
Sequential Relational Decomposition*

Dror Fried
Department of Computer Science

Rice University, USA
dror.fried@rice.edu

Axel Legay
Inria, France

axel.legay@inria.fr

Joël Ouaknine
Max Planck Institute for Software Systems
Saarland Informatics Campus, Germany

Department of Computer Science
Oxford University, UK

joel@mpi-sws.org

Moshe Y. Vardi
Department of Computer Science

Rice University, USA
vardi@cs.rice.edu

Abstract
The concept of decomposition in computer science and
engineering is considered a fundamental component of
computational thinking and is prevalent in design of al-
gorithms, software construction, hardware design, and
more. We propose a simple and natural formalization of
sequential decomposition, in which a task is decomposed
into two sequential sub-tasks, with the first sub-task to
be executed out before the second sub-task is executed.
These tasks are specified by means of input/output re-
lations. We define and study decomposition problems,
which is to decide whether a given specification can be
sequentially decomposed. Our main result is that decom-
position itself is a difficult computational problem. More
specifically, we study decomposition problems in three
settings: where the input task is specified explicitly, by
means of Boolean circuits, and by means of automatic
relations. We show that in the first setting decomposition
is NP-complete, in the second setting it is NEXPTIME-
complete, and in the third setting there is evidence to
suggest that it is undecidable. Our results indicate that
the intuitive idea of decomposition as a system-design
approach requires further investigation. In particular, we
show that adding human to the loop by asking for a de-
composition hint lowers the complexity of decomposition
problems considerably.

*Full version of the paper appears in [9].

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209203

1 Introduction
Over the past decade, it became apparent that the con-
ceptual way of analyzing problems through computer-
science techniques can be considered as a general ap-
proach to analysis, design, and problem solving, known
as computational thinking [31, 32]. A key element of
this approach is the taming of complexity by decompos-
ing a complex problem into simpler problems. Quoting
Wing [31]: “Computational thinking is using abstrac-
tion and decomposition when attacking a large complex
task or designing a large complex system.” While ab-
straction helps to tame complexity by simplifying away
irrelevant details of a complex problem, decomposition
helps complexity by breaking down complex problems
into simpler ones. In fact, decomposition is a generic
project-management technique: project managers quite
often face challenges that require decomposition – a large
project that is divided among team members to make
the problem less daunting and easier to solve as a set
of smaller tasks, where team members work on tasks
that are in their specific fields of expertise. As computer
scientists and engineers, the concept of decomposition
is prevalent in the design of algorithms, in software con-
struction, in hardware design, and so on. For example, a
classical paper in software engineering studies criteria to
be used in decomposing systems into modules [24]. Yet,
in spite of the centrality of the concept of decomposition
in computational thinking, it has yet to be studied for-
mally in a general theoretical setting (see related work).
Such a study is the focus of this work.

There are many different types of decomposition that
can be considered. Based on her understanding of the
problem, the decomposer has to make a decision on how
to decompose a given problem, for example, by meeting
certain constraints on the size of the sub-problems, or
constraints on the way that solved sub-problems ought
to be recomposed. A simple and natural way of decom-
position is sequential decomposition in which a task is
decomposed into two sub-tasks, where the first sub-task

1

https://doi.org/10.1145/3209108.3209203


LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi

is to be carried out before the second sub-task can be
executed. A formal model for sequential decomposition is
the subject of this work. We assume that the given prob-
lem is specified by means of an input/output relation. It
is widely accepted that such relations are the most gen-
eral way to specify programs, whether for terminating
programs [13], where input and output should be related
values, or for nonterminating programs [25], where input
and output are streams of values. The decomposition
problem is to decompose a given input/output relation
𝑅, between an input domain ℐ and an output domain
𝒪, into two relations 𝑅1 and 𝑅2, such that 𝑅 can be
reconstructed from 𝑅1 and 𝑅2 using relational compo-
sition (defined in Section 3). To avoid trivial solutions,
where either 𝑅1 or 𝑅2 is the identity relation, we assume
that the intermediate domain, that is, the co-domain
of 𝑅1, which is also the domain of 𝑅2, is specified. In-
tuitively, specifying the intermediate domain amounts
to constraining the manner in which the first task can
“communicate” with the second task. Such a restriction
can be viewed as a form of information hiding, which
is one of the major criteria for decomposition in [24].
As we show, sequential decomposition is nontrivial only
when the channel of communication between the first
and second task has a small ”bandwidth”, appropriately
defined.
We study sequential decomposition in three settings:

explicit, symbolic, and automatic. In the explicit setting,
the input/output relation 𝑅 is specified explicitly. In the
symbolic setting, the domains and 𝑅 are finite but too
large to be specified explicitly, so 𝑅 is specified symboli-
cally as a Boolean circuit. In the automatic setting, the
domains and 𝑅 may be infinite, so the domains are spec-
ified by means of an alphabet, over which 𝑅 is specified
by means of a deterministic finite-state automaton.
Our general finding is that sequential decomposition,

viewed as a computational problem, is itself a challeng-
ing problem. In the explicit setting, the decomposition
problem is NP-complete. This escalates to NEXPTIME-
complete for the symbolic setting. For the automatic
setting the decomposition problem is still open, but we
provide evidence and conjecture that it is undecidable.
Specifically, we show that even a very simple variant
of the automatic setting can be viewed as equivalent
to the Positivity Problem, whose decidability is well
known to be open [21, 29]. We do show, however, that
a “strategic” variant of the automatic setting, in which
the required relations are described as transducers is
in EXPTIME. These findings, that decomposition is an
intractable problem, can be viewed as a “No-Free-Lunch”
result, as it says that decomposition, which is a tool to
combat complexity, is itself challenged by computational
complexity. This means that while decomposition is an

essential tool, the application of decomposition is an art,
rather than science, and requires human intuition.

As such, we explore decomposition with ”a human in
the loop”, where the role of the human is to offer a hint,
suggesting one of the terms of the decomposition, and
the role of the decomposition algorithm is to check if
a valid decomposition can be found based on the hint.
We show that decomposition with a hint is easier than
decomposition with no hint; it is in PTIME in the explicit
setting, in Π𝑃

3 in the symbolic setting, and in EXPTIME
in the automatic setting.

2 Related work
In this paper we introduce a new framework to study de-
composition of system-level specifications into component-
level specifications. In contrast, most existing approaches
in software engineering focus on composition, that is, de-
veloping systems from independently developed compo-
nents, or proving system-level properties from component-
level properties, for example [8]. This compositional ap-
proach is a fundamental approach in computer science
to taming complexity.
A major weakness of composition-based approaches

to system development is that they consider only the
problem of simplifying the implementation work, but
ignore the task of decomposing the often very complex
system-level technical specifications into smaller/simpler
ones. For example, there is no technique to explain how
smaller assumption/guarantee contracts can be obtained
from larger ones. This operation has to be conducted
manually by developers using their intuition and under-
standing of complex system-level specification. Thus, our
work here on decomposition complements existing ap-
proaches on composition-based development. In addition,
we believe that our work is also relevant to architectural
design, e.g., as a complement of [4].

A classical paper of Parnas in software engineering
studies criteria for to be used in decomposing systems
into modules [24]. Parnas’s framework, however, assumes
that the starting point for decomposition consists of ar-
chitectural specification of the system, while our starting
point is quite more abstract, as we assume that we are
provided with relational specification. Another related
work is that of [27], which describe an approach for
extracting sequential components from system specifi-
cation. Unlike, however, our work here, which starts
from a highly abstract relational specification, the ap-
proach of [27] assumes that the system’s specification is
provided by means of interface specification of the com-
ponents. Thus, this approach is of factorization rather
then decomposition.

