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Abstract. We study the digitisation of dense-time behaviours of timed
processes, and show how this leads to exact verification methods for a
large class of dense-time specifications. These specifications are all closed
under inverse digitisation, a robustness property first introduced by Hen-
zinger, Manna, and Pnueli (on timed traces), and extended here to timed
failures, enabling us to consider liveness issues in addition to safety prop-
erties. We discuss a corresponding model checking algorithm and show
that, in many cases, automated verification of such dense-time speci-
fications can in fact be directly performed on the model checker FDR
(a commercial product of Formal Systems (Europe) Ltd.). We illustrate
this with a small case study (the railway level crossing problem). Finally,
we show that integral—or digitised—behaviours are fully abstract with
respect to specifications closed under inverse digitisation, and relate this
to the efficiency of our model checking algorithm.

1 Introduction

Real-time systems appear in an increasingly large number of applications, from
kitchen appliances to nuclear power, telecommunications, aeronautics, and so
on. In many instances, it is crucial that such systems behave exactly as they
were intended to, lest catastrophic consequences ensue. For this reason, real-
time systems have elicited a large amount of research in recent years.

Timed systems can broadly be divided into two subclasses, depending on
whether time is modelled in a discrete or dense fashion. Early research focussed
mostly on the former, as the verification techniques already in circulation could
readily be extended to this case. There are however a number of drawbacks
associated with discrete modelling of time, and chief among them is the obvious
limit on the accuracy of the analysis. Dense-time systems (typically modelled
over the reals), on the other hand, have infinite (usually uncountable) state
spaces, ruling out the direct application of techniques such as model checking.

One of the earliest attempts to circumvent this problem was the technique of
timewise refinement [24, 22, 26]. The crux of this method consists in removing
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all timing information from a timed system, keeping only the relative order
in which state changes occur. In this way one obtains an untimed (discrete)
system, which can then be handled by standard model checking algorithms. The
obvious disadvantage of this technique is that the class of specifications that
can be soundly verified with it is rather restricted; on the other hand, timewise
refinement is usually extremely efficient in those cases in which it can be applied.

At the other end of the spectrum we find the technique of region graphs
[1, 2]. This consists in defining an equivalence relation on the state space of
a timed system, giving rise to a finite number of partitions, or regions. Points
within a given region are indistinguishable insofar as the verification of speci-
fications (usually expressed as TCTL formulas) is concerned; this observation
yields a model checking procedure. The advantage of this approach is the large
class of specifications it is able to handle. On the other hand, it tends to be
computationally very expensive, as regions partition the state space extremely
finely.

Many intermediate and related techniques have since appeared, of which the
following is only a partial list: [15, 13, 4, 5, 3, 14, 16, 28, 12, 11, 29, 19]. Some are
concerned with discretisation methods or symbolic analysis, while others offer
various trade-offs (space economy vs. runtime efficiency, or runtime efficiency vs.
wideness of applicability, etc.). There have also been a small number of model
checking tools developed for timed systems, such as Cospan [6], UppAal [7],
Kronos [8], and HyTech [10].

Our interest lies in the connection between discrete-time and dense-time
paradigms for modelling timed systems, and in particular the scope and lim-
itations of applying discrete-time methods to dense-time verification problems.
Henzinger, Manna, and Pnueli studied this question in [13], and concluded that
one must restrict one’s attention both to systems closed under digitisation and
to specifications closed under inverse digitisation. Their analysis focussed on
timed transition systems and considered a timed trace semantics. In this paper,
we extend their results to timed failures, enabling us to address liveness issues
in addition to safety properties.

The framework we have chosen is Reed and Roscoe’s Timed CSP [20, 21,
27, 25]. Timed CSP is a well-known process algebra for timed systems and is
a natural extension of CSP, which itself has been used to model timed systems
discretely [23]. In addition, Timed CSP is endowed with both denotational and
operational semantics, so that questions may be studied from both viewpoints.
For reasons of space, however, the work we present here focusses on the denota-
tional side; one may find an operational account of it in [18].

One of our main results is the digitisation lemma, which states that all Timed
CSP processes are closed under digitisation. On the specification side, we find
indeed that specifications closed under inverse digitisation are verifiable, and
moreover that this is a hard restriction which essentially cannot be relaxed. An-
other very interesting result is that integral behaviours are in fact fully abstract
with respect to the class of specifications under consideration; in other words,
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integral behaviours contain precisely the right amount of information required
for our verification aims, without any junk.

