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Abstract. We study data nets, a generalisation of Petri nets in which tokens carry data from linearly-
ordered infinite domains and in which whole-place operations such as resets and transfers are possi-
ble. Data nets subsume several known classes of infinite-state systems, including multiset rewriting
systems and polymorphic systems with arrays.

We show that coverability and termination are decidable forarbitrary data nets, and that boundedness
is decidable for data nets in which whole-place operations are restricted to transfers. By providing an
encoding of lossy channel systems into data nets without whole-place operations, we establish that
coverability, termination and boundedness for the latter class have non-primitive recursive complex-
ity. The main result of the paper is that, even for unordered data domains (i.e., with only the equality
predicate), each of the three verification problems for datanets without whole-place operations has
non-elementary complexity.
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1. Introduction

Petri nets (e.g., [21]) are a fundamental model of concurrent systems. Being more expressive than finite-
state machines and less than Turing-powerful, Petri nets have an established wide range of applications
and a variety of analysis tools (e.g., [13]).

The analysis tools are based on the extensive literature on decidability and complexity of verification
problems ([10] is a comprehensive survey). In this paper, wefocus on three basic decision problems, to
which a number of other verification questions can be reduced:
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Coverability: Is a marking reachable which is greater than or equal to a given marking?

Termination: Are all computations finite?

Boundedness:Is the set of all reachable markings finite?

By the results in [17, 20], each of coverability, termination and boundedness is EXPSPACE-complete for
Petri nets.

Many extensions of Petri nets preserve decidability of various verification problems. Notably, affine
well-structured nets were formulated in [11] as an elegant extension of Petri nets by whole-place opera-
tions. The latter are resets, which empty a place, and transfers, which take all tokens from a place and put
them onto one or more specified places (possibly several times). Hence, two subclasses of affine WSNs
are reset nets and transfer nets, in which whole-place operations are restricted to resets and to transfers,
respectively. As shown in [11], coverability and termination for affine WSNs, and boundedness for trans-
fer nets, are decidable. However, compared with Petri nets,there is a dramatic increase in complexity: it
follows from the results on lossy channel systems in [23] that coverability and termination for reset nets
and transfer nets, and boundedness for transfer nets, are not primitive recursive.1 It was proved in [9]
that boundedness for reset nets is undecidable.

Another important direction of extending Petri nets is by allowing tokens to carry data from infinite
domains. (Data from finite domains do not increase expressiveness.) For example, in timed Petri nets [4],
each token is equipped with a real-valued clock which represents the age of the token. Multiset rewriting
specifications over constraint systemsC [8, 1] can be seen as extensions of Petri nets in which tokens
may carry data from the domain ofC and transitions can be constrained usingC. In mobile synchronizing
Petri nets [22], tokens may carry identifiers from an infinitedomain, and transitions may require that an
identifier be fresh (i.e., not currently carried by any token).

In this paper, we focus on the following two questions:

(1) Is there a general extension of Petri nets in which tokens carry data from infinite domains, in which
whole-place operations are possible, and such that coverability, termination and boundedness are
decidable (either for the whole class of extended nets or forinteresting subclasses)?

(2) If the answer to the previous question is positive, and if we restrict to the subclass without whole-
place operations, do coverability, termination and boundedness remain EXPSPACE-complete (as
for Petri nets), or are their complexities greater? What happens if we restrict further to the simplest
data domains, i.e. those with only the equality predicate?

Data nets. To answer question (1), we define data nets, in which tokens carry data from linearly-
ordered infinite domains. As in Petri nets, transitions consume and produce tokens. For a transition to
be firable, we can require that the data which are carried by the tokens to be consumed are ordered in a
certain way. In addition to such data, transitions can choose finitely many other data, which satisfy further
ordering constraints and which may or may not be present in the current marking. In the production
phase, tokens which carry either kind of data can be put into the marking. Data nets also support whole-
place operations.

1Recall the Ritchie-Cobham property [19, page 297]: a decision problem (i.e. a set) is primitive recursive iff it is solvable in
primitive recursive time/space.
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In the next few paragraphs, we introduce data nets in an informal but detailed manner, for clarity of
the subsequent discussion of contributions of the paper andrelations to the literature. As an alternative
order of presentation, the reader may wish to postpone the following and read it in conjunction with
Section 2.2, where data nets are defined formally.

Data nets are based on affine WSNs [11]. Markings of an affine WSN are vectors inNP , whereP

is the finite set of all places. A transitiont of an affine WSN is given by vectorsFt,Ht ∈ N
P and a

square matrixGt ∈ N
P×P . Such a transition is firable from a markingm iff m ≥ Ft, and in that case

it produces the marking(m − Ft)Gt + Ht. Whole-place operations are performed by the multiplication
with Gt.

Since a linear ordering� is the only operation available on data, markings of data nets are finite
sequences of vectors inNP \{0}. Each indexj of such a markings corresponds to an implicit datumdj,
and we have thatj ≤ j′ iff dj � dj′ . For eachp ∈ P , s(j)(p) is the number of tokens which carrydj and
are at placep. We say that such tokens are at indexj. Now, each transitiont has an arityαt ∈ N. For a
transitiont to be fired from a markings, we choose nondeterministicallyαt mutually distinct data. Some
of those data may be fresh (i.e., not carried by any token ins), so picking theαt data is formalised by
first expandings to a finite sequences† by inserting the vector0 at arbitrary positions, and then picking
an increasing (in particular, injective) mapping

ι : {1, . . . , αt} → {1, . . . , |s†|}

such that each occurrence of0 is in its range. Now, such a mappingι partitions{1, . . . , |s†|} into αt

singletons andαt + 1 contiguous “regions” as follows, where theReg (i,i+1) are region identifiers:

1, . . . , ι(1) − 1︸ ︷︷ ︸
Reg(0,1)

, ι(1), ι(1) + 1, . . . , ι(2) − 1︸ ︷︷ ︸
Reg(1,2)

, . . . , ι(αt), ι(αt) + 1, . . . , |s†|︸ ︷︷ ︸
Reg(αt,αt+1)

The action oft ons with respect tos† andι is determined by vectorsFt andHt, and a square matrixGt,
whose elements are natural numbers, and which are indexed by

({1, . . . , αt} ∪ {Reg (i,i+1) : 0 ≤ i ≤ αt}) × P

It consists of the following stages, wherei, i′ ∈ {1, . . . , αt}, R,R′ ∈ {Reg (i,i+1) : 0 ≤ i ≤ αt} and
p, p′ ∈ P .

subtraction: for eachi andp, Ft(i, p) tokens at indexι(i) are taken fromp;2

multiplication: all tokens are taken simultaneously, and then:

• for each token taken fromp at indexι(i), Gt(i, p, i′, p′) tokens are put ontop′ at indexι(i′),
and for eachj′ in regionR′, Gt(i, p,R′, p′) tokens are put ontop′ at indexj′;

• for each token taken fromp at indexj in regionR, Gt(R, p, i′, p′) tokens are put ontop′ at
indexι(i′), andGt(R, p,R, p′) tokens are put ontop′ at indexj;

addition: for eachi andp, Ht(i, p) tokens are put ontop at indexι(i), and for eachj in regionR andp,
Ht(R, p) tokens are put ontop at indexj.

2In order to have well-structuredness (see Proposition 2.6)and for simplicity, entriesFt(R, p) are not used, and neither are
entriesGt(R,p, R′, p′) with R 6= R′, so they are assumed to be0.
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Example 1.1. ConsiderP = {p1, p2} and a transitiont with αt = 1 given by:

Ft Reg (0,1) 1 Reg(1,2)

0 0 1 1 0 0

p1 p2 p1 p2 p1 p2

Ht Reg (0,1) 1 Reg (1,2)

0 0 2 1 6 0

p1 p2 p1 p2 p1 p2

Gt Reg (0,1) 1 Reg(1,2)

Reg(0,1)

0 1

1 0

0 0

0 0

0 0

0 0

p1

p2

1
0 0

0 0

2 0

0 1

3 0

3 0

p1

p2

Reg(1,2)

0 0

0 0

0 0

0 2

1 0

0 1

p1

p2

p1 p2 p1 p2 p1 p2

From a markings, in terms of data represented by the indices ofs, transitiont is fired as follows:

1. a datumd is chosen nondeterministically, such that each ofp1 andp2 contain at least1 token
carryingd (so,d cannot be fresh);

2. for each datumd′ ≺ d, all tokens atp1 carryingd′ are transferred top2, and vice-versa;

3. for each token atp1 or p2 carryingd, and eachd′ ≻ d, 3 tokens carryingd′ are put ontop1;

4. the number of tokens atp1 carryingd is multiplied by2;

5. for each token atp2 carryingd′ ≻ d, 2 tokens carryingd are put ontop2.