2



Sequential Relational Decomposition LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Decomposition has been studied in the context of
linear algebra. A matrix decomposition or matrix fac-
torization is a factorization of a matrix into a product
of matrices. There are many different matrix factoriza-
tions. Certain Boolean matrix-factorization problems are
known to be NP-complete [15]. Our NP-completeness
result for explicit relations can be viewed as a special
case of Boolean matrix-factorization. In addition, our
formulation for the explicit case can be viewed as a
reformulation of the combinatorial definition of the non-
deterministic communication complexity (see Chapters
1-2 in [19]). In that sense, this paper extends these works
to more general representations of relations.

3 Preliminaries
3.0.1 Relations

Let 𝐴,𝐵,𝐶 be finite sets. For a binary relation 𝑅 ⊆
𝐴×𝐵, let𝐷𝑜𝑚(𝑅), and 𝐼𝑚𝑔(𝑅) be the domain of 𝑅, and
the image (sometimes called co-domain) of 𝑅, defined as
follows. 𝐷𝑜𝑚(𝑅) = {𝑎 ∈ 𝐴|∃𝑏 ∈ 𝐵 s.t (𝑎, 𝑏) ∈ 𝑅)}, and
𝐼𝑚𝑔(𝑅) = {𝑏 ∈ 𝐵|∃𝑎 ∈ 𝐴 s.t (𝑎, 𝑏) ∈ 𝑅)}. For 𝑎 ∈ 𝐴,
let 𝐼𝑚𝑔𝑅(𝑎) = {𝑏 ∈ 𝐵|(𝑎, 𝑏) ∈ 𝑅}. 𝑅 is called a function
if for every 𝑎 ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵 we have (𝑎, 𝑏), (𝑎, 𝑏′) ∈
𝑅 =⇒ 𝑏 = 𝑏′. Given binary relations 𝑅1 ⊆ 𝐴×𝐵, and
𝑅2 ⊆ 𝐵 × 𝐶, the composition of 𝑅1 and 𝑅2 is a binary
relation 𝑅1 ∘𝑅2 ⊆ 𝐴× 𝐶 where 𝑅1 ∘𝑅2 = {(𝑎, 𝑐)|∃𝑏 ∈
𝐵 s.t. (𝑎, 𝑏) ∈ 𝑅1 and (𝑏, 𝑐) ∈ 𝑅2}.

3.0.2 Automata

A Nondeterministic Finite Automaton (NFA) is a tuple
𝒜 = (Σ, 𝑄, 𝑞, 𝛿, 𝐹 ), where Σ is a finite alphabet, 𝑄 is a
finite state set with an initial state 𝑞, 𝛿 : 𝑄× Σ → 2𝑄 is
a transition function, and 𝐹 is an accepting-state set. A
run of 𝒜 over a word 𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛 for some 𝑛 is a state
sequence 𝑟 = 𝑞0, 𝑞1, · · · , 𝑞𝑛 such that 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑎𝑖) for
𝑖 ≥ 0, where 𝑞0 = 𝑞 is the initial state. A run is accepting
if its final state is accepting. A word is accepted if it
has an accepting run. The language of 𝒜, 𝐿(𝒜), is the
set of all accepted words of 𝒜 and is called a regular
language. A language is also regular if and only if it can
be described by a regular expression. We define the size
of the automaton 𝒜 as |𝑄|+ |Σ|+ |𝛿| and denote this size
by |𝒜|. For NFAs 𝒜1 = (Σ1, 𝑄1, 𝑞

1, 𝛿1, 𝐹1) and 𝒜2 =
(Σ2, 𝑄2, 𝑞

2, 𝛿2, 𝐹2), we define the product automaton of
𝒜1 and 𝒜2 as an automaton 𝒜1 ×𝒜2 = (Σ1 ×Σ2, 𝑄1 ×
𝑄2, 𝑞

1 × 𝑞2, 𝛿, 𝐹1 × 𝐹2) where (𝑝, 𝑝′) ∈ 𝛿((𝑞, 𝑞′), (𝑙, 𝑙′)) iff
𝑝 ∈ 𝛿1(𝑞, 𝑙) and 𝑝′ ∈ 𝛿2(𝑞

′, 𝑙′). An NFA 𝒜 is deterministic
(called DFA) if for every state 𝑞 and letter 𝑎, |𝛿(𝑞, 𝑎)| ≤ 1.
Every NFA can be determinized to a DFA that describes
the same language by using the subset construction,
possibly with an exponential blow-up [14]. It is often
more convenient for users to specify regular languages
by means of regular expressions, which can be converted

to DFA, possibly with a doubly exponential blow-up [14].
We assume here that all regular languages are specified
by means of DFAs, as we wish to study the inherent
complexity of decomposition.
Finally a transducer (also called a Moore machine)

is a DFA with no accepting states, but with additional
output alphabet and an additional function from the set
of states to the output alphabet. Transducers describe
automatic functions from input to output.

4 Problem definition
The concept of decompositions that we explore here is
related to systems that can be defined by their given
input and produced output. We model these as an input
domain ℐ and an output domain 𝒪, not necessarily
finite. Our description of a system is a specification that
associates inputs to outputs, and is modeled as a relation
𝑅 ⊆ ℐ ×𝒪 [13, 25]. In addition we assume a constraint
in form of a domain with a specific size that directs the
decomposition to be more concise and is given as an
intermediate domain ℬ. The objective is to decompose
𝑅 into relations 𝑅1 ⊆ ℐ × ℬ, and 𝑅2 ⊆ ℬ × 𝒪 such
that the composition 𝑅1 ∘𝑅2 has either of the following
properties: (i) no input-output association is added or
lost - this problem is called the Total Decomposition
Problem (TDP), or (ii) a more relaxed version, called
the Partial Decomposition Problem (PDP) in which no
input-output association is added, but we are allowed
to lose some of the output as long as each input can be
resolved.
To make the paper more fluent to read we use the

notation TDP/PDP for statements that are valid to
the TDP and the PDP variants respectively. Since the
size of the intermediate domain ℬ can be significantly
smaller than the size of the input or output domains, the
problem becomes non-trivial as some sort of compression
is required in order to enable TDP/PDP. The actual
problems of TDP/PDP are appropriately defined for
each section as decision problems. We first define the
TDP/PDP conditions as follows.

Definition 4.1. (TDP/PDP conditions) Given binary
relations 𝑅 ⊆ ℐ ×𝒪, 𝑅1 ⊆ ℐ × ℬ, and 𝑅2 ⊆ ℬ ×𝒪 for
some domains ℐ,𝒪,ℬ, we say that (𝑅1, 𝑅2) meet the
TDP condition if 𝐼𝑚𝑔(𝑅1) ⊆ 𝐷𝑜𝑚(𝑅2) and 𝑅1 ∘𝑅2 =
𝑅. We say that (𝑅1, 𝑅2) meet the PDP condition if
𝐼𝑚𝑔(𝑅1) ⊆ 𝐷𝑜𝑚(𝑅2), 𝐷𝑜𝑚(𝑅1 ∘ 𝑅2) = 𝐷𝑜𝑚(𝑅), and
𝑅1 ∘𝑅2 ⊆ 𝑅.

The decision problem of TDP/PDP, formally defined
for diverse settings, is: given a description of domains and
a relevant relation 𝑅, find whether there exist (𝑅1, 𝑅2)
that meet the TDP/PDP condition.
Since the type of domains and relations that we ex-

plore varies between an explicit and a more implicit
3



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi

description of relations, the formal definitions of the
problem change according to these representations, and
so are the sought decomposed relations. It is important
to note that the TDP/ PDP conditions are properties of
the actual relations, and not of the description in which
the relations are represented.
Note that PDP without the restriction of 𝐷𝑜𝑚(𝑅1 ∘

𝑅2) = 𝐷𝑜𝑚(𝑅) becomes trivial, as one can take the
empty sets as 𝑅1 and 𝑅2. Also note that 𝐼𝑚𝑔(𝑅1) ⊆
𝐷𝑜𝑚(𝑅2) implies that 𝐷𝑜𝑚(𝑅1 ∘𝑅2) = 𝐷𝑜𝑚(𝑅1) (see
proper claim in [9]), a technical fact that can help prove
TDP/PDP conditions in various settings. Finally see
that the decomposed relations that meet the TDP condi-
tions, also meet the PDP conditions on the same input,
therefore a positive answer to TDP implies a positive
answer to PDP.

