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Abstract. We study data nets, a generalisation of Petri nets in which
tokens carry data from linearly-ordered infinite domains and in which
whole-place operations such as resets and transfers are possible. Data
nets subsume several known classes of infinite-state systems, including
multiset rewriting systems and polymorphic systems with arrays.
We show that coverability and termination are decidable for arbitrary
data nets, and that boundedness is decidable for data nets in which
whole-place operations are restricted to transfers. By providing an en-
coding of lossy channel systems into data nets without whole-place oper-
ations, we establish that coverability, termination and boundedness for
the latter class have non-primitive recursive complexity. The main result
of the paper is that, even for unordered data domains (i.e., with only the
equality predicate), each of the three verification problems for data nets
without whole-place operations has non-elementary complexity.

1 Introduction

Petri nets (e.g., [1]) are a fundamental model of concurrent systems. Being more
expressive than finite-state machines and less than Turing-powerful, Petri nets
have an established wide range of applications and a variety of analysis tools
(e.g., [2]).

The analysis tools are based on the extensive literature on decidability and
complexity of verification problems ([3] is a comprehensive survey). In this paper,
we focus on three basic decision problems, to which a number of other verification
questions can be reduced:

Coverability: Is a marking reachable which is greater than or equal to a given
marking?

Termination: Are all computations finite?
Boundedness: Is the set of all reachable markings finite?

By the results in [4, 5], each of coverability, termination and boundedness is
ExpSpace-complete for Petri nets.

Many extensions of Petri nets preserve decidability of various verification
problems. Notably, affine well-structured nets were formulated in [6] as an el-
egant extension of Petri nets by whole-place operations. The latter are resets,

? Supported by the EPSRC (GR/S52759/01) and the Intel Corporation.



which empty a place, and transfers, which take all tokens from a place and put
them onto one or more specified places (possibly several times). Hence, two sub-
classes of affine WSNs are reset nets and transfer nets, in which whole-place
operations are restricted to resets and to transfers, respectively. As shown in [6],
coverability and termination for affine WSNs, and boundedness for transfer nets,
are decidable. However, compared with Petri nets, there is a dramatic increase
in complexity: it follows from the results on lossy channel systems in [7] that cov-
erability and termination for reset nets and transfer nets, and boundedness for
transfer nets, are not primitive recursive.1 It was proved in [9] that boundedness
for reset nets is undecidable.

Another important direction of extending Petri nets is by allowing tokens
to carry data from infinite domains. (Data from finite domains do not increase
expressiveness.) For example, in timed Petri nets [10], each token is equipped
with a real-valued clock which represents the age of the token. Multiset rewriting
specifications over constraint systems C [11, 12] can be seen as extensions of Petri
nets in which tokens may carry data from the domain of C and transitions can be
constrained using C. In mobile synchronizing Petri nets [13], tokens may carry
identifiers from an infinite domain, and transitions may require that an identifier
be fresh (i.e., not currently carried by any token).

In this paper, we focus on the following two questions:

(1) Is there a general extension of Petri nets in which tokens carry data from
infinite domains, in which whole-place operations are possible, and such that
coverability, termination and boundedness are decidable (either for the whole
class of extended nets or for interesting subclasses)?

(2) If the answer to the previous question is positive, and if we restrict to the
subclass without whole-place operations, do coverability, termination and
boundedness remain ExpSpace-complete (as for Petri nets), or are their
complexities greater? What happens if we restrict further to the simplest
data domains, i.e. those with only the equality predicate?

Data nets. To answer question (1), we define data nets, in which tokens carry
data from linearly-ordered infinite domains. As in Petri nets, transitions consume
and produce tokens. For a transition to be firable, we can require that the data
which are carried by the tokens to be consumed are ordered in a certain way.
In addition to such data, transitions can choose finitely many other data, which
satisfy further ordering constraints and which may or may not be present in the
current marking. In the production phase, tokens which carry either kind of data
can be put into the marking. Data nets also support whole-place operations.

In the next few paragraphs, we introduce data nets in an informal but detailed
manner, for clarity of the subsequent discussion of contributions of the paper and
relations to the literature. As an alternative order of presentation, the reader may
wish to postpone the following and read it in conjunction with Section 2.2, where
data nets are defined formally.

1 Recall the Ritchie-Cobham property [8, page 297]: a decision problem (i.e. a set) is
primitive recursive iff it is solvable in primitive recursive time/space.



Data nets are based on affine WSNs [6]. Markings of an affine WSN are
vectors in INP , where P is the finite set of all places. A transition t of an affine
WSN is given by vectors Ft, Ht ∈ INP and a square matrix Gt ∈ INP×P . Such a
transition is firable from a marking m iff m ≥ Ft, and in that case it produces
the marking (m − Ft)Gt + Ht. Whole-place operations are performed by the
multiplication with Gt.

Since a linear ordering � is the only operation available on data, markings
of data nets are finite sequences of vectors in INP \ {0}. Each index j of such
a marking s corresponds to an implicit datum dj , and we have that j ≤ j′ iff
dj � dj′ . For each p ∈ P , s(j)(p) is the number of tokens which carry dj and
are at place p. We say that such tokens are at index j. Now, each transition t

has an arity αt ∈ IN. For a transition t to be fired from a marking s, we choose
nondeterministically αt mutually distinct data. Some of those data may be fresh
(i.e., not carried by any token in s), so picking the αt data is formalised by
first expanding s to a finite sequence s† by inserting the vector 0 at arbitrary
positions, and then picking an increasing (in particular, injective) mapping

ι : {1, . . . , αt} → {1, . . . , |s†|}

such that each occurrence of 0 is in its range. Now, such a mapping ι partitions
{1, . . . , |s†|} into αt singletons and αt +1 contiguous “regions” as follows, where
the Reg(i,i+1) are region identifiers:

1, . . . , ι(1) − 1︸ ︷︷ ︸
Reg(0,1)

, ι(1), ι(1) + 1, . . . , ι(2) − 1︸ ︷︷ ︸
Reg(1,2)

, . . . , ι(αt), ι(αt) + 1, . . . , |s†|︸ ︷︷ ︸
Reg(αt,αt+1)

The action of t on s with respect to s† and ι is determined by vectors Ft and
Ht, and a square matrix Gt, whose elements are natural numbers, and which are
indexed by

({1, . . . , αt} ∪ {Reg (i,i+1) : 0 ≤ i ≤ αt}) × P

It consists of the following stages, where i, i′ ∈ {1, . . . , αt}, R,R′ ∈ {Reg(i,i+1) :
0 ≤ i ≤ αt} and p, p′ ∈ P .

subtraction: for each i and p, Ft(i, p) tokens at index ι(i) are taken from p;2

multiplication: all tokens are taken simultaneously, and then:
– for each token taken from p at index ι(i), Gt(i, p, i′, p′) tokens are put

onto p′ at index ι(i′), and for each j′ in region R′, Gt(i, p, R′, p′) tokens
are put onto p′ at index j′;

– for each token taken from p at index j in region R, Gt(R, p, i′, p′) tokens
are put onto p′ at index ι(i′), and Gt(R, p,R, p′) tokens are put onto p′

at index j;
addition: for each i and p, Ht(i, p) tokens are put onto p at index ι(i), and for

each j in region R and p, Ht(R, p) tokens are put onto p at index j.