SinceHt = FtGt, the addition stage of performingt exactly “undoes” the subtraction stage, sot per-
forms only whole-place operations.

In Section 2.2, the above will be formalised so thatt is firable froms with respect tos† and ι iff

s† ≥ JFtK
|s†|
ι , and in that case it produces the marking obtained from(s† − JFtK

|s†|
ι )JGtK

|s†|
ι + JHtK

|s†|
ι

by removing each entry0, whereJFtK
|s†|
ι , JGtK

|s†|
ι andJHtK

|s†|
ι are appropriate “expansions” ofFt, Gt

andHt, indexed by{1, . . . , |s†|} × P .
Since vectors0 which correspond to fresh data can be inserted at arbitrary positions to fire a transi-

tion, the linear ordering on data is assumed to be dense and without least and greatest elements. Having
a least or greatest element can easily be simulated, and density is not a restriction when considering only
finite computations (as is the case for the coverability problem).

We show that affine WSNs [11] are equivalent to a class of data nets whose transitions have arity1.
Data nets also subsume timed Petri nets [4] and timed networks [3], in the sense that systems obtained
after quotienting by time regions can be simulated by data nets, where the data domain is fractional parts
of clock values. Monadic multiset rewriting specificationsover order constraints on rationals or reals
[8] and over gap-order constrains on integers [1] can be translated to data nets, subject to the remarks
above about density. Mobile synchronizing Petri nets [22],lossy channel systems [2], and polymorphic
systems with one array of type〈X,≤〉 → {1, . . . , n} or with two arrays of types〈X,=〉 → 〈Y,≤〉 and
〈X,=〉 → {1, . . . , n} [16, 15], can also be expressed using data nets.
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Decidability. Using the theory of well-structured transition systems [12], we prove that coverability
and termination for arbitrary data nets, and boundedness for data nets in which whole-place operations
are restricted to transfers, are decidable. Thus, question(1) posed above is answered positively. The
decidability of coverability for data nets subsumes the results in [11, 4, 3, 8, 1, 22, 2, 16, 15] that cov-
erability is decidable for the respective classes of infinite-state systems mentioned above, and in most
cases the proof in this paper is more succinct.

Hardness. To question (2) above, we obtain the following answers. We say that a data net isPetri iff
it does not contain whole-place operations, andunorderediff it makes use only of equality between data
(and not of the linear ordering).

• By providing a translation from lossy channel systems to Petri data nets, we establish that cover-
ability, termination and boundedness for the latter class are not primitive recursive. The encoding
uses the linear ordering on the data domain, for picking fresh data which are employed in simulat-
ing writes to channels.

• The main result of the paper is that coverability, termination and boundedness for unordered Petri
data nets are not elementary, i.e., their computational complexities cannot be bounded by towers
of exponentials of fixed heights. That is a surprising result, since unordered Petri data nets are
highly constrained systems. In particular, they do not provide a mechanism for ensuring that a
datum chosen in a transition is fresh (i.e., not present in the current marking). The result is proved
by simulating a hierarchy of bounded counters, which is reminiscent of the “rulers” construction
of Meyer and Stockmeyer (e.g., [18]).

Therefore, this paper shows that, when Petri nets are generalised to allow tokens to carry data from
infinite domains, standard verification problems which werein EXPSPACE become non-elementary, even
when data can only be compared for equality and whole-place operations are not allowed.

By translating Petri data nets and unordered Petri data netsto subclasses of systems in [8, 1, 22,
16, 15], the two hardness results yield the same lower boundsfor corresponding decision problems for
such subclasses. In particular, we obtain non-elementariness of verifying monadic multiset rewriting
specifications with only equality constraints [8] and of verifying polymorphic systems with two arrays
of types〈X,=〉 → 〈Y,=〉 and〈X,=〉 → {1, . . . , n} [16].

Paper organisation. Section 2 contains preliminaries, including definitions ofdata nets and of several
relevant subclasses, some basic results, and an example. InSection 3, we present the translation from
lossy channel systems to Petri data nets. Sections 4 and 5 contain the decidability and hardness results.
Some remaining open problems are discussed in Section 6.

2. Preliminaries

Sets, quasi-orders and mappings. For n ∈ N, let [n] = {1, . . . , n}. We writeNω for N ∪ {ω}. The
linear ordering≤ onN is extended toNω by havingn < ω for eachn ∈ N.

A setA and a relation� onA form aquasi-orderiff � is reflexive and transitive. We writea1 ≺ a2

iff a1 � a2 anda2 6� a1.
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For anyA′ ⊆ A, its upward closure is↑A′ = {a ∈ A : ∃a′ ∈ A′ · a′ � a}. We say thatA′ is
upwards-closed iffA′ = ↑A′. A basisof an upwards-closed setA′ is a subsetA′′ such thatA′ = ↑A′′.
Downward closure (written↓A′), closedness and bases are defined symmetrically.

A mappingf from a quasi-order〈A,�〉 to a quasi-order〈A′,�′〉 is increasing iff a1 ≺ a2 ⇒
f(a1) ≺

′ f(a2).

Vectors and matrices. For setsA andB, let AB denote the set of allB-indexed vectors of elements of
A, i.e., the set of all mappingsB → A. For example,N[n]×[n′] is the set of alln × n′ matrices of natural
numbers. Fora ∈ A, let a ∈ AB denote the vector whose each entry equalsa. Let Id ∈ N

B×B denote
the identity square matrix.

A quasi-ordering� on A induces the following quasi-ordering onAB : v � v′ iff v(b) � v′(b) for
all b ∈ B.

Sequences and bags.For a setA, let Seq(A) denote the set of all finite sequences of elements ofA.
Fors ∈ Seq(A), let |s| denote the length ofs, ands(1), . . . ,s(|s|) denote its elements.

For s, s′ ∈ Seq(A) and a ∈ A, we say thats′ is an a-expansionof s (equivalently,s is the a-
contractionof s′) iff s is obtained by removing each occurrence ofa from s′.

Fors, s′ ∈ Seq(A), we writes ∼ s′ iff s′ can be obtained froms by permuting its entries. We define
the setBag(A) of all finite bags (i.e., multisets) of elements ofA as the set of all equivalence classes of
∼. Let s denote the equivalence class ofs, i.e., the bag with the same elements ass.

Suppose〈A,�〉 is a quasi-order. The quasi-ordering� induces quasi-orderings onSeq(A) and
Bag(A) as follows. Fors, s′ ∈ Seq(A), we writes � s′ iff there exists an increasingι : [|s|] → [|s′|]
such thats(i) � s′(ι(i)) for all i ∈ [|s|]. For b, b′ ∈ Bag(A), we writeb � b′ iff there exists ∈ b and
s′ ∈ b′ such thats � s′.

Well-quasi-orderings. A quasi-ordering� on a setA is a well-quasi-ordering iff, for every infinite
sequencea1, a2, . . . ∈ A, there existi < j such thatai � aj.

Proposition 2.1. ([14])
Whenever� is a well-quasi-ordering on a setA, the induced orderings onSeq(A) andBag(A) also are
well-quasi-orderings.

2.1. Affine well-structured nets

We recall the notion of affine well-structured net [11].3 Such a net is a tuple〈P, T, F,G,H〉 such thatP
is a finite set of places,T is a finite set of transitions, and for eacht ∈ T , Ft andHt are vectors inNP ,
andGt is a matrix inN

P×P .
Markings of an affine WSN〈P, T, F,G,H〉 are vectors inNP . A markingm′ can be obtained from

a markingm by firing a transitiont ∈ T , writtenm
t
−→ m′, iff m ≥ Ft andm′ = (m − Ft)Gt + Ht.