These results lead us to a model checking algorithm, which can in fact be
implemented on FDR [23], a CSP model checker. We illustrate this in a small
case study.

2 Timed CSP Syntax and Conventions

Let Σ be a finite set of events. In the notation below, we have a ∈ Σ and
A ⊆ Σ. The parameter n ranges over the non-negative integers N. f represents
a function f : Σ −→ Σ. The variable X is drawn from a fixed infinite set of
process variables VAR =̂ {X,Y, Z, . . .}.

Timed CSP terms are constructed according to the following grammar:

P := STOP | a −→ P | a : A −→ P (a) | SKIP | WAIT n | P1

n

� P2 |

P1 2 P2 | P1 u P2 | P1 ‖
A

P2 | P1 9 P2 | P1 # P2 | P \ A |

f−1(P ) | f(P ) | X | µX � P .

These terms have the following intuitive interpretations:

– STOP is the deadlocked, stable process which is only capable of letting time
pass.

– a −→ P initially offers at any time to engage in the event a, and subsequently
behaves like P . The general prefixed process a : A −→ P (a) is initially pre-
pared to engage in any of the events a ∈ A, at the choice of the environment,
and thereafter behave like P (a); this corresponds to STOP when A = ∅.

– SKIP intuitively corresponds to the process X −→ STOP , where the event
X represents successful termination.

– WAIT n is the process which idles for n time units, and then becomes SKIP .

– P
n

� Q is a timeout process that initially offers to become P for n time units,
after which it silently becomes Q if P has failed to communicate any visible
event.

– P u Q represents the nondeterministic (or internal) choice between P and
Q. Which of these two processes P u Q becomes is independent of the
environment, and how the choice is resolved is considered to be outside the
domain of discourse.

– P 2 Q, on the other hand, denotes a process which is willing to behave either
like P or like Q, at the choice of the environment. This decision is taken on
the first visible event that is communicated, and is nondeterministic only if
this initial event, when it occurs, is possible for both P and Q.

– The parallel composition P1 ‖
A

P2 of P1 and P2, over the interface set A,

requires P1 and P2 to agree and synchronise on all events in A, and to behave
independently of each other with respect to all other events. The interleaving
P1 9 P2 corresponds to parallel composition over an empty interface.
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– P # Q corresponds to the sequential composition of P and Q: it denotes a
process which behaves like P until P successfully terminates (silently), at
which point the process seamlessly starts to behave like Q.

– P \ A is a process which behaves like P but with all communications in the
set A hidden (made invisible to the environment); the assumption of maximal
progress, or τ -urgency, dictates that no time can elapse while hidden events
are on offer—in other words, hidden events happen as soon as they become
available.

– The renamed processes f−1(P ) and f(P ) derive their behaviours from those
of P in that, whenever P can perform an event a, f−1(P ) can engage in any
event b such that f(b) = a, whereas f(P ) can perform f(a).

– The process variable X has no intrinsic behaviour of its own, but can imitate
any process P as part of a recursion—see below.

– The recursion µ X � P represents a process which behaves like P but with
every free occurrence of X in P (recursively) replaced by µX � P . Semanti-
cally, this corresponds to the unique solution to the equation X = P . Note
that the variable X here usually appears freely within P ’s body.

Let us write TCSP to denote the collection of closed terms of the language
thus generated, i.e., terms in which every occurrence of a variable X is within
the scope of a µ X operator. We refer to these terms as processes.

Note our requirement that all delays (parameters n in the terms WAIT n

and P1

n

� P2) be integral. This restriction is both necessary (since otherwise the
main questions considered here become theoretically intractable) and essentially
harmless, because of the freedom to scale time units. We could equivalently have
required rational delays, as many authors do.

We occasionally use the following derived constructs: abbreviating a −→
STOP as simply ȧ, and writing a

n
−→ P instead of a −→ WAIT n # P . We also

tend to express recursions by means of the equational notation X = P , rather
than the functional µX � P prescribed by the definition.

