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Abstract. We study data nets, a generalisation of Petri nets in whicfrte carry data from linearly-
ordered infinite domains and in which whole-place operatisurch as resets and transfers are possi-
ble. Data nets subsume several known classes of infinite-sgatems, including multiset rewriting
systems and polymorphic systems with arrays.

We show that coverability and termination are decidablafbitrary data nets, and that boundedness
is decidable for data nets in which whole-place operatioasestricted to transfers. By providing an
encoding of lossy channel systems into data nets withoutemblace operations, we establish that
coverability, termination and boundedness for the lat@sshave non-primitive recursive complex-
ity. The main result of the paper is that, even for unordewd domains (i.e., with only the equality
predicate), each of the three verification problems for data without whole-place operations has
non-elementary complexity.
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1. Introduction

Petri nets (e.g., [21]) are a fundamental model of conctisgstems. Being more expressive than finite-
state machines and less than Turing-powerful, Petri nets Aa established wide range of applications
and a variety of analysis tools (e.g., [13]).

The analysis tools are based on the extensive literaturecidability and complexity of verification
problems ([10] is a comprehensive survey). In this paperfogas on three basic decision problems, to
which a number of other verification questions can be reduced
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Coverability: Is a marking reachable which is greater than or equal to angivarking?
Termination: Are all computations finite?
Boundedness:ls the set of all reachable markings finite?

By the results in [17, 20], each of coverability, terminat@nd boundedness isktESPACE-complete for
Petri nets.

Many extensions of Petri nets preserve decidability ofousiverification problems. Notably, affine
well-structured nets were formulated in [11] as an elegatdresion of Petri nets by whole-place opera-
tions. The latter are resets, which empty a place, and &as)skhich take all tokens from a place and put
them onto one or more specified places (possibly severatjintéence, two subclasses of affine WSNs
are reset nets and transfer nets, in which whole-place tipesaare restricted to resets and to transfers,
respectively. As shown in [11], coverability and termiatifor affine WSNs, and boundedness for trans-
fer nets, are decidable. However, compared with Petri tletse is a dramatic increase in complexity: it
follows from the results on lossy channel systems in [23] toerability and termination for reset nets
and transfer nets, and boundedness for transfer nets, agimitive recursivel It was proved in [9]
that boundedness for reset nets is undecidable.

Another important direction of extending Petri nets is bpwlng tokens to carry data from infinite
domains. (Data from finite domains do not increase expresess.) For example, in timed Petri nets [4],
each token is equipped with a real-valued clock which reprsthe age of the token. Multiset rewriting
specifications over constraint syste$8, 1] can be seen as extensions of Petri nets in which tokens
may carry data from the domain 6fand transitions can be constrained usindgn mobile synchronizing
Petri nets [22], tokens may carry identifiers from an infitamain, and transitions may require that an
identifier be fresh (i.e., not currently carried by any token

In this paper, we focus on the following two questions:

(1) Is there a general extension of Petri nets in which tokeny cita from infinite domains, in which
whole-place operations are possible, and such that cdligratermination and boundedness are
decidable (either for the whole class of extended nets dnteresting subclasses)?

(2) If the answer to the previous question is positive, and if e&rict to the subclass without whole-
place operations, do coverability, termination and bodnéss remain EPSPACE-complete (as
for Petri nets), or are their complexities greater? Whapleag if we restrict further to the simplest
data domains, i.e. those with only the equality predicate?

Data nets. To answer question (1), we define data nets, in which tokeny data from linearly-
ordered infinite domains. As in Petri nets, transitions coms and produce tokens. For a transition to
be firable, we can require that the data which are carried &ydkens to be consumed are ordered in a
certain way. In addition to such data, transitions can chdiostely many other data, which satisfy further
ordering constraints and which may or may not be presenterctirrent marking. In the production
phase, tokens which carry either kind of data can be put hortarking. Data nets also support whole-
place operations.

!Recall the Ritchie-Cobham property [19, page 297]: a dewigroblem (i.e. a set) is primitive recursive iff it is sobta in
primitive recursive time/space.
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In the next few paragraphs, we introduce data nets in annrdbbut detailed manner, for clarity of
the subsequent discussion of contributions of the paperelations to the literature. As an alternative
order of presentation, the reader may wish to postpone thenviog and read it in conjunction with
Section 2.2, where data nets are defined formally.

Data nets are based on affine WSNs [11]. Markings of an affiné\\ai® vectors irN”, where P
is the finite set of all places. A transitignof an affine WSN is given by vectors;, H; ¢ N” and a
square matrbG; € NP*P_ Such a transition is firable from a marking iff m > F;, and in that case
it produces the markingn — F;)G; + H,. Whole-place operations are performed by the multiplarati

Since a linear orderings is the only operation available on data, markings of data ae finite
sequences of vectors M” \ {0}. Each index; of such a marking corresponds to an implicit datudj,
and we have that < j' iff d; < d;/. Foreactp € P, s(j)(p) is the number of tokens which cardy and
are at place. We say that such tokens are at indgexNow, each transitiom has an arityn; € N. For a
transitiont to be fired from a marking, we choose nondeterministically mutually distinct data. Some
of those data may be fresh (i.e., not carried by any tokes),iso picking then; data is formalised by
first expandings to a finite sequence; by inserting the vectod at arbitrary positions, and then picking
an increasing (in particular, injective) mapping

ei{l o ay — {1 st}

such that each occurrence @fis in its range. Now, such a mappingartitions{1, ..., |s;|} into oy
singletons andy; + 1 contiguous “regions” as follows, where tii&g ; ;, 1) are region identifiers:

Loooe(1) = 1,0(1),0(1) +1,..00,0(2) = 1, oo e(ag), e(ow) + 1,00, |54

Rego,1) Reg1,2) Reg(ay,a+1)

The action oft on s with respect tos; and. is determined by vectors; and H;, and a square matri;,
whose elements are natural numbers, and which are indexed by

({1, . ,Oét} U {Reg(l-ﬂ-ﬂ) : 0 < ) < Oét}) x P

It consists of the following stages, wheig’ € {1,...,a:}, R, R' € {Reg(; ;1) : 0 <i < oy} and
/
p,p € P.

subtraction: for eachi andp, F;(i,p) tokens at index(i) are taken fronp;?
multiplication: all tokens are taken simultaneously, and then:

e for each token taken from at index.(i), G¢(i, p,i’,p’) tokens are put ontp’ at index.(i'),
and for eacly’ in region R, G4(i, p, R',p’) tokens are put ontg’ at index;’;

e for each token taken from at indexj in region R, G¢(R, p,4’,p’) tokens are put ontp’ at
index.(i'), andG(R, p, R, p’) tokens are put ontg’ at indexj;

addition: for eachi andp, H;(i, p) tokens are put ontp at index.(i), and for eacly in region R andp,
H.(R,p) tokens are put ontp at index;.

