to
the situation under the precise semantics.

We summarize the contributions of this paper as follows.
We study two decision problems underlying the applicability of
digitization techniques for timed automata: given a timed au-
tomaton, we show that it is decidable whether the automaton is
closed under digitization, and undecidable whether it is closed

1Digitization makes little sense over strongly monotonic time.

under inverse digitization. We also show that these results are
reversed under the robust semantics. We show that the expres-
sive powers of timed automata under the standard and robust
semantics respectively are incomparable. More generally, we
find that the robust semantics yields an undecidable discrete-
time theory, in stark contrast with the standard semantics. As a
result, it appears to be impossible to combine digitization tech-
niques with the robust semantics. On the positive side, we show
that the robust languages of timed automata remain recursive.

2. Timed Automata
We define timed automata together with their standard and

robust trace semantics, along the lines of [2], [15]. We also
define the d-topology, which is used heavily in the remainder
of this paper.

2.1. Syntax
Let C be a finite set of clocks, denoted x, y, z, etc. We de-

fine the set ΦC of clock constraints over C via the following
grammar (here k ∈ N is a non-negative integer).

φ ::= x < k | x 6 k | x > k | x > k | φ ∧ φ | φ ∨ φ .

Definition 1: A (mixed) timed automaton is a tuple
(Σ, S, S0, Sf , C,E), where

• Σ is a finite alphabet of events,
• S is a finite set of locations,
• S0 ⊆ S is a set of start locations,
• Sf ⊆ S is a set of accepting locations,
• C is a finite set of clocks, and
• E ⊆ S ×S ×ΦC ×Σ×P(C) is a finite set of transitions.

A transition (s, s′, φ, a,R) allows a jump from location s
to s′, communicating event a ∈ Σ in the process, provided
the constraint φ on clocks is met. Afterwards, all clocks in
R are reset to zero.

An open timed automaton is a timed automaton in which all
constraints φ ∈ ΦC on transitions are open, i.e., are generated
by the grammar φ ::= x < k | x > k | φ ∧ φ | φ ∨ φ.

A closed timed automaton is a timed automaton in which all
constraints on transitions are closed, i.e., are generated by the
grammar φ ::= x 6 k | x > k | φ ∧ φ | φ ∨ φ.

Remark 2: One finds many variants of these definitions in
the literature: allowing direct comparisons between clocks, e.g.,
x − y > k; allowing rational, rather than integral, bounds in
clock constraints; including invariant clock constraints on loca-
tions; nondeterministically resetting clocks in some ΦC-defined
sets, rather than to zero. It is however not difficult to verify that
all the results presented here extend straightforwardly to any
combination of these variants.

2.2. Precise and Robust Semantics; the d-Topology
Assume a timed automaton A = (Σ, S, S0, Sf , C,E).
A clock interpretation is a function ν : C −→ R+, where

R+ stands for the non-negative real numbers. If t ∈ R+, we let

ν + t be the clock interpretation such that (ν + t)(x) = ν(x)+ t
for all x ∈ C.

A state is a triple (s, t, ν), where s ∈ S is a location, t ∈ R+

is the global time elapsed since the automaton was switched on,
and ν is a clock interpretation.

A run of A is a finite alternating sequence of states and transi-
tions e = (s0, t0, ν0)

α1−→ (s1, t1, ν1)
α2−→ . . .

αn−→ (sn, tn, νn)
with non-decreasing ti’s, where each state (si, ti, νi) records
the data immediately following the previous transition αi =
(si−1, si, φi, ai, Ri) ∈ E. In addition,

1) s0 ∈ S0, t0 = 0, and ν0(x) = 0 for all x ∈ C.
2) For all 0 6 i 6 n− 1: νi +(ti+1 − ti) satisfies φi+1, and

νi+1(x) = 0 for all x ∈ Ri+1.
3) sn ∈ Sf .
A timed event is a pair (t, a), where t ∈ R+ is called the

timestamp of the event a ∈ Σ. A timed trace is a finite sequence
of timed events with non-decreasing timestamps. The set of all
timed traces is denoted TT.

Remark 3: Note that our semantics is weakly monotonic with
respect to time, i.e., it allows several events to share the same
timestamp. By contrast, a strongly monotonic semantics would
require that no two events happen at the same time. Outside of
Section 6, most of the results presented here also hold under a
strongly monotonic semantics. For more details on the relation-
ship between the weakly and strongly monotonic semantics, we
refer the reader to [22].

Given a run e = (s0, t0, ν0)
α1−→ (s1, t1, ν1)

α2−→ . . .
αn−→

(sn, tn, νn) of the timed automaton A, there is an associated
timed trace tt(e) = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉, where
each ai is the event component of the transition αi.

Definition 4: The precise traces semantics of the timed au-
tomaton A is given by JAK =̂ {tt(e) | e is a run of A}.

The set JAK represents the set of precise dense-time timed
traces of A, i.e., those timed traces accepted by A under the
standard semantics. From now on, we shall usually drop the
qualifiers ‘precise’ and ‘standard’, except when needed to avoid
confusion with the forthcoming robust semantics.

If u = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 is a timed trace, we
define an operator untime(u) =̂ a1a2 . . . an which removes all
timestamps from u, retaining only the relative order of events.
This operator extends to sets of timed traces in the obvious way.

Definition 5: The metric d on TT is given as follows. For
u = 〈(t1, a1), . . . , (tn, an)〉 and u′ = 〈(t′1, a

′
1), . . . , (t′m, a′

m)〉
two timed traces, let

d(u, u′) =̂ ∞ if untime(u) 6= untime(u′), and
d(u, u′) =̂ max{|ti − t′i| : 1 6 i 6 n} otherwise.

This metric is defined in [15], where it is also argued that any
other ‘reasonable’ metric on timed traces yields the same topol-
ogy. From now on, we shall usually omit reference to d and use
the terms ‘open’, ‘closed’, etc. to mean d-open, d-closed, and
so on. In particular, for T ⊆ TT a set of timed traces, we let T
denote the d-closure of T , and T int denote its d-interior.