Lastly, some mild additional technical syntactic restrictions, which we omit
here, are required to ensure that processes are non-Zeno, or in other words that
they never force time to converge. The reader may find more detailed discussion
of this point in [17, 21, 27].

3 Dense-Time Modelling, Specification, and Verification

The standard denotational semantics for Timed CSP is Reed and Roscoe’s timed
failures model, MR, a brief synopsis of which we now present. It comes equipped
with a compositional1 evaluation map RJ·K : TCSP −→ MR. This model allows
one to assign dense-time (in fact, continuous-time) interpretations to Timed CSP
processes. References include [20, 21, 27].

1 By compositional, we mean that the value of a compound expression can be calcu-
lated from the values of its constituting subexpressions.
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Timed failures are pairs (s,ℵ), with s a timed trace and ℵ a timed refusal.
A timed trace is a finite sequence of timed events (t, a) ∈ R+ × Σ, with the
time values in non-decreasing order. Notationally, we enclose the elements of
a timed trace in angled brackets, e.g., 〈(0, a), (3.2, b), (3.2, a), (4.76, a)〉, etc. A
timed refusal is a set of timed events consisting of a finite union of refusal tokens
[t, t′)×A (with 0 6 t 6 t′ < ∞ and A ⊆ Σ). A timed failure (s,ℵ) is interpreted
as an observation of a process in which the events that the process has engaged
in are recorded in s, whereas the intervals during which other events have been
refused are recorded in ℵ. All recorded time values are absolute, i.e., measured
relative to the process’s ‘start’. The set of timed failures is denoted by TF R.

The model MR consists of all subsets of TF R that meet certain ‘axioms’,
general properties that all processes are deemed to have. One then defines the
semantic map RJ·K : TCSP −→ MR by induction on the structure of Timed
CSP syntax. This map simply assigns to each syntactic process its set of possible
behaviours, or timed failures.

Two fundamental assumptions are that processes evolve over a continu-
ous, ergo dense, time domain (R+); and that processes are subject to maximal
progress, or τ -urgency, which requires silent events (internal transitions) to occur
as soon as they become available. Technical details and more thorough presen-
tations of the timed failures model can be found in any of the references quoted
earlier.

A dense-time specification is an assertion concerning processes; more pre-
cisely, it is a predicate on the set of behaviours of processes. In this paper, the
specifications we are interested in are behavioural ; that is to say, a dense-time
specification can always be identified with a set S ⊆ TF R of timed failures, and
a process P ∈ TCSP satisfies S if RJP K ⊆ S; we denote this by P �R S.

As an example, the assertion: “P cannot perform the event crash” can be
expressed as P �R S1, where S1 = {(s,ℵ) ∈ TFR | crash /∈ σ(s)}. (Here σ(s)
simply denotes the set of events occurring in the timed trace s.)

S1 is an example of a (timed) trace specification: it restricts the set of al-
lowable timed traces of a process, but places no constraints on refusals. Such
specifications are often termed safety properties, in that they specify that ‘noth-
ing bad should happen’. By contrast, a specification restricting the allowable
timed refusals of a process is often called a liveness property, since it requires
that ‘certain (presumably good) things not be prevented from happening’. Such
a specification, for example, could be the requirement of constant availability of
the ‘eject’ option on a combat aircraft, perhaps expressed as: “The event eject
is never refused”.

A specification S is said to be syntactic if it can be written as the set of
behaviours of a process, in other words if there exists some Q ∈ TCSP such
that S = RJQK. In this case we write P �R Q (rather than P �R RJQK) to mean
P �R S, i.e., RJP K ⊆ RJQK.

It turns out that S1 above is not syntactic; however, a discrete-time version
of S1 is syntactic, as we shall see in the following section. This is an important
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observation since our model checking algorithm (as well as its implementation
on FDR) requires specifications to be expressed syntactically.

As explained earlier, a sort of specification that we are particularly inter-
ested in consists in specifications that are closed under inverse digitisation, a
generalisation of a notion of Henzinger, Manna, and Pnueli [13]. Closure under
inverse digitisation can be viewed as a robustness property: if a specification
contains all ‘digitisations’ of a particular behaviour, then it should contain the
behaviour in question as well. If we understand specifications to be sets of ‘allow-
able’ behaviours, it would seem dangerous to ban a particular behaviour if many
neighbouring behaviours were themselves deemed acceptable. We postpone the
precise definition of closure under inverse digitisation until Sect. 5.