2 In order to have well-structuredness (see Proposition 7) and for simplicity, entries
Ft(R, p) are not used, and neither are entries Gt(R, p, R′, p′) with R 6= R′, so they
are assumed to be 0.



Example 1. Consider P = {p1, p2} and a transition t with αt = 1 given by:

Ft Reg(0,1) 1 Reg(1,2)

0 0 1 1 0 0

p1 p2 p1 p2 p1 p2

Ht Reg(0,1) 1 Reg(1,2)

0 0 2 1 6 0

p1 p2 p1 p2 p1 p2

Gt Reg(0,1) 1 Reg(1,2)

Reg(0,1)
0 1
1 0

0 0
0 0

0 0
0 0

p1

p2

1
0 0
0 0

2 0
0 1

3 0
3 0

p1

p2

Reg(1,2)
0 0
0 0

0 0
0 2

1 0
0 1

p1

p2

p1 p2 p1 p2 p1 p2

From a marking s, in terms of data represented by the indices of s, transition
t is fired as follows:

1. a datum d is chosen nondeterministically, such that each of p1 and p2 contain
at least 1 token carrying d (so, d cannot be fresh);

2. for each datum d′ ≺ d, all tokens at p1 carrying d′ are transferred to p2, and
vice-versa;

3. for each token at p1 or p2 carrying d, and each d′ � d, 3 tokens carrying d′

are put onto p1;
4. the number of tokens at p1 carrying d is multiplied by 2;
5. for each token at p2 carrying d′ � d, 2 tokens carrying d are put onto p2.

Since Ht = FtGt, the addition stage of performing t exactly “undoes” the sub-
traction stage, so t performs only whole-place operations.

In Section 2.2, the above will be formalised so that t is firable from s with

respect to s† and ι iff s† ≥ JFtK
|s†|
ι , and in that case it produces the marking

obtained from (s† − JFtK
|s†|
ι )JGtK

|s†|
ι + JHtK

|s†|
ι by removing each entry 0, where

JFtK
|s†|
ι , JGtK

|s†|
ι and JHtK

|s†|
ι are appropriate “expansions” of Ft, Gt and Ht,

indexed by {1, . . . , |s†|} × P .
Since vectors 0 which correspond to fresh data can be inserted at arbitrary

positions to fire a transition, the linear ordering on data is assumed to be dense
and without least and greatest elements. Having a least or greatest element can
easily be simulated, and density is not a restriction when considering only finite
computations (as is the case for the coverability problem).

We show that affine WSNs [6] are equivalent to a class of data nets whose
transitions have arity 1. Data nets also subsume timed Petri nets [10] and timed
networks [14], in the sense that systems obtained after quotienting by time re-
gions can be simulated by data nets, where the data domain is fractional parts
of clock values. Monadic multiset rewriting specifications over order constraints
on rationals or reals [11] and over gap-order constrains on integers [12] can be
translated to data nets, subject to the remarks above about density. Mobile
synchronizing petri nets [13], lossy channel systems [15], and polymorphic sys-
tems with one array of type 〈X,≤〉 → {1, . . . , n} or with two arrays of types
〈X,=〉 → 〈Y,≤〉 and 〈X,=〉 → {1, . . . , n} [16, 17], can also be expressed using
data nets.



Decidability. Using the theory of well-structured transition systems [18], we
prove that coverability and termination for arbitrary data nets, and bounded-
ness for data nets in which whole-place operations are restricted to transfers, are
decidable. Thus, question (1) posed above is answered positively. The decidabil-
ity of coverability for data nets subsumes the results in [6, 10, 14, 11–13, 15–17]
that coverability is decidable for the respective classes of infinite-state systems
mentioned above, and in most cases the proof in this paper is more succinct.

Hardness. To question (2) above, we obtain the following answers. We say that
a data net is Petri iff it does not contain whole-place operations, and unordered
iff it makes use only of equality between data (and not of the linear ordering).

– By providing a translation from lossy channel systems to Petri data nets,
we establish that coverability, termination and boundedness for the latter
class are not primitive recursive. The encoding uses the linear ordering on
the data domain, for picking fresh data which are employed in simulating
writes to channels.

– The main result of the paper is that coverability, termination and bound-
edness for unordered Petri data nets are not elementary, i.e., their compu-
tational complexities cannot be bounded by towers of exponentials of fixed
heights. That is a surprising result, since unordered Petri data nets are highly
constrained systems. In particular, they do not provide a mechanism for en-
suring that a datum chosen in a transition is fresh (i.e., not present in the
current marking). The result is proved by simulating a hierarchy of bounded
counters, which is reminiscent of the “rulers” construction of Meyer and
Stockmeyer (e.g., [19]).

By translating Petri data nets and unordered Petri data nets to subclasses of
systems in [11–13, 16, 17], the two hardness results yield the same lower bounds
for corresponding decision problems for such subclasses. In particular, we obtain
non-elementariness of verifying monadic multiset rewriting specifications with
only equality constraints [11] and of verifying polymorphic systems with two
arrays of types 〈X,=〉 → 〈Y,=〉 and 〈X,=〉 → {1, . . . , n} [16].

Paper organisation. Section 2 contains preliminaries, including definitions of
data nets and of several relevant subclasses, some basic results, and an example.
In Section 3, we present the translation from lossy channel systems to Petri
data nets. Sections 4 and 5 contain the decidability and hardness results. Some
remaining open problems are discussed in Section 6.

2 Preliminaries

Sets, quasi-orders and mappings. For n ∈ IN, let [n] = {1, . . . , n}. We write INω

for IN ∪ {ω}. The linear ordering ≤ on IN is extended to INω by having n < ω

for each n ∈ IN.



A set A and a relation � on A form a quasi-order iff � is reflexive and
transitive. We write a1 ≺ a2 iff a1 � a2 and a2 6� a1.

For any A′ ⊆ A, its upward closure is ↑A′ = {a ∈ A : ∃a′ ∈ A′ · a′ � a}. We
say that A′ is upwards-closed iff A′ = ↑A′. A basis of an upwards-closed set A′

is a subset A′′ such that A′ = ↑A′′. Downward closure (written ↓A′), closedness
and bases are defined symmetrically.

A mapping f from a quasi-order 〈A,�〉 to a quasi-order 〈A′,�′〉 is increasing
iff a1 ≺ a2 ⇒ f(a1) ≺

′ f(a2).

Vectors and matrices. For sets A and B, let AB denote the set of all B-indexed
vectors of elements of A, i.e., the set of all mappings B → A. For example,

IN[n]×[n′] is the set of all n × n′ matrices of natural numbers. For a ∈ A, let
a ∈ AB denote the vector whose each entry equals a. Let Id ∈ INB×B denote
the identity square matrix.