5 Decomposition is hard
Decomposition has been advocated as the first step in
the design of complex systems, with the intuition that
it is easier to design components separately, rather than
design a complex monolithic system. We show in this
section several settings in which finding a sequential
decomposition is computationally hard. This means that
while sequential decomposition could be used to simplify
the complexity of the initial specification, such decom-
position itself is intractable, thus can be viewed as a
”No-Free-Lunch”.

5.1 Explicit relations

The simplest case of decomposition is when the domains
ℐ,𝒪 and ℬ are finite and given explicitly as a part of the
input, and the relation 𝑅 is given explicitly as a table
in ℐ × 𝒪.

Problem 1. (TDP/PDP on explicit relations) We are
given a tuple 𝐼 = (ℐ,𝒪,ℬ, 𝑅) where ℐ,𝒪,ℬ are finite
domains and 𝑅 ⊆ ℐ ×𝒪. The problem is whether there
exist relations 𝑅1 ⊆ ℐ × ℬ, and 𝑅2 ⊆ ℬ × 𝒪 such that
(𝑅1, 𝑅2) meet the TDP/PDP conditions.

Claim 1. If |ℬ| ≥ |ℐ| or |ℬ| ≥ |𝒪| then TDP has a
positive solution (and therefore PDP as well) and the
relations that solve TDP can be found in a linear time
to the size of the input.

Proof. Suppose w.l.o.g. that |ℬ| ≥ |𝒪|. Then we can
define 𝑅2 = {(𝑔(𝑜), 𝑜)|𝑜 ∈ 𝒪} where 𝑔 : 𝒪 → ℬ is any
injection. Then for TDP, 𝑅1 = {(𝑖, 𝑏)|(𝑖, 𝑜) ∈ 𝑅 and 𝑏 =
𝑔(𝑜)} is a relation that satisfies 𝑅1 ∘𝑅2 = 𝑅. �

Therefore TDP/PDP become non-trivial when |ℬ| is
strictly smaller than |ℐ| and |𝒪|.

Example 5.1. Let ℐ = {𝑖1, 𝑖2},ℬ = {𝑏}, and 𝒪 =
{𝑜1, 𝑜2}. Let 𝑅 = {(𝑖1, 𝑜1), (𝑖2, 𝑜2)}. Then the answer

to TDP is negative as every non-empty composition of
relations 𝑅1 ∘𝑅2 with 𝐷𝑜𝑚(𝑅1 ∘𝑅2) = 𝐷𝑜𝑚(𝑅), must
also include (𝑖1, 𝑜2) or (𝑖2, 𝑜1).

We next show that even for explicit setting, TDP/PDP
are computationally hard, that is NP-complete. On a
positive note, being in NP, solutions for TDP/PDP can
be sought by various techniques such as reduction to
SAT, then using SAT solvers. We give proof outline, full
details appear in [9].

Theorem 5.2. TDP/PDP on explicit relations are NP-
complete.

Proof. To see that TDP/PDP is in NP, guess 𝑅1, 𝑅2 and
verify conditions of TDP/PDP.

For TDP, NP-hardness is shown by a reduction from
the NP-complete problem: Covering by Complete Bipar-
tite Subgraphs (CCBS) (Problem GT18 at[12]). In the
CCBS we are given a bipartite graph 𝐺 and 𝑘 > 0, and
the problem is whether 𝐺 can be covered by 𝑘 complete
bipartite subgraphs. The idea of the proof is that all the
ℐ and 𝒪 elements that are related to a specific element
𝑏 ∈ ℬ via 𝑅1 and 𝑅2, must be a part of a bipartite clique
in the bipartite (ℐ,𝒪) graph that 𝑅 describes.

For PDP where only a part of 𝑅 needed to be ”covered”
although the solution should still cover the domain of
𝑅, NP-hardness follows by a reduction from Set Cover
(Problem SP5 in [12]). �

5.2 Symbolic relations

In Section 5.1, the input relation is described explicitly.
In many cases, however, although finite, the relation
is too large to be described explicitly, and it makes
more sense to describe it symbolically. Specifically, the
domains are given as the set of all truth assignments over
sets of Boolean variables, and the relation is described
symbolically. Such representations have been studied in
the literature, where they are often referred to as succinct
representations, since they allow for a polynomial-size
description of exponential-size domains and relations. In
this section we explore a standard encoding in which
the relation is described as a Boolean circuit, as in [3, 6].
Other symbolic encodings studied in the literature are
Boolean formulas [30], and BDDs [7].
Let 𝐷,𝐷′ be finite domains of size |𝐷| = 2𝑛, and

|𝐷′| = 2𝑛
′
for some 𝑛, 𝑛′. A (succinct) circuit description

of a relation 𝑅 ⊆ 𝐷×𝐷′ is a circuit 𝐶𝑅 of size polynomial
in𝑚𝑎𝑥(𝑛, 𝑛′) with Boolean variables 𝑑1, · · · 𝑑𝑛, 𝑑′1, · · · , 𝑑′𝑛′

such that 𝐶𝑅(𝑑1, · · · , 𝑑𝑛, 𝑑′1, · · · , 𝑑′𝑛′) = 1 iff
((𝑑1, · · · , 𝑑𝑛), (𝑑′1, · · · , 𝑑′𝑛′)) ∈ 𝑅. For more about suc-
cinct circuit representation, see [3, 11, 23].

Problem 2. (TDP/PDP for symbolic relations) We
are given a tuple 𝐼 = (𝑛ℐ , 𝑛𝒪, 𝑛ℬ, 𝐶𝑅) where 𝑛ℐ , 𝑛𝒪, 𝑛ℬ
are logarithmic in the size of some domains ℐ,𝒪, ℬ

4



Sequential Relational Decomposition LICS ’18, July 9–12, 2018, Oxford, United Kingdom

respectively and 𝐶𝑅 is a circuit that describes a relation
𝑅 ⊆ ℐ ×𝒪. The problem is whether there exist circuits
𝐶𝑅1

, 𝐶𝑅2
that describe relations 𝑅1 ⊆ ℐ × ℬ, and 𝑅2 ⊆

ℬ×𝒪 such that (𝑅1, 𝑅2) meet the TDP/PDP conditions.

For TDP/PDP, as in Claim 1, the problem becomes
trivial when 𝑛ℬ ≥ min{𝑛ℐ , 𝑛𝒪}. Note that a variant of
PDP, in which the required relations in the solution are
functions can be viewed as an instance of the problem
of Boolean functional synthesis, e.g. [10].

We next show that TDP/PDP are NEXPTIME-complete.
We obtain this result by applying the computational-
complexity theory of succinct-circuit representations for
”logtime” reductions [3] to the NP-hardness reductions
described in Section 5.1. We describe this in details.
A reduction from languages 𝐴 ⊆ Σ* to 𝐵 ⊆ Σ*, for

a finite alphabet Σ, is a function 𝑓 : 𝐴 → 𝐵 such that
𝑥 ∈ 𝐴 iff 𝑓(𝑥) ∈ 𝐵. The function 𝑓 is called a logtime
reduction if the 𝑖-th symbol of 𝑓(𝑥) can be computed in
a time logarithmic of the size of 𝑥. This is done by using
a so called “direct-input-access” Turing machine, which
has a specific “index” tape in which a binary index 𝑖 is
written and then the 𝑖-th symbol of the input string 𝑥
is computed. See [3], which also states a generalization
of the following:

Theorem 5.3. (Balcazar, Lozano, Toran [3]) For ev-
ery language 𝐵 ⊆ Σ*, if 𝐵 is NP-hard under logtime
reducibility, then the circuit representation of 𝐵 is
NEXPTIME-hard under polynomial-time reducibility.