Given a process P and a specification S, the dense-time verification problem
we are interested in is deciding whether P �R S holds. Since P and S are in
most cases infinite (in fact uncountable), this is often a far from straightforward
task. The remainder of this paper develops techniques to accomplish this goal
under certain assumptions.

4 Discrete-Time Modelling, Specification, and

Verification

We now present a discrete-time model to interpret Timed CSP processes. As
discussed in the introduction, this model, MZ, is in fact an integral submodel
of the timed failures model presented in the previous section.

Processes’ behaviours as recorded in MZ are precisely those ‘integral’ be-
haviours that are recorded in MR. Moreover, the forthcoming digitisation lemma
(Lemma 4) tells us that any dense-time behaviour of a process recorded in MR

gives rise to several closely related integral behaviours, so that, modulo some
‘timing fuzziness’, all of the behaviours of a process that are recorded in MR are
also accounted for in MZ.

Integral timed failures are defined in the obvious way: all time values ap-
pearing in timed traces, and all time bounds of refusal tokens, are required to
be integral. Thus events occur at integral times and are refused over integral
intervals of time. We let TF Z stand for the set of integral timed failures.

The model MZ then consists of all subsets of TF Z that meet certain ax-
ioms, essentially integral versions of the axioms for MR. The semantic map
ZJ·K : TCSP −→ MZ can then be defined compositionally in exactly the same
way as the dense-time mapping RJ·K : TCSP −→ MR, with obvious ‘integral’
restrictions on the ranges of the various parameters.

For T ⊆ TFR a set of dense-time timed failures, let Z(T ) =̂ T ∩TF Z denote
the subset of integral timed failures of T . As expected, we have the following:

Lemma 1. For any process P ∈ TCSP, ZJP K = Z(RJP K).

Proposition 2. The model MZ is strictly coarser than MR. In other words,
there are processes in TCSP which are identified in MZ yet distinguished in
MR (but never vice-versa).
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Proof. The parenthesised assertion is immediate from Lemma 1. For the main

statement, we let R = ȧ
0

� WAIT 1 # R, and then define P = R 9 ḃ and
Q = (R 9 b −→ R) ‖

{a}
ȧ. We now show that ZJP K = ZJQK but RJP K 6= RJQK.

To see that ZJP K = ZJQK, note that either process may communicate, in any
order and at any time, a single a and a single b. Moreover, both processes can
refuse everything but b until such time as b occurs, at which point any set of
events can be refused.

On the other hand, the timed trace 〈(0.5, b), (1.5, a)〉 is a valid trace of RJQK
but not of RJP K, which concludes the proof. ut

Following our approach with MR, behavioural discrete-time specifications on
MZ processes are naturally (identified with) sets of integral timed failures. Thus
given a specification S ⊆ TF Z, we say that a process P ∈ TCSP satisfies S,
written P �Z S, if ZJP K ⊆ S.

We note that dense-time specifications (subsets of TF R) naturally give rise to
discrete-time specifications, simply by excluding non-integral behaviours. Thus
for S ⊆ TFR, we also write P �Z S to express ZJP K ⊆ Z(S).

Let us now consider once again the example “P cannot perform the event
crash”. Understood as a discrete-time specification, it can be written as P �Z S2,
where S2 = {(s,ℵ) ∈ TFZ | crash /∈ σ(s)}. We could also have expressed S2 as
the set of behaviours of the process CHAOSΣ−{crash}, where we define, for any

A ⊆ Σ, CHAOSA = (a : A −→ CHAOSA)
0

� WAIT 1 # CHAOSA.
A discrete-time specification S is said to be syntactic if it can be written as

S = ZJQK for some process Q. S2 above is therefore syntactic. Note that, thanks
to Lemma 1, a dense-time specification that is syntactic is automatically also
syntactic when viewed as a discrete-time specification, although the converse
need not be true.

Let S be a syntactic discrete-time specification, i.e., S = ZJQK for some
Q ∈ TCSP. Let P ∈ TCSP. There is an algorithm to decide whether P �Z S,
which is guaranteed to terminate provided the discrete labelled transition systems
associated with P and Q are finite.2 In fact, depending on its implementation,
the algorithm may also terminate in certain other cases.