Definition 6: The robust traces semantics of the timed au-

tomaton A is given by J̃AK =̂ JAK
int

.

(Note that JAK
int

stands for
(
JAK

)int

.)

The set J̃AK represents the set of robust dense-time timed
traces of A, i.e., those timed traces ‘accepted’ by A under the
robust semantics. As explained in the introduction, the presen-
tation of this semantics differs slightly from that of [15] in that
J̃AK corresponds to the largest tube accepted by A under Gupta
et al.’s definition. The two semantics are nonetheless equiva-
lent, as each one can be recovered from the other.

We note that a timed trace u belongs to J̃AK if and only if
the set JAK of precise timed traces of A is dense in some open
neighbourhood of u. In that case it can be shown that the set
TT−JAK of rejected traces of A is nowhere dense in that neigh-
bourhood [15], so that this definition of robustness is sensible.

It is often argued that ‘robustness’ in general is desirable not
only to derive realistic models of real-world systems, but also
to ensure that any numerical package one may wish to use to
probe a given model will not produce incorrect results due to
inevitable small rounding errors. We refer the reader to [15],
[23], [13], [6], [14], among others, for more leisurely discus-
sions on the subject.

By convention, the default semantics we consider in the re-
mainder of this paper is the precise semantics; all uses of the
robust semantics are explicitly noted as such.

2.3. Integral Timed Traces
For T ⊆ TT a set of timed traces, let ZT be the set of all

integral timed traces of T , i.e., those timed traces in T all of
whose events have integral timestamps.

This leads us to define ZJAK, the integral trace semantics

of a timed automaton A, and ZJ̃AK, the robust integral trace
semantics of A. These notions naturally figure prominently in
digitization techniques.

3. Regions Constructions
We first review the notion of regions introduced in [1], and

the associated definitions of the region and integral automata
[2]. We then use the regions construction in a novel way, to
obtain a discrete partition of the set of timed traces accepted by
a timed automaton.

3.1. Regions
Let n,K ∈ N be fixed. We define an equivalence relation ∼

on (R+)n as follows: (x1, . . . , xn) ∼ (x′
1, . . . , x′

n) if
1) For all 1 6 i 6 n, either bxic = bx′

ic, or both xi and x′
i

are greater than K.
2) For all 1 6 i, j 6 n, with xi, xj 6 K, we have

fract(xi) 6 fract(xj) ⇔ fract(x′
i) 6 fract(x′

j).
3) For all 1 6 i 6 n with xi 6 K, fract(xi) = 0 ⇔

fract(x′
i) = 0.

It is easy to see that ∼ partitions (R+)n into finitely many
equivalence classes, termed regions.

Proposition 7: Every region r as defined above can be
uniquely represented as a conjunction of integral linear con-
straints

n∧

i=1

ρi ∧
n−1∧

i=1

n∧

j=i+1

σi,j

where each ρi is of the form xi = k (for 0 6 k 6 K), or of the
form k < xi < k + 1 (for 0 6 k < K), or of the form K < xi;
and each σi,j is of the form xj − xi = k (for −K 6 k 6 K),
or of the form k < xj − xi < k + 1 (for −K 6 k < K), or
is simply true. In addition, we specify that σi,j be true exactly
when at least one of xi, xj exceeds K (as per the constraints ρi

and ρj). Note that the σi,j’s can equivalently be written (given
the ρi’s) as constraints of the form fract(xi)] fract(xj), with
] ∈ {=, <,>}, or true.

Conversely, every such satisfiable conjunction of linear con-
straints represents a unique region.

Proof: This is a straightforward (if somewhat tedious)
exercise.

Proposition 8: Consider the usual Euclidean topology on
(R+)n.

1) The open regions are exactly those whose associated con-
junction of constraints comprise only either (strict) in-
equalities or true.

2) The closed regions are exactly those whose associated
conjunction of constraints comprise only equalities; they
consist in all singletons containing a tuple of integers.

3) Let r be an open region. For any region r′, either r′ ⊆ r
or r′ ∩ r = ∅.

Proof: Follows directly from Proposition 7.

3.2. Region and Integral Automata
Let A = (Σ, S, S0, Sf , C,E) be a timed automaton. We

define the following two untimed automata: the region automa-
ton Areg accepts the same untimed language as A, whereas the
integral automaton AX accepts (essentially) the same integral
language as A. We begin by describing the region automaton
construction.

Let n be the number of clocks in A, and let K be the largest
integer constant appearing in any of the clock constraints asso-
ciated with the transitions of A. Consider the regions construc-
tion over (R+)n described earlier. Since every clock interpreta-
tion for A can be uniquely identified with a point of (R+)n, we
term the equivalence classes clock regions of A.

We define a partial order 4 on clock regions as follows: r 4

r′ if, for any ν ∈ r, there exists a non-negative real t ∈ R+

such that ν + t ∈ r′. In other words, 4 represents the passage
of time.

Areg is an untimed automaton with ε-transitions (silent tran-
sitions). As is well-known, such untimed automata can easily
be transformed into ones without ε-transitions [19]. The alpha-
bet Σ of Areg is the same as that of A. The states of Areg consist
of all pairs (s, r), where s ∈ S is a location of A and r is a clock

region of A. The start states of Areg consist of all states of the
form (s0,0), where s0 ∈ S0 and 0 is the clock interpretation
which maps every clock to 0. The accepting states of Areg con-
sist of all states of the form (sf , r), where sf ∈ Sf . For any pair
of clock regions r 4 r′ and location s, Areg has an ε-transition
(s, r)

ε
−→ (s, r′). Moreover, for any states (s, r) and (s′, r′),

Areg has an a-transition (s, r)
a

−→ (s′, r′) whenever A has a
transition (s, s′, φ, a,R) such that all clock interpretations in r
satisfy φ, r and r′ agree when restricted to clocks not belonging
to R, and all clock interpretations ν ∈ r′ satisfy ν(x) = 0 for
every x ∈ R.

We write L(Areg) to denote the (untimed) language accepted
by Areg.

We now have:
Theorem 9—[2]: For any timed automaton A, L(Areg) =

untime(JAK).
We refer the reader to [2] for the proof.