From Theorem 5.3 we get:

Theorem 5.4. TDP/PDP for symbolic relations are
NEXPTIME-complete.

We give a proof sketch; the full proof appears in [9].

Proof Sketch. For membership in NEXPTIME, we
construct the relation 𝑅 from 𝐶𝑅 in time exponential in
𝑛, then use the explicit solution (in NP), as in Section 5.1.
For NEXPTIME hardness we first retrace the chain of
log-time reductions from a Turing machine description
of an NP language, via SAT to either TDP or PDP on
explicit relations. Most of these reductions are found
in [12], in addition to Theorem 5.2 from Section 5.1.
All these reductions, which are functions from strings
to strings, have the property that only a few symbols
are required from the input string, as well as a local
comparison, in order to determine the identity of the
𝑗’th symbol of the output string: the property that is
required for logtime reductions. Having obtained that
these reductions are logtime, NEXPTIME hardness fol-
lows from the Conversion Lemma from [3] and by using
transitivity of polynomial-time reductions. �

5.3 Automatic relations

In many applications we need to consider input and
output as streams of symbols, with some desired relation
between the input stream and the output stream. The
most basic description for such systems, the one that
we explore in this work, is when the domains are (pos-
sibly infinite) sets of finite words over finite alphabets,
and the given relation is a regular language, given as a
deterministic finite automaton (DFA), over the product
alphabet of the input and output domains. The setting
that we consider in this paper is of automatic relations.
Automatic relations provide a context for a rich theory
of automatic structures, cf. [16, 28], with a solvable deci-
sion for first-order logic. We follow here the convention
in regular model checking, cf. [5], where length-preserving
automatic relations, with input and output symbols inter-
leaved, are used as input/output specifications for each
step of reactive systems. (Thus, unlike the definitions in
[16, 28], we do not allow padding.)
Given finite alphabets Σ,Σ′ with domains 𝐷 ⊆ Σ*,

𝐷′ ⊆ Σ′*, and a relation 𝑅 ⊆ 𝐷×𝐷′, we say that a DFA

𝒜𝑅 over alphabet (Σ×Σ′) describes 𝑅 if: (𝑑, 𝑑′) ∈ 𝐿(𝒜𝑅)

if and only if (𝑑, 𝑑′) ∈ 𝑅 . Note the slight abuse of
notation as 𝐿(𝒜𝑅) describes words in (Σ × Σ′)* while
𝑅 describes words in Σ* × Σ′*. Thus, we assume that
input and output streams have the same lengths, that

is, (𝑑, 𝑑′) ∈ 𝑅 implies that |𝑑| = |𝑑′|.

Problem 3. (TDP/PDP for automatic relations) We
are given a tuple 𝐼 = (Σℐ ,Σℬ,Σ𝒪,𝒜𝑅), where Σℐ , Σℬ,
and Σ𝒪 are finite alphabets, and 𝒜𝑅 is a DFA that
describes a relation 𝑅 ⊆ Σ*

ℐ×Σ*
𝒪. The problem is whether

there exist DFAs 𝒜𝑅1
,𝒜𝑅2

that describe relations 𝑅1 ⊆
Σ*

ℐ × Σ*
ℬ and 𝑅2 ⊆ Σ*

ℬ × Σ*
𝒪 such that (𝑅1, 𝑅2) meet

the TDP/PDP conditions.

As in the explicit and symbolic cases, the problem
becomes non trivial for TDP/PDP only when |Σℬ| <
min{|Σℐ |, |Σ𝒪|}. While TDP/PDP in the symbolic set-
ting can be solved by reduction to the explicit setting,
this cannot be done here as the domains are possibly
infinite. Indeed, automatic-relation TDP/PDP seems
to be a challenging problem. We next conjecture that
automatic-relation TDP/PDP are undecidable and ex-
plain the motivation for this conjecture and why an
automatic-theoretic approach may not be helpful for
TDP/PDP. We then show that even for the most basic
case, in which the given relation is the equality relation,
TDP/PDP can already be viewed as an algorithmic
problem in automata that is equivalent to the Positivity
Problem whose decidability is still open [21, 29]. We
next show that for intermediate alphabet that is of ex-
ponential size, TDP/PDP on automatic relations can

5



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi

be reduced to TDP/PDP on binary intermediate alpha-
bet. Finally we show by an automata-theoretic approach
that a “strategic” variant of PDP, in which the required
relations are in form of transducers, is decidable, and in
fact is in EXPTIME.

5.3.1 An undecidability conjecture for
TDP/PDP

A notable positive result about automatic relations is
the decidability of their first-order theories [16, 28]. On
the other hand, most second-order problems over auto-
matic relations are undecidable; for example, checking
the existence of an Eulerian cycle in an automatic graph
is highly undecidable [20]. TDP/PDP are essentially
second-order problems–we ask for the existence of 𝑅1

and 𝑅2 under the TDP/PDP conditions. Our conjecture
is that this problem is undecidable. We provide here
intuition to justify this conjecture.
We show in Section 6 below that TDP/PDP are de-

cidable for automatic relations when a hint, in the form
of a DFA for 𝑅1 or 𝑅2 is given. The idea is that given
one component, say 𝑅1, there is a maximal second com-
ponent 𝑅2 that can be obtained from 𝑅1 so that if 𝑅1 is
the first component of some proper decomposition, then
𝑅2 is a proper second component. When 𝑅1 is given as
a DFA, we can then construct a DFA for 𝑅2. Can we
leverage this idea towards solving the problem in full?
That is, can we search for, say, an automaton for 𝑅1

that together with the maximal 𝑅2 constructed below,
forms a solution for TDP/PDP?
It is tempting to try to use an automata-theoretic

approach similar to the strategic PDP (see Section 5.3.4
below) in which we consider representing 𝑅1 ⊆ (Σ𝐼 ×
Σ𝐵)

* as a labeled tree 𝜏1 : (Σ𝐼 × Σ𝐵)
* ↦→ {0, 1}. Then

we can try to define a tree automaton 𝒜1 that accepts
a tree 𝜏1 iff it is a correct hint for the total or partial
decomposition of an input/output relation 𝑅 ⊆ (Σ𝐼 ×
Σ𝐵)

*. The difficulty is that such an automaton has to
check two properties of 𝜏1: (1) The domain of 𝑅1 has
to be equal to the domain of 𝑅. This is essentially a
requirement on the projection of 𝜏1 on Σ𝐼 . (2) The
composition of 𝑅1 with the maximal 𝑅2 is contained
in or equal to 𝑅. This is essentially a requirement on
the projection of 𝜏1 on Σ𝐵 . Known automata-theoretic
techniques exist for dealing with projection of trees, see
for example [17]. We currently, however, have no known
technique to deal with two orthogonal projections, as we
have here.
Of course, this argument only shows that a particu-

lar technique to attack the problem is unlikely to be
successful. To justify the conjecture, we note that the
dual-projection problem is reminiscent to the problem
of distributed temporal synthesis, which was shown to
be undecidable [26] (though there is no obvious formal

connection between the decomposition problem and the
distributed-synthesis problem). There we are represent-
ing an overall system strategy as a tree where tree labels
correspond to actions of system components and tree
edges correspond to environment actions. When different
systems components are expected to act independently,
without knowledge of actions by other components, over-
all systems strategies has to be decomposed into sep-
arate strategies as projections of the system strategy.
The similarity between the two problems motivates us
to formulate the following conjecture.

Conjecture 5.5. TDP/PDP for automatic relations is
undecidable.