The idea underlying the algorithm is to form the power labelled transition
system (PLTS) of a process, which identifies certain states in such a way that
the resulting graph is deterministic. One then introduces a notion of power sim-
ulation, which is subsequently shown to correspond to the satisfaction relation
�Z. Since the existence of a power simulation can always be decided in the case
of finite PLTS’s, this algorithm is a decision procedure for discrete-time speci-
fication satisfaction. In fact, the model checker FDR employs similar (if rather
more sophisticated) methods for deciding refinement between CSP processes.
2 A discrete operational semantics, derived from that presented by Schneider for Timed

CSP in [25], can be given for TCSP processes. This semantics simply associates
to each process a discrete labelled transition system, from which the integral timed
failures of the process can be calculated—the operational and denotational semantics
are said to be congruent.
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An assertion of the form P �Z S can also be decided directly on FDR,
via simple coding techniques, provided S is a syntactic trace specification.3 We
illustrate this in a case study in the following section.

5 Relating Dense-Time and Discrete-Time Verification

We now consider the relationship between the dense-time and discrete-time be-
haviours RJP K and ZJP K of a given Timed CSP process P .

5.1 The Digitisation Lemma

We first present one of our main results, the digitisation lemma, which enables
us to tightly relate the dense-time and discrete-time semantics for Timed CSP.

We begin with a small piece of notation. Let t ∈ R+, and let 0 6 ε 6 1 be a
real number. Decompose t into its integral and fractional parts, thus: t = btc+t′.
(Here btc represents the greatest integer less than or equal to t.) If t′ < ε, let
[t]ε =̂ btc, otherwise let [t]ε =̂ dte. (Naturally, dte denotes the least integer greater
than or equal to t.) The [·]ε operator therefore shifts the value of a real number
t to the preceding or following integer, depending on whether the fractional part
of t is less than the ‘pivot’ ε or not.

We can then extend [·]ε to timed failures, by pointwise application to, re-
spectively, the time component of the trace’s events, and the time bounds of the
refusal’s tokens:

[(
〈(t1, a1), (t2, a2), . . . , (tk, ak)〉,

l⋃

i=1

[ui, vi) × Ai

)]

ε

=̂

(
〈([t1]ε, a1), ([t2]ε, a2), . . . , ([tk]ε, ak)〉,

l⋃

i=1

[[ui]ε, [vi]ε) × Ai

)
.

(The reader can verify that, in the case of timed refusals, this operation is inde-
pendent of the particular representation of the refusal as a finite union of refusal
tokens.) This definition extends to sets of timed failures in the obvious way.

Definition 3. A set of timed failures P ⊆ TF R is closed under digitisation

if, for any 0 6 ε 6 1, [P ]ε ⊆ P .

We note that our version of ‘digitisation’ extends that presented in [13], which
is only concerned with timed traces.

The digitisation lemma now reads:

Lemma 4. For any P ∈ TCSP, RJP K is closed under digitisation.

Proof. The proof proceeds by structural induction on Timed CSP terms. Note
that the assumption that all delays are integral is crucial. Details of the proof
can be found in [18]. ut

3 Certain other types of specifications can also be handled by FDR.
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5.2 Verification

Definition 5. A set of timed failures φ ⊆ TF R is closed under inverse digi-

tisation if, whenever a timed failure (s,ℵ) is such that [(s,ℵ)]ε ∈ φ for all
0 6 ε 6 1, then (s,ℵ) ∈ φ.

As a convention, we use lowercase Greek letters to designate specifications
that are closed under inverse digitisation.

The following lemma extends a result of [13]:

Lemma 6. If P ⊆ TFR is closed under digitisation and φ ⊆ TF R is closed
under inverse digitisation, then Z(P ) ⊆ Z(φ) ⇔ P ⊆ φ.

On the other hand, suppose S ⊆ TF R is not closed under inverse digitisation.
Then there exists P ⊆ TFR closed under digitisation such that Z(P ) ⊆ Z(S) yet
P * S.

Proof. For the first part, we note that the right-to-left implication is immediate
(and requires in fact no assumptions on φ).