The emptiness problem is to decide whether the set of timed
traces of a timed automaton is empty. As an immediate con-
sequence of Theorem 9, the emptiness problem for timed au-
tomata is decidable.

We now give the construction of the integral automaton AX.
First observe that integral timed traces over alphabet Σ are in
natural one-to-one correspondence with untimed traces over al-
phabet Σ∪{X}, where the event X /∈ Σ represents the passage
of one time unit. For T a set of integral timed traces, we write
TX for the corresponding unique set of untimed X-traces.

Proposition 10: The set of integral timed traces of a timed
automaton is (essentially) regular. In other words, for any timed
automaton A, one can construct an untimed automaton AX such
that L(AX) = ZJAKX.

Proof: The untimed automaton AX can be obtained by
a straightforward modification of the region automaton Areg.
The only clock regions that need be considered are those all
of whose projections are either integral singletons or are un-
bounded. All ε-transitions are discarded. The Σ-transitions of
AX are inherited directly from Areg. Lastly, postulate a tran-

sition (s, r)
X
−→ (s, r′) of AX if, for all clock interpretations

ν ∈ r, ν + 1 ∈ r′. It is easily checked that AX accepts pre-
cisely ZJAKX, as required.

Remark 11: The X-representation of integral timed traces
is necessary to ensure regularity. For instance, the set
{〈(1, a), (2, a), . . . , (n, a)〉 | n ∈ N} is not regular, whereas
its X-counterpart {〈Xa〉n | n ∈ N} clearly is.

Proposition 10 immediately yields the decidability of the in-
tegral emptiness and integral universality problems for timed
automata; in other words, it is decidable whether ZJAK = ∅
and whether ZJAK = ZTT.

3.3. Trace Regions
We now make use of the regions construction in a very dif-

ferent way, to discretely partition the set of timed traces of a
timed automaton, and to endow these partitions with a useful
geometric and topological structure.

Let s = a1a2 . . . an be some untimed trace of length n. We
can uniquely identify timed traces having untimed projection s
with weakly monotonic points of (R+)n, i.e., those points of
(R+)n lying in the hyper-plane Tn = {x1, . . . , xn |x1 6 x2 6

. . . 6 xn}.
Let A be a timed automaton and let K be the largest integer

constant appearing in any of the clock constraints associated
with the transitions of A. We consider the regions construction
over Tn, and call resulting equivalence classes trace regions.
Accordingly, we also view the equivalence relation ∼ as apply-
ing to timed traces. Note that for two timed traces u and u′, the
equivalence u ∼ u′ implies that untime(u) = untime(u′). We
also observe that the d-topology on traces agrees with the Eu-
clidean topology on Tn, and we shall therefore not distinguish
between the two.

Proposition 12: Let A be a timed automaton. For any pair
of timed traces u ∼ u′, we have u ∈ JAK iff u′ ∈ JAK.

Proof: Assume that u = 〈(t1, a1), . . . , (tn, an)〉 ∈

JAK. Then u originates from some run e = (s0, t0, ν0)
α1−→

(s1, t1, ν1)
α2−→ . . .

αn−→ (sn, tn, νn), with αj =
(sj−1, sj , φj , aj , Rj). Observe that, for any clock x and index
j, νj(x) = tj − ti, where i 6 j is the index of the last transition
which reset clock x, or is 0 if x was never reset.

Write u = 〈(t′1, a1), . . . , (t′n, an)〉. Since u ∼ u′, one read-
ily verifies that, for any 1 6 i 6 j 6 n and k ∈ N, whenever
tj − ti] k we must have t′j − t′i] k, for any] ∈ {<,6, >,>}.
It follows immediately that A accepts u′ along the same path as
u.

4. Automata Closure and Interior
Closed and open timed automata (cf. Definition 1) possess

many desirable properties, some of which are very useful to our
endeavour and are presented here. We then address the prob-
lem of constructing the closure and interior automata of a given
timed automaton. We are subsequently able to establish several
facts concerning the robust semantics of timed automata, most
notably that its expressive power is incomparable to that of the
standard semantics. On the positive side, we show that timed
automata have recursive robust languages.

Proposition 13: Let A be a timed automaton.

1) J̃AK is open.
2) If A is an open timed automaton, then JAK is open.
3) If A is a closed timed automaton, then JAK is closed.

Proof: The first claim follows from the definition of the
robust trace semantics.

The second claim appears in [15], with the following proof.
Let A be an open timed automaton, and consider a run e =
(s0, t0, ν0)

α1−→ . . .
αn−→ (sn, tn, νn) that accepts the timed

trace u. Since all clock constraints are open, for each 0 6 i 6

n, there is an εi > 0 such that substituting νi − εi or νi + εi

(or any clock interpretation in between) for νi in e still gives a
valid run of A. Let ε = min{εi/2 | 0 6 i 6 n}. It is clear that
any timed trace within ε of u can be accepted by A.

Let us now consider the third claim. Let A be a closed timed
automaton, and consider an arbitrary timed trace u. Let 〈ui〉i>1

be a sequence of timed traces in JAK converging to u. Without
loss of generality, since A has only finitely many transitions,
we can assume that the runs ei corresponding to these timed
traces share the same transitions, in the same order. The se-
quence of ei’s therefore essentially lies in a compact subset of
Rl (for some finite l), where we identify l-tuples with sequences
of clock interpretations. Consequently, these ei’s must have an
accumulation point e. This run e is clearly a valid run of A,
since its clock interpretations are limits of clock interpretations
of the ei’s, and the constraints these must satisfy are all closed.
It is also plain that the run e gives rise to the timed trace u, so
that u ∈ JAK as required.

Proposition 14: Let A be a timed automaton. Then one can
construct a closed timed automaton A such that JAK = JAK.

This result is stated in [15], but unfortunately the construc-
tion and proof given there are incorrect. It is claimed in that
paper that A can be obtained by replacing every strict inequal-
ity appearing in A’s clock constraints by its non-strict version.
However, the following automata demonstrate that this con-
struction can lead to extra unwanted behaviours:

///.-,()*+
a

x<1∧ y>1?
///.-,()*+�������� ///.-,()*+

a

x61∧ y>1?
///.-,()*+��������

The left-hand automaton cannot accept any timed trace, and its
language closure is therefore empty as well. On the other hand,
the right-hand automaton can accept the timed trace 〈(1, a)〉.