2In order to have well-structuredness (see Proposition @n@l) for simplicity, entriest;(R, p) are not used, and neither are
entriesG(R,p, R',p’) with R # R', so they are assumed to be
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Example 1.1. ConsiderP = {p;, p2} and a transitiont with o, = 1 given by:

G¢ | Re 1 Re
Ft Reg(&l) 1 R69(172) : Og(ol’l) 0 0 09(162) p
1
00 11 0 0 Begon | 1 00 00 | po
pP1 P2 pP1 P2 pP1 P2
L oo 2 0 30 | m
0 0 0 1 30 | po
Hy; | Reggqy 1 Reg ) 00 0 0 10 | m
0 0 2 1 6 0 Reg(1,9) 0 0 0 2 01 | po
pP1 P2 p1 P2 pP1 P2 P po p1 P2 p1 P2

From a markings, in terms of data represented by the indices,dfansitiont is fired as follows:

1. a datumd is chosen nondeterministically, such that eactppfaind p, contain at least token
carryingd (so,d cannot be fresh);

2. for each datum’ < d, all tokens ap; carryingd’ are transferred tp,, and vice-versa;
3. for each token gt; or p, carryingd, and eachl’ - d, 3 tokens carrying/’ are put ontqy;
4. the number of tokens af carryingd is multiplied by2;

5. for each token at, carryingd’ = d, 2 tokens carryingl are put ontgs.

Since H; = F;G,, the addition stage of performingexactly “undoes” the subtraction stage,tsper-
forms only whole-place operations.

In Section 2.2, the above will be formalised so thas firable froms with respect tos; and. iff
sy > [F I*tl and in that case it produces the marking obtained ftem- [[Ftﬂls”)[[Gt]]‘f” + [[Hlt]]‘tSTI
by removing each entrg, where[ 5]\, [G.]1* and[H,])°"! are appropriate “expansions” &, G,
andHy, indexed by{1,...,|s;|} x P.

Since vector®) which correspond to fresh data can be inserted at arbitrasitipns to fire a transi-
tion, the linear ordering on data is assumed to be dense ahdwieast and greatest elements. Having
a least or greatest element can easily be simulated, andydisnsot a restriction when considering only
finite computations (as is the case for the coverability [anwt).

We show that affine WSNs [11] are equivalent to a class of dettswhose transitions have arity
Data nets also subsume timed Petri nets [4] and timed nesA8tkin the sense that systems obtained
after quotienting by time regions can be simulated by dats, méhere the data domain is fractional parts
of clock values. Monadic multiset rewriting specificatiomer order constraints on rationals or reals
[8] and over gap-order constrains on integers [1] can bestaded to data nets, subject to the remarks
above about density. Mobile synchronizing Petri nets [R&sy channel systems [2], and polymorphic
systems with one array of typeX, <) — {1,...,n} or with two arrays of typesX,=) — (Y, <) and
(X,=) — {1,...,n} [16, 15], can also be expressed using data nets.
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Decidability. Using the theory of well-structured transition systems][12e prove that coverability
and termination for arbitrary data nets, and boundednasgaia nets in which whole-place operations
are restricted to transfers, are decidable. Thus, quegtipposed above is answered positively. The
decidability of coverability for data nets subsumes thailtesn [11, 4, 3, 8, 1, 22, 2, 16, 15] that cov-
erability is decidable for the respective classes of irdisitate systems mentioned above, and in most
cases the proof in this paper is more succinct.

Hardness. To question (2) above, we obtain the following answers. Wetlsat a data net iBetri iff
it does not contain whole-place operations, andrderediff it makes use only of equality between data
(and not of the linear ordering).

e By providing a translation from lossy channel systems tgileta nets, we establish that cover-
ability, termination and boundedness for the latter classat primitive recursive. The encoding
uses the linear ordering on the data domain, for pickinghfbsta which are employed in simulat-
ing writes to channels.

e The main result of the paper is that coverability, termioatand boundedness for unordered Petri
data nets are not elementary, i.e., their computationalptexities cannot be bounded by towers
of exponentials of fixed heights. That is a surprising ressilice unordered Petri data nets are
highly constrained systems. In particular, they do not gleva mechanism for ensuring that a
datum chosen in a transition is fresh (i.e., not presentarctirrent marking). The result is proved
by simulating a hierarchy of bounded counters, which is résaent of the “rulers” construction
of Meyer and Stockmeyer (e.g., [18]).

Therefore, this paper shows that, when Petri nets are dasatdo allow tokens to carry data from
infinite domains, standard verification problems which werexPSPACE become non-elementary, even
when data can only be compared for equality and whole-plpegations are not allowed.

By translating Petri data nets and unordered Petri datatoetsbclasses of systems in [8, 1, 22,
16, 15], the two hardness results yield the same lower botordsorresponding decision problems for
such subclasses. In particular, we obtain non-elemeessinf verifying monadic multiset rewriting
specifications with only equality constraints [8] and ofifygng polymorphic systems with two arrays
of types(X,=) — (Y,=) and(X,=) — {1,...,n} [16].

Paper organisation. Section 2 contains preliminaries, including definitionslafa nets and of several
relevant subclasses, some basic results, and an exampgBection 3, we present the translation from
lossy channel systems to Petri data nets. Sections 4 andd&rctime decidability and hardness results.
Some remaining open problems are discussed in Section 6.

2. Preliminaries

Sets, quasi-orders and mappings. Forn € N, let[n] = {1,...,n}. We writeN,, for NU {w}. The
linear ordering< onN is extended tdN,, by havingn < w for eachn € N.

A set A and a relation< on A form aquasi-orderiff < is reflexive and transitive. We writg, < ao
iff a1 < as anday ﬁ ai.
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Forany A’ C A, its upward closure i§A’ = {a € A : 3a’ € A’ - d < a}. We say thatd’ is
upwards-closed iffA’ = 1A’. A basisof an upwards-closed set’ is a subsetd” such thatd’ = TA".
Downward closure (written A’), closedness and bases are defined symmetrically.

A mapping f from a quasi-order A, <) to a quasi-ordefA’, <’) is increasingiff a; < ay =

fla1) <" f(az).

Vectors and matrices. For setsd andB, let AZ denote the set of aB-indexed vectors of elements of
A, i.e., the set of all mappingg8 — A. For exampleN"x["] is the set of alln x n’ matrices of natural
numbers. For € A, leta ¢ AP denote the vector whose each entry equalket Id ¢ NP> denote
the identity square matrix.

A quasi-ordering= on A induces the following quasi-ordering ot®: v < o' iff v(b) < /(b) for
allb € B.

Sequences and bags. For a set4, let Seq(A) denote the set of all finite sequences of elementd.of
Fors € Seq(A), let|s| denote the length of, ands(1), ..., s(|s|) denote its elements.

Fors,s’ € Seq(A) anda € A, we say thats’ is an a-expansionof s (equivalently, s is the a-
contractionof s') iff s is obtained by removing each occurrencexdfom s’.

Fors,s’ € Seq(A), we writes ~ s’ iff s’ can be obtained from by permuting its entries. We define
the setBag(A) of all finite bags (i.e., multisets) of elements.éfas the set of all equivalence classes of
~. Lets denote the equivalence classsof.e., the bag with the same elementssas

Suppose(A, <) is a quasi-order. The quasi-ordering induces quasi-orderings ofkeg(A) and
Bag(A) as follows. Fors, s’ € Seq(A), we writes < s’ iff there exists an increasing: [|s|]] — [|[]
such thats(z) < s'(«(2)) for all i € [|s|]. Forb,b’ € Bag(A), we writeb < V' iff there exists € b and
s’ € v such thats < 5.