Going in the other direction, assume that Z(P ) ⊆ Z(φ), and let (s,ℵ) ∈ P .
Since P is closed under digitisation, [(s,ℵ)]ε ∈ P for all 0 6 ε 6 1. Of course, each
such digitised behaviour also belongs to Z(P ), and hence to Z(φ) by assumption.
Since φ is closed under inverse digitisation, it follows that (s,ℵ) ∈ φ, as required.

The second part is straightforward and is left to the reader. ut

We now come to the main verification result:

Theorem 7. Let P ∈ TCSP, and let S, φ ⊆ TF R be specifications with φ being
closed under inverse digitisation. Then

1. P 2Z S ⇒ P 2R S
2. P �Z φ ⇔ P �R φ.

Proof. Follows directly from the digitisation lemma and Lemma 6. ut

As the above results indicate, the class of specifications that are closed under
inverse digitisation is particularly important to us. As pointed out in [13], this
class includes qualitative properties, as well as bounded-response and bounded-
invariance properties. It is closed under arbitrary intersections (which corre-
sponds to logical conjunction). Lastly, if P ⊆ TF R is closed under digitisation,
then its complement TF R −P is closed under inverse digitisation. As the reader
may easily verify, those facts remain true in the present context.

We also note that, as implied by Lemma 6, specifications that are not closed
under inverse digitisation cannot directly be verified exactly via digitisation
methods; see, however, our discussion on time granularity below.

Unfortunately, closure under inverse digitisation is an undecidable property
in Timed CSP, as the next proposition indicates. An interesting problem is to
find further straightforward criteria capturing large classes of processes that are
closed under inverse digitisation. This task is however made difficult by the fact
that closure under inverse digitisation is not preserved by either the parallel or
sequential composition operators, nor by (nondeterministic) process refinement.
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Proposition 8. The problem of deciding, given a process Q ∈ TCSP, whether
RJQK is closed under inverse digitisation is undecidable.

Proof. This follows immediately from the undecidability of the halting problem
for two-counter machines. Counters can be implemented in Timed CSP as pro-
cesses of the form C = up −→ (C 9 down −→ C). If H is a process closed under
inverse digitisation and R isn’t, deciding whether Q = H # R itself is closed
under inverse digitisation is equivalent to deciding whether H fails to be able to
terminate successfully. ut

5.3 Time Granularity

Let us define an integral multiplication operation on processes: for P ∈ TCSP

and k ∈ N>1, define kP ∈ TCSP to be identical to P except that every delay
n in P has been replaced by a delay of kn in kP . This operation can be given a
straightforward inductive definition, which we omit.

We can also define integral multiplication on timed failures, by pointwise
application to traces’ and refusals’ events. This definition, which we also omit,
extends to sets of times failures in the obvious way.

For S ⊆ TFR a dense-time specification, an assertion of the form P �Z S is
only concerned with the integral behaviours of P . One might like to strengthen
this requirement to half-integral behaviours of P , i.e., those behaviours which
are integral multiples of 1/2. Indeed, one can strengthen the requirement to
1/k-th integral behaviours of P for any k ∈ N>1, by considering the assertion
kP �Z kS. This, of course, simply corresponds to refining the granularity of time
by a factor of k.

In practice, it is often the case that, while S may not be closed under inverse

digitisation, 2S or kS may be. For example, if Q = ȧ
0

� WAIT 1 # Q is a process
that may communicate a single a at any integral time and then stop, we find
that RJQK is not closed under inverse digitisation, whereas kRJQK is, for any
k > 2.

We are led to the following theorem:

Theorem 9. Let P ∈ TCSP, and let S ⊆ TF R be a dense-time specification.
Then, for any k ∈ N>1,

1. kP �Z kS ⇒ P �Z S
2. kP 2Z kS ⇒ P 2R S
3. If kS is closed under inverse digitisation, then kP �Z kS ⇔ P �R S.

Proof. This rests on the facts that ZJkP K ⊇ kZJP K and RJkP K = kRJP K. ut

Unfortunately, given a specification S ⊆ TF R, it need not be the case that
kS be closed under inverse digitisation for any value of k; in other words, there
are specifications which seemingly cannot be handled (even theoretically) within
the sort of discrete frameworks we are considering.
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Proposition 10. There exists a syntactic specification S ⊆ TF R such that kS
is not closed under inverse digitisation, for any k ∈ N>1.