We must therefore ensure that any new behaviour of A in-
troduced through the replacement of strict inequalities by non-
strict ones can always be ‘shadowed’ by a neighbouring be-
haviour of A. For this purpose, a regions-based construction is
introduced. We now give the proof.

Proof: Let A = (Σ, S, S0, Sf , C,E) be a timed automa-
ton. Without loss of generality, assume that all clock constraints
of A are disjunction-free. This can be achieved by first writing
the clock constraints in disjunctive normal form, and then in-
troducing a new distinct transition for each disjunct. Note that
these disjunction-free constraints are conjunctions of basic for-
mulas of the form xi > k, xi > k, or xi = k. They therefore
represent convex hyper-rectangles (products of intervals).

We construct an equivalent timed automaton A′ =
(Σ, S′, S′

0, S
′
f , C,E′) as follows. A′ is essentially a timed ver-

sion of the region automaton Areg: S′ = S × CLREG , S′
0 =

S0 × CLREG , and S′
f = Sf × CLREG , where CLREG de-

notes the set of clock regions of A. Let α = (s, s′, φ, a,R) ∈ E
be a transition of A. For every pair of clock regions r, r′,
include the transition ((s, r), (s′, r′), φ, a,R) in E′, provided
there exist a clock region r′′ < r such that r′′ satisfies φ, r′′

and r′ agree on all clocks not belonging to R, and r′ evaluates
all clocks in R to zero.

It is easily checked that JA′K = JAK. Now define A to be
the same as A′ but with every strict inequality appearing in a
clock constraint of A′ replaced by its corresponding non-strict
version. We now show that JAK is a dense subset of JAK.

Let e = ((s0, r0), t0, ν0)
α1−→ . . .

αn−→ ((sn, rn), tn, νn) be a
run of A yielding the timed trace u = 〈(t1, a1), . . . , (tn, an)〉 ∈
JAK. We have αi = ((si−1, ri−1), (si, ri), φi, ai, Ri), for each
1 6 i 6 n.

By construction, the projection (s0, r0)
a1−→ . . .

an−→ (sn, rn)
of e is a run of the region automaton Areg (where we are
ignoring ε-transitions). It follows that there must be a run
(s0, t

′
0, ν

′
0)

α1−→ . . .
αn−→ (sn, t′n, ν′

n) of A with each ν ′
i ∈ ri.

This run yields the timed trace u′ = 〈(a1, t
′
1), . . . , (an, t′n)〉 ∈

JAK.
Let 0 < r < 1 be fixed. For 0 6 i 6 n, let ν ′′

i = rνi+
(1− r)ν′

i and t′′i = rti +(1− r)t′i. Consider a clock x ∈ C. As
in the proof of Proposition 12, we have, for any 0 6 j 6 n, that
νj(x) = tj − ti, where i 6 j is the index of the last transition
which reset clock x in e, or is 0 if x was never reset. Likewise,
ν′

j(x) = t′j − t′i, and ν′′
j (x) = t′′j − t′′i .

Since e is a valid run of A, for any 0 6 j 6 n − 1, we
have by definition that νj(x) + (tj+1 − tj) satisfies φj+1(x).
Since φj+1 is a hyper-rectangle, φj+1(x) is some non-empty
interval Ix

j+1, and φj+1(x) is its closure Ix
j+1. Substituting, we

have (tj − ti) + (tj+1 − tj) ∈ Ix
j+1, and likewise (t′j − t′i) +

(t′j+1 − t′j) ∈ Ix
j+1. It immediately follows that (t′′j − t′′i) +

(t′′j+1 − t′′j) ∈ Ix
j+1, in other words that ν ′′

j (x) + (t′′j+1 − t′′j)

satisfies φj+1(x). We therefore conclude that (s0, t
′′
0 , ν′′

0)
α1−→

. . .
αn−→ (sn, t′′n, ν′′

n) is a valid run of A yielding the timed trace
u′′ = 〈(a1, t

′′
1), . . . , (an, t′′n)〉 = ru+(1− r)u′ ∈ JAK. Letting

r tend to 1 shows that there are timed traces in JAK that are
arbitrarily close to those in JAK.

Hence we have shown that JAK is a dense subset of JAK.
Since JAK is closed by the previous proposition, JAK = JAK
as required.

Corollary 15: For any timed automaton A, there exists a
closed timed automaton, namely A, having the same robust

trace semantics: J̃AK = J̃AK.
Proof: This follows directly from the fact that a closed set

is equal to its closure.
Corollary 15 implies that, when it comes to robust trace se-

mantics, we may restrict our attention to closed timed automata.
The following proposition indicates that we may equally well
focus on open timed automata instead.

Proposition 16: Let A be a timed automaton. Then one can

construct an open timed automaton Aop such that J̃AK = J̃AopK.
Proof: This proof is a simplified version of that originally

given in [15], the simplifications resulting from our requirement
that clocks can only be reset to zero.

One obtains Aop by replacing every non-strict inequality in
A by its strict counterpart.2 Since we clearly have JAopK ⊆

JAK, it suffices to show that JAopK is dense in J̃AK. To this
end, consider a small neighbourhood around some trace u ∈

J̃AK. In this neighbourhood one can find some trace u′ ∈ JAK

2In [15], the notation Aint is used instead of Aop; we prefer the latter since
one can have the strict inclusion JAopK (JAKint.

which lies in an open trace region. It is then easily seen that,
in any run of A producing u′, no clock can have an integral
value immediately prior to any transition. Consequently, all
clock constraints on such runs are satisfied strictly, and hence
u′ ∈ JAopK as required.

As pointed out in [15], Proposition 16 immediately entails
the decidability of the robust emptiness problem, i.e., whether
the set of robust timed traces of a timed automaton is empty or
not. More generally, we have:

Proposition 17: For any timed automaton A, the set
untime(J̃AK) is regular.