A quasi-ordering � on A induces the following quasi-ordering on AB : v � v′

iff v(b) � v′(b) for all b ∈ B.

Sequences and bags. For a set A, let Seq(A) denote the set of all finite sequences
of elements of A. For s ∈ Seq(A), let |s| denote the length of s, and s(1), . . . ,
s(|s|) denote its elements.

For s, s′ ∈ Seq(A) and a ∈ A, we say that s′ is an a-expansion of s (equiva-
lently, s is the a-contraction of s′) iff s is obtained by removing each occurrence
of a from s′.

For s, s′ ∈ Seq(A), we write s ∼ s′ iff s′ can be obtained from s by permuting
its entries. We define the set Bag(A) of all finite bags (i.e., multisets) of elements
of A as the set of all equivalence classes of ∼. Let s denote the equivalence class
of s, i.e., the bag with the same elements as s.

Suppose 〈A,�〉 is a quasi-order. The quasi-ordering � induces quasi-orderings
on Seq(A) and Bag(A) as follows. For s, s′ ∈ Seq(A), we write s � s′ iff there
exists an increasing ι : [|s|] → [|s′|] such that s(i) � s′(ι(i)) for all i ∈ [|s|]. For
b, b′ ∈ Bag(A), we write b � b′ iff there exist s ∈ b and s′ ∈ b′ such that s � s′.

Well-quasi-orderings. A quasi-ordering � on a set A is a well-quasi-ordering iff,
for every infinite sequence a1, a2, . . . ∈ A, there exist i < j such that ai � aj .

Proposition 2 ([20]). Whenever � is a well-quasi-ordering on a set A, the
induced orderings on Seq(A) and Bag(A) also are well-quasi-orderings.

2.1 Affine well-structured nets

We recall the notion of affine well-structured net [6].3 Such a net is a tuple
〈P, T, F,G,H〉 such that P is a finite set of places, T is a finite set of transitions,
and for each t ∈ T , Ft and Ht are vectors in INP , and Gt is a matrix in INP×P .

3 For technical reasons, the formalisation of affine WSNs in this paper is slightly
different, but equivalent.



Markings of an affine WSN 〈P, T, F,G,H〉 are vectors in INP . A marking m′

can be obtained from a marking m by firing a transition t ∈ T , written m
t
−→ m′,

iff m ≥ Ft and m′ = (m − Ft)Gt + Ht.
As was shown in [6], Petri nets and many of their known extensions are

special cases of affine WSNs. In particular, Petri nets and their extensions by
(generalised) resets and transfers are equivalent to the classes of affine WSNs
〈P, T, F,G,H〉 determined by the following restrictions:

Petri nets: ∀t ∈ T · Gt = Id
reset nets: ∀t ∈ T · Gt ≤ Id
transfer nets: ∀t ∈ T, p ∈ P · ∃p′ ∈ P · Gt(p, p′) > 0

2.2 Data nets

Given n ∈ IN, let Regs(n) = {Reg (i,i+1) : 0 ≤ i ≤ n}. For each 0 ≤ i ≤ n, m ≥ n

and increasing ι : [n] → [m], let JReg (i,i+1)K
m
ι = {j ∈ [m] : ι(i) < j < ι(i + 1)},

where by convention ι(0) = 0 and ι(n + 1) = m + 1.
A data net is a tuple 〈P, T, α, F,G,H〉 such that:

– P is a finite set of places;
– T is a finite set of transitions;
– for each t ∈ T , αt ∈ IN specifies the arity of t;
– for each t ∈ T , Ft ∈ IN([αt]∪Regs(αt))×P , and Ft(R, p) = 0 whenever R ∈

Regs(αt) and p ∈ P ;

– for each t ∈ T , Gt ∈ IN(([αt]∪Regs(αt))×P )2 , and Gt(R, p,R′, p′) = 0 whenever
R,R′ ∈ Regs(αt), R 6= R′ and p, p′ ∈ P ;

– for each t ∈ T , Ht ∈ IN([αt]∪Regs(αt))×P .

Suppose 〈P, T, α, F,G,H〉 is a data net, and t ∈ T . Any m ≥ αt and increas-
ing ι : [αt] → [m] determine the following instances of Ft, Gt and Ht:

– JFtK
m
ι ∈ IN[m]×P is defined by

JFtK
m
ι (ι(i), p) = Ft(i, p) JFtK

m
ι (j, p) = Ft(R, p) for j ∈ JRKm

ι

– JGtK
m
ι ∈ IN([m]×P )2 is defined by

JGtK
m
ι (ι(i), p, ι(i′), p′) = Gt(i, p, i′, p′)

JGtK
m
ι (ι(i), p, j′, p′) = Gt(i, p, R, p′) for j′ ∈ JRKm

ι

JGtK
m
ι (j, p, ι(i′), p′) = Gt(R, p, i′, p′) for j ∈ JRKm

ι

JGtK
m
ι (j, p, j, p′) = Gt(R, p,R, p′) for j ∈ JRKm

ι

JGtK
m
ι (j, p, j′, p′) = 0 otherwise

– JHtK
m
ι ∈ IN[m]×P is defined in the same way as JFtK

m
ι .

A marking of a data net 〈P, T, α, F,G,H〉 is a finite sequence of vectors in
INP \ {0}. A marking s′ can be obtained from a marking s by firing a transition

t ∈ T , written s
t
−→ s′, iff there exist a 0-expansion s† of s and an increasing

ι : [αt] → [|s†|] such that:4

4 In (ii) and (iii), s† is treated as a vector in IN[|s†|]×P .



(i) {j : s†(j) = 0} ⊆ Range(ι);

(ii) s† ≥ JFtK
|s†|
ι ;

(iii) s′ is the 0-contraction of (s† − JFtK
|s†|
ι )JGtK

|s†|
ι + JHtK

|s†|
ι .

We may also write s
t,s†,ι
−−−→ s′, or just s → s′.

Proposition 3. For any data net, its transition system 〈Seq(INP \ {0}),→〉 is
finitely branching.

2.3 Decision problems

We consider the following standard problems:

Coverability: Given a data net, and markings s and s′, to decide whether some
marking s′′ ≥ s′ is reachable from s.

Termination: Given a data net, and a marking s, to decide whether all com-
putations from s are finite.

Boundedness: Given a data net, and a marking s, to decide whether the set
of all markings reachable from s is finite.

Coverability, termination and boundedness for affine WSNs are defined in
the same way.

2.4 Classes of data nets

We now define several classes of data nets. Figure 1 shows the inclusions among
classes of data nets and affine well-structured nets in Propositions 5, 6, 8 and 9
below. In addition, the mapping N 7→ Ñ and its inverse (see Proposition 6) pro-
vide a correspondence between unary transfer data nets (resp., unary Petri data
nets) and transfer nets (resp., Petri nets). The dashed line represents the fact
that Proposition 9 does not provide a reduction for the boundedness problem.