As was shown in [11], Petri nets and many of their known extensions are special cases of affine
WSNs. In particular, Petri nets and their extensions by (generalised) resets and transfers are equivalent
to the classes of affine WSNs〈P, T, F,G,H〉 determined by the following restrictions:

3For technical reasons, the formalisation of affine WSNs in this paper is slightly different, but equivalent.
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Petri nets: ∀t ∈ T · Gt = Id

reset nets: ∀t ∈ T · Gt ≤ Id

transfer nets: ∀t ∈ T, p ∈ P · ∃p′ ∈ P · Gt(p, p′) > 0

2.2. Data nets

Givenn ∈ N, let Regs(n) = {Reg (i,i+1) : 0 ≤ i ≤ n}. For each0 ≤ i ≤ n, m ≥ n and increasing
ι : [n] → [m], let JReg (i,i+1)K

m
ι = {j ∈ [m] : ι(i) < j < ι(i + 1)}, where by conventionι(0) = 0 and

ι(n + 1) = m + 1.
A data netis a tuple〈P, T, α, F,G,H〉 such that:

• P is a finite set of places;

• T is a finite set of transitions;

• for eacht ∈ T , αt ∈ N specifies the arity oft;

• for eacht ∈ T , Ft ∈ N
([αt]∪Regs(αt))×P , andFt(R, p) = 0 wheneverR ∈ Regs(αt) andp ∈ P ;

• for eacht ∈ T , Gt ∈ N
(([αt]∪Regs(αt))×P )2 , andGt(R, p,R′, p′) = 0 wheneverR,R′ ∈ Regs(αt),

R 6= R′ andp, p′ ∈ P ;

• for eacht ∈ T , Ht ∈ N
([αt]∪Regs(αt))×P .

Suppose〈P, T, α, F,G,H〉 is a data net, andt ∈ T . Any m ≥ αt and increasingι : [αt] → [m]
determine the following instances ofFt, Gt andHt:

• JFtK
m
ι ∈ N

[m]×P is defined by

JFtK
m
ι (ι(i), p) = Ft(i, p) JFtK

m
ι (j, p) = Ft(R, p) for j ∈ JRKm

ι

• JGtK
m
ι ∈ N

([m]×P )2 is defined by

JGtK
m
ι (ι(i), p, ι(i′), p′) = Gt(i, p, i′, p′)

JGtK
m
ι (ι(i), p, j′, p′) = Gt(i, p,R, p′) for j′ ∈ JRKm

ι

JGtK
m
ι (j, p, ι(i′), p′) = Gt(R, p, i′, p′) for j ∈ JRKm

ι

JGtK
m
ι (j, p, j, p′) = Gt(R, p,R, p′) for j ∈ JRKm

ι

JGtK
m
ι (j, p, j′, p′) = 0 otherwise

• JHtK
m
ι ∈ N

[m]×P is defined in the same way asJFtK
m
ι .

A markingof a data net〈P, T, α, F,G,H〉 is a finite sequence of vectors inNP \ {0}. A markings′

can be obtained from a markings by firing a transitiont ∈ T , writtens
t
−→ s′, iff there exist a0-expansion

s† of s and an increasingι : [αt] → [|s†|] such that:4

4In (ii) and (iii), s† is treated as a vector inN[|s†|]×P .
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(i) {j : s†(j) = 0} ⊆ Range(ι);

(ii) s† ≥ JFtK
|s†|
ι ;

(iii) s′ is the0-contraction of(s† − JFtK
|s†|
ι )JGtK

|s†|
ι + JHtK

|s†|
ι .

We may also writes
t,s†,ι
−−−→ s′, or justs → s′.

Proposition 2.2. For any data net, its transition system〈Seq(NP \ {0}),→〉 is finitely branching.

2.3. Decision problems

We consider the following standard problems:

Coverability: Given a data net, and markingss ands′, to decide whether some markings′′ ≥ s′ is
reachable froms.

Termination: Given a data net, and a markings, to decide whether all computations froms are finite.

Boundedness:Given a data net, and a markings, to decide whether the set of all markings reachable
from s is finite.

Coverability, termination and boundedness for affine WSNs are defined in the same way.

2.4. Classes of data nets

We now define several classes of data nets. Figure 1 shows the inclusions among classes of data nets
and affine well-structured nets in Propositions 2.4, 2.5, 2.7 and 3.1 below. In addition, the mapping
N 7→ Ñ and its inverse (see Proposition 2.5) provide a correspondence between unary transfer data nets
(resp., unary Petri data nets) and transfer nets (resp., Petri nets). The dashed line represents the fact that
Proposition 3.1 does not provide a reduction for the boundedness problem.

Unordered data nets. A data net〈P, T, α, F,G,H〉 is unordered iff:

(i) for eacht ∈ T , R,R′ ∈ Regs(αt) andp, p′ ∈ P , we haveGt(R, p,R, p′) = Gt(R
′, p,R′, p′) and

Ht(R, p) = Ht(R
′, p);

(ii) for eacht ∈ T and permutationπ of [αt], there existst′ ∈ T such thatFt′ , Gt′ andHt′ are obtained
from Ft, Gt andHt (respectively) by applyingπ to each index in[αt].

Given an unordered data net〈P, T, α, F,G,H〉, we writet ∼ t′ iff t andt′ have the property in (ii)
above. That defines an equivalence relation onT , and we writet for the equivalence class oft. From
the following proposition, the same-bag relation∼ between markings is a bisimulation on the transition
system of〈P, T, α, F,G,H〉.5

5Conditions (i) and (ii) in the definition of unordered data nets suggest an alternative formalisation, where only one region is
used for indexingF , G andH , and only one transition from each equivalence class is represented. Such a formalisation is
more succinct (exponentially in transition arities), but that issue is not important in this paper. In addition, by Proposition 2.3,
markings of unordered data nets can be regarded as bags.
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data nets

unordered data nets

unary data nets=

affine WSNs

reset nets transfer nets

Petri nets

transfer data nets

Petri data nets

Figure 1. Inclusions among classes of data nets

Proposition 2.3. For any unordered data net, whenevers1
t
−→ s2 ands′1 ∼ s1, we haves′1

t′
−→ s′2 for

somet′ ∼ t ands′2 ∼ s2.

Unary data nets. A data net〈P, T, α, F,G,H〉 is unary iff:

(i) for eacht ∈ T , αt = 1;

(ii) for eacht ∈ T , there existsp ∈ P such thatFt(1, p) > 0;

(iii) for each t ∈ T , R ∈ Regs(1) andp, p′ ∈ P , we haveGt(1, p,R, p′) = 0, Gt(R, p, 1, p′) = 0,
Gt(R, p,R, p) = 1, Gt(R, p,R, p′) = 0 if p 6= p′, andHt(R, p) = 0.

Proposition 2.4. Any unary data net is an unordered data net.

Given a unary data netN = 〈P, T, α, F,G,H〉, let Ñ = 〈P, T, F̃ , G̃, H̃〉 be the affine WSN such
that F̃ , G̃ and H̃ are obtained fromFt, Gt andHt (respectively) by removing entries which involve
indices fromRegs(1). Observe that, conversely, for each affine WSNN ′ in which no transition is firable
from 0, there is a unique unary data netN such thatÑ = N ′. Both N 7→ Ñ and its inverse are
computable in logarithmic space.

Proposition 2.5.

(a) For any unary data netN , we have thats
t
−→ s′ iff |s′| = |s| and there existsi ∈ [|s|] with

s(i)
t
−→ s′(i) in Ñ ands′(j) = s(j) for all j 6= i.

(b) Coverability ofs′ from s in a unary data netN is equivalent to existence of an increasingι :
[|s′|] → [|s|] such thats′(i) is coverable froms(ι(i)) in Ñ for eachi ∈ [|s′|].