Proof: By the previous proposition, untime(J̃AK) =

untime(J̃AopK). Thanks to Theorem 9, it thus remains to show

that untime(J̃AopK) = untime(JAopK).

Clearly, JAopK ⊆ J̃AopK since Aop is open. On the other

hand, let u ∈ J̃AopK. We must show there exists u′ ∈ JAopK

such that untime(u′) = untime(u). Since J̃AopK is open, there

exists an open neighbourhood U ⊆ J̃AopK with u ∈ U . More-
over, we can also clearly require that all timed traces in U have

the same untimed projection as u. Now since U ⊆ J̃AopK,
JAopK must be dense in U , and in particular there must exist
some u′ ∈ U ∩ JAopK, as required.

A natural question to ask (particularly in view of Proposi-
tions 14 and 16), is whether, given a timed automaton A, one
can construct an interior automaton for A, i.e., an (open) timed
automaton B such that JBK = JAKint. Unfortunately, the fol-
lowing theorem shows that this is impossible.

Theorem 18: There exists a timed automaton A such that,
for any timed automaton B, J̃AK 6= JBK. (Moreover, A may be
chosen to be closed, open, or mixed.)

This result states that the expressive powers of timed au-
tomata under the standard and robust semantics are incompa-
rable.3 This is rather surprising since the robust semantics can
be viewed as a restriction of the standard semantics in which
equality testing has been semantically removed [15].

We defer the proof of Theorem 18 until the next section.
Although Theorem 18 implies that constructing full interior

automata is in general impossible, one can still obtain bounded
approximations of interior automata, as we demonstrate next.

We first need an auxiliary definition. For T ⊆ TT a set of
timed traces and n ∈ N a non-negative integer, we define T � n
to be the set of all timed traces in T of length (i.e., number of
events) no greater than n.

Proposition 19: Let A be a timed automaton, and let n ∈ N

be given. Then one can construct an open timed automaton Aint
n

such that JAint
n K = JAKint � n.

Proof: Consider an untimed trace s = a1a2 . . . am of
length m 6 n. By Proposition 12, the set Ts ⊆ JAK of timed
traces of A that have untimed projection s is a finite union of

3It is obvious that there are (open, closed, mixed) timed automata whose
precise languages cannot be captured as the robust languages of any timed au-

tomata; one such example is ///.-,()*+
a

x<1∨ x>1?
///.-,()*+�������� .

trace regions, which can be effectively enumerated. The interior
Us ⊆ JAKint of Ts is therefore clearly an open union of trace
regions, the list of which is again effectively enumerable.

For every region r ⊆ Us, construct an open convex set Or

with r ⊆ Or ⊆ Us, as follows. First write r as a conjunction
of linear constraints, as per Proposition 7. Next, replace every
linear equality constraint of the form χ = k by the pair of strict
linear inequalities k − 1 < χ < k + 1 (and in case k = K,
dispense with the constraint χ < k + 1). In other words, Or

consists of all the regions whose closures contain r. Proposi-
tion 8 (3) implies that Or ⊆ Us.

For each region r ⊆ Us, we build an open timed automa-
ton As,r that accepts exactly those timed traces having untimed
projection s that lie in Or. As,r comes equipped with m clocks
and resets a distinct clock every time it performs an event. The
set of strict inequalities which define Or easily yields a corre-
sponding set of clock constraints for As,r.

The required automaton Aint
n is then simply the union of all

the automata As,r, for every untimed trace s of length at most
n and region r ∈ Us.

We note that, while it is straightforward to decide whether a
particular timed trace is precisely accepted by a given timed au-
tomaton, the situation might seem a priori very different when
one considers robust acceptance. Indeed, whether a timed au-
tomaton A robustly accepts some timed trace u depends on
whether A precisely accepts infinitely many traces neighbour-
ing u. Fortunately, the question remains decidable:

Corollary 20: The set of robust timed traces of a timed au-
tomaton is recursive. In other words, for any timed automaton
A, there is an algorithm which, given a timed trace u ∈ TT,
decides whether u ∈ J̃AK.

Proof: Follows directly from the chain

J̃AK � |u| = JAK
int

� |u| = JAKint � |u| = JA
int

|u|K ,

where |u| denotes the length of u.

5. Universality
Universality is a fundamental problem in the language-

theoretic study of computational models [19]. Indeed, one of
the original motivations for introducing the robust semantics
for timed automata was the hope that it may have a decid-
able universality problem. This matter was finally settled neg-
atively in [18], but the analysis underlying this result relied on
a strongly monotonic model of time (no two events are allowed
to share the same timestamp). Recent work on the universal-
ity problem within the closely related formalism of open timed
automata showed that, while the problem remains undecidable
for open timed automata over strongly monotonic time, it be-
comes decidable over weakly monotonic time [22]. In view of
the tight relationship between open and robust timed automata
(cf. Proposition 19 and Theorem 34), it seemed plausible that
the robust universality problem for timed automata might be
decidable over weakly monotonic time. Unfortunately, as we

demonstrate shortly, this is not the case. We also show that the
robust integral languages of timed automata are in general not
regular, and that they too give rise to an undecidable (integral)
universality problem.

We begin by introducing a few preliminaries. A two-counter
machine M is a triple ({b0, b1, . . . , bk}, C,D), where the bi’s
are instructions and C and D are two counters ranging over the
non-negative integers. Both counters are initially empty, and
the first instruction M executes is b0. Each instruction bi, for
i < k, either: (i) increments or decrements (if non-zero) one
of the counters, and subsequently jumps nondeterministically
to one of two possible next instructions, or (ii) tests one of the
counters for emptiness and conditionally jumps to the next in-
struction. The instruction bk represents successful termination.
A configuration of M is a triple (bi, c, d), where c and d are
the respective values of the counters C and D. A halting com-
putation of M is a finite sequence of configurations starting
with (b0, 0, 0) and ending with a bk-configuration, subject to
the constraint that each successive configuration be a valid suc-
cessor of the previous one. The problem of deciding whether a
two-counter machine has a halting computation is undecidable.