Proof. Let Q = ȧ9a −→ (ȧ
0

� STOP), and set S = RJQK. Note that kS = S for
any k ∈ N>1. Let s = 〈(0.1, a), (0.2, a), (0.3, a)〉. Observe that (s, ∅) /∈ S, even
though every digitisation of (s, ∅) clearly belongs to S. ut

However, we have the following result:

Theorem 11. Let S ⊆ TF R be a syntactic specification, and let P ∈ TCSP be
a process. Suppose that kP �Z kS for arbitrarily large values of k. Then P �R S.

We remark that the hypothesis that S is syntactic is necessary.

Proof. The proof is somewhat intricate and requires careful analysis. Details can
be found in [18]. ut

5.4 Full Abstraction

Definition 12. Let P,Q ∈ TCSP be two processes. We say that P and Q are
equivalent, written P ' Q, if for all specifications φ ⊆ TF R that are closed
under inverse digitisation, P �R φ ⇔ Q �R φ.

Our full abstraction result now reads:

Theorem 13. For any processes P,Q ∈ TCSP, P ' Q ⇔ ZJP K = ZJQK.

Proof. The right-to-left implication follows directly from Theorem 7.
For the other direction, assume without loss of generality that there exists

an integral timed failure (s,ℵ) ∈ ZJP K such that (s,ℵ) /∈ ZJQK. We must show
that P 6' Q.

Let φ ⊆ TFR be the least specification closed under inverse digitisation that
contains ZJQK. φ can be constructed by adding all the non-integral timed failures
to ZJQK that are required by inverse digitisation. Note that Z(φ) = ZJQK. Since
(s,ℵ) is an integral behaviour and (s,ℵ) /∈ ZJQK, we have (s,ℵ) /∈ φ.

Since φ is closed under inverse digitisation and Q �Z φ, Theorem 7 tells us
that Q �R φ. However P 2R φ, since (s,ℵ) ∈ ZJP K ⊆ RJP K, yet (s,ℵ) /∈ φ. Thus
P 6' Q, as required. ut

5.5 Example: Railway Level Crossing

We now present a small verification case study based on a simplified version of
the well-known railway level crossing problem [9].4

We describe in Timed CSP a closed system made up of four distinct compo-
nents: trains, travelling at bounded speeds on a stretch of rail incorporating a

4 See also [23] for an interesting alternative CSP-based discrete-time approach to this
example.
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level crossing; cars, able to cross the tracks in a bounded amount of time; a traf-
fic light, meant to signal cars not to attempt crossing the railway when a train
is nearby; and a monitor, whose rôle is to signal that a collision has happened.
For simplicity we assume that only at most one train and one car are present at
any one time within the system.

Trains are modelled via the process TRAIN : in its initial state, this process
assumes that there are no trains on the tracks, and offers the event train.in.
This event represents a sensor signal which indicates that an incoming train is
at least 60 s away from the crossing. When the train reaches the crossing, the
event train.on is triggered, and as soon as the train is a safe distance past the
crossing, the event train.out registers. We assume that the train takes at least
20 s to cross the crossing, and that the process TRAIN returns to its initial state
as soon as the event train.out is received.

The process CAR models the cars: initially there are no cars on the crossing,
and CAR offers the event car .on, subject to synchronisation with the traffic light,
indicating that a car is just about to drive onto the crossing. The car stays in
this vulnerable position for at most 10 s, sending out the event car .out as soon
as it is safely on the other side. For simplicity we will make the conservative
assumption that the time taken to cross the tracks is actually exactly 10 s. In
order to ensure that the car does step out immediately after this time, however,
we will later on hide the event car .out , to enforce its urgency. A new car is
allowed on the crossing as soon as the car ahead has left it.

The traffic light is green to start with, modelled by the process GREEN , and
becomes red as soon as a train (train.in) is detected. While it is red, the event
car .on is disabled (modelling the assumption that any car not yet on the crossing
obeys the red light), and is only re-enabled after train.out has registered.

A collision will occur if the train enters the crossing while a car is already
there, or vice-versa; in either case this will cause the monitoring process WATCH
to send out the catastrophic event crash.

The entire level crossing system CROSSING is modelled as the parallel com-
position of these four components, with car .out hidden.