Termination (resp., boundedness) froms in a unary data netN is equivalent toÑ being terminating
(resp., bounded) froms(i) for eachi ∈ [|s|].
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(c) Coverability ofm′ from m, termination fromm and boundedness fromm in an affine well-
structured netÑ are equivalent to coverability of〈m′〉 from 〈m〉, termination from〈m〉 and
boundedness from〈m〉 (respectively) inN .

Note that Proposition 2.5 (c) can be extended to affine WSN with transitions firable from0 by adding
an auxiliary place in which a single token is kept.

Transfer data nets. A data net〈P, T, α, F,G,H〉 is transfer iff:

(i) for eacht ∈ T , i ∈ [αt] andp ∈ P , we haveGt(i, p, i′, p′) > 0 for somei′ ∈ [αt] andp′ ∈ P ;

(ii) for eacht ∈ T , R ∈ Regs(αt) andp ∈ P , either we haveGt(R, p, i′, p′) > 0 for somei′ ∈ [αt]
andp′ ∈ P , or we haveGt(R, p,R, p′) > 0 for somep′ ∈ P .

Observe that (i) and (ii) are satisfied by the transitiont in Example 1.1.

Proposition 2.6.

(a) Whenevers1
t
−→ s2 in a data net ands′1 ≥ s1, thens′1

t
−→ s′2 for somes′2 ≥ s2.

(b) Whenevers1
t
−→ s2 in a transfer data net ands′1 > s1, thens′1

t
−→ s′2 for somes′2 > s2.

Petri data nets. In Petri data nets, whole-place operations are not allowed,and transitions can produce
tokens carrying only data which were chosen during the firing. Formally, a data net〈P, T, α, F,G,H〉 is
Petri iff:

• for eacht ∈ T , Gt = Id ;

• for eacht ∈ T , R ∈ Regs(αt) andp ∈ P , Ht(R, p) = 0.

Proposition 2.7. Any Petri data net is a transfer data net.

2.5. Example: a file system

As an illustration, we now show how a file system which permitsunboundedly many users, user pro-
cesses and files can be modelled as a data net. A variety of other examples of systems expressible
using data nets can be found in [4, 3, 8, 1, 22, 2, 16], including a real-timed mutual exclusion protocol,
a distributed authentication protocol, a communication protocol over unreliable channels, and a leader
election algorithm.

We suppose there are two user categories: administrators and staff members. LetAdministrator
be a finite set consisting of all possible states which an administrator process can be in, letStaff be such
a set for staff-member processes, and letContents be a finite set of all possible file contents. In case file
contents is unbounded, theContents set may consist of finitary abstractions, which include information
such as file names. We assume thatAdministrator, Staff andContents are mutually disjoint.

The set of places is
P = Administrator∪ Staff ∪ Contents

Tokens represent user processes and files, and data which they carry represents user identities. More
specifically:
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• a token at placea ∈ Administrator carrying datumd represents a process of administratord

and which is in statea;

• a token at placeb ∈ Staff carrying datumd represents a process of staff memberd and which is
in stateb;

• a token at placec ∈ Contents carrying datumd represents a file owned by userd and with
contentsc.

To express a write by a staff-member process in stateb to a file with contentsc, which changesb to b′

andc to c′, we define a transitionwrite(b, b′, c, c′). It involves one user, soαwrite(b,b′,c,c′) = 1. Firstly,
it takes one token from placeb and one token from placec. They must carry the same datum, which
ensures that the user owns the file.

Fwrite(b,b′,c,c′)(1, b) = 1 Fwrite(b,b′,c,c′)(1, c) = 1

The transition involves no whole-place operations, soGwrite(b,b′,c,c′) = Id . Finally, it puts one token
onto placeb′ and one token onto placec′, which carry the same datum as the two taken tokens.

Hwrite(b,b′,c,c′)(1, b
′) = 1 Hwrite(b,b′,c,c′)(1, c

′) = 1

The remaining entries ofFwrite(b,b′,c,c′) andHwrite(b,b′,c,c′) are0.
As a slightly more complex example, we can express a change ofownership of a file with contentsc

from an administrator to a staff member. It involves an administrator process which changes state from
a to a′, and a staff-member processes which changes state fromb to b′. Since two users are involved,
we haveαchange(c,a,a′,b,b′) = 2. As in the previous example,Gchange(c,a,a′,b,b′) = Id and we show only
entries which are not0:

Fchange(c,a,a′,b,b′)(1, c) = 1 Hchange(c,a,a′,b,b′)(2, c) = 1

Fchange(c,a,a′,b,b′)(1, a) = 1 Hchange(c,a,a′,b,b′)(1, a
′) = 1

Fchange(c,a,a′,b,b′)(2, b) = 1 Hchange(c,a,a′,b,b′)(2, b
′) = 1

In the change(c, a, a′, b, b′) transition, it is assumed that the administrator identity is smaller than the
staff-member identity. To cover the opposite case, and to have an unordered data net, we define a transi-
tion change(c, b, b′, a, a′). The definition is the same as that ofchange(c, a, a′, b, b′), except that indices
1 and2 are swapped when definingFchange(c,b,b′,a,a′) andHchange(c,b,b′,a,a′).

The data net having the three sets of transitions introducedso far is unordered and Petri. Imple-
menting the following action makes it no longer Petri, in fact not even a transfer data net: all processes
and files of a staff member who has a process which is in stateb are removed. We haveαcrash(b) = 1,
Fcrash(b)(1, b) = 1, the remaining entries ofFcrash(b) and all entries ofHcrash(b) are0, and:

Gcrash(b)(1, p, 1, p′) = 0 for p, p′ ∈ P

Gcrash(b)(1, p,R, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P

Gcrash(b)(R, p, 1, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P

Gcrash(b)(R, p,R, p) = 1 for R ∈ Regs(1) and p ∈ P

Gcrash(b)(R, p,R′, p′) = 0 otherwise
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Supposing thatAdministrator = {a1, a2}, Staff = {b1, b2} andContents = {c1, c2}, consider
the following markings, in which there are3 users:

1 2 3

0 0 0 1 3 2 2 0 0 0 1 3 0 0 1 2 0 2

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2

The transitioncrash(b2) is firable froms in exactly two ways: either for user1 or for user3. In the
notation of Section 2.2, the latter choice is formalised by having s† = s andι(1) = 3. We then have
JReg(0,1)K

3
ι = {1, 2}, JReg (1,2)K

3
ι = ∅, and the instancesJFcrash(b2)K

3
ι , JGcrash(b2)K

3
ι andJHcrash(b2)K

3
ι

are as follows, respectively:

1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2

1 2 3

1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a1

a2

b1

b2

c1

c2

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a1

a2

b1

b2

c1

c2

3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a1

a2

b1

b2

c1

c2

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2

1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2
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Thus, the vector(s† − JFcrash(b2)K
3
ι )JGcrash(b2)K

3
ι + JHcrash(b2)K

3
ι that results from the firing equals

1 2 3

0 0 0 1 3 2 2 0 0 0 1 3 0 0 0 0 0 0

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2

and its0-contraction is the marking

1 2

0 0 0 1 3 2 2 0 0 0 1 3

a1 a2 b1 b2 c1 c2 a1 a2 b1 b2 c1 c2

Many interesting properties of the file system can be formalised as coverability, termination or bound-
edness properties. For example, that there is never a user who is both an administrator and a staff member
amounts to none of the markingssa,b for a ∈ Administrator andb ∈ Staff being coverable, where
|sa,b| = 1, sa,b(1)(a) = sa,b(1)(b) = 1, andsa,b(1)(p) = 0 for all p ∈ P \ {a, b}.

3. Reset nets and lossy channel systems

In this section, we first show how Petri data nets can express reset nets, which establishes the dashed
inclusion in the diagram in Section 2.4. The translation preserves coverability and termination properties
of reset nets.

Secondly, we show that Petri data nets can also express lossychannel systems [2]. The translation
provides reductions of the location reachability and termination problems for lossy channel systems to the
coverability, termination and boundedness problems for Petri data nets. Thus, the latter three problems
will be shown non-primitive recursive: see Theorem 5.1.