Lemma 21—[22]: Let M be a two-counter machine. The
set of halting computations of M can be encoded as an
open set of timed traces L(M) ⊆ TT over alphabet Σ =
{b0, . . . , bk, c, d}. Moreover, one can construct a closed timed
automaton A such that JAK = TT − L(M).

We refer the reader to [22] for the proof, as well as for greater
details concerning two-counter machines and the various en-
codings mentioned here. We note that the relevant construction
invoked in [22] builds on an idea originally introduced in [18].

Theorem 22: The robust universality problem for timed au-
tomata is undecidable. In other words, given a timed automaton
A, it is undecidable whether J̃AK = TT.

Proof: Let A be a closed timed automaton. We have
J̃AK = TT iff JAKint = TT iff JAK = TT. Thus the ro-
bust universality problem reduces to the universality problem
for closed timed automata, which in turn (by Lemma 21) re-
duces to the emptiness problem for two-counter machines. The
latter is well-known to be undecidable [19].

Digitization techniques (cf. Section 6) rely crucially on de-
cision algorithms for integral sublanguages. Unfortunately, the
robust universality problem is no more tractable in the discrete
world:

Theorem 23: The robust integral universality problem for
timed automata is undecidable. In other words, given a timed
automaton A, it is undecidable whether ZJ̃AK = ZTT.

Proof: Let M be a two-counter machine, and let L(M)
and A be as in Lemma 21, so that JAK = TT − L(M). It is

plain that if L(M) = ∅, then ZJ̃AK = ZTT.
Suppose, on the other hand, that L(M) 6= ∅. Since L(M)

is an open set of timed traces, it must meet some open trace
region r (where the set of trace regions is determined by A as
per Section 3). By Proposition 12, r ∩ JAK = ∅. Let v ∈ r
be an integral timed trace belonging to the closure of r (easily

obtained thanks to Proposition 7). It is immediate that v /∈ J̃AK,

and therefore that ZJ̃AK 6= ZTT.

Since the question whether ZJ̃AK = ZTT reduces to the
emptiness problem two-counter machines, it must be undecid-
able.

Remark 24: We do not know whether the robust integral
emptiness problem for timed automata (i.e., whether ZJ̃AK = ∅)
is decidable or not.

The following result, to be contrasted with Proposition 10,
highlights the fact that the robust semantics for timed automata
is markedly less tractable than its standard counterpart.

Theorem 25: There exists a timed automaton A such that

ZJ̃AK
X

is not regular.
Proof: Let M be a two-counter machine which accepts

precisely those computations in which instruction b1 is exe-
cuted exactly as often as instruction b2. As per Lemma 21,
let A be a timed automaton with JAK = TT − L(M). The
argument invoked in the proof of Theorem 23 shows that, for
v ∈ ZTT an integral timed trace, if v /∈ ZJ̃AK then v contains
as many b1’s as b2’s, and conversely for any non-negative in-
teger n, there exists some integral timed trace v containing n

b1’s and n b2’s and such that v /∈ ZJ̃AK. In other words, the set

B = (ZTT
X − ZJ̃AK

X

) � {b1, b2} consists of all strings over
{b1, b2} that contain as many b1’s as b2’s.

A straightforward application of the pumping lemma [19]

shows that B is not regular. It follows that neither is ZJ̃AK
X

,
since regular sets are closed under complementation and hiding
[19].

We note that Theorem 23 does not in itself imply Theo-
rem 25; it merely shows that a purported construction of an
untimed automaton accepting the robust integral language of a
timed automaton A could not in general be effective.

We are now able to give the proof of Theorem 18, to the effect
that there are timed automata whose robust languages cannot be
captured as the precise languages of any timed automata.

Proof: For A and B two timed automata, we note that

J̃AK = JBK implies that ZJ̃AK
X

= ZJBKX. Since, by Proposi-
tion 10, the set ZJBKX is always regular, the previous proposi-
tion shows that there exists some timed automaton A for which
there can be no timed automaton B with J̃AK = JBK.

Again, we note that this result does not follow from Theo-
rem 23 alone.

6. Digitization and Decidability

As explained in the introduction, digitization techniques [17]
are a very efficient and successful tool to analyze properties of
timed automata, including key questions such as the emptiness,
universality, and language inclusion problems. In this section,
we study the decidability of the prerequisites to the application
of digitization techniques, as well as their applicability to timed
automata under both the standard and robust semantics.

We begin by introducing some preliminaries. Let t ∈ R+ and
let 0 6 ε 6 1 be real numbers. If fract(t) < ε, let [t]ε =̂ btc,
otherwise let [t]ε =̂ dte. The [·]ε operator therefore shifts the
value of a real number t to the preceding or following integer,
depending on whether the fractional part of t is less than ε or
not.

We can then extend [·]ε to timed traces by pointwise appli-
cation to the timestamps of the trace’s events. We then further
extend [·]ε to sets of timed traces in the usual way.

Definition 26: Let T ⊆ TT be a set of timed traces.
T is closed under digitization if, for any 0 6 ε 6 1, [T]ε ⊆

T . T is closed under inverse digitization if, whenever a timed
trace u ∈ TT is such that [u]ε ∈ T for all 0 6 ε 6 1, then
u ∈ T .

The main digitization result is as follows:
Theorem 27—[17]: Let T be a set of timed traces closed un-

der digitization, and let T ′ be a set of timed traces closed under
inverse digitization. Then T ⊆ T ′ if and only if ZT ⊆ ZT ′.

Proof: The left-to-right implication is trivial. For the
other direction, let u ∈ T . Since T is closed under digitization,
[u]ε ∈ T for any ε. However ZT ⊆ ZT ′, thus [u]ε ∈ T ′ for
any ε. Since T ′ is closed under inverse digitization, u ∈ T ′ as
required.

Corollary 28: Let A and B be timed automata with JAK
closed under digitization and JBK closed under inverse digiti-
zation. Then the timed language inclusion problem of whether
JAK ⊆ JBK is decidable.

Proof: Follows directly from Theorem 27 and the fact that
the sets ZJAKX and ZJBKX are regular (Proposition 10).