Well-quasi-orderings. A quasi-ordering=< on a setA is a well-quasi-ordering iff, for every infinite
sequence, as, ... € A, there exist < j such thaty; =< a;.

Proposition 2.1. ([14])
Whenever< is a well-quasi-ordering on a s, the induced orderings ofleq(A) and Bag(A) also are
well-quasi-orderings.

2.1. Affine well-structured nets

We recall the notion of affine well-structured net [f1$uch a net is a tupléP, T, F, G, H) such thatP
is a finite set of placed] is a finite set of transitions, and for eatlke 7', F, and H, are vectors ilN”,
andG, is a matrix inN"*»,

Markings of an affine WSNP, T, F, G, H) are vectors ilN”. A markingm’ can be obtained from
a markingm by firing a transition: € T', writtenm Loml, iff m > F, andm/ = (m — F;)Gy + H;.

As was shown in [11], Petri nets and many of their known exterssare special cases of affine
WSNs. In particular, Petri nets and their extensions by égaised) resets and transfers are equivalent
to the classes of affine WSN#, T', F, G, H) determined by the following restrictions:

3For technical reasons, the formalisation of affine WSNs is plaper is slightly different, but equivalent.
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Petrinets: Vte T -G, = Id
resetnets:viec T - G; < Id

transfer nets: Vit e T,pe P-3p' € P-Gi(p,p’) >0

2.2. Datanets

or eachd < ¢ < n, m > n and increasing

Givenn € N, let Regs(n) = {Reg(; ;1) : 0 < n}. F
o(i i < (i + 1)}, where by convention(0) = 0 and

)
v:[n] — [m], let[Reg; ;i )[7" = {7 € [m] : ¢(d)
tn+1)=m+ 1.

A data netis a tuple(P, T, o, F, G, H) such that:

<
<

P is a finite set of places;

T is a finite set of transitions;

for eacht € T, o, € N specifies the arity of;

for eacht € T, F; € N{aURegs(a))xP ‘andFy (R, p) = 0 wheneverR € Regs(oy) andp € P;

for eacht € T, G, € N(([t]URegs(a0))xP)* "andG, (R, p, R',p') = 0 wheneverR, R’ € Regs(a),
R # R andp,p’ € P;

o for eacht € T, H; € NlatlURegs(an))xP

Suppose P, T, «, F,G, H) is a data net, and € T. Any m > «; and increasing : [ay] — [m]
determine the following instances 6%, G; and H:

o [F]7 € NI"I*P is defined by
[£2] (i), p) = Fe(isp)  [ET(G,p) = Fi(R, p) for j € [R]
o [G,]™ e NImIxP)* is defined by

[G7 (), p,e(), ') = Gie(isp, i, p')
(G (), 0,55 0) = Gili,p, R, p') for j" € [R]"
(G Gop,e(i), ') = Gi(R,p,i',p")  forj e [R]
?') (
)

Q

[[Gt]]L (j p?] ! = Gt Rvpv Rvp/) fOI‘j € [[Rﬂfn
GG, 550 otherwise

|
o

o [H/™ e NI™xF is defined in the same way &5;]"".

A markingof a data netP, T, o, F, G, H) is a finite sequence of vectorsif’ \ {0}. A marking s’

can be obtained from a markingdy firing a transitiort € T, written s LR s, iff there exist a)-expansion
s; of s and an increasing: (o] — [|s¢|] such that!

*In (i) and (iii), s; is treated as a vector i{l/*t1* 7
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() {j : s:(j) =0} C Range(v);
(i) s> [RL
(i) s is the0-contraction of(s; — IEL DG + [
We may also writes LN s’, orjusts — s'.

Proposition 2.2. For any data net, its transition systdiseq(N” \ {0}), —) is finitely branching.

2.3. Decision problems
We consider the following standard problems:

Coverability: Given a data net, and markingsand s’, to decide whether some marking§ > s’ is
reachable frons.

Termination: Given a data net, and a markingto decide whether all computations fronare finite.

Boundedness:Given a data net, and a markirgto decide whether the set of all markings reachable
from s is finite.

Coverability, termination and boundedness for affine WSiesiafined in the same way.

2.4. Classes of data nets

We now define several classes of data nets. Figure 1 showadhsions among classes of data nets
and affine well-structured nets in Propositions 2.4, 2.3,dhd 3.1 below. In addition, the mapping
N — N and its inverse (see Proposition 2.5) provide a corresparelbetween unary transfer data nets
(resp., unary Petri data nets) and transfer nets (respi,re¢s$). The dashed line represents the fact that
Proposition 3.1 does not provide a reduction for the boundssl problem.

Unordered data nets. A data netP,T,«, F,G, H) is unordered iff:

(i) foreacht € T, R, R’ € Regs(oy) andp,p’ € P, we haveG:(R,p, R,p') = G¢(R',p, R, p") and
Ht(R7p) = Ht(Rlvp);

(i) foreacht € T and permutatiomnr of [y, there exists’ € T such thatF},, G and H, are obtained
from F}, G, and H, (respectively) by applying to each index ifoy].

Given an unordered data ng®, T', o, F, G, H), we writet ~ t’ iff t andt’ have the property in (i)
above. That defines an equivalence relatiorifgrand we writet for the equivalence class of From
the following proposition, the same-bag relatiorbetween markings is a bisimulation on the transition
system of( P, T, o, F, G, H).5

SConditions (i) and (ii) in the definition of unordered datassuggest an alternative formalisation, where only on@reis
used for indexingF’, G and H, and only one transition from each equivalence class isesgmted. Such a formalisation is
more succinct (exponentially in transition arities), bt issue is not important in this paper. In addition, by Bsion 2.3,
markings of unordered data nets can be regarded as bags.
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(unordered data nets transfer data nejs

unary data nets-
affine WSNs

Petri data nefs

Figure 1. Inclusions among classes of data nets

. t t/
Proposition 2.3. For any unordered data net, wheneyer— s, ands; ~ s;, we haves| — s, for
somet’ ~ t andsh ~ sj.

Unary data nets. A datanet(P, T, «, F,G, H) is unary iff:
(i) foreacht € T', oy = 1;
(i) for eacht € T, there exist € P such thatFi(1,p) > 0;

(ii) for eacht € T, R € Regs(1) andp,p’ € P, we haveG(1,p,R,p’) = 0, G¢(R,p,1,p’) = 0,
Gi(R,p,R,p) =1,G¢(R,p,R,p') = 0if p# p/,andH,(R,p) = 0.

Proposition 2.4. Any unary data net is an unordered data net.

Given a unary data ne¥’ = (P, T, o, F,G, H), let N = (P, T, F,G, H) be the affine WSN such
that ', G and H are obtained from¥,, G; and H, (respectively) by removing entries which involve
indices fromRegs(1). Observe that, conversely, for each affine WSNin which no transition is firable
from 0, there is a unique unary data n&f such that\ = A”. Both NV — A and its inverse are
computable in logarithmic space.

Proposition 2.5.
(a) For any unary data net’, we have thats = s’ iff |s'| = |s| and there exists € [|s|] with
s(i) & §'(i) in N ands'(j) = s(4) for all j # i.