Proposition 3.1.

(a) Coverability for reset nets is Turing reducible in polynomial space to coverability for Petri data
nets.

(b) Termination for reset nets is reducible in polynomial space to termination for Petri data nets, and
to boundedness for Petri data nets.

Proof:
We define a translation from reset netsN = 〈P, T, F,G,H〉 to Petri data netŝN = 〈P̂ , T̂ , α, F̂ , Ĝ, Ĥ〉.
For eacht ∈ T , let s0

t be a sequence consisting of allp ∈ P which are reset byt, i.e., such that
G(p, p) = 0 (each occurring once).

The set of places of̂N is formed by adding a place toP : P̂ = P ⊎{p̂}. In N̂ , each placep ∈ P will
store a single token, carrying a datum which represents the placep of N . The placêp will store as many
tokens carrying the datum which represents a placep as there are tokens atp in N . More precisely, for
markingsm of N ands of N̂ , we writem ≈ s iff for eachp ∈ P , there existsjp ∈ [|s|] such that:

• s(jp)(p) = 1, s(j′)(p) = 0 for all j′ 6= jp, and
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• s(jp)(p̂) = m(p).

The relation≈ will be a bisimulation betweenN andN̂ .
The transitions ofN̂ are pairs of transitions ofN and enumerations ofP :

T̂ = {t̂π : t ∈ T ∧ [|P |]
π
↔ P}

Supposem ≈ s, and letπ be the enumeration ofP such thatπ−1(p) < π−1(p′) iff jp < jp′ . We shall
have that:

(i) only transitions of the form̂tπ are firable froms;

(ii) m
t
−→ m′ impliess

t̂π−→ s′ for somem′ ≈ s′;

(iii) s
t̂π−→ s′ impliesm

t
−→ m′ for somem′ ≈ s′.

Consider anŷtπ ∈ T̂ . We setαt̂π
= |P | + |s0

t |. Indicesi ∈ [|P |] will be used to pick data which
represent the places ofN , and indices|P | + i will be used to pick fresh data (which are greater than
all existing data) to simulate the resets oft. SinceĜt̂π

= Id is required forN̂ to be a Petri data net, it

remains to definêFt̂π
andĤt̂π

so that (i)–(iii) above are satisfied. Each entry not listed below is set to0:

F̂t̂π
(i, π(i)) = 1 F̂t̂π

(i, p̂) = Ft(π(i)) (i ∈ [|P |])

Ĥt̂π
(i, π(i)) = 1 Ĥt̂π

(i, p̂) = Ht(π(i)) (π(i) 6∈ s0
t )

Ĥt̂π
(|P | + i, s0

t (i)) = 1 Ĥt̂π
(|P | + i, p̂) = Ht(s

0
t (i)) (i ∈ [|s0

t |])

Since any enumerationπ of P is storable in polynomial space, we have that polynomial space suffices
for the translation.

Given a markingm of N , let s be a marking ofN̂ such thatm ≈ s. For (a), we have by (i)–(iii)
above that a given markingm′ is coverable fromm in N iff some minimals′ such thatm′ ≈ s′ is
coverable froms in N̂ . For the first half of (b), we have by (i)–(iii) above thatN terminates fromm iff
N̂ terminates froms. For the second half, let̂N ′ be obtained fromN̂ (in logarithmic space) by adding
a placep̂′ and ensuring that each transition increases the number of tokens atp̂′. Let s′ be an arbitrary
extension ofs to placep̂′. We have thatN terminates fromm iff N̂ ′ is bounded froms′. ⊓⊔

A lossy channel systemis a tupleS = 〈Q,C,Σ,∆〉, whereQ is a finite set of locations,C is a finite
set of channels,Σ is a finite alphabet, and∆ ⊆ Q × C × {!, ?} × Σ × Q is a set of transitions.

A state ofS is a pair〈q, w〉, whereq ∈ Q andw : C → Σ∗. For eachc ∈ C, the wordw(c) is the
contents of channelc at state〈q, w〉.

To define computation steps, we first define perfect computation steps, which either write a letter to
the beginning of a channel, or read a letter from the end of a channel. For states〈q1, w1〉 and〈q2, w2〉,
we write〈q1, w1〉 →perf 〈q2, w2〉 iff there existc ∈ C anda ∈ Σ such that:

• either〈q1, c, !, a, q2〉 ∈ ∆ andw2 = w1[c 7→ a(w1(c))],

• or 〈q1, c, ?, a, q2〉 ∈ ∆ andw1 = w2[c 7→ (w2(c))a].
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Let ⊑ denote the “subword” well-quasi-ordering onΣ∗, obtained by lifting the equality relation on
Σ (see Proposition 2.1). For example, we haveabba ⊑ abracadabra. For states〈q, w〉 and〈q′, w′〉, we
write 〈q, w〉 ⊒ 〈q′, w′〉 iff q = q′ andw(c) ⊒ w′(c) for all c ∈ C, i.e.,〈q′, w′〉 is obtained from〈q, w〉 by
losing zero or more letters.

A computation step〈q, w〉 → 〈q′, w′〉 of S consists of zero or more losses, followed by a perfect
computation step, followed by zero or more losses. Thus, the→ relation is defined by composing the
→perf and⊒ relations:→ = ⊒→perf ⊒.

The following are two key decision problems for lossy channel systems:

Location reachability: Given a lossy channel system, a state〈q, w〉 and a locationq′, to decide whether
some state〈q′, w′〉 is reachable from〈q, w〉.

Termination: Given a lossy channel system, and a state〈q, w〉, to decide whether all computations from
〈q, w〉 are finite.

The proof of the next result will be illustrated in Example 3.1.

Proposition 3.2.

(a) Location reachability for lossy channel systems is reducible in logarithmic space to coverability
for Petri data nets.

(b) Termination for lossy channel systems is reducible in logarithmic space to termination for Petri
data nets, and to boundedness for Petri data nets.

Proof:
Given a lossy channel systemS = 〈Q,C,Σ,∆〉, we define a Petri data netNS = 〈P, T, α, F,G,H〉 as
follows. We shall have thatNS is computable in logarithmic space.

Let P = Q ⊎ C ⊎ (C × Σ). States〈q, w〉 of S will be represented by markingss ∈ Seq(NP \ {0})
as follows. At places inQ, there will be one token, which is atq, and which carries a datumd which is
minimal in s. For eachc ∈ C, wherew(c) = a1 · · · ak, there will be datad � dc

1 ≺ · · · ≺ dc
k ≺ dc

k+1

such that:

• placec contains one token which carriesdc
k+1;

• for eacha ∈ Σ, place〈c, a〉 contains one token carryingdc
i for eachi ∈ [k] with ai = a, and

possibly some tokens carrying data not smaller thandc
k+1.

Formally, we write〈q, w〉 ≈ s iff:

• s(1)(q) = 1, ands(j)(q′) = 0 whenever eitherj > 1 or q′ ∈ Q \ {q};

• for eachc ∈ C, wherew(c) = a1 · · · ak, there exist1 ≤ jc
1 < · · · < jc

k < jc
k+1 such that

s(jc
k+1)(c) = 1, s(j′)(c) = 0 for all j′ 6= jc

k+1, and for each1 ≤ j′ < jc
k+1 anda′ ∈ Σ, we have

s(j′)(c, a′) =

{
1, if there exists i ∈ [k] with j′ = jc

i and a′ = ai

0, otherwise
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For each read transition ofS, there will be two transitions ofNS , depending on whether the datum
that points to the letter read is minimal or not:

T = {〈q1, c, !, a, q2〉 : 〈q1, c, !, a, q2〉 ∈ ∆} ∪

{〈q1, c, ?, a, q2〉
1, 〈q1, c, ?, a, q2〉

>1 : 〈q1, c, ?, a, q2〉 ∈ ∆}

When definingαt, Ft andHt for t ∈ T below, we show only entries which are distinct from0. SinceNS
is a Petri data net, we haveGt = Id for eacht ∈ T .