Unordered data nets. A data net 〈P, T, α, F,G,H〉 is unordered iff:

(i) for each t ∈ T , R,R′ ∈ Regs(αt) and p, p′ ∈ P , we have Gt(R, p,R, p′) =
Gt(R

′, p, R′, p′) and Ht(R, p) = Ht(R
′, p);

(ii) for each t ∈ T and permutation π of [αt], there exists t′ ∈ T such that Ft′ ,
Gt′ and Ht′ are obtained from Ft, Gt and Ht (respectively) by applying π

to each index in [αt].

Given an unordered data net 〈P, T, α, F,G,H〉, we write t ∼ t′ iff t and
t′ have the property in (ii) above. That defines an equivalence relation on T ,
and we write t for the equivalence class of t. From the following proposition,
the same-bag relation ∼ between markings is a bisimulation on the transition
system of 〈P, T, α, F,G,H〉.5

Proposition 4. For any unordered data net, whenever s1
t
−→ s2 and s′1 ∼ s1,

we have s′1
t′

−→ s′2 for some t′ ∼ t and s′2 ∼ s2.

5 Conditions (i) and (ii) in the definition of unordered data nets suggest an alternative
formalisation, where only one region is used for indexing F , G and H, and only
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Fig. 1. Inclusions among classes of data nets

Unary data nets. A data net 〈P, T, α, F,G,H〉 is unary iff:

(i) for each t ∈ T , αt = 1;
(ii) for each t ∈ T , there exists p ∈ P such that Ft(1, p) > 0;
(iii) for each t ∈ T , R ∈ Regs(1) and p, p′ ∈ P , we have Gt(1, p, R, p′) = 0,

Gt(R, p, 1, p′) = 0, Gt(R, p,R, p) = 1, Gt(R, p,R, p′) = 0 if p 6= p′, and
Ht(R, p) = 0.

Proposition 5. Any unary data net is an unordered data net.

Given a unary data net N = 〈P, T, α, F,G,H〉, let Ñ = 〈P, T, F̃ , G̃, H̃〉
be the affine WSN such that F̃ , G̃ and H̃ are obtained from Ft, Gt and Ht

(respectively) by removing entries which involve indices from Regs(1). Observe
that, conversely, for each affine WSN N ′ in which no transition is firable from
0, there is a unique unary data net N such that Ñ = N ′. Both N 7→ Ñ and its
inverse are computable in logarithmic space.

Proposition 6. (a) For any unary data net N , we have that s
t
−→ s′ iff |s′| = |s|

and there exists i ∈ [|s|] with s(i)
t
−→ s′(i) in Ñ and s′(j) = s(j) for all j 6= i.

(b) Coverability of s′ from s in a unary data net N is equivalent to existence of

an increasing ι : [|s′|] → [|s|] such that s′(i) is coverable from s(ι(i)) in Ñ
for each i ∈ [|s′|].
Termination (resp., boundedness) from s in a unary data net N is equivalent

to Ñ being terminating (resp., bounded) from s(i) for each i ∈ [|s|].
(c) Coverability of m′ from m, termination from m and boundedness from m in

an affine well-structured net Ñ are equivalent to coverability of 〈m′〉 from
〈m〉, termination from 〈m〉 and boundedness from 〈m〉 (respectively) in N .

one transition from each equivalence class is represented. Such a formalisation is
more succinct (exponentially in transition arities), but that issue is not important
in this paper. In addition, by Proposition 4, markings of unordered data nets can be
regarded as bags.



Note that Proposition 6 (c) can be extended to affine WSN with transitions
firable from 0 by adding an auxiliary place in which a single token is kept.

Transfer data nets. A data net 〈P, T, α, F,G,H〉 is transfer iff:

(i) for each t ∈ T , i ∈ [αt] and p ∈ P , we have Gt(i, p, i′, p′) > 0 for some
i′ ∈ [αt] and p′ ∈ P ;

(ii) for each t ∈ T , R ∈ Regs(αt) and p ∈ P , either we have Gt(R, p, i′, p′) > 0
for some i′ ∈ [αt] and p′ ∈ P , or we have Gt(R, p,R, p′) > 0 for some p′ ∈ P .

Observe that (i) and (ii) are satisfied by the transition t in Example 1.

Proposition 7. (a) Whenever s1
t
−→ s2 in a data net and s′1 ≥ s1, there exists

s′2 ≥ s2 such that s′1
t
−→ s′2.

(b) Whenever s1
t
−→ s2 in a transfer data net and s′1 > s1, there exists s′2 > s2

such that s′1
t
−→ s′2.

Petri data nets. In Petri data nets, whole-place operations are not allowed, and
transitions can produce tokens carrying only data which were chosen during the
firing. Formally, a data net 〈P, T, α, F,G,H〉 is Petri iff:

– for each t ∈ T , Gt = Id ;
– for each t ∈ T , R ∈ Regs(αt) and p ∈ P , Ht(R, p) = 0.

Proposition 8. Any Petri data net is a transfer data net.

2.5 Example: a file system

As an illustration, we now show how a file system which permits unboundedly
many users, user processes and files can be modelled as a data net. A variety
of other examples of systems expressible using data nets can be found in [10,
14, 11–13, 15, 16], including a real-timed mutual exclusion protocol, a distributed
authentication protocol, a communication protocol over unreliable channels, and
a leader election algorithm.

We suppose there are two categories of users: administrators and staff mem-
bers. Let Administrator be a finite set consisting of all possible states which an
administrator process can be in, and let Staff be such a set for staff-member
processes. (We assume that Administrator and Staff are disjoint.) We consider
two file permissions, so let Permissions = {private, public}. We also suppose
Contents is a finite set of all possible file contents. If file contents is unbounded,
the Contents set may consist of finitary abstractions, which include information
such as file names.

The set of places is

P = Administrator ∪ Staff ∪ (Permissions× Contents)

Tokens represent user processes and files, and data which they carry represents
user identities. More specifically:



– a token at place a ∈ Administrator carrying datum d represents a process
of administrator d and which is in state a;

– a token at place b ∈ Staff carrying datum d represents a process of staff
member d and which is in state b;

– a token at place 〈r, c〉 ∈ Permissions × Contents carrying datum d repre-
sents a file owned by user d, and with permission r and contents c.

To express a write by a staff-member process in state b to a file with contents
c, which changes b to b′ and c to c′, we define a transition write(b, b′, c, c′). It
involves one user, so αwrite(b,b′,c,c′) = 1. Firstly, it takes one token from place b

and one token from place c. They must carry the same datum, which ensures
that the user owns the file.

Fwrite(b,b′,c,c′)(1, b) = 1 Fwrite(b,b′,c,c′)(1, c) = 1

The transition involves no whole-place operations, so Gwrite(b,b′,c,c′) = Id . Fi-
nally, it puts one token onto place b′ and one token onto place c′, which carry
the same datum as the two tokens taken in the first stage.