(b) Coverability ofs’ from s in a unary data netV is equivalent to existence of an increasing
[|s'|] — [|s|] such thats(4) is coverable froms(.(7)) in N for eachi € [|s'[].

Termination (resp., boundedness) frein a unary data net/ is equivalent toV’ being terminating
(resp., bounded) from(i) for eachi € [|s|].
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(c) Coverability ome/ from m, termination fromm and boundedness fromn in an affine well-
structured net\' are equivalent to coverability ofm’) from (m), termination from(m) and
boundedness frorm) (respectively) in\.

Note that Proposition 2.5 (c) can be extended to affine WSN trdinsitions firable fron® by adding
an auxiliary place in which a single token is kept.

Transfer data nets. A data netP, T, «, F, G, H) is transfer iff:
(i) foreacht € T',i € [oy] andp € P, we haveG,(i,p,i,p") > 0 for somei’ € [ay] andp’ € P;

(i) for eacht € T, R € Regs(a) andp € P, either we haves(R,p,,p') > 0 for somei’ € [ay]
andp’ € P, or we haveG(R,p, R,p’) > 0 for somep’ € P.

Observe that (i) and (ii) are satisfied by the transitiom Example 1.1.

Proposition 2.6.

t . t
(a) Wheneves; — s in a data net and] > s, thens| — s/, for somes), > s.

t . t
(b) Whenevers; — s; in a transfer data net and > s1, thens| — s, for somes), > ss.

Petri data nets. In Petri data nets, whole-place operations are not alloaed transitions can produce
tokens carrying only data which were chosen during the firlkmrmally, a data netP, 7', o, F', G, H) is
Petri iff:

e foreacht ¢ T, G; = Id;
e foreacht € T', R € Regs(ay) andp € P, Hy(R,p) = 0.

Proposition 2.7. Any Petri data net is a transfer data net.

2.5. Example: afile system

As an illustration, we now show how a file system which permitboundedly many users, user pro-
cesses and files can be modelled as a data net. A variety af etheples of systems expressible
using data nets can be found in [4, 3, 8, 1, 22, 2, 16], incly@imeal-timed mutual exclusion protocol,
a distributed authentication protocol, a communicatiootgol over unreliable channels, and a leader
election algorithm.

We suppose there are two user categories: administratdrstafi members. Lefdministrator
be a finite set consisting of all possible states which an aidtrétor process can be in, Btaff be such
a set for staff-member processes, andtettents be a finite set of all possible file contents. In case file
contents is unbounded, tBentents set may consist of finitary abstractions, which include linfation
such as file names. We assume thiiinistrator, Staff andContents are mutually disjoint.

The set of places is

P = Administrator U Staff U Contents

Tokens represent user processes and files, and data whicleahg represents user identities. More
specifically:
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e atoken at place € Administrator carrying datumd represents a process of administrador
and which is in state;

e atoken at placé € Staff carrying datund represents a process of staff membemnd which is
in stateb;

e a token at place € Contents carrying datumd represents a file owned by usérand with
contents.

To express a write by a staff-member process in dtabea file with contents, which changes to v/
andc to ¢/, we define a transitiorrite(b, ', ¢, ). Itinvolves one user, SOy ite(s,,c,cry = 1. Firstly,
it takes one token from pladeand one token from place They must carry the same datum, which
ensures that the user owns the file.

erite(b,b’,c,c’) (17 b) =1 erite(b,b’,c,c’) (17 C) =1

The transition involves no whole-place operations,(§Q;te(v.,c,y = Id. Finally, it puts one token
onto place’ and one token onto plaeé which carry the same datum as the two taken tokens.

erite(b,b’,c,c’)(L b/) =1 erite(b,b’,c,c’)(lv C,) =1

The remaining entries QFrite(b,p/ c,cr) AN Hyrite (b, c,cr) @r€0.

As a slightly more complex example, we can express a changemédrship of a file with contents
from an administrator to a staff member. It involves an adstiator process which changes state from
a to o/, and a staff-member processes which changes stateifitord’. Since two users are involved,
we haveapange(c,a,a b,t) = 2- AS in the previous examplés cpange (c,a,a’,b,1') = Id and we show only
entries which are ndi:

Fchange(c,a,a’,b,b’) (17 C) =1 Hchange(c,a,a’,b,b’) (27 C) =1
Fchange(c,a,a’,b,b’) (17 CL) =1 Hchange(c,a,a’,b,b’) (17 CL/) =1
Fchange(c,a,a’,b,b’) (27 b) =1 Hchange(c,a,a’,b,b’) (27 b/) = 1

In the change(c,a,d’, b, V') transition, it is assumed that the administrator identitginaller than the
staff-member identity. To cover the opposite case, andte ha unordered data net, we define a transi-
tion change(c, b, b, a,a’). The definition is the same as thatafange(c, a, d’, b, b'), except that indices

1 and2 are swapped when defininGpange (c,b,/,a,0') ANAH change(c,b, ,a,a')-

The data net having the three sets of transitions introdscethr is unordered and Petri. Imple-
menting the following action makes it no longer Petri, intfaot even a transfer data net: all processes
and files of a staff member who has a process which is in tate removed. We hav@ . ,sn) = 1,
Ferasn(p)(1,0) = 1, the remaining entries df,.qx(;) and all entries off ., ) are0, and:

forp,p’ € P

for R € Regs(1) and p,p’ € P
for R € Regs(1) and p,p’ € P
for R € Regs(1) and p € P

otherwise

Gcrash(b)(l p,1,p) =
Gerasn) (1,0, R,p') =
crash(b)(R p,1,0)
crash )(R p, R, p)

Gerasn() (R p, R, p')

Il
o~ o o o
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Supposing thatdministrator = {aj, as}, Staff = {by, by} andContents = {c1, c2 }, consider
the following markings, in which there are users:

1 2 3
0 0 0 1 3 2 2 0 0 0 1 3 0 01 2 0 2

ap az by by ¢ ca a1 ax by by c1 ¢ ar az b by c1 c

The transitioncrash(by) is firable froms in exactly two ways: either for user or for user3. In the
notation of Section 2.2, the latter choice is formalised hyihg s; = s and«(1) = 3. We then have

[[Reg(O,l)ﬂ? = {17 2}' [[Reg(l,Z)]]? = (), and the ins‘tancqp:‘crash(bz)ﬂ?' [[Gcrash(bz)]]? and [[Hcrash(bg)ﬂ?
are as follows, respectively:

1 2 3
0o 0 0 0 0 O 0 0 0 0 0 O 0 0 0 1 0 O

ap az by by ¢ ca a1 az by by c1 ¢ ar az b by c1 ¢

1 2 3

a1
a2
by
by

C1

O O O o o =
o O O O~ O
o O O = O O
o O = O O O
o = O O O O
= o o o O O
o O O O o O
o O O O o O
o O O o o o
o O O O o O
o O O o o o
o O O o o o
o O O O o O
O O O o o o
o O O O o O
o O O O o O
o O O o o o
o O O O o O