5.3.2 Decomposing equality

To support the claim of how non-trivial the decomposi-
tion problem is, we consider a more simple and abstract
variant of automatic TDP. We consider a very simple
case in which the given automatic relation is trivial, and
the intermediate alphabet is binary. We do not even
require the decomposed relation 𝑅1, 𝑅2 to be realized
by automata, although we do require the length of every
matching words in 𝑅1 and 𝑅2 to be the same. Specifically,
given a regular language 𝐿 over Σ*

ℐ , let 𝑅
=
𝐿 ⊆ Σℐ × Σℐ

be the equality relation over 𝐿. i.e. 𝑅 = {(𝑤,𝑤)|𝑤 ∈ 𝐿}.
Given 𝐿 over Σ*

ℐ and Σℬ = {0, 1}, we ask whether there
are relations (𝑅1, 𝑅2) that meet the TDP properties
with respect to 𝑅=

𝐿 .
First see that we can assume wlog that (𝑅1, 𝑅2) are

functions since existence of such relations leads to ex-
istence of such functions. Next, note that 𝑅1 cannot
relate two distinct words in 𝐿 to the same word in Σ*

𝐵.
This is because otherwise a word from Σ*

𝐵 has to meet
two distinct Σ*

ℐ elements, thus either break the equality
property or break the TDP property. Therefore we have
that 𝑅1 is an injection from Σ*

ℐ to Σ*
ℬ. As such, finding

an 𝑅1 that is such an injection also gives us 𝑅2 = 𝑅−1
1 .

Let 𝐿𝑛 be the words in 𝐿 of size 𝑛. Note that if there is
𝑛 for which |𝐿𝑛| > 2𝑛 then no such 𝑅1 can be found. If,
however, for every 𝑛 we have |𝐿𝑛| ≤ 2𝑛 then a function
𝑅1 can be simply realized by ordering the words in every
𝐿𝑛 in lexicographic order and relating each one to the
Σ𝑛

ℬ word that encodes the index in binary.
Therefore the problem of TDP in this setting is re-

duced to the following problem: given a regular language
𝐿 over a finite alphabet Σ, where for every 𝑛, 𝐿𝑛 is the
set of words in 𝐿 of size 𝑛, does |𝐿𝑛| ≤ 2𝑛 for every 𝑛?
We call this problem the The Exponential-Bound Prob-
lem (EBP). The following theorem, however, shows that
EBP is equivalent to the problem of Positivity, described
below, whose decidability has been famously open for
decades [21, 29]. Although this is not a direct reduction

6



Sequential Relational Decomposition LICS ’18, July 9–12, 2018, Oxford, United Kingdom

to automatic TDP, this relation indicates to the hardness
of solving automatic TDP on even a simple relation.
A linear recurrence sequence (LRS) is a sequence of

integers ⟨𝑢𝑛⟩∞𝑛=0 satisfying a recurrence relation: there
exist constants integers 𝑎1, 𝑎2, . . . , 𝑎𝑘 such that, for all
𝑛 ≥ 0, 𝑢𝑛+𝑘 = 𝑎1𝑢𝑛+𝑘−1 + 𝑎2𝑢𝑛+𝑘−2 + . . . + 𝑎𝑘𝑢𝑛. If
the initial values 𝑢0, . . . , 𝑢𝑘−1 of the sequence are pro-
vided, the recurrence relation defines the rest of the
sequence uniquely. Given a linear recurrence sequence
(LRS) ⟨𝑢𝑛⟩∞𝑛=0, the Positivity Problem asks whether all
terms of the sequence are non-negative.

Theorem 5.6. EBP is Equivalent to Positivity.

Proof. We first show that Positivity reduces to EBP.
Let ⟨𝑢𝑛⟩∞𝑛=0 be an LRS; we show how positivity for
the sequence ⟨−𝑢𝑛⟩∞𝑛=0 can be formulated as an EBP
problem. To this end, we invoke Corollary 4 from [2]
to obtain a rational stochastic matrix 𝑀 of size 𝑐 × 𝑐
(denoted ̃︀𝑄 in the proof of Proposition 2 from op. cit.,
where the value of 𝑐 is also stated) such that, for all
𝑛 ≥ 0,

(𝑀2𝑛+1)1,2 ≤ 1

4
iff 𝑢𝑛 ≤ 0 iff − 𝑢𝑛 ≥ 0 , (1)

in other words the positivity of ⟨−𝑢𝑛⟩∞𝑛=0 is violated iff
there is some 𝑛 such that the (1, 2)-th entry of 𝑀2𝑛+1

is strictly larger than 1/4.
In fact, as noted in the comments following Corollary 4

in [2], 𝑀 can be chosen so that its entries are dyadic
rationals, i.e., having denominator some power of 2. Let
us therefore assume this to be the case, and let 2𝑝 be the
largest such power. Write 𝐽 = 2𝑝𝑀 and 𝑁 = (2𝑝𝑀)2.
Then 𝐽 and 𝑁 are square matrices with non-negative
integer coefficients, and hence there is some DFA 𝒜 such
that (𝐽 ·𝑁𝑛)1,2 is the number of words of length 𝑛+ 1
accepted by 𝒜. More precisely, 𝒜 has initial state 𝑠, and
𝑐 further states 𝑞1, . . . , 𝑞𝑐. The single accepting state
is 𝑞2. To define the transition function, if the (1, 𝑗)-th
entry of 𝐽 is ℓ, then we postulate ℓ transitions going from
state 𝑠 to state 𝑞𝑗 , each labelled with a new (fresh) letter.
Likewise, if the (𝑖, 𝑗)-th entry of 𝑁 is ℓ, then we include ℓ
transitions going from 𝑞𝑖 to 𝑞𝑗 , again for each one using a
new letter as label. In this way, 𝐽 and 𝑁 can be viewed
as the adjacency matrices of the underlying directed
multigraph of 𝒜, and (𝐽 ·𝑁𝑛)1,2 counts the number of
paths in 𝒜 going from 𝑠 to 𝑞2 in 𝑛+ 1 steps. Since by
construction, different paths give rise to different words,
(𝐽 · 𝑁𝑛)1,2 does indeed correspond to the number of
words of length 𝑛+ 1 accepted by 𝒜.

Writing 𝐿(𝒜) = 𝐿, Eq. (1) becomes, for all 𝑛 ≥ 0,

𝐿𝑛+1 ≤ 2𝑝22𝑝𝑛

4
=

22𝑝(𝑛+1)

2𝑝+2
iff − 𝑢𝑛 ≥ 0 . (2)

We now modify automaton 𝒜 by lengthening every
transition in 𝒜 by a factor of 2𝑝; more precisely, for

every transition 𝑞 → 𝑞′, create 2𝑝−1 fresh non-accepting
states 𝑟1, . . . , 𝑟2𝑝−1 and replace 𝑞 → 𝑞′ by the sequence
𝑞 → 𝑟1 → 𝑟2 → . . . → 𝑟2𝑝−1 → 𝑞′, all labelled with
the same letter as the original transition. The initial
and accepting states otherwise remain unchanged. Let
us call the resulting DFA 𝒜′, with accepted language
𝐿(𝒜′) = 𝐿′. In moving from 𝒜 to 𝒜′, the net effect has
been to increase the length of every accepted word by a
factor of 2𝑝; note also that if 𝑚 is not a multiple of 2𝑝,
then 𝐿′

𝑚 = 0.
Combining the above with Eq. (2), we conclude that

the LRS ⟨−𝑢𝑛⟩∞𝑛=0 is positive iff for all 𝑚 ≥ 0, 𝐿′
𝑚 ≤

2𝑚

2𝑝+2 , i.e., 2
𝑝+2𝐿′

𝑚 ≤ 2𝑚.