Hwrite(b,b′,c,c′)(1, b
′) = 1 Hwrite(b,b′,c,c′)(1, c

′) = 1

The remaining entries of Fwrite(b,b′,c,c′) and Hwrite(b,b′,c,c′) are 0.
As a slightly more complex example, we can express a change of ownership of

a file with permission r and contents c from an administrator to a staff member.
It involves an administrator process which changes state from a to a′, and a staff-
member processes which changes state from b to b′. Since two users are involved,
we have αchange(r,c,a,a′,b,b′) = 2. As in the previous example, Gchange(r,c,a,a′,b,b′) =
Id and we show only entries which are not 0:

Fchange(r,c,a,a′,b,b′)(1, 〈r, c〉) = 1 Hchange(r,c,a,a′,b,b′)(2, 〈r, c〉) = 1
Fchange(r,c,a,a′,b,b′)(1, a) = 1 Hchange(r,c,a,a′,b,b′)(1, a

′) = 1
Fchange(r,c,a,a′,b,b′)(2, b) = 1 Hchange(r,c,a,a′,b,b′)(2, b

′) = 1

In the change(r, c, a, a′, b, b′) transition, it is assumed that the administrator
identity is smaller than the staff-member identity. To cover the opposite case,
and to have an unordered data net, we define a transition change(r, c, b, b′, a, a′).
The definition is the same as that of change(r, c, a, a′, b, b′), except that indices
1 and 2 are swapped when defining Fchange(r,c,b,b′,a,a′) and Hchange(r,c,b,b′,a,a′).

The data net having the three sets of transitions introduced so far is un-
ordered and Petri. Implementing the following action makes it no longer Petri,
in fact not even a transfer data net: all processes and files of a staff member
who has a process which is in state b are removed from the system. We have
αcrash(b) = 1, Fcrash(b)(1, b) = 1, the remaining entries of Fcrash(b) and all entries
of Hcrash(b) are 0, and:

Gcrash(s)(1, p, 1, p′) = 0 for p, p′ ∈ P

Gcrash(s)(1, p, R, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P

Gcrash(s)(R, p, 1, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P

Gcrash(s)(R, p,R, p) = 1 for R ∈ Regs(1) and p ∈ P

Gcrash(s)(R, p,R′, p′) = 0 otherwise



Many interesting properties of the file system can be formalised as coverabil-
ity, termination or boundedness properties. For example, that there is never a
user who is both an administrator and a staff member amounts to none of the
markings sa,b for a ∈ Administrator and b ∈ Staff being coverable, where
|sa,b| = 1, sa,b(1)(a) = sa,b(1)(b) = 1, and sa,b(1)(p) = 0 for all p ∈ P \ {a, b}.

3 Reset nets and lossy channel systems

In this section, we first show how Petri data nets can express reset nets, which
establishes the dashed inclusion in the diagram in Section 2.4. The translation
preserves coverability and termination properties of reset nets.

Secondly, we show that Petri data nets can also express lossy channel sys-
tems [15]. The translation provides reductions of the location reachability and
termination problems for lossy channel systems to the coverability, termination
and boundedness problems for Petri data nets. Thus, the latter three problems
will be shown non-primitive recursive: see Theorem 14.

Proposition 9. (a) Coverability for reset nets is Turing reducible in polynomial
space to coverability for Petri data nets.

(b) Termination for reset nets is reducible in polynomial space to termination
for Petri data nets, and to boundedness for Petri data nets.

Proof. We define a translation from reset nets N = 〈P, T, F,G,H〉 to Petri data

nets N̂ = 〈P̂ , T̂ , α, F̂ , Ĝ, Ĥ〉. For each t ∈ T , let s0
t be a sequence consisting of

all p ∈ P which are reset by t, i.e., such that G(p, p) = 0 (each occurring once).

The set of places of N̂ is formed by adding a place to P : P̂ = P ]{p̂}. In N̂ ,
each place p ∈ P will store a single token, carrying a datum which represents the
place p of N . The place p̂ will store as many tokens carrying the datum which
represents a place p as there are tokens at p in N . More precisely, for markings
m of N and s of N̂ , we write m ≈ s iff for each p ∈ P , there exists jp ∈ [|s|]
such that: s(jp)(p) = 1, s(j′)(p) = 0 for all j′ 6= jp, and s(jp)(p̂) = m(p). The

relation ≈ will be a bisimulation between N and N̂ .
The transitions of N̂ are pairs of transitions of N and enumerations of P :

T̂ = {t̂π : t ∈ T ∧ [|P |]
π
↔ P}. Suppose m ≈ s, and let π be the enumeration of

P such that π−1(p) < π−1(p′) iff jp < jp′ . We shall have that:

(i) only transitions of the form t̂π are firable from s;

(ii) m
t
−→ m′ implies s

t̂π−→ s′ for some m′ ≈ s′;

(iii) s
t̂π−→ s′ implies m

t
−→ m′ for some m′ ≈ s′.

Consider any t̂π ∈ T̂ . We set αt̂π
= |P | + |s0

t |. Indices i ∈ [|P |] will be used
to pick data which represent the places of N , and indices |P |+ i will be used to
pick fresh data (which are greater than all existing data) to simulate the resets

of t. Since Ĝt̂π
= Id is required for N̂ to be a Petri data net, it remains to define



F̂t̂π
and Ĥt̂π

so that (i)–(iii) above are satisfied. Each entry not listed below is
set to 0:

F̂t̂π
(i, π(i)) = 1 F̂t̂π

(i, p̂) = Ft(π(i)) (i ∈ [|P |])

Ĥt̂π
(i, π(i)) = 1 Ĥt̂π

(i, p̂) = Ht(π(i)) (π(i) 6∈ s0
t )

Ĥt̂π
(|P | + i, s0

t (i)) = 1 Ĥt̂π
(|P | + i, p̂) = Ht(s

0
t (i)) (i ∈ [|s0

t |])

Since any enumeration π of P is storable in polynomial space, we have that
polynomial space suffices for the translation.

Given a marking m of N , let s be a marking of N̂ such that m ≈ s. For (a),
we have by (i)–(iii) above that a given marking m′ is coverable from m in N iff

some minimal s′ such that m′ ≈ s′ is coverable from s in N̂ . For the first half
of (b), we have by (i)–(iii) above that N terminates from m iff N̂ terminates

from s. For the second half, let N̂ ′ be obtained from N̂ (in logarithmic space)
by adding a place p̂′ and ensuring that each transition increases the number of
tokens at p̂′. Let s′ be an arbitrary extension of s to place p̂′. We have that N
terminates from m iff N̂ ′ is bounded from s′. ut

A lossy channel system is a tuple S = 〈Q,C,Σ,∆〉, where Q is a finite
set of locations, C is a finite set of channels, Σ is a finite alphabet, and ∆ ⊆
Q × C × {!, ?} × Σ × Q is a set of transitions.

A state of S is a pair 〈q, w〉, where q ∈ Q and w : C → Σ∗. For each c ∈ C,
the word w(c) is the contents of channel c at state 〈q, w〉.