We shall have that, in computations ofNS , losses can happen only when reads are performed, but
that will be sufficient for the result we are proving. Losses will occur when, in order to read from a
channelc, the letter to be read is found using a datumd′ which is smaller than the datum that points to
the last letter inc, and then the datum at placec is replaced byd′. (Observe that, in data nets, we cannot
specify that a transition be firable from a marking only if thelatter contains no data which is between two
particular data. Otherwise, perfect channel systems whichare Turing-powerful would be expressible.)

Writes are performed using a new minimal datum:

α〈q1,c,!,a,q2〉 = 2 H〈q1,c,!,a,q2〉(1, q2) = 1

F〈q1,c,!,a,q2〉(2, q1) = 1 H〈q1,c,!,a,q2〉(1, 〈c, a〉) = 1

Reads from a channelc of a letter to which the minimal datumd points check that placec contains a
greater datum, which is then replaced byd:

F〈q1,c,?,a,q2〉1(1, q1) = 1 α〈q1,c,?,a,q2〉1 = 2

F〈q1,c,?,a,q2〉1(2, c) = 1 H〈q1,c,?,a,q2〉1(1, q2) = 1

F〈q1,c,?,a,q2〉1(1, 〈c, a〉) = 1 H〈q1,c,?,a,q2〉1(1, c) = 1

The remaining reads from a channelc of a lettera decrease the datum at placec to a value which is not
minimal and which points to an occurrence ofa in c:

F〈q1,c,?,a,q2〉>1(1, q1) = 1 α〈q1,c,?,a,q2〉>1 = 3

F〈q1,c,?,a,q2〉>1(3, c) = 1 H〈q1,c,?,a,q2〉>1(1, q2) = 1

F〈q1,c,?,a,q2〉>1(2, 〈c, a〉) = 1 H〈q1,c,?,a,q2〉>1(2, c) = 1

Now, the definition ofNS ensures that the≈ relation is an inverse simulation: whenever〈q, w〉 ≈ s

ands → s′, there exists〈q′, w′〉 such that〈q′, w′〉 ≈ s′ and〈q, w〉 → 〈q′, w′〉.
We write 〈q, w〉⊑≈ s iff there exists〈q†, w†〉 such that〈q, w〉 ⊑ 〈q†, w†〉 and 〈q†, w†〉 ≈ s. It

is straightforward to check that the⊑≈ relation is a simulation: whenever〈q, w〉⊑≈ s and〈q, w〉 →
〈q′, w′〉, there existss′ such that〈q′, w′〉⊑≈ s′ ands → s′.

To establish (a), given a state〈q, w〉 and a locationq′ of S, let s be such that〈q, w〉 ≈ s, and lets′

be such that|s′| = 1, s′(1)(q′) = 1, ands′(1)(p) = 0 for all p ∈ P \ {q′}. By the properties above, we
have that some state〈q′, w′〉 is reachable from〈q, w〉 iff some markings′′ ≥ s′ is reachable froms.

For the termination part of (b), ifs is such that〈q, w〉 ≈ s, thenS has an infinite computation from
〈q, w〉 iff NS has an infinite computation froms. For the boundedness part, we modifyNS by adding an
auxiliary place and ensuring that each transition increases the number of tokens at that place. ⊓⊔
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Example 3.1. Consider the lossy channel systemS with three locationsq1, q2 andq3, one channelc,
two lettersa andb, and the following three transitions:

〈q1, c, !, a, q2〉 〈q2, c, !, b, q3〉 〈q3, c, ?, b, q1〉

Thus,S attempts to writea, write b and readb repeatedly. Since eacha can be lost before the next read
of b, S has an infinite computation from state〈q1, [c 7→ ε]〉.

The following is a marking ofNS which corresponds to〈q1, [c 7→ ε]〉:

q1 q2 q3 c 〈c, a〉 〈c, b〉

1 1 0 0 1 0 0

Only transition〈q1, c, !, a, q2〉 of NS can be fired, and in a unique way. The resulting marking is

q1 q2 q3 c 〈c, a〉 〈c, b〉

1 0 1 0 0 1 0

2 0 0 0 1 0 0

Similarly, only 〈q2, c, !, b, q3〉 is firable next, and it results in

q1 q2 q3 c 〈c, a〉 〈c, b〉

1 0 0 1 0 0 1

2 0 0 0 0 1 0

3 0 0 0 1 0 0

Now, only 〈q3, c, ?, b, q1〉
1 is firable. It produces the marking below, which again corresponds to state

〈q1, [c 7→ ε]〉, but which contains a “junk” datum that has been left by the loss of lettera:

q1 q2 q3 c 〈c, a〉 〈c, b〉

1 1 0 0 1 0 0

2 0 0 0 0 1 0

4. Decidability

The following two lemmas will be used in the proof of Theorem 4.1 below. The first one, due to Valk
and Jantzen, provides a sufficient condition for computability of finite bases of upwards-closed sets of
fixed-length tuples of natural numbers. The second lemma shows that, for computing a pred-basis of the
upward closure of a marking of a data net, it suffices to consider markings up to a certain computable
length.

Lemma 4.1. ([24])
SupposeB is a finite set. A finite basis of an upwards-closed setV ⊆ N

B is computable iff it is decidable,
given anyv ∈ N

B
ω , whetherV ∩ ↓{v} 6= ∅.
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For a transition system〈S,→〉 andS′ ⊆ S, we writePred(S′) for {s ∈ S : ∃s′ ∈ S′ · s → s′}. If

transitions are labelled byt ∈ T , we writePred t(S
′) for {s ∈ S : ∃s′ ∈ S′ · s t

−→ s′}.

Lemma 4.2. Given a data netN , a transitiont of N , and a markings′ of N , a natural numberL is
computable, such that whenevers ∈ Pred t(↑{s

′}) and|s| > L, there exists̄s ≤ s with s̄ ∈ Pred t(↑{s
′})

and|s̄| ≤ L.

Proof:
SupposeN = 〈P, T, α, F,G,H〉, and let

L = αt + |s′| + (αt + 1) × (2|P | − 1) × M

whereM = max{s′(i)(p) : i ∈ [|s′|] ∧ p ∈ P}.

Considers ∈ Pred t(↑{s
′}) with |s| > L. For somes†, ι ands′′ ≥ s′, we haves

t,s†,ι
−−−→ s′′. Let

s′′† = (s† − JFtK
|s†|
ι )JGtK

|s†|
ι + JHtK

|s†|
ι . Sinces′′ is the0-contraction ofs′′† , there exists an increasing

ι′ : [|s′|] → [|s†|] such thats′(i) ≤ s′′† (ι
′(i)) for all i ∈ [|s′|].

For each nonemptyP+ ⊆ P , let

s
P+

† = {i ∈ [|s†|] : ∀p ∈ P · s†(i)(p) > 0 ⇔ p ∈ P+}

Since|s†| ≥ |s|, there exist0 ≤ j ≤ αt and nonemptyP+ ⊆ P such that|IP+

j | > M , whereI
P+

j =

(JReg (j,j+1)K
|s†|
ι \ Range(ι′)) ∩ s

P+

† .

Pick an indexi1† ∈ I
P+

j of s†, and leti1 ∈ [|s|] be the corresponding index ofs. Let τ† be the
increasing mapping[|s†|−1] → [|s†|] with i1† 6∈ Range(τ†), andτ be the increasing mapping[|s|−1] →

[|s|] with i1 6∈ Range(τ). Then lets1
† (resp.,s1) be obtained froms† (resp.,s) by removing the entry

i1† (resp.,i1), ι1 = τ−1
† ◦ ι, ands′′†

1 = (s1
† − JFtK

|s1
†|

ι1 )JGtK
|s1

†|
ι1 + JHtK

|s1
†|

ι1 . By the definition ofIP+

j and

|I
P+

j | > M , we have thats′′†
1(i)(p) ≥ M whenevers′′†

1(i)(p) 6= s′′† (τ†(i))(p). Hence,s′′†
1 ≥ s′, so

s1 ∈ Pred t(↑{s
′}).

By repeating the above, we obtains ≥ s1 ≥ s2 ≥ · · · s|s|−L ∈ Pred t(↑{s
′}) such that|sk| = |s| − k

for all k. Settings̄ = s|s|−L completes the proof. ⊓⊔

Theorem 4.1.