Inflating the alphabet size of 𝒜′ by a factor of 2𝑝+2,
we can easily manufacture a DFA 𝒜′′ with accepted
language 𝐿(𝒜′′) = 𝐿′′ having the property that, for all
𝑚 ≥ 0, 𝐿′′

𝑚 = 2𝑝+2𝐿′
𝑚. It therefore follows that the LRS

⟨−𝑢𝑛⟩∞𝑛=0 is positive iff for all 𝑚 ≥ 0, 𝐿′′
𝑚 ≤ 2𝑚, which

completes the reduction of Positivity to EBP.
Finally, since the series obtained from the number of

distinct words of length 𝑛 in an automaton makes an
LRS [22], we have that EBP also reduces to Positivity,
so that the two problems are in fact equivalent. �

5.3.3 Reduction to binary alphabet

Since the size of the intermediate alphabet plays a crucial
role in the solution of TDP/PDP, one may ask whether
it suffices to search for solutions for only the binary case.
We show that the answer is positive for intermediate al-
phabet that is of size of exponent. Specifically we show by
reduction that for every automatic TDP/PDP instance
𝐼 = (Σℐ ,Σℬ,Σ𝒪,𝒜𝑅), where |Σℬ| = 2𝑚 for some 𝑚 > 0,
there is a TDP/PDP instance 𝐼 ′ = (Σℐ , {0, 1},Σ𝒪,𝒜𝑅′)
such that 𝐼 has a solution if and only if 𝐼 ′ has a solution.
The idea behind the reduction is to encode every letter in
Σℬ in binary, and use this encoding for the construction
of 𝐼 ′. 𝒜𝑅′ is therefore constructed from 𝒜𝑅 by replacing
every edge labeled (𝑖, 𝑜) with a path of 𝑚 edges, each
with the same label (𝑖, 𝑜). We give below an outline of
the reduction proof; see [9] for details.

Theorem 5.7. There is a TDP/PDP solution to 𝐼 =
(Σℐ ,Σℬ,Σ𝒪,𝒜𝑅) where |Σℬ| = 2𝑚 for some 𝑚 > 0,
if and only if there is a TDP/PDP solution to 𝐼 ′ =
(Σℐ , {0, 1},Σ𝒪,𝒜𝑅′).

Proof. Let 𝑏𝑖𝑛 be a function in which 𝑏𝑖𝑛(𝑏) is a binary
encoding of the letter 𝑏 ∈ Σℬ in 𝑚 bits, and let 𝑏𝑖𝑛𝑗(𝑏)
be the 𝑗’th bit in 𝑏𝑖𝑛(𝑏). Since Σ𝐵 is of size 2𝑚, the
function 𝑏𝑖𝑛 is a bijection. Assume that 𝐼 has a solu-
tion (𝒜𝑅1

,𝒜𝑅2
). We first construct an automaton 𝒜𝑅′

1

over alphabet (Σℐ ×{0, 1}) from 𝒜𝑅1
by replacing every

edge labeled (𝑖, 𝑏) with an 𝑚-edges path with edge labels
(𝑖, 𝑏𝑖𝑛0(𝑏)), · · · (𝑖, 𝑏𝑖𝑛𝑚−1(𝑏)), thus such a path describes

7



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi

the word (𝑖𝑚, 𝑏𝑖𝑛(𝑏)) (where 𝑖𝑚 is the letter 𝑖 concate-
nated 𝑚 times). Same, we construct an automaton 𝒜𝑅′

2

over alphabet ({0, 1} × Σ𝒪) from 𝒜𝑅2
by replacing ev-

ery edge labeled (𝑏, 𝑜) with an 𝑚-edges path with edge
labels that describes the word (𝑏𝑖𝑛(𝑏), 𝑜𝑚). Then since
(𝑅1, 𝑅2) solve TDP/PDP for the instance 𝐼, we have
that (𝑅′

1, 𝑅
′
2) solve TDP/PDP for the instance 𝐼 ′.

The other side of the proof is more involved since
suppose we assume (𝒜𝑅′

1
, 𝒜𝑅′

2
) solve 𝐼 ′. Then we can-

not guarantee that these automata have an ”m-path”
structure that can reverse the construction we have just
described. Therefore to reach a solution, we need to rea-
son about the automata as regular expressions. We give
the proof in [9]. �

Theorem 5.7 is stated only for alphabet that are of
exponent size. We do not yet know the solution for the
general case. We thus have the following conjecture.

Conjecture 5.8. There is a reduction for TDP/PDP
from an intermediate alphabet of arbitrary size to the
binary alphabet.

Corollary 6.8 shows that TDP/PDP on automatic
relations with unary intermediate alphabet is solvable.

5.3.4 Strategic PDP is decidable

A specific version of PDP, that captures essential con-
cepts in synthesis [10, 18, 26], is when we require the
solution to be strategies. For that, we define Strategic
PDP as PDP in which the required relations 𝑅1 and 𝑅2

are functions (defined in Section 3) that are represented
by transducers 𝑇1 and 𝑇2, respectively.
Strategic PDP can be viewed as a game of incom-

plete information. Since the information “flows” in one
direction, however, the key to proving decidability for
this problem is to view the problem as a one-way chain
communication of distributed synthesis from [18] to syn-
thesize the required transducers.

Theorem 5.9. Strategic PDP is in EXPTIME.

We give a proof outline below. Full proof appears in
[9].

Proof. Note that 𝑇1 is a finite-state realization of a func-
tion 𝑓1 : Σ*

ℐ → Σℬ, and 𝑇2 is a finite-state realization
of a function 𝑓2 : Σ*

ℬ → Σ𝒪. We first consider trees of
the form 𝜏1 : Σ*

ℐ → Σℬ × Σ𝒪. Such a tree represents
simultaneously both 𝑓1 and 𝑓2. A branch of this tree can
be viewed as a word 𝑤 ∈ (Σ𝐼 ×Σ𝐵 ×Σ𝑂)

𝜔. By running
the DFA 𝒜𝑅 on 𝑤 we can check that every prefix of 𝑤
is consistent with 𝑅. Thus, we can construct a determin-
istic automaton 𝒜𝑡

𝑅 on infinite trees that checks that all
prefixes of all branches in 𝜏1 are consistent with 𝑅.
Note, however, that in 𝜏1 the Σ𝒪 values depend not

only on the Σℬ values but also on the Σℐ values, while

in 𝑓2 the domain is Σ*
ℬ. So now we consider a tree

𝜏2 : Σ*
ℬ → Σ𝒪. We now simulate 𝒜𝑡

𝑅 on 𝜏2 (cf., [18]).
The idea is to match each branch of 𝜏1 with a branch of
𝜏2 according to the ℬ-values. This means that we have
several branches of the run of 𝒜𝑡

𝑅 running on one branch
of 𝜏2. We thus obtain an alternating tree automaton
𝒜2, whose size is linear in the size of 𝒜𝑅. We can now
check in exponential time non-emptiness of 𝒜2, to see if
a function 𝑓2 exists. If 𝒜2 is non-empty, then we obtain
a witness transducer 𝑇2 whose size is exponential in 𝒜𝑅.
Finally, we consider a tree 𝜏 ′1 : Σ*

ℐ → Σℬ that repre-
sents 𝑓1. We run both 𝒜𝑅 and 𝑇2 on each branch of 𝜏 ′1,
where 𝑇2 generates the 𝒪-values that were present in 𝜏1
but not in 𝜏 ′1. Using these values 𝒜𝑅 checks that each
prefix is consistent with 𝑅. We have obtained a deter-
ministic tree automaton 𝒜1, whose size is exponential in
𝒜𝑅. We can now check non-emptiness of 𝒜1, and obtain
a witness transducer 𝑇1. Thus, we can solve Strategic
PDP for automatic relations in exponential time. �

6 Decomposition with a hint
Our results above indicate that fully automated decom-
position is a hard problem. Can we ameliorate this dif-
ficulty by including a “human in the loop”? Indeed, in
some decomposition scenarios, a part of a decomposi-
tion is already given, and the challenge is to find the
complementary component. This can be thought of as
a partial solution that is offered by a human intuition,
e.g. a domain expert. In the context of our framework
we have that a candidate to either 𝑅1 or 𝑅2 is given
(in the relevant description formalism) as a “hint”. The
question then is whether, given one possible component,
a complementary component indeed exists, and can be
constructed, such that both relations together meet the
TDP/PDP conditions. To avoid needless repetition, we
discuss below only TDP/PDP problems with a hint 𝑅1.
Unless mentioned otherwise, all the statements in this
section can be applied to 𝑅2 as a hint by almost identical
arguments. The results that concern 𝑅2 being a hint are
discussed in [9].