C2

ai
a2
by
b2

C1

[\S)
o O O o o o
o O O o o O
o O O o o o
o O O o o o
o O O o o O
o O O o o o
o O O o o =
o O o o = O
o O O = O O
o O = O O O
o = O O O O
= o O O O O
o O O o o O
o O O o o o
o O O o o O
o O O o o O
o O O o o o
o O O o o O

C2

a1
a2
by
by

C1

w
O O O o o o
o O O O o O
o O O o o o
o O O o o o
o O O O o O
o O O o o o
o O O O o O
o O O O o O
o O O o o o
o O O O o O
O O O o o o
o O O o o o
o O O O o O
o O O o o o
o O O O o O
o O O O o O
o O O o o o
o O O O o O

C2

ar az b by c1 e ap az by by c1 ¢ ar az b by c1 e

1 2 3
0o 0 0 0 0 O 0 0 0 0 0 O 0 0 0 0 0 O

ap az by by ¢ ca a1 az by by c1 ¢ ar az b by ¢ e
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Thus, the vectofs; — [Frasn(vo)]7)[Gerasn(v)]; + [Herasn(sy)]? that results from the firing equals

1 2 3
0o 0 0 1 3 2 2 0 0 0 1 3 0 0 0 0 0 O

ar az by by c1 ¢ ap az by by c1 ¢ ar az b by ¢ e

and its0-contraction is the marking

1 2
0o 0 0 1 3 2 2 0 0 0 1 3

ar az b by ¢ ¢ ar az b by ¢ e

Many interesting properties of the file system can be forsealias coverability, termination or bound-
edness properties. For example, that there is never a ugeiswbth an administrator and a staff member
amounts to none of the markings;, for a € Administrator andb € Staff being coverable, where
Isa.p] = 1, sap(1)(a) = s45(1)(b) = 1, @ands, ,(1)(p) = 0forall p € P\ {a,b}.

3. Reset nets and lossy channel systems

In this section, we first show how Petri data nets can expesst mets, which establishes the dashed
inclusion in the diagram in Section 2.4. The translatiorsprees coverability and termination properties
of reset nets.

Secondly, we show that Petri data nets can also expressdbasyel systems [2]. The translation
provides reductions of the location reachability and teation problems for lossy channel systems to the
coverability, termination and boundedness problems fori Bata nets. Thus, the latter three problems
will be shown non-primitive recursive: see Theorem 5.1.

Proposition 3.1.

(a) Coverability for reset nets is Turing reducible in padymial space to coverability for Petri data
nets.

(b) Termination for reset nets is reducible in polynomiahsp to termination for Petri data nets, and
to boundedness for Petri data nets.

Proof:

We define a translation from reset néts= (P, T, F, G, H) to Petri data netd/ = (P, T, o, F, G, H).
For eacht € T, let sY be a sequence consisting of alle P which are reset by, i.e., such that
G(p,p) = 0 (each occurring once).

The set of places of/ is formed by adding a place #: P = P {p}. In N, each place € P will
store a single token, carrying a datum which representslgwep of A/. The placep will store as many
tokens carrying the datum which represents a pfaas there are tokens atin A. More precisely, for
markingsm of A" ands of A/, we writem ~ s iff for eachp € P, there existg, € [|s|] such that:

e s(jp)(p) = 1, s(j")(p) = Oforallj’ # j,, and
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e s(jp) (D) = m(p).

The relation~ will be a bisimulation betwee’ and V.
The transitions of\" are pairs of transitions of” and enumerations d?:

T={iy :teT A[P|] S P}

Supposen = s, and letr be the enumeration aP such thatr—1(p) < ==1(p') iff j, < j,». We shall
have that:

(i) only transitions of the fornt,. are firable froms;
. t . . .

(i) m — m/ impliess — s’ for somem’ ~ ¢/;

Be t

(i) s — s impliesm — m’ for somem’ ~ s'.

Consider any. € 7. We seta; = |P| + |sP|. Indicesi € [|P|] will be used to pick data which
represent the places df, and indices P| + 7 will be used to pick fresh data (which are greater than
all existing data) to simulate the resetstofSinceG; = Id is required for\V to be a Petri data net, it

remains to definé; andH; so that (i)—(iii) above are satisfied. Each entry not listetbw is set tc:
{%ﬂ(i,w(i)) =1 f(i,ﬁ) = Fy(m(i)) (i € [[P[])

H; (i,7(i)) = 1 - Hi Gp) = Hy(n()) (m(i) & 57)
Hy(sP() (i e[ls?[])

H; (1P| +4,8)(1)) = 1 Hy (|P|+i,p) =

Since any enumeratianof P is storable in polynomial space, we have that polynomiatspalffices
for the translation.

Given a markingn of A/, let s be a marking ofV such thatn = s. For (a), we have by (i)—(iii)
above that a given marking.’ is coverable frommn in A iff some minimals’ such thatm’ ~ s’ is
coverable froms in A, For the first half of (b), we have by (i)—(iii) above thaf terminates fromm iff
N terminates froms. For the second half, let” be obtained from\V (in logarithmic space) by adding
a placep’ and ensuring that each transition increases the numbekefsoaty’. Let s’ be an arbitrary
extension ofs to placep’. We have that\" terminates fromm iff A is bounded froms’. O

A lossy channel systeim a tupleS = (Q, C, X, A), whereQ is a finite set of locations}' is a finite
set of channelsy. is a finite alphabet, and C @ x C x {!,7} x ¥ x @ is a set of transitions.

A state ofS is a pair(q, w), whereq € Q andw : C — ¥*. For eache € C, the wordw(c) is the
contents of channel at state(q, w).

To define computation steps, we first define perfect commutatieps, which either write a letter to
the beginning of a channel, or read a letter from the end ofammkl. For state&;;, w;) and(gs, ws),
we write (g1, w1) —perf (q2,w2) iff there existc € C' anda € ¥ such that:

e either{(qi,c,! a,q2) € A andws = wi[c — a(wi(c))],

e Or {q1,¢,7,a,q2) € A andw; = wafc — (w2(c))al.
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Let C denote the “subword” well-quasi-ordering aif, obtained by lifting the equality relation on
Y. (see Proposition 2.1). For example, we hatga C abracadabra. For stategq, w) and(¢’, w’), we
write (¢, w) 3 (¢, w’") iff ¢ = ¢’ andw(c) 3 w'(c) forall c € C,i.e.,{¢’,w’) is obtained fromg, w) by
losing zero or more letters.

A computation stegq, w) — (¢’,w’) of S consists of zero or more losses, followed by a perfect
computation step, followed by zero or more losses. Thusthelation is defined by composing the
—pert @ANAI relations:— = 3 — . 3.

The following are two key decision problems for lossy chdraystems:

Location reachability: Given a lossy channel system, a statew) and a locationy’, to decide whether
some statéq’, w’) is reachable froniq, w).

Termination: Given a lossy channel system, and a statev), to decide whether all computations from
(q,w) are finite.

The proof of the next result will be illustrated in Exampld. 3.

Proposition 3.2.

(a) Location reachability for lossy channel systems is oéala in logarithmic space to coverability
for Petri data nets.

(b) Termination for lossy channel systems is reducible gatithmic space to termination for Petri
data nets, and to boundedness for Petri data nets.

Proof:
Given a lossy channel systefh= (Q,C, X, A), we define a Petri data n&fs = (P, T, «, F,G, H) as
follows. We shall have thal/s is computable in logarithmic space.