(a) Coverability and termination for data nets are decidable.

(b) Boundedness for transfer data nets is decidable.

Proof:
SupposeN = 〈P, T, α, F,G,H〉 is a data net. By Propositions 2.1, 2.2 and 2.6, the transition system of
N is finitely-branching and well-structured with strong compatibility, and also with strict compatibility
if N is transfer (using the terminology of [12]). Moreover,≤ between markings ofN is a decidable
partial ordering, andSucc(s) = {s′ : s → s′} is computable for markingss. Hence, termination for
data nets and boundedness for transfer data nets are decidable by [12, Theorems 4.6 and 4.11].
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To establish decidability of coverability by [12, Theorem 3.6], it suffices to show that, given anyt ∈
T and a markings′, a finite basis ofPred t(↑{s

′}) is computable. (By Proposition 2.6 (a),Pred t(↑{s
′})

is upwards-closed.)
First, we computeL as in Lemma 4.2. For any0 ≤ l ≤ L, increasingη : [l] → [l†] and increasing

ι : [αt] → [l†] such that[l†] = Range(η) ∪ Range(ι), let

Pred l
t,η,ι(↑{s

′}) = {s : l = |s| ∧ ∃s′′ ≥ s′ · s
t,η,ι
−−→ s′′}

wheres
t,η,ι
−−→ s′′ means thats

t,s†,ι
−−−→ s′′ for somes† such thatRange(η) = {j : s†(j) 6= 0} (necessarily,

l† = |s†|). From the definition of transition firing, we have thats
t,s†,ι
−−−→ s′′ iff s† ≥ JFtK

l†
ι ands′′ is the

0-contraction of(s†− JFtK
l†
ι )JGtK

l†
ι + JHtK

l†
ι . Hence, eachPred l

t,η,ι(↑{s
′}) is an upwards-closed subset

of N
P×[l]. By Lemma 4.2, it remains to compute a finite basis of eachPred l

t,η,ι(↑{s
′}).

Suppose thatl, η andι are as above. Given anys ∈ N
P×[l]
ω , we have as in [11] thatPred l

t,η,ι(↑{s
′})∩

↓{s} 6= ∅ iff s† ≥ JFtK
l†
ι and s′′ ≥ s′, wheres† is the 0-expansion ofs such thatl† = |s†| and

Range(η) = {j : s†(j) 6= 0}, s′′ is the0-contraction of(s† − JFtK
l†
ι )JGtK

l†
ι + JHtK

l†
ι , and the required

operations are extended toω by taking limits: ω ≥ n, ω + n = n + ω = ω + ω = ω, ω − n = ω,
0 × ω = 0, andn × ω = ω for n > 0. Therefore, by Lemma 4.1, a finite basis ofPred l

t,η,ι(↑{s
′}) is

computable. ⊓⊔

5. Hardness

Theorem 5.1. Coverability, termination and boundedness for Petri data nets are not primitive recursive.

Proof:
As shown in [23], location reachability and termination forlossy channel systems are not primitive
recursive. It remains to apply Proposition 3.2. ⊓⊔

Theorem 5.2. Coverability, termination and boundedness for unordered Petri data nets are not elemen-
tary.

Proof:
For k ∈ N, the tetration operationa ⇑ k is defined bya ⇑ 0 = 1 anda ⇑ (k + 1) = aa⇑k. We shall
establish that the three verification problems are not elementary by showing that, given a deterministic
machineM of sizen with finite control and two2 ⇑ n-bounded counters, an unordered Petri data net
NM which simulatesM is constructible in logarithmic space.

We consider machinesM which are tuples〈Q, qI , qF , δ〉 such that:

• Q is a finite set of states,qI ∈ Q is the initial state, andqF ∈ Q is the final state;

• δ : Q → {inc, dec} × {1, 2} × Q × Q is the transition function.

If the size ofM is n, the counters ofM are bounded by2 ⇑ n. Thus, a configuration ofM is a tuple
〈q, v1, v2〉 such thatq ∈ Q andv1, v2 ∈ {0, . . . , (2 ⇑ n) − 1}. Every configuration〈q, v1, v2〉 of M has
a unique successor which is defined as follows, where we consider only counter1:
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• if δ(q) = 〈inc, 1, q′, q′′〉 andv1 < (2 ⇑ n) − 1, the successor is〈q′, v1 + 1, v2〉;

• if δ(q) = 〈inc, 1, q′, q′′〉 andv1 = (2 ⇑ n) − 1, the successor is〈q′′, v1, v2〉;

• if δ(q) = 〈dec, 1, q′, q′′〉 andv1 > 0, the successor is〈q′, v1 − 1, v2〉;

• if δ(q) = 〈dec, 1, q′, q′′〉 andv1 = 0, the successor is〈q′′, v1, v2〉.

Given such a machineM, the halting problem is to decide whether the final state (i.e., some configuration
〈qF , v1, v2〉) is reachable from the initial configuration〈qI , 0, 0〉. By standard results on simulating
Turing machines by counter machines, that decision problemis not elementary (cf., e.g., [18]).

For a machineM of sizen as above, letNM be an unordered Petri data net which is constructed as
follows. In fact,NM will be able to simulate operations on2n countersCk andC ′

k for k ∈ [n]. Cn and
C ′

n are the two counters ofM, and for eachk ∈ [n], Ck andC ′
k are2 ⇑ k-bounded. For eachk < n,

simulations byNM of operations onCk+1 andC ′
k+1 will use operations onCk andC ′

k.
The set of places ofNM is

start ⊎ PM ⊎ Q ⊎ {readyk : k ∈ [n]} ⊎

{0D, 1D, scratchD, lockD, checkedD, uncheckedD : D ∈ {Ck, C
′
k : k ∈ [n]}}

wherePM will be defined implicitly and consists of places for controlling NM. Let sI,M be a marking
in which there is one token at placeqI , there is one token at placestart , and all other places are empty.

The transitions ofNM will be constructed so that (i)–(iv) below are satisfied. We write s →√ s′

(resp.,s →× s′) iff s → s′ and placereadyn is nonempty (resp., empty) ins′. Hence,s →∗
×→√ s′

means thats′ is reachable froms by a nonempty sequence of transitions for whichreadyn is empty
in every intermediate marking, and thatreadyn is nonempty ins′. As another example,s 6→ω

× means
that there does not exist an infinite sequence of transitionsfrom s for which readyn is empty in every
intermediate marking.

(i) For every s reachable fromsI,M, there is one token withinQ, and at most one token within
{readyk : k ∈ [n]}.

(ii) For every s reachable fromsI,M, everyk ∈ [n] such thatreadyk′ is nonempty ins for some
k′ ≥ k, and everyD ∈ {Ck, C

′
k}, we have that a valuevs(D) ∈ {0, . . . , (2 ⇑ k) − 1} is encoded

in s as follows. Moreover, ifk′ > k thenvs(D) = 0.

– scratchD, lockD andcheckedD are empty, anduncheckedD contains exactly2 ⇑ (k − 1)
tokens and they carry mutually distinct data;

– for eachi ∈ [2 ⇑ (k − 1)], if the i-th bit of vs(D) is b ∈ {0, 1}, then for some datumd
carried by a token at placeuncheckedD, the number of tokens atbD which carryd is i, and
the number of tokens at(1 − b)D which carryd is 0;

– each datum carried by a token at0D or 1D is carried by some token atuncheckedD.

WheneversI,M →∗→√ s let c(s) be the configuration〈q, vs(Cn), vs(C
′
n)〉 of M, whereq is

nonempty ins.

(iii) We havesI,M 6→ω
× and:
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– there existssI,M →∗
×→√ s such thatc(s) = 〈qI , 0, 0〉;

– for all sI,M →∗
×→√ s, c(s) = 〈qI , 0, 0〉.

(iv) WheneversI,M →∗→√ s, we haves 6→ω
× and:

– there existss →∗
×→√ s′ such thatc(s′) is the successor ofc(s) in M;

– for all s →∗
×→√ s′, c(s′) is the successor ofc(s) in M.