Definition 6.1. In the TDP/PDP problem with a hint
𝑅1 we are given input, output and intermediate domain
ℐ,𝒪,ℬ, relations 𝑅 ⊆ ℐ ×𝒪 and 𝑅1 ⊆ ℐ × ℬ. The goal
is to find whether there is a relation 𝑅2 ⊆ ℬ ×𝒪 such
that (𝑅1, 𝑅2) meet the TDP/PDP conditions.

The exact nature of the domains and relations varies
according to the problem setting (explicit, etc.). As we
see, such a hint as a partial solution relaxes the com-
putational difficulty of TDP/PDP, shown in previous
sections, considerably. To that end, we show the follow-
ing maximum property that is relevant for all TDP/PDP
settings. Given a TDP/PDP instance with a hint 𝑅1,
define a relation 𝑅′

2 ⊆ (ℬ × 𝒪) to be 𝑅′
2 = {(𝑏, 𝑜)|∀𝑖 ∈

8



Sequential Relational Decomposition LICS ’18, July 9–12, 2018, Oxford, United Kingdom

ℐ((𝑖, 𝑏) ∈ 𝑅1 → (𝑖, 𝑜) ∈ 𝑅)}. Note that 𝐷𝑜𝑚(𝑅′
2) can

strictly contain 𝐼𝑚𝑔(𝑅1).

Lemma 6.2. Every solution for TDP/PDP with a hint
𝑅1 is contained in 𝑅′

2 and if there exists such a solution
then 𝑅′

2 is a solution as well.

Proof. We prove for TDP, we skip the proof for PDP that
is almost identical. Let 𝑅2 be a solution to TDP with
a hint 𝑅1. We first see that 𝑅2 ⊆ 𝑅′

2. Let (𝑏, 𝑜) ∈ 𝑅2.
Suppose there exists 𝑖 such that (𝑖, 𝑏) ∈ 𝑅1 and (𝑖, 𝑜) ̸∈ 𝑅.
Then we have that 𝑅1 ∘𝑅2 ̸⊆ 𝑅 which means 𝑅2 is not a
solution, a contradiction. Therefore we have that for all
𝑖, if (𝑖, 𝑏) ∈ 𝑅1 then (𝑖, 𝑜) ∈ 𝑅, hence (𝑏, 𝑜) ∈ 𝑅′

2. To see
that 𝑅′

2 is a solution, first see that since 𝑅2 is a solution
contained in 𝑅′

2 then 𝐷𝑜𝑚(𝑅1 ∘ 𝑅′
2) = 𝐷𝑜𝑚(𝑅) and

𝐼𝑚𝑔(𝑅1) ⊆ 𝐷𝑜𝑚(𝑅′
2). Let (𝑖, 𝑜) ∈ 𝑅1 ∘𝑅′

2. Then there
is a 𝑏 such that (𝑖, 𝑏) ∈ 𝑅1 and (𝑏, 𝑜) ∈ 𝑅′

2, which means
that by the definition of 𝑅′

2 and since (𝑖, 𝑏) ∈ 𝑅1, it must
be that (𝑖, 𝑜) ∈ 𝑅. Finally, assume that (𝑖, 𝑜) ∈ 𝑅. Then
there is 𝑏 such that (𝑖, 𝑏) ∈ 𝑅1, and (𝑏, 𝑜) ∈ 𝑅′′

2 for some
solution 𝑅′′

2 contained in 𝑅′
2. Therefore (𝑏, 𝑜) ∈ 𝑅′

2 so
(𝑖, 𝑜) ∈ 𝑅1 ∘𝑅′

2. �

From Lemma 6.2 we get a simple method to solve
TDP/PDP with a hint 𝑅1 for the explicit settings as
follows: Construct 𝑅′

2 and check that (𝑅1, 𝑅
′
2) meet the

TDP/PDP conditions. If 𝑅′
2 meets these conditions then

(𝑅1, 𝑅
′
2) is a solution for TDP/PDP. Otherwise, there is

no solution with 𝑅1 as a hint. We thus obtain:

Theorem 6.3. TDP/PDP with a hint 𝑅1 for explicit
relations are in PTIME.

The definition of 𝑅′
2 can also solve the symbolic setting

with a hint. Thus the following result allows the use of
QBF solvers for finding solution for 𝑅1, see proof in [9].

Theorem 6.4. TDP/PDP with a hint 𝐶𝑅1 for symbolic
relations are in Π𝑃

3 .

For the automatic relation setting we have the fol-
lowing result for TDP/PDP with a hint 𝑅1, where we
assume that 𝑅1 is given as a DFA (though users are
more likely to use regular expressions). A similar de-
tailed result for hint 𝑅2 is given in [9].

Theorem 6.5. TDP/PDP with a hint 𝒜𝑅1
for auto-

matic relations are in EXPTIME.

Proof. Assume that𝒜𝑅 = (Σℐ×Σ𝒪, 𝑄, 𝑞0, 𝛿, 𝐹 ) is a DFA
that describes 𝑅 and 𝒜𝑅1

= (Σℐ × Σℬ, 𝑄1, 𝑞
0
1 , 𝛿1, 𝐹1) is

a DFA hint. We show how to construct a DFA 𝒜2 =
(Σℬ × Σ𝒪, 𝑄2, 𝑞

0
2 , 𝛿2, 𝐹2) that describes the maximum

relation 𝑅′
2. We define 𝒜′ = (Σℐ ×Σℬ ×Σℐ ×Σ𝒪, 𝑄1 ×

𝑄, (𝑞01 , 𝑞
0), 𝛿1 × 𝛿, 𝐹 ′) as the product automaton of 𝒜𝑅1

and 𝒜𝑅. We re-define the accepting states 𝐹 ′ = 𝐹 × 𝐹1

by setting 𝐹 ′ = {(𝑞, 𝑞′)|𝑞 ∈ 𝐹1 → 𝑞′ ∈ 𝐹}. For the tran-
sition function, we first extract from 𝒜′ all the (𝑖, 𝑏, 𝑖′, 𝑜)

edges in which (𝑖 ̸= 𝑖′). Next we delete the alphabets
Σℐ × Σℐ from all the labels in 𝒜′. This results in a
non-deterministic automaton, that we determinize (with
possibly an exponential blow-up) in the standard way
through the subset construction, with the one exception
that we set every super-state (in the subset construc-
tion) to be accepting if and only if all of its elements are
accepting states. This results in a DFA 𝒜2 over Σℬ×Σ𝒪
that describes the maximum relation 𝑅′

2.
Finally, we check that (𝒜𝑅1

,𝒜2) meet the condition for
TDP/PDP by standard emptiness checks on projections,
and intersections of 𝒜𝑅1

and 𝒜2; More details are found
in [9]. �

For Strategic PDP in the automatic setting, we assume
that the hint is given in the form of a transducer.

Theorem 6.6. Strategic PDP with a hint 𝑇1 is in EX-
PTIME.

Proof. For Strategic PDP with a hint 𝑇1 as a transducer
we simplify the construction of Section 5.3.4. We di-
rectly construct 𝐴2 by taking the product of 𝐴𝑅 and 𝑇1,
then solve non-emptiness for 𝐴2 and obtain a witness
transducer 𝑇2. Since however the resulting 𝐴2 is still an
alternating automaton, this construction is still in an
exponential time. �

A complete proof appears in [9], where we also show
that Strategic PDP with a hint 𝑇2, in which no alterna-
tion is required, can be done in PTIME.