Translating this description into Timed CSP, we get:

TRAIN = train.in
60
−→ train.on

20
−→ train.out −→ TRAIN

CAR = car .on
10
−→ car .out −→ CAR

GREEN = (train.in −→ RED) 2 (car .on −→ GREEN )

RED = train.out −→ GREEN

WATCH = (train.on −→ WATCHtrain) 2 (car .on −→ WATCHcar )

WATCHtrain = (car .on −→ crash −→ STOP) 2 (train.out −→ WATCH )

WATCHcar = (train.on −→ crash −→ STOP) 2 (car .out −→ WATCH )

CROSSING = ((TRAIN ‖
A

(GREEN ‖
B

CAR)) ‖
C

WATCH ) \ {car .out}

where A = {train.in, train.out}, B = {car .on}, and C = {train.on, car .on,
train.out , car .out}.
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We would now like to prove that this system is ‘safe’, i.e., that no collision can
ever occur. To this end, let us define the specification SAFE to be: ‘The event
crash is never witnessed’; in other words, SAFE = {(s,ℵ) ∈ TF R |crash /∈ σ(s)}.
We aim to establish that CROSSING �R SAFE .

SAFE is a qualitative behavioural timed trace specification, and is therefore
closed under inverse digitisation (as can also be seen by inspection). It follows
from Theorem 7 that CROSSING �Z SAFE ⇔ CROSSING �R SAFE .

For model checking purposes, recall that, as claimed in Sect. 4, Z(SAFE ) =
ZJCHAOSΣ−{crash}K, where Σ = {train.in, train.on, train.out , car .on, car .out ,
crash} represents CROSSING ’s alphabet. The question therefore reduces to de-
ciding whether CROSSING �Z CHAOSΣ−{crash} holds.

This can be encoded and checked as a trace refinement using the model
checker FDR. A special event tock is introduced to represent the passage of one
time unit. Most of the CSP operators must be modified to consistently handle
the passage of time; this is achieved in most cases via simple coding tricks.
The most significant difficulty is enforcing τ -urgency, the requirement that time
cannot pass while hidden events are on offer. This is taken care of by invoking
the priority operator of FDR which simply disables tock -transitions whenever
τ -transitions are pending.

Since both CROSSING and CHAOSΣ−{crash} are finite state (as they only
comprise tail recursions), the FDR check is guaranteed to terminate. Indeed, it
did confirm that CROSSING �R SAFE , as surmised.

6 Conclusion

The main results of this paper are that Timed CSP processes are closed under
digitisation, and as a consequence that specifications closed under inverse digi-
tisation can be verified exactly using an integral behaviour model. This yields a
model checking algorithm, implementable on FDR, which however requires that
specifications be expressed as syntactic processes. As our case study suggests, this
should not turn out to be a serious impediment in practice. Another important
result is that integral behaviours are fully abstract with respect to specifications
closed under inverse digitisation, and therefore that checks performed by our
model checking algorithm are not only sufficient, but also necessary, in general,
for verification purposes.

For reasons of space, we have presented our work exclusively within a deno-
tational context. As explained in the introduction, our results apply equally well
to the operational setting (cf. [18]). Our restriction to behavioural specifications,
on the other hand, is arguably much more difficult to lift. We do note, how-
ever, that many important non-behavioural specifications, such as reachability
requirements, can perfectly well be handled within our framework.

Our focus on Timed CSP was convenient, but not necessary: the results pre-
sented here are reasonably robust and should carry over without great difficulty
to other settings, whether process algebraic or transition-systems-based. We refer
the reader to [18] for a more detailed discussion on the matter.
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The question of the efficiency of the algorithm presented here has only been
briefly discussed. As with every other approach to the subject of automated ver-
ification, trade-offs are inevitable. We expect our algorithm to prove reasonably
efficient in cases where all delays are relatively small, or at least of similar sizes.
This is a topic for further research.

The question of full abstraction is interesting and does not seem to have been
extensively studied, whether in relation to algorithmic efficiency or not. The mat-
ter resurfaces as soon as we vary the basic parameters under consideration (the
process algebra, the verification framework, the class of allowable specifications).
For instance, are region graphs fully abstract with respect to TCTL formulas?
This, too, seems an interesting starting point for further work.
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