To define computation steps, we first define perfect computation steps, which
either write a letter to the end of a channel, or read a letter from the beginning
of a channel. For states 〈q1, w1〉 and 〈q2, w2〉, we write 〈q1, w1〉 →perf 〈q2, w2〉 iff
there exist c ∈ C and a ∈ Σ such that:

– either 〈q1, c, !, a, q2〉 ∈ ∆ and w2 = w1[c 7→ (w1(c))a],
– or 〈q1, c, ?, a, q2〉 ∈ ∆ and w1 = w2[c 7→ a(w2(c))].

Let v denote the “subword” well-quasi-ordering on Σ∗, obtained by lifting
the equality relation on Σ (see Proposition 2). For example, we have abba v
abracadabra. For states 〈q, w〉 and 〈q′, w′〉, we write 〈q, w〉 w 〈q′, w′〉 iff q = q′

and w(c) w w′(c) for all c ∈ C, i.e., 〈q′, w′〉 is obtained from 〈q, w〉 by losing zero
or more letters.

A computation step 〈q, w〉 → 〈q′, w′〉 of S consists of zero or more losses,
followed by a perfect computation step, followed by zero or more losses. Thus, the
→ relation is defined by composing the →perf and w relations: → = w→perf w.

The following are two key decision problems for lossy channel systems:

Location reachability: Given a lossy channel system, a state 〈q, w〉 and a
location q′, to decide whether some state 〈q′, w′〉 is reachable from 〈q, w〉.

Termination: Given a lossy channel system, and a state 〈q, w〉, to decide whe-
ther all computations from 〈q, w〉 are finite.

Proposition 10. (a) Location reachability for lossy channel systems is reducible
in logarithmic space to coverability for Petri data nets.



(b) Termination for lossy channel systems is reducible in logarithmic space to
termination for Petri data nets, and to boundedness for Petri data nets.

Proof. Given a lossy channel system S = 〈Q,C,Σ,∆〉, we define a Petri data
net NS = 〈P, T, α, F,G,H〉 as follows. We shall have that NS is computable in
logarithmic space.

Let P = Q]C ] (C ×Σ). States 〈q, w〉 of S will be represented by markings
s ∈ Seq(INP \ {0}) as follows. At places in Q, there will be one token, which is
at q, and which carries a datum d which is minimal in s. For each c ∈ C with
w(c) empty, place c will contain one token which carries d. For each c ∈ C with
w(c) = a1 · · · ak and k > 0, there will be data d ≺ dc

1 ≺ · · · ≺ dc
k such that:

– place c contains one token which carries dc
k;

– for each a ∈ Σ, place 〈c, a〉 contains one token carrying dc
i for each i ∈ [k]

with ai = a, and possibly some tokens carrying data greater than dc
k.

Formally, we write 〈q, w〉 ≈ s iff:

– s(1)(q) = 1, and s(j)(q′) = 0 whenever either j > 1 or q′ ∈ Q \ {q};
– for each c ∈ C with w(c) = ε, s(1)(c) = 1, and s(j)(c) = 0 for all j > 1;
– for each c ∈ C with w(c) = a1 · · · ak and k > 0, there exist 1 < jc

1 < · · · < jc
k

such that s(jc
k)(c) = 1, s(j′)(c) = 0 for all j′ 6= jc

k, and for each 1 ≤ j′ ≤ jc
k

and a′ ∈ Σ, we have

s(j′)(c, a′) =

{
1, if there exists i ∈ [k] with j′ = jc

i and a′ = ai

0, otherwise

For each read transition of S, there will be 1+ |Σ| transitions of NS , depend-
ing on whether the channel will become empty after the read, or the last letter
of the new channel contents will be a′:

T = {〈q1, c, !, a, q2〉 : 〈q1, c, !, a, q2〉 ∈ ∆}∪
{〈q1, c, ?, a, q2, ε〉, 〈q1, c, ?, a, q2, a

′〉 : 〈q1, c, ?, a, q2〉 ∈ ∆ ∧ a′ ∈ Σ}

When defining αt, Ft and Ht for t ∈ T below, we show only entries which are
distinct from 0. Since NS is a Petri data net, we have Gt = Id for each t ∈ T .

We shall have that, in computations of NS , losses can happen only when
reads are performed, but that will be sufficient for the result we are proving.
Losses will occur when the datum which identifies the end of a channel and
corresponds to the last letter is made smaller than the datum which corresponds
to the second last letter. (Observe that, in data nets, we cannot specify that a
transition be firable from a marking only if the latter contains no data which is
between two particular data. If that were not so, perfect channel systems which
are Turing-powerful would be expressible.)

Writes are performed using the minimal datum, which is then decreased:

α〈q1,c,!,a,q2〉 = 2 H〈q1,c,!,a,q2〉(1, q2) = 1
F〈q1,c,!,a,q2〉(2, q1) = 1 H〈q1,c,!,a,q2〉(1, 〈c, a〉) = 1



Reads which make a channel c empty alter the datum carried by the token at
place c to be the minimal datum:

F〈q1,c,?,a,q2,ε〉(1, q1) = 1 α〈q1,c,?,a,q2,ε〉 = 2
F〈q1,c,?,a,q2,ε〉(2, c) = 1 H〈q1,c,?,a,q2,ε〉(1, q2) = 1

F〈q1,c,?,a,q2,ε〉(2, 〈c, a〉) = 1 H〈q1,c,?,a,q2,ε〉(1, c) = 1

The remaining reads from channel c decrease the datum carried by the token at
place c to a value which identifies an occurrence of some a′:

F〈q1,c,?,a,q2,a′〉(1, q1) = 1 α〈q1,c,?,a,q2,a′〉 = 3
F〈q1,c,?,a,q2,a′〉(3, c) = 1 H〈q1,c,?,a,q2,a′〉(1, q2) = 1

F〈q1,c,?,a,q2,a′〉(3, 〈c, a〉) = 1 H〈q1,c,?,a,q2,a′〉(2, c) = 1
F〈q1,c,?,a,q2,a′〉(2, 〈c, a

′〉) = 1 H〈q1,c,?,a,q2,a′〉(2, 〈c, a
′〉) = 1

Now, the definition of NS ensures that the ≈ relation is an inverse simulation:
whenever 〈q, w〉 ≈ s and s → s′, there exists 〈q′, w′〉 such that 〈q′, w′〉 ≈ s′ and
〈q, w〉 → 〈q′, w′〉.

We write 〈q, w〉v≈ s iff there exists 〈q†, w†〉 such that 〈q, w〉 v 〈q†, w†〉 and
〈q†, w†〉 ≈ s. It is straightforward to check that the v≈ relation is a simu-
lation: whenever 〈q, w〉v≈ s and 〈q, w〉 → 〈q′, w′〉, there exists s′ such that
〈q′, w′〉v≈ s′ and s → s′.