Note that the emptiness and universality problems are spe-
cial cases of the language inclusion problem. We also remark
that, in the realm of formal verification, the automaton A would
represent an implementation, whereas the automaton B would
stand for a specification.

Theorem 27 and Corollary 28 highlight the importance of
(i) being able to determine whether a timed automaton is closed
under digitization and/or closed under inverse digitization, and
(ii) being able to decide integral language inclusion questions.
We consider these matters in the remainder of this section.

We first record the following useful result:
Lemma 29: Let s ∈ TT be a timed trace of length n, and

let r be its corresponding trace region (where we assume an
arbitrarily large value of K). The set {[s]ε |0 6 ε 6 1} of valid
digitizations of s is in one-to-one correspondence with the set
of r ∩ (R+)n of integral singletons (closed regions) bordering
r.

Proof: Follows straightforwardly from Proposition 7.
Proposition 30: Let A be a timed automaton.
1) If A is an open timed automaton, then JAK is closed under

inverse digitization.
2) If A is a closed timed automaton, then JAK is closed under

digitization.
Proof: (These two results were already implicitly present

in [17].)

Let A be an open timed automaton, and let u ∈ TT be an
arbitrary timed trace. We establish the stronger result that, if
any ε-digitization of u belongs to JAK, then so does u. Indeed,
let v = [u]ε ∈ JAK. If r is the trace region corresponding to
u, then by Lemma 29 v ∈ r. Since v ∈ JAK and JAK is open
(thanks to Proposition 13), r∩JAK 6= ∅. But then Proposition 12
immediately yields that r ⊆ JAK, whence u ∈ JAK as required.

Let us now consider the case in which A is a closed timed
automaton. Since JAK is closed (Proposition 13), Lemma 29
immediately entails that JAK is closed under digitization.

Proposition 30 holds the key to the practical success of dig-
itization techniques: since arbitrary timed automata can be
infinitesimally over-approximated by closed timed automata
(Proposition 14), and since the latter are closed under digiti-
zation, the requirement of Corollary 28 that implementations
be closed under digitization is no hardship. On the other hand,
it turns out that the most common specifications on timed sys-
tems can be expressed as open timed automata, or at least as
timed automata that are closed under inverse digitization [17],
[7], [21].

Note, unfortunately, that the converse of Proposition 30 does
not hold, hence the wish for a decision procedure for closure
under digitization and inverse digitization.

Theorem 31: The problem of closure under digitization is
decidable for timed automata. In other words, there is an al-
gorithm which, given a timed automaton A, decides whether
JAK is closed under digitization.

Proof: Let A be a timed automaton, and let A be a closed
automaton with JAK = JAK as per Proposition 14. Let [JAK] =̂⋃
{[JAK]ε | 0 6 ε 6 1} be the set of digitized timed traces of

A. By definition, JAK is closed under digitization if and only if
[JAK] ⊆ JAK.

By Lemma 29, ZJAK = [JAK]. We have therefore reduced the
question of whether JAK is closed under digitization to whether
JAK and JAK have the same integral timed traces. But this is
decidable by Proposition 10, which completes the proof.

Unfortunately, when it comes to the robust trace semantics,
closure under digitization is no longer decidable:

Theorem 32: The problem of closure under digitization is
undecidable for timed automata under the robust trace seman-
tics. In other words, given a timed automaton A, it is undecid-
able whether J̃AK is closed under digitization.

Proof: Suppose that, given a timed automaton A, one
could decide whether J̃AK were closed under digitization. Then,

as we now demonstrate, one could decide whether J̃AK were
universal, contradicting Theorem 22.

First note that if J̃AK is not closed under digitization, then

J̃AK 6= TT. Assume therefore that J̃AK is closed under digiti-
zation. Let s be some untimed trace of length n, and consider
the (possibly empty) set J̃AKs ⊆ J̃AK of robust timed traces of

A having untimed projection s. We view J̃AKs as a subset of

(R+)n. Thanks to Propositions 19 and 12, J̃AKs is a union of
trace regions.

J̃AKs is clearly open. To see that it is also closed, consider a

region r ⊆ J̃AKs, and any region r′ ∈ r. By Propositions 7 and
8, r and r′ must share at least one integral singleton v, which
belongs to J̃AKs since J̃AK is assumed closed under digitization.

But J̃AKs is open, and therefore it follows that r′ ⊆ J̃AKs. The

closure of J̃AKs is now immediate.

Thus J̃AKs is both open and closed. As a subset of a con-
nected set (the set of all timed traces having untimed projec-
tion s, which is convex hence path-connected), J̃AKs is either
empty or contains every possible timed trace having untimed
projection s. Thus whether J̃AK = TT or not reduces to ask-

ing whether untime(J̃AK) = Σ∗. Since the latter is decidable
(Proposition 17), we have reached a contradiction.

We now investigate closure under digitization. This time, we
find that the decidability results are reversed!

Theorem 33: The problem of closure under inverse digitiza-
tion is undecidable for closed timed automata. In other words,
given a closed timed automaton A, it is undecidable whether
JAK is closed under inverse digitization. (Naturally, this implies
that the same is true of mixed timed automata.)

Proof: We reduce the problem of deciding closure under
inverse digitization to the universality problem for closed timed
automata; the result then follows from Lemma 21. Suppose
indeed that the former were decidable. Then, given a timed au-
tomaton A, determine first whether JAK is closed under inverse
digitization. If it isn’t, then clearly JAK 6= TT. On the other
hand, if JAK is closed under inverse digitization, then, by Corol-
lary 28, the question TT ⊆ JAK is decidable. Since the latter
is obviously equivalent to TT = JAK, a contradiction has been
reached.

Next, we have:
Theorem 34: Timed automata are always closed under in-

verse digitization under the robust trace semantics. In other
words, for A a timed automaton, J̃AK is closed under inverse
digitization.

Proof: Follows immediately from Propositions 19 and 30.

This is a somewhat surprising result, since the robust univer-
sality problem is undecidable. The reason, of course, is that
the reduction from dense-time to integral-time is of no help
when it comes to the robust semantics. It therefore also fol-
lows that, although the robust languages of timed automata are
closed under inverse digitization, they are in general not suit-
able to express specifications, since their integral restrictions
are not well-behaved.