To satisfy (i)–(iv), it suffices to simulate the following operations onD ∈ {Ck, C
′
k} for k ∈ [n]:

• setup(D), which assumes that the places0D, 1D, scratchD, lockD, checkedD anduncheckedD

are empty, and sets them up so that value0 is encoded;

• inc(D) (resp.,dec(D)), which increments (resp., decrements)D, and can be executed iff the
resulting value is in the range{0, . . . , (2 ⇑ k) − 1};

• iszero(D) (resp.,ismax(D)), which does not change the value ofD, but can be executed iff it
equals0 (resp.,(2 ⇑ k) − 1).

When started fromsI,M, NM will first perform:

setup(C1); setup(C ′
1); move a token fromstart to ready1;

setup(C2); setup(C ′
2); move a token fromready1 to ready2;

· · ·
setup(Cn); setup(C ′

n); move a token fromreadyn−1 to readyn

To present simulations of the counter operations, we employpseudo-code as above which is straight-
forward to implement using the placesPM. The simulations forCk+1 and C ′

k+1 may invoke only
operations onCk andC ′

k, so recursion depth is bounded byn.
Since countersC1 andC ′

1 are2-bounded, the five operations on them are trivial to simulate.
Supposek ∈ {1, . . . , n − 1} andD ∈ {Ck+1, C

′
k+1}. Table 1 contains pseudo-code forsetup(D).

In addition to the emptiness of0D, 1D, scratchD, lockD, checkedD anduncheckedD, we can assume
thatreadyk is nonempty and thatCk andC ′

k have value0. The first outer loop usesCk to iterate through
the 2 ⇑ k binary digits ofD. For each digit, a representation of its value0 is set up by choosing
nondeterministically a datumd, performing the first inner loop to check thatd is fresh (i.e., distinct from
each datum which currently is carried by a token atuncheckedD), and performing the second inner loop
to restore the contents ofuncheckedD and to put the correct number of tokens carryingd onto0D. The
second outer loop ensures that, at the end ofsetup(D), Ck andC ′

k have value0.
Among the remaining operations, simulatinginc(D) anddec(D) is harder than simulatingiszero(D)

andismax(D). By symmetry, we consider onlyinc(D). The first outer loop in Table 2 usesCk to iterate
through the binary digits ofD. It can only terminate by choosing nondeterministically a digit with value
0. The latter is altered to1, but values of all previous digits are unchanged. The secondouter loop
iterates through the remaining digits ofD, it checks that their values are1, and alters them to0. The
inner loops ensure that if the first two outer loops have terminated, then for eachi ∈ [2 ⇑ k], it must
have been thei-th binary digit ofD which was processed during thei-th outer iteration. The third outer
loop completes a representation of the new value ofD by transferring the contents of placecheckedD to
placeuncheckedD.
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Table 1. Simulatingsetup(D)

repeat
{ guess a datumd and put a token carryingd onto lockD;

while not iszero(Ck) do
{ dec(Ck); inc(C′

k
);

move a token carrying somed′ 6= d from uncheckedD to checkedD };
while not iszero(C′

k
) do

{ dec(C′

k
); inc(Ck);

move a token fromcheckedD to uncheckedD;
put a token carryingd onto0D };

put a token carryingd onto0D;
move the token fromlockD to uncheckedD;
if ismax(Ck) then exit elseinc(Ck) };

while not iszero(Ck) do dec(Ck)

Table 2. Simulatinginc(D)

move a token fromreadyk+1 to readyk;
repeat
{ move a token carrying somed from uncheckedD to lockD, and guessb ∈ {0, 1};

if b = 0 then guessb′ ∈ {0, 1} elselet b′ = b;
while not iszero(Ck) do
{ dec(Ck); inc(C′

k
); move a token carryingd from bD to scratchD };

move a token carryingd from bD to scratchD;
while not iszero(C′

k
) do

{ dec(C′

k
); inc(Ck); move a token carryingd from scratchD to b′

D
};

move a token carryingd from scratchD to b′
D

;
move the token fromlockD to checkedD;
if b = 0 andb′ = 1 then exit elseinc(Ck) };

while not ismax(Ck) do
{ inc(Ck); move a token carrying somed from uncheckedD to lockD;

while not iszero(Ck) do
{ dec(Ck); inc(C′

k
); move a token carryingd from 1D to scratchD };

move a token carryingd from 1D to scratchD;
while not iszero(C′

k
) do

{ dec(C′

k
); inc(Ck); move a token carryingd from scratchD to 0D };

move a token carryingd from scratchD to 0D;
move the token fromlockD to checkedD };

repeat
{ move a token fromcheckedD to uncheckedD;

if iszero(Ck) then exit elsedec(Ck) };
move a token fromreadyk to readyk+1
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Now, by (i)–(iv), thatM halts is equivalent toNM being able to cover fromsI,M a marking in which
there is a token at placeqF and a token at placereadyn. By ensuring thatNM has no transitions from
markings in whichqF andreadyn are nonempty, thatM halts becomes equivalent toNM terminating.
To reduce the halting problem forM to the boundedness problem forNN , it suffices to modify further
the construction of the latter by adding a place whose numberof tokens increases with each transition.

It remains to observe thatNM can be constructed in space which is logarithmic inn (i.e., the size of
M). That is because recursion depth in the simulations above is bounded byn and transition arities in
NM are at most2, so that the number of places, the number of transitions and the sizes of transitions in
NM are polynomial inn. ⊓⊔

6. Concluding remarks

We have answered questions (1) and (2) posed in Section 1. As far as we are aware, Section 5 contains
the first nontrivial lower bounds on complexity of decidableproblems for extensions of Petri nets by
infinite data domains.

The results obtained and their proofs show that data nets area succinct unifying formalism which is
close to the underlying semantic structures, and thus a useful platform for theoretical investigations.

The proof of Theorem 4.1 does not provide precise upper bounds on complexity. It should be in-
vestigated whether upper bounds which match the lower bounds in the proofs of Theorems 5.1 and 5.2
are obtainable. In particular, are coverability, termination and boundedness for unordered Petri data nets
primitive recursive?

Let us say that a data net isl,m-safe iff each place other than somel places never contains more
thanm tokens. It is not difficult to tighten the proofs of Theorems 5.1 and 5.2 to obtain that coverability,
termination and boundedness are not primitive recursive for 1, 1-safe Petri data nets, and not elementary
for 2, 1-safe unordered Petri data nets. That leaves open whether wehave non-elementarity for1, 1-safe
unordered Petri data nets. That class suffices for expressing polymorphic systems with one array of type
〈X,=〉 → 〈Y,=〉 without whole-array operations [16, 15].

We are grateful to Alain Finkel for a helpful discussion.
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[16] Lazić, R., Newcomb, T. C., Roscoe, A. W.: Polymorphic Systems with Arrays, 2-Counter Machines and
Multiset Rewriting,Infinity ’04, number 138 in ENTCS, 2005.

[17] Lipton, R. J.:The Reachability Problem Requires Exponential Space, Technical Report 62, Yale University,
1976.

[18] Meyer, A. R.: Weak monadic second-order theory of successor is not elementary-recursive,Logic colloquium
’72–73, number 453 in Lect. Not. Math., Springer, 1975.

[19] Odifreddi, P.:Classical Recursion Theory II, Elsevier, 1999.

[20] Rackoff, C.: The Covering and Boundedness Problems forVector Addition Systems,Theor. Comput. Sci., 6,
1978, 223–231.

[21] Reisig, W.:Petri Nets: An Introduction, Springer, 1985.

[22] Rosa Velardo, F., de Frutos Escrig, D., Marroquı́n Alonso, O.: On the expressiveness of Mobile Synchroniz-
ing Petri nets,SecCo ’05, number 180 in ENTCS, 2007.

[23] Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity,Inf. Proc. Lett.,
83(5), 2002, 251–261.

[24] Valk, R., Jantzen, M.: The Residue of Vector Sets with Applications to Decidability Problems in Petri Nets,
Acta Inf., 21, 1985, 643–674.