LetP = QW C W (C x X). Statesq, w) of S will be represented by markingse Seq(N” \ {0})
as follows. At places i), there will be one token, which is at and which carries a datumwhich is
minimal in s. For eachc € C, wherew(c) = aj - - - ag, there will be datal < df < --- < dj, < df_,
such that:

e placec contains one token which carrié§_ ;

e for eacha € %, place(c,a) contains one token carrying for eachi € [k] with a¢; = a, and
possibly some tokens carrying data not smaller an .

Formally, we write(q, w) = s iff:
e s(1)(¢) = 1,ands(j)(¢") = 0 whenever eithej > 1or¢ € Q \ {q};

o for eachc € C, wherew(c) = a;---ay, there existl < j{ < --- < ji < ji,, such that
5(jp41)(c) = 1, 5(3")(c) = Oforall j* # ji ., and foreach < ;' < ji,, andd’ € X, we have

1, if there exists ¢ € [k] with j' = j¢ and o’ = q;

s(')(c,a’) = {

0, otherwise



16 R. Lazi¢, T. Newcomb, J. Ouaknine, A.W. Roscoe, J. Wolell with tokens which carry data

For each read transition o, there will be two transitions alVs, depending on whether the datum
that points to the letter read is minimal or not:

T = {{g1,6,%0,q2) : {q1,¢,},a,q2) € A} U
{<Q1>Ca?>a>Q2>la<Q1>Ca?>a>Q2>>1 : <q17c>?7a7 Q2> € A}

When definingy;, F; andH; for t € T below, we show only entries which are distinct frémSinceNs
is a Petri data net, we have, = Id for eacht € T.

We shall have that, in computations A&fs, losses can happen only when reads are performed, but
that will be sufficient for the result we are proving. Lossefl mccur when, in order to read from a
channele, the letter to be read is found using a datdhwhich is smaller than the datum that points to
the last letter inc, and then the datum at placés replaced by!’. (Observe that, in data nets, we cannot
specify that a transition be firable from a marking only if tager contains no data which is between two
particular data. Otherwise, perfect channel systems wdnielTuring-powerful would be expressible.)

Writes are performed using a new minimal datum:

Xqi,claq2) = 2 H<Q17c,!,a7q2>(1’ @) = 1
F<Q1,c,!,a,q2>(2a @) = 1 H(%,C,!,a,qz)(lv (c,a)) = 1

Reads from a channelof a letter to which the minimal datumi points check that place contains a
greater datum, which is then replaceddy

F<q1,cv?7a7Q2>1 (1’ ql) = 1 a<q17cv?7(l7QQ>1 = 2
F{ql,c,?,a,q2>1 (27 C) =1 H(ql,c,?,a,(p)l (17 q2) =

F(q17c7?7a,q2>1(1,<0, a>) =1 H(Q1,c7?,a7Q2>1(17C) 1

The remaining reads from a channedf a lettera decrease the datum at placto a value which is not
minimal and which points to an occurrenceah c:

F<‘11vcv?van2>>1 (1’ Q1) =1 Xqi,e,7,0,q2)>" = 3
F<q1 6, 7,a,q2) >t (3’ C) = 1 H<(I170,?7a,(I2>>1 (17 q2) =1
F<q17c’?7a’(I2>>l (2’ <C’ (I>) = 1 H(ql,c,7,a,q2>>1 (27 C) =1

Now, the definition ofA/s ensures that the: relation is an inverse simulation: wheneverw) ~ s
ands — ¢, there existdq’, w’) such that¢’, w’) ~ s’ and(q, w) — (¢’,w’).

We write (¢, w) C ~ s iff there exists(q', w') such that(q,w) T (¢',w') and (¢", w’) ~ s. It
is straightforward to check that the ~ relation is a simulation: whenevéy, w) C ~ s and (g, w) —
(¢, w"), there exists’ such thatl¢’, w') C~ s ands — s'.

To establish (a), given a stafe, w) and a locationy’ of S, let s be such thatq, w) ~ s, and lets’
be such thats’| = 1, s'(1)(¢’) = 1, ands’(1)(p) = 0 forall p € P\ {¢'}. By the properties above, we
have that some state’, w’) is reachable fromg, w) iff some markings” > s’ is reachable frons.

For the termination part of (b), i is such thatq, w) = s, thenS has an infinite computation from
(q,w) iff Ns has an infinite computation from For the boundedness part, we mod¥y by adding an
auxiliary place and ensuring that each transition incredéise number of tokens at that place. O
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Example 3.1. Consider the lossy channel systéfrwith three locations;;, g2 and¢s, one channet,
two lettersa andb, and the following three transitions:

<qlvc>!7a7q2> <q27c>!7b7q3> <QBaC>?7b>Q1>

Thus,S attempts to writer, write b and read repeatedly. Since eaehcan be lost before the next read
of b, S has an infinite computation from staf@ , [c — ¢]).
The following is a marking of\'s which corresponds t¢y1, [c — ¢]):

@ @ @ ¢ (ca) (¢b)
11 0 01 0 0

Only transition{q, ¢, !, a, g2) of Ns can be fired, and in a unique way. The resulting marking is

‘ @ @ g3 ¢ {ca) (cb)
170 1 0 0 1 0
210 0 0 1 0 0

Similarly, only (g2, ¢, !, b, g3) is firable next, and it results in

‘ @ @ g ¢ (ca) (¢b)
1710 0 1 0 O 1
2/0 0 0 0 1 0
310 0 0 1 O 0

Now, only (g3,c,?,b,q1)" is firable. It produces the marking below, which again cqroesls to state
(q1, [c — €]), but which contains a “junk” datum that has been left by treslof lettera:

ot @ @ c (ca) (cb)
111 0 0 1 0 0
2/0 0 0 O 1 0

4. Decidability

The following two lemmas will be used in the proof of Theorer Below. The first one, due to Valk

and Jantzen, provides a sufficient condition for computgialf finite bases of upwards-closed sets of
fixed-length tuples of natural numbers. The second lemmaskimat, for computing a pred-basis of the
upward closure of a marking of a data net, it suffices to carsidarkings up to a certain computable

length.

Lemma 4.1. ([24])
Supposes is a finite set. A finite basis of an upwards-closediset N? is computable iff it is decidable,
given anyv € NB, whetherV N |[{v} # (.
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For a transition systeniS, —) andS’ C S, we write Pred(S’) for {s € S : 3’ € §" - s — §'}. If
transitions are labelled bye 7', we write Pred,(S') for {s € § : 3¢’ € &' - s 5 &'}

Lemma 4.2. Given a data netV, a transitionz of A/, and a markings’ of N, a natural number. is
computable, such that whenevee Pred,(1{s'}) and|s| > L, there exists < swith 5 € Pred,(1{s'})
and|s| < L.