7. Summary
We summarize in tabular form the main results discussed in

this paper.
The emptiness and robust emptiness problems are decidable:

A JAK = ∅ ? J̃AK = ∅ ?
Mixed Decidable Decidable

The integral emptiness problem is decidable, but whether the
robust emptiness problem is decidable is still open:

A ZJAK = ∅ ? ZJ̃AK = ∅ ?
Mixed Decidable ?

The universality problem is only decidable for open timed
automata under the standard semantics:

A JAK = TT ? J̃AK = TT ?
Mixed Undecidable Undecidable
Open Decidable Undecidable

Closed Undecidable Undecidable

The integral emptiness problem is only decidable under the
standard semantics:

A ZJAK = ZTT ? ZJ̃AK = ZTT ?
Mixed Decidable Undecidable

Closure under digitization is only decidable under the stan-
dard semantics:

A JAK CUD ? J̃AK CUD ?
Mixed Decidable Undecidable
Open Decidable Undecidable

Closed Yes Undecidable

On the other hand, closure under inverse digitization is unde-
cidable for mixed and closed timed automata under the standard
semantics, and otherwise holds:

A JAK CUID ? J̃AK CUID ?
Mixed Undecidable Yes
Open Yes Yes

Closed Undecidable Yes

The robust integral languages of timed automata are in gen-
eral not regular, unlike the case for the standard semantics. The
languages of timed automata are recursive under either seman-
tics:

Property ZJAKX ZJ̃AK
X

Regular ? Yes Not in general
Recursive ? Yes Yes

We also note that the standard and robust semantics differ in
expressiveness, but that both give rise to regular untimed lan-
guages.

We conclude by noting that the study of robustness for timed
and hybrid automata is a rich subject which will undoubtedly
lead to much further research. The works of [23], [13], [6], [14],
among others, suggest that witnessing or introducing robustness
usually improves the tractability of the various decision prob-
lems we have considered. Since our results point in the other
direction, the conclusion must be that the semantic introduc-
tion of robustness studied here is counterproductive. Indeed, as

open timed automata bear witness [22], it is much preferable
to incorporate robustness syntactically, in other words to model
systems with explicit safety margins.

References
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-

tems. In Proceedings of LICS 90, pages 414–425. IEEE Computer Society
Press, 1990.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[3] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A de-
terminizable class of timed automata. Theoretical Computer Science,
211:253–273, 1999.

[4] R. Alur and T. A. Henzinger. Back to the future: Towards a theory of
timed regular languages. In Proceedings of FOCS 92, pages 177–186.
IEEE Computer Society Press, 1992.

[5] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Proceedings of
Hybrid Systems III, volume 1066, pages 220–231. Springer LNCS, 1996.

[6] E. Asarin and A. Bouajjani. Perturbed Turing machines and hybrid sys-
tems. In Proceedings of LICS 01, pages 269–278. IEEE Computer Society
Press, 2001.

[7] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed
automata and digital circuits. In Proceedings of CONCUR 98, volume
1466, pages 470–484. Springer LNCS, 1998.

[8] A. Bouajjani, R. Echahed, and R. Robbana. Verifying invariance proper-
ties of timed systems with duration variables. In Proceedings of FTRTFT
94, volume 863, pages 193–210. Springer LNCS, 1994.

[9] A. Bouajjani, R. Echahed, and J. Sifakis. On model checking for real-time
properties with durations. In Proceedings of LICS 93. IEEE Computer
Society Press, 1993.

[10] D. Bošnački. Digitization of timed automata. In Proceedings of FMICS
99, 1999.

[11] D. Bošnački and D. Dams. Integrating real time in spin: A prototype
implementation. In Proceedings of FORTE/PSTV 98, pages 423–438.
Kluwer, 1998.

[12] E. M. Clarke and S. Campos. Real-time symbolic model checking for
discrete time models. In AMAST Series in Computing: Theories and
Experiences for Real-Time System Development. World Scientific, 1995.

[13] M. Fränzle. Analysis of Hybrid Systems: An ounce of realism can save
an infinity of states. In Proceedings of CSL 99, volume 1683, pages 126–
140. Springer LNCS, 1999.

[14] M. Fränzle. What will be eventually true of polynomial hybrid au-
tomata? In Proceedings of TACS 01, volume 2215, pages 340–359.
Springer LNCS, 2001.

[15] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proceedings of HART 97, volume 1201, pages 331–345. Springer LNCS,
1997.

[16] T. A. Henzinger. The theory of hybrid automata. In Proceedings of LICS
96. IEEE Computer Society Press, 1996.

[17] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks?
In Proceedings of ICALP 92, volume 623, pages 545–558. Springer
LNCS, 1992.

[18] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and
hybrid systems. In Proceedings of HSCC 00, volume 1790, pages 145–
159. Springer LNCS, 2000.

[19] J. E. Hopcroft and J. Ullman. Introduction to automata theory, languages
and computation. Addison-Wesley, New York, NY, 1979.

[20] J. Ouaknine. Digitisation and full abstraction for dense-time model check-
ing. In Proceedings of TACAS 02, volume 2280, pages 37–51. Springer
LNCS, 2002.

[21] J. Ouaknine and J. B. Worrell. Timed CSP = closed timed ε-automata.
Nordic Journal of Computing (to appear), 2003.

[22] J. Ouaknine and J. B. Worrell. Universality and language inclusion for
open and closed timed automata. In Proceedings of HSCC 03 (to appear).
Springer LNCS, 2003.

[23] A. Puri. Dynamical properties of timed automata. In Proceedings of
FTRTFT 98, volume 1486, pages 210–227. Springer LNCS, 1998.

[24] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular
differential inclusions. In Proceedings of CAV 94, volume 818, pages
95–104. Springer LNCS, 1994.

[25] C. Bui Thanh, H. Klaudel, and F. Pommereau. Petri nets with causal time
for system verification. In Proceedings of MTCS 02. ENTCS, 2002.