To establish (a), given a state 〈q, w〉 and a location q′ of S, let s be such
that 〈q, w〉 ≈ s, and let s′ be such that |s′| = 1, s′(1)(q′) = 1, and s′(1)(p) = 0
for all p ∈ P \ {q′}. By the properties above, we have that some state 〈q′, w′〉 is
reachable from 〈q, w〉 iff some marking s′′ ≥ s′ is reachable from s.

For the termination part of (b), if s is such that 〈q, w〉 ≈ s, then S has an
infinite computation from 〈q, w〉 iff NS has an infinite computation from s. For
the boundedness part, we modify NS by adding an auxiliary place and ensuring
that each transition increases the number of tokens at that place. ut

4 Decidability

The following two lemmas will be used in the proof of Theorem 13 below. The
first one, due to Valk and Jantzen, provides a sufficient condition for computabil-
ity of finite bases of upwards-closed sets of fixed-length tuples of natural numbers.
The second lemma shows that, for computing a pred-basis of the upward clo-
sure of a marking of a data net, it suffices to consider markings up to a certain
computable length.

Lemma 11 ([21]). Suppose B is a finite set. A finite basis of an upwards-
closed set V ⊆ INB is computable iff it is decidable, given any v ∈ INB

ω , whether
V ∩ ↓{v} 6= ∅.

For a transition system 〈S,→〉 and S ′ ⊆ S, we write Pred(S′) for {s ∈ S :
∃s′ ∈ S′ · s → s′}. If transitions are labelled by t ∈ T , we write Pred t(S

′) for

{s ∈ S : ∃s′ ∈ S′ · s
t
−→ s′}.



Lemma 12. Given a data net N , a transition t of N , and a marking s′ of N ,
a natural number L is computable, such that whenever s ∈ Pred t(↑{s

′}) and
|s| > L, there exists s̄ ≤ s with s̄ ∈ Pred t(↑{s′}) and |s̄| ≤ L.

Proof. Suppose N = 〈P, T, α, F,G,H〉, and let

L = αt + |s′| + (αt + 1) × (2|P | − 1) × M

where M = max{s′(i)(p) : i ∈ [|s′|] ∧ p ∈ P}.
Consider s ∈ Pred t(↑{s′}) with |s| > L. For some s†, ι and s′′ ≥ s′, we have

s
t,s†,ι
−−−→ s′′. Let s′′† = (s†−JFtK

|s†|
ι )JGtK

|s†|
ι +JHtK

|s†|
ι . Since s′′ is the 0-contraction

of s′′† , there exists an increasing ι′ : [|s′|] → [|s†|] such that s′(i) ≤ s′′† (ι′(i)) for
all i ∈ [|s′|].

For each nonempty P+ ⊆ P , let

s
P+

† = {i ∈ [|s†|] : ∀p ∈ P · s†(i)(p) > 0 ⇔ p ∈ P+}

Since |s†| ≥ |s|, there exist 0 ≤ j ≤ αt and nonempty P+ ⊆ P such that

|I
P+

j | > M , where I
P+

j = (JReg (j,j+1)K
|s†|
ι \ Range(ι′)) ∩ s

P+

† .

Pick an index i1† ∈ I
P+

j of s†, and let i1 ∈ [|s|] be the corresponding index

of s. Let τ† be the increasing mapping [|s†| − 1] → [|s†|] with i1† 6∈ Range(τ†),

and τ be the increasing mapping [|s| − 1] → [|s|] with i1 6∈ Range(τ). Then let
s1
† (resp., s1) be obtained from s† (resp., s) by removing the entry i1† (resp., i1),

ι1 = τ−1
† ◦ ι, and s′′†

1
= (s1

† − JFtK
|s1

†|
ι1 )JGtK

|s1
†|

ι1 + JHtK
|s1

†|
ι1 . By the definition of I

P+

j

and |I
P+

j | > M , we have that s′′†
1
(i)(p) ≥ M whenever s′′†

1
(i)(p) 6= s′′† (τ†(i))(p).

Hence, s′′†
1 ≥ s′, so s1 ∈ Pred t(↑{s

′}).

By repeating the above, we obtain s ≥ s1 ≥ s2 ≥ · · · s|s|−L ∈ Pred t(↑{s′})
such that |sk| = |s| − k for all k. Setting s̄ = s|s|−L completes the proof. ut

Theorem 13. (a) Coverability and termination for data nets are decidable.
(b) Boundedness for transfer data nets is decidable.

Proof. Suppose N = 〈P, T, α, F,G,H〉 is a data net. By Propositions 2, 3 and 7,
we have that the transition system of N is finitely-branching and well-structured
with strong compatibility, and also with strict compatibility if N is transfer (us-
ing the terminology of [18]). Moreover, ≤ between markings of N is a decidable
partial ordering, and Succ(s) = {s′ : s → s′} is computable for markings s.
Hence, termination for data nets and boundedness for transfer data nets are
decidable by [18, Theorems 4.6 and 4.11].

To establish decidability of coverability by [18, Theorem 3.6], it suffices to
show that, given any t ∈ T and a marking s′, a finite basis of Pred t(↑{s

′}) is
computable. (By Proposition 7 (a), Pred t(↑{s

′}) is upwards-closed.)
First, we compute L as in Lemma 12. For any 0 ≤ l ≤ L, increasing η : [l] →

[l†] and increasing ι : [αt] → [l†] such that [l†] = Range(η) ∪ Range(ι), let

Pred l
t,η,ι(↑{s

′}) = {s : l = |s| ∧ ∃s′′ ≥ s′ · s
t,η,ι
−−−→ s′′}



where s
t,η,ι
−−−→ s′′ means that s

t,s†,ι
−−−→ s′′ for some s† such that Range(η) = {j :

s†(j) 6= 0} (necessarily, l† = |s†|). From the definition of transition firing, we have

that s
t,s†,ι
−−−→ s′′ iff s† ≥ JFtK

l†
ι and s′′ is the 0-contraction of (s†− JFtK

l†
ι )JGtK

l†
ι +

JHtK
l†
ι . Hence, each Pred l

t,η,ι(↑{s
′}) is an upwards-closed subset of INP×[l]. By

Lemma 12, it remains to compute a finite basis of each Pred l
t,η,ι(↑{s

′}).

Suppose that l, η and ι are as above. Given any s ∈ INP×[l]
ω , we have as in

[6] that Pred l
t,η,ι(↑{s

′}) ∩ ↓{s} 6= ∅ iff s† ≥ JFtK
l†
ι and s′′ ≥ s′, where s† is the

0-expansion of s such that l† = |s†| and Range(η) = {j : s†(j) 6= 0}, s′′ is

the 0-contraction of (s†− JFtK
l†
ι )JGtK

l†
ι + JHtK

l†
ι , and the required operations are

extended to ω by taking limits: ω ≥ n, ω + n = n + ω = ω + ω = ω, ω − n = ω,
0 × ω = 0, and n × ω = ω for n > 0. Therefore, by Lemma 11, a finite basis of
Pred l

t,η,ι(↑{s
′}) is computable. ut

5 Hardness

Theorem 14. Coverability, termination and boundedness for Petri data nets
are not primitive recursive.