Proof:
SupposeV = (P, T, «, F,G, H), and let

L=oa;+|s|+ (s +1) x 2P —1) x M

whereM = max{s'(i)(p) : i € [|s'|]] A p € P}.
Considers € Pred,(T{s'}) with |s| > L. For somes;, . ands” > s’, we haves D2 o Let

s{ = (s — [F PG + (], Sinces” is the 0-contraction ofs}, there exists an increasing
2 [|s']] = [|s¢]] such thats'(i) < Sﬁ['(b'(i)) foralli € [|s']].
For each nonempty, C P, let

sit={iellsl] : Ype P s(i)(p) >0 & pe Py}

Since|s;| > |s|, there exis < j < «; and nonempty?, C P such thaqlfﬂ > M, Wherelf+ =
([[llﬁeg(jﬁ_l)]]‘LSTI \ Range(/)) N sf*.

Pick an indexii € If* of s, and leti' € [|s|] be the corresponding index of Letr; be the
increasing mappings;| — 1] — [|s:|] with z% ¢ Range(+), andr be the increasing mapping| — 1] —
[Isl] with i' & Range(r). Then lets; (resp.,s') be obtained from; (resp.,s) by removing the entry

s

sl 1 Sl
it (resp.,i'), = 7 o, ands’T’1 = (st — [[Ft]]lLlT|)[[Gt]]|L1T| + [[Ht]]‘”*‘. By the definition ofI;.P+ and
I > M, we have that/" (i)(p) > M whenevers! (i)(p) # s}(r(i))(p). Hence,s!" > s', so
s' € Pred;(1{s'}).
By repeating the above, we obtain> s' > s2 > ... sl5I=L ¢ Pred,(1{s'}) such thais*| = |s| — k
for all k. Settings = s!*/~~ completes the proof. O

Theorem 4.1.
(a) Coverability and termination for data nets are decieabl

(b) Boundedness for transfer data nets is decidable.

Proof:

SupposeV = (P, T, «, F,G, H) is a data net. By Propositions 2.1, 2.2 and 2.6, the trans#tystem of
N is finitely-branching and well-structured with strong caatipility, and also with strict compatibility
if A is transfer (using the terminology of [12]). Moreovet, between markings oV is a decidable
partial ordering, andbucc(s) = {s’ : s — s’} is computable for markings. Hence, termination for
data nets and boundedness for transfer data nets are dediggli2, Theorems 4.6 and 4.11].
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To establish decidability of coverability by [12, Theoreng]3 it suffices to show that, given amye
T and a markings’, a finite basis ofPred;(1{s'}) is computable. (By Proposition 2.6 (&)red:(1{s'})
is upwards-closed.)

First, we compute. as in Lemma 4.2. Forany < | < L, increasing : [I] — [I;] and increasing
v+ [oy] — [l3] such thafl;] = Range(n) U Range(v), let

Predé’W(T{s/}) ={s:l=|s| N3 >5" s BN s}

t7 ) . . -
wheres "% s” means that —* s” for somes; such thatRange(n) = {j : s;(j) # 0} (necessarily,

I = |s¢|). From the definition of transition firing, we have that”™"", & iff s > [[Ft]]fT ands” is the
0-contraction of(s — [F G + [Hy]V . Hence, eactPred., ,(1{s'}) is an upwards-closed subset

t,m,L
of N[l By Lemma 4.2, it remains to compute a finite basis of eBehil}, ,(T{s'}).
Suppose that n and. are as above. Given aryc NE*U we have as in [11] tha‘t’redim(T{s’}) N

{s} # 0iff s > [[Ft]]fT ands” > s', wheres; is the 0-expansion ofs such thatl; = |s;| and
Range(n) = {j : s4(j) # 0}, s" is the0-contraction of(s; — [E[G Y + [H,]Y, and the required
operations are extended doby taking limits: w > n,w+n=n4+w =w+w =w,w —n = w,
0xw =0, andn x w = w for n > 0. Therefore, by Lemma 4.1, a finite basis Bfed. , ,(1{s'}) is

tmst
computable. O

5. Hardness

Theorem 5.1. Coverability, termination and boundedness for Petri data are not primitive recursive.

Proof:
As shown in [23], location reachability and termination fossy channel systems are not primitive
recursive. It remains to apply Proposition 3.2. O

Theorem 5.2. Coverability, termination and boundedness for unorderetti Blata nets are not elemen-
tary.

Proof:
For k € N, thetetration operationa 1} & is defined bya f+ 0 = 1 anda {} (k 4+ 1) = a®"*. We shall
establish that the three verification problems are not efeang by showing that, given a deterministic
machineM of sizen with finite control and twa 1} n-bounded counters, an unordered Petri data net
Ny which simulatesM is constructible in logarithmic space.

We consider machine$t which are tuples@, g7, ¢r, ) such that:

e () is afinite set of stateg; € Q is the initial state, andp € @ is the final state;
e 0:@Q — {inc,dec} x {1,2} x @ x @Q is the transition function.

If the size of M is n, the counters ofM are bounded bg 1} n. Thus, a configuration oM is a tuple
(q,v1,v2) such thay € @ andvy,vs € {0,...,(2 ft n) — 1}. Every configurationq, vy, v2) of M has
a unique successor which is defined as follows, where we densinly counten:
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e if 6(q) = (inc,1,4¢/,¢") andvy < (2t n) — 1, the successor &/, v1 + 1, v2);
e if 6(q) = (inc,1,¢/,¢") andv; = (2 1t n) — 1, the successor i§", vy, v2);

e if 6(q) = (dec,1,¢',¢") andv; > 0, the successor i§/,v1 — 1,v9);

o if 6(q) = (dec,1,¢',q¢") andvy; = 0, the successor i§", vy, vs).

Given such a maching1, the halting problem is to decide whether the final state G@me configuration
(qr,v1,v2)) is reachable from the initial configuratiofy;,0,0). By standard results on simulating
Turing machines by counter machines, that decision proldemt elementary (cf., e.g., [18]).

For a machineM of sizen as above, let\Vy; be an unordered Petri data net which is constructed as
follows. In fact, Ay will be able to simulate operations @n countersCy, andC;, for k € [n]. C,, and
Cy, are the two counters of1, and for eachk € [n], Cj, andC) are2 | k-bounded. For each < n,
simulations by\ of operations orCy. ; andC; _ , will use operations o, andCj.

The set of places of/, is

start W Py W Q W {ready;, : k € [n]} W
{0p,1p, scratchp, lock p, checked p, uncheckedp : D € {Cy,C). : k € [n]}}

where Py will be defined implicitly and consists of places for conlireg N Let sy o be a marking
in which there is one token at plagg, there is one token at placeéart, and all other places are empty.

The transitions ofV\, will be constructed so that (i)—(iv) below are satisfied. Weétevs — , s’
(resp.,s —x §)iff s — s and placeready,, is nonempty (resp., empty) isf. Hence,s —%— , s’
means that’ is reachable froms by a nonempty sequence of transitions for whiehdy,, is empty
in every intermediate marking, and that.dy,, is nonempty ins’. As another exampley /4% means
that there does not exist an infinite sequence of transiti@m s for which ready,, is empty in every
intermediate marking.

() For everys reachable froms; 4, there is one token withii§), and at most one token within
{ready;, : k € [n]}.

(if) For every s reachable froms; xq, everyk € [n] such thatready,, is nonempty ins for some
k' > k, and everyD € {Cy, C} }, we have that a value,(D) € {0,...,(2 { k) — 1} is encoded
in s as follows. Moreover, ik’ > k thenvs(D) = 0.