Theorem 6.5 provides an elegant solution for TDP/PDP
in the automatic setting, in case one of the component,
say, 𝒜𝑅1 is required to be bounded by a given (unary)
size 𝑘: guess an automaton 𝒜𝑅1

of size 𝑘 as a hint 𝑅1,
then use Theorem 6.5. This gives us the following.

Corollary 6.7. TDP/PDP on automatic relations when
one of the component DFAs is bounded by a given (unary)
size is in NEXPTIME.

As another corollary of Theorem 6.5, we can say the
following on unary intermediate alphabet.

Corollary 6.8. TDP/PDP for automatic relations with
a unary intermediate alphabet is in EXPTIME.

Proof. For a unary intermediate alphabet Σℬ = {𝑏},
there is a unique solution 𝑅1 that can be used as a hint.
Indeed, since for a solution 𝑅1 we have that 𝐷𝑜𝑚(𝑅1) =
𝐷𝑜𝑚(𝑅) (see remark in Section 4 and proof in [9]), then
every word of length 𝑛 in 𝐷𝑜𝑚(𝑅1) must be paired with
the word 𝑏𝑛. Therefore 𝒜𝑅1 is constructed from 𝒜𝑅 by
simply replacing every Σ*

𝒪 word in 𝒜𝑅 with the unique
word of the same length over Σℬ (this projection yields
an NFA, but determinizing in order to get a DFA as
a hint is not necessary, since the proof of Theorem 6.5
can work with 𝒜𝑅1

given as an NFA as well without
changing the upper bound). �

9



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi

7 Discussion
We studied here a formal model of sequential decomposi-
tion, a fundamental concept in computational thinking.
We showed that while decomposition is viewed as an
approach to tame design complexity, complexity is not
so easily tamed and decomposition can be quite difficult
when viewed as a computational problem. Human intu-
ition, used to offer hints to the decomposition algorithm,
is therefore necessary to tame the complexity of the
decomposition problem. The complexity of TDP/PDP
in the automatic-relation setting, conjectured to be un-
decidable, is still open. It is related to other decision
problems for automatic relations, cf. [20], and is a subject
of future work.

Acknowledgments
We thank Orna Kupferman, Nir Piterman, Lucas M.
Tabajara, and Jacobo Toran for useful discussions, and
the anonymous reviewers for their suggestions. This work
is supported in part by NSF grants CCF-1319459, and by
by NSF Expeditions in Computing project ”ExCAPE:
Expeditions in Computer Augmented Program Engi-
neering”. Joël Ouaknine was supported by ERC grant
AVS-ISS (648701).

References
[1] M. Abadi and L. Lamport. 1994. Decomposing specifications

of concurrent systems. In Proc. IFIP Working Conference on
Programming Concepts, Methods and Calculi. 327–340.

[2] S. Akshay, T. Antonopoulos, J. Ouaknine, and J. Worrell.

2015. Reachability problems for Markov chains. Inf. Process.
Lett. 115, 2 (2015), 155–158.

[3] J. L. Balcázar, A. Lozano, and J. Torán. 1992. The complexity

of algorithmic problems on succinct instances. In Computer
Science. Springer, 351–377.

[4] S. Bliudze, J. Sifakis, M. Bozga, and M. Jaber. 2014. Archi-
tecture internalisation in BIP. In Proc. 17th International

Symposium on Component-Based Software Engineering. 169–
178.

[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. 2000.
Regular model checking. In Int’l Conf. on Computer-Aided
Verification. Springer, 403–418.

[6] B. Das, P. Scharpfenecker, and J. Torán. 2016. CNF and DNF
succinct graph encodings. Information and Computation

(2016).
[7] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan.

1999. The Complexity of Problems on Graphs Represented
as OBDDs. Chicago J. Theor. Comput. Sci. 1999 (1999).

[8] L. Fix, N. Francez, and O. Grumberg. 1991. Program compo-
sition and modular verification. In Proc. 18th Int. Colloq. on

Automata, Languages, and Programming. 93–114.
[9] D. Fried, A. Legay, J. Ouaknine, and M.Y. Vardi. 2018.

Sequential Relational Decomposition. Full version. (2018).

https://www.cs.rice.edu/∼vardi/papers/index.html
[10] D. Fried, L.M. Tabajara, and M.Y. Vardi. 2016. BDD-based

Boolean functional synthesis. In Proc. 28th Int’l Conf. on

Computer Aided Verification. 402–421.

[11] H. Galperin and A. Wigderson. 1983. Succinct representations
of graphs. Information and Control 56, 3 (1983), 183–198.

[12] M. R. Garey and D. S. Johnson. 1979. Computers and in-

tractability: A guide to the theory of NP-Completeness. W.
H. Freeman.

[13] C. A. R. Hoare. 1969. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969), 576–580.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman. 2003. Intro-

duction to automata theory, languages, and computation -
international edition (2. ed). Addison-Wesley.

[15] D.S. Johnson. 1987. The NP-completeness column: An ongo-

ing guide. Journal of algorithms 8, 2 (1987), 285–303.
[16] B. Khoussainov and A. Nerode. 1995. Automatic presentations

of structures. In Proc. Workshop on Logic and computational

complexity (LNCS 960). Springer, 367–392.
[17] O. Kupferman and M.Y. Vardi. 2000. Synthesis with incom-

plete informatio. Advances in Temporal Logic 16 (2000),

109–127.
[18] O. Kupferman and M.Y. Vardi. 2001. Synthesizing distributed

Systems. In Proc. 16th IEEE Symp. on Logic in Computer
Science. 389–398.

[19] E. Kushilevitz and N. Nisan. 1997. Communication complex-
ity. Cambridge University Press.

[20] D. Kuske and M. Lohrey. 2010. Some natural decision prob-

lems in automatic graphs. J. of Symbolic Logic (2010), 678–
710.

[21] J. Ouaknine and J. Worrell. 2014. On the Positivity prob-

lem for simple linear recurrence sequences. In Proc. ICALP
(LNCS), Vol. 8573. Springer.

[22] J. Ouaknine and J. Worrell. 2015. On linear recurrence

sequences and loop termination. SIGLOG News 2, 2 (2015),
4–13.

[23] C. H. Papadimitriou and M. Yannakakis. 1986. A note on

succinct representations of graphs. Information and Control
71, 3 (1986), 181–185.

[24] D.L. Parnas. 1972. On the criteria to be used in decomposing

systems into modules. Commun. of the ACM 15, 12 (1972),
1053–1058.

[25] A. Pnueli. 1977. The temporal logic of programs. In Proc. 18th

Annual Symposium on Foundations of Computer Science. 46–
57.

[26] A. Pnueli and R. Rosner. 1990. Distributed reactive systems

are hard to synthesize. In Proc. 31st Annual Symposium on
Foundations of Computer Science. 746–757.

[27] K. Rath, V. Choppella, and S.D. Johnson. 1995. Decomposi-
tion of sequential behavior using interface specification and

complementation. VLSI Design 3, 3-4 (1995), 347–358.

[28] S. Rubin. 2004. Automatic structures. Ph.D. Dissertation.
University of Auckland, New Zealand.

[29] M. Soittola. 1976. On D0L Synthesis Problem. In Automata,
Languages, Development. North-Holland.

[30] H. Veith. 1997. Languages represented by Boolean formulas.

Inf. Process. Lett. 63, 5 (1997), 251–256.

[31] J. M. Wing. 2006. Computational thinking. Commun. ACM
49, 3 (2006), 33–35.

[32] J. M. Wing. 2011. Computational thinking. In Proc. IEEE
Symposium on Visual Languages and Human-Centric Com-

puting. 3.

10

https://www.cs.rice.edu/~vardi/papers/index.html

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem definition
	5 Decomposition is hard
	5.1 Explicit relations
	5.2 Symbolic relations
	5.3 Automatic relations

	6 Decomposition with a hint
	7 Discussion
	Acknowledgments
	References