Proof. As shown in [7], location reachability and termination for lossy channel
systems are not primitive recursive. It remains to apply Proposition 10. ut

Theorem 15. Coverability, termination and boundedness for unordered Petri
data nets are not elementary.

Proof. For n ∈ IN, the tetration operation a ⇑ n is defined by a ⇑ 0 = 1 and
a ⇑ (n + 1) = aa⇑n.

The non-elementariness of the three verification problems follows from show-
ing that, given a deterministic machine M of size n with finite control and two
2 ⇑ n-bounded counters, an unordered Petri data net NM which simulates M
is constructible in logarithmic space. A counter is m-bounded iff it can have
values in {0, . . . ,m − 1}, i.e., it cannot be incremented beyond the maximum
value m − 1. The following counter operations may be used in M: increment,
decrement, reset, iszero and ismax.

It will be defined below when a marking of NM represents a configuration
(i.e., state) of M. Let us call such markings “clean”. We write s →√ s′ (resp.,
s →× s′) iff s → s′ and s′ is clean (resp., not clean). Hence, s →∗

×→
√ s′ means

that s′ is clean and reachable from s by a nonempty sequence of transitions in
which every intermediate marking is not clean, and s 6→ω

× means that there does
not exist an infinite sequence of transitions from s in which no intermediate
marking is clean. M will be simulated in the following sense by NM from a
certain initial marking sI , where cI is the initial configuration of M:

– we have sI 6→ω
× and:

• there exists sI →∗
×→

√ s′ such that cI is represented by s′;
• for all sI →∗

×→
√ s′, cI is represented by s′;



– whenever c is represented by s, we have s 6→ω
× and:

• if c has a successor c′, there exists s →∗
×→

√ s′ with c′ represented by s′;
• for all s →∗

×→
√ s′, c has a successor c′ which is represented by s′.

That M halts (i.e. reaches a halting control state from cI) will therefore be
equivalent to a simple coverability question from sI , and to termination from
sI . After extending NM by a place whose number of tokens increases with each
transition, that M halts becomes equivalent to boundedness from sI .

Each clean marking s of NM will represent a valuation v of 3n counters Ck,
C ′

k and C ′′
k for k ∈ [n]. Cn and C ′

n are the two counters of M, and for each
k ∈ [n], Ck, C ′

k and C ′′
k are 2 ⇑ k-bounded. (Counter C ′′

n will not be used, so
it can be omitted.) NM will have places 0D, 1D, scratchD, lockD, checkedD

and uncheckedD for each D ∈ {Ck, C ′
k, C ′′

k : k ∈ [n]}, as well as a number
(polynomial in n) of places for encoding the control of M and for control of
NM. A valuation v is represented by s as follows:

– for each k ∈ [n] and D ∈ {Ck, C ′
k, C ′′

k }, places scratchD, lockD and checkedD

are empty, and uncheckedD contains exactly 2 ⇑ (k − 1) tokens and they
carry mutually distinct data;

– for each k ∈ [n], D ∈ {Ck, C ′
k, C ′′

k } and i ∈ [2 ⇑ (k − 1)], if the i-th bit
of v(D) is b ∈ {0, 1}, then for some datum d carried by a token at place
uncheckedD, the number of tokens at bD which carry d is i, and the number
of tokens at (1 − b)D which carry d is 0;

– for each k ∈ [n] and D ∈ {Ck, C ′
k, C ′′

k }, each datum carried by a token at 0D

or 1D is carried by some token at uncheckedD.

Counters C1, C ′
1 and C ′′

1 are 2-bounded, so operations on them are trivial
to simulate. For each k < n, counter operations on Ck+1, C ′

k+1 and C ′′
k+1 are

simulated using operations on Ck, C ′
k and C ′′

k . The following shows how to
implement iszero(D), where D ∈ {Ck+1, C

′
k+1, C

′′
k+1}. The other four counter

operations are implemented similarly.

for Ck := 0 to (2 ⇑ k) − 1 do
{ guess a datum d and move a token carrying d from uncheckedD to lockD;

for C ′
k := 0 to Ck do { move a token carrying d from 0D to scratchD };

for C ′
k := 0 to Ck do { move a token carrying d from scratchD to 0D };

move the token from lockD to checkedD };
for Ck := 0 to (2 ⇑ k) − 1 do
{ move a token from checkedD to uncheckedD }

Observe that iszero(D) can execute completely iff, for each i ∈ [2 ⇑ k], the datum
d guessed in the i-th iteration of the outer loop represents the i-th bit of v(D)
and that bit is 0. Place lockD is used for keeping the datum d during each such
iteration, and it is implicitly employed within the two inner loops.

It remains to implement routines setup(D) for k ∈ [n] and D ∈ {Ck, C ′
k, C ′′

k },
which start from empty 0D, 1D, scratchD, lockD, checkedD and uncheckedD, and
set up 0D and uncheckedD to represent D having value 0. Setting up C1, C ′

1 and
C ′′

1 is trivial. To implement setup(D) for k < n and D ∈ {Ck+1, C
′
k+1, C

′′
k+1},



we use Ck, C ′
k and C ′′

k which were set up previously. The implementation is
similar to that of iszero(D), except that all three of Ck, C ′

k and C ′′
k are used,

since whenever a datum d is picked to be the ith datum at uncheckedD for some
i ∈ [2 ⇑ k], two nested loops are employed to ensure that d is distinct from each
of i − 1 data which are carried by tokens already at uncheckedD. ut

6 Concluding remarks

We have answered questions (1) and (2) posed in Section 1. As far as we are
aware, Section 5 contains the first nontrivial lower bounds on complexity of
decidable problems for extensions of Petri nets by infinite data domains.

The results obtained and their proofs show that data nets are a succinct
unifying formalism which is close to the underlying semantic structures, and
thus a useful platform for theoretical investigations.

The proof of Theorem 13 does not provide precise upper bounds on com-
plexity. It should be investigated whether upper bounds which match the lower
bounds in the proofs of Theorems 14 and 15 are obtainable. In particular, are
coverability, termination and boundedness for unordered Petri data nets primi-
tive recursive?

Let us say that a data net is l,m-safe iff each place other than some l places
never contains more than m tokens. It is not difficult to tighten the proofs of The-
orems 14 and 15 to obtain that coverability, termination and boundedness are not
primitive recursive for 1, 1-safe Petri data nets, and not elementary for 2, 1-safe
unordered Petri data nets. That leaves open whether we have non-elementarity
for 1, 1-safe unordered Petri data nets. That class suffices for expressing poly-
morphic systems with one array of type 〈X,=〉 → 〈Y,=〉 without whole-array
operations [16, 17].

We are grateful to Alain Finkel for a helpful discussion.
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16. Lazić, R., Newcomb, T.C., Roscoe, A.W.: Polymorphic systems with arrays, 2-
counter machines and multiset rewriting. In: Infinity ’04. Volume 138 of ENTCS.
(2005) 61–86
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