— scratchp, lockp and checkedp are empty, andinchecked p contains exactly 1} (k — 1)
tokens and they carry mutually distinct data;

— for eachi € [2 {} (k — 1)], if the i-th bit of vs(D) isb € {0,1}, then for some daturi
carried by a token at placenchecked p, the number of tokens & which carryd is i, and
the number of tokens &t — b) p which carryd is 0;

— each datum carried by a token(gs or 1 is carried by some token atchecked p.

Whenevers vy —*—, s let c(s) be the configurationq, vs(C,),vs(Cy,)) of M, whereq is
nonempty ins.

(iif) We havesr rq /4% and:
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— there exist$; v —%—,/ s such thak(s) = (qr,0,0);
— forall sy m —%—/ s, ¢(s) = (q1,0,0).

(iv) Whenevers; o —*— /s, we haves /5 and:

— there exists —% — , s’ such that(s') is the successor @fs) in M;
— forall s =% — , &', ¢(s) is the successor @fs) in M.

To satisfy (i)—(iv), it suffices to simulate the following efations onD € {C}, C, } for k € [n]:

e setup(D), which assumes that the plades, 1p, scratchp, lockp, checked p and unchecked p
are empty, and sets them up so that valug encoded,

e inc(D) (resp.,dec(D)), which increments (resp., decremenf3) and can be executed iff the
resulting value is in the rang@®, ..., (2 + k) — 1};

e iszero(D) (resp.,ismax(D)), which does not change the value Bf but can be executed iff it
equalsd (resp.,(2 + k) — 1).

When started frons; aq, Mg will first perform:

setup(C1 ); setup(C]); move a token fromytart to ready;;
setup(Cs); setup(CY); move a token fromready; to readys;

setup(C,); setup(C/,); move a token fromready,,_; to ready,,

To present simulations of the counter operations, we emmpseyido-code as above which is straight-
forward to implement using the placd3,,. The simulations forCy,; and C,;H may invoke only
operations orCj, andC},, so recursion depth is bounded by

Since counterg’; andC] are2-bounded, the five operations on them are trivial to simulate

Supposé: € {1,...,n — 1} andD € {Cy41,C;}. Table 1 contains pseudo-code fetup(D).
In addition to the emptiness 6fy, 1p, scratchp, lockp, checkedp andunchecked p, we can assume
thatready,, is nonempty and that, andC;, have valud). The first outer loop useS, to iterate through
the 2 1t k binary digits of D. For each digit, a representation of its valies set up by choosing
nondeterministically a datumh, performing the first inner loop to check thats fresh (i.e., distinct from
each datum which currently is carried by a tokemathecked p), and performing the second inner loop
to restore the contents afichecked p and to put the correct number of tokens carryihgntoOp. The
second outer loop ensures that, at the erskfp(D), Cj, andC), have valud).

Among the remaining operations, simulatiing(D) anddec(D) is harder than simulatingzero(D)
andismax(D). By symmetry, we consider onlyic(D). The first outer loop in Table 2 usés, to iterate
through the binary digits ab. It can only terminate by choosing nondeterministicallyigitdvith value
0. The latter is altered ta, but values of all previous digits are unchanged. The secater loop
iterates through the remaining digits 6f, it checks that their values aig and alters them t6. The
inner loops ensure that if the first two outer loops have teatd, then for each € [2 1} k], it must
have been théth binary digit of D which was processed during thh outer iteration. The third outer
loop completes a representation of the new valu® dify transferring the contents of placgecked p to
placeuncheckedp.
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Table 1. Simulatingetup(D)

repeat
{ guess a datuni and put a token carrying ontolock p;
while notiszero(C},) do
{ dec(C%); inc(C},);
move a token carrying som# # d from unchecked p to checked p };
while notiszero(C},) do
{ dec(C}.); inc(Cy);
move a token fronthecked p t0 unchecked p;
put a token carrying onto0Op };
put a token carrying ontoOp;
move the token frondock p to unchecked p;
if ismax(C}) then exit elseinc(Cy) };
while notiszero(CY,) do dec(Cy)

Table 2. Simulatingnc(D)

move a token fromready,, . | t0 ready,,;

repeat

{ move a token carrying soméfrom unchecked p to lock p, and guess € {0,1};
if b= 0thenguess’ € {0, 1} elseletd’ = b;
while notiszero(C}) do
{ dec(Cy); inc(C},); move a token carrying from bp to scratchp };
move a token carrying from bp to scratchp;
while notiszero(C},) do
{ dec(C},); inc(Cy); move a token carrying from scratchp to b, };
move a token carryind from scratchp to b'y;
move the token frondock p to checked p;
if b= 0andd’ = 1 then exitelseinc(Cy) };

while notismax(Cy) do

{ inc(Cy); move a token carrying som&from unchecked p to lock p;
while notiszero(C}) do
{ dec(C}); inc(C},); move a token carrying from 1 to scratchp };
move a token carrying from 1p to scratchp;
while notiszero(C},) do
{ dec(C},); inc(Cy); move a token carrying from scratchp to Op };
move a token carrying from scratchp to Op;
move the token frondock p to checked p };

repeat

{ move a token fronthecked p to unchecked p;
if iszero(C},) then exit elsedec(Cy) };

move a token fromready,, to ready;,
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Now, by (i)—(iv), thatM halts is equivalent td/,( being able to cover from; ¢ a marking in which
there is a token at placg- and a token at placecady,,. By ensuring thait\/y, has no transitions from
markings in whichgr andready,, are nonempty, that halts becomes equivalent A6y, terminating.
To reduce the halting problem fa¥1 to the boundedness problem f&fy, it suffices to modify further
the construction of the latter by adding a place whose numobikens increases with each transition.

It remains to observe that’y, can be constructed in space which is logarithmie ifi.e., the size of
M). That is because recursion depth in the simulations alobeunded by, and transition arities in
N are at mose, so that the number of places, the number of transitions ladizes of transitions in
N are polynomial inn. 0

6. Concluding remarks

We have answered questions (1) and (2) posed in Section JlarAss fwe are aware, Section 5 contains
the first nontrivial lower bounds on complexity of decidalpl@blems for extensions of Petri nets by
infinite data domains.

The results obtained and their proofs show that data neta swecinct unifying formalism which is
close to the underlying semantic structures, and thus aluslettform for theoretical investigations.

The proof of Theorem 4.1 does not provide precise upper boamdcomplexity. It should be in-
vestigated whether upper bounds which match the lower imthe proofs of Theorems 5.1 and 5.2
are obtainable. In particular, are coverability, termioatand boundedness for unordered Petri data nets
primitive recursive?

Let us say that a data netlign-safeiff each place other than sonieplaces never contains more
thanm tokens. It is not difficult to tighten the proofs of Theorem$ &nd 5.2 to obtain that coverability,
termination and boundedness are not primitive recursivé fb-safe Petri data nets, and not elementary
for 2, 1-safe unordered Petri data nets. That leaves open whethieaweenon-elementarity far, 1-safe
unordered Petri data nets. That class suffices for expgegsitymorphic systems with one array of type
(X,=) — (Y, =) without whole-array operations [16, 15].

We are grateful to Alain Finkel for a helpful discussion.
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