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Natasha Sharygina1,2 Tayssir Touili5 Helmut Veith6

1 Carnegie Mellon University, Software Engineering Institute, Pittsburgh, USA
2 Carnegie Mellon University, School of Computer Science, Pittsburgh, USA

3 The Technion, Haifa, Israel
4 Oxford University Computing Laboratory, Oxford, UK

5 LIAFA, CNRS & University of Paris7, Paris, France
6 Technische Universität München, Munich, Germany

Abstract. In the domain of concurrent software verification, there
is an evident need for specification formalisms and efficient algo-
rithms to verify branching-time properties that involve both data
and communication. We address this problem by defining a new
branching-time temporal logic SE-AΩ which integrates both state-based
and action-based properties. SE-AΩ is universal, i.e., preserved by
the simulation relation, and thus amenable to counterexample-guided
abstraction refinement. We provide a model-checking algorithm for this
logic, based upon a compositional abstraction-refinement loop which
exploits the natural decomposition of the concurrent system into its
components. The abstraction and refinement steps are performed over
each component separately, and only the model checking step requires
an explicit composition of the abstracted components. For experimental
evaluation, we have integrated our algorithm within the ComFoRT

reasoning framework and used it to verify a piece of industrial robot
control software.
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1 Introduction

The practical effectiveness of model checking is characterized by a trade-off be-
tween the expressive power of the specification formalism and the complexity
of the corresponding model checking algorithm. For software verification, this
problem is even more acute, since software is harder to specify, and state ex-
plosion is exacerbated by the concurrent execution of multiple components. The
expressive power of temporal logics such as CTL or LTL is quite limited when it
comes to specifying, e.g., the periodicity of events. The last decade has seen sev-
eral attempts at extending the expressiveness of temporal logics [7, 31, 29, 30, 28,
11]. Recently, Clarke et al. [9] have investigated a family of universal branching
logics, called AΩ, which are extensions of ACTL1 by sets Ω of ω-regular path
operators. A subtle property of AΩ is the monotonicity of the path operators:
the semantics guarantees that the extended path operators cannot be used to
implicitly define negation. While this property comes for free with the standard
temporal path operators, its presence is crucial for obtaining extended univer-
sal branching logics. Such logics are preserved by simulation, and are therefore
amenable to existential abstraction [8, 9].

Another shortcoming of standard temporal logics stems from the fact that
for the verification of concurrent software conducted at the source code level,
one needs to specify both state information (program counter location, memory
contents) and communication among components. For example, the Bluetooth
L2CAP specification [13] asserts that “when an L2CAP ConnectRsp event is re-
ceived in a W4 L2CAP CONNECT RSP state, within one time unit, an L2CAP process
may send out an L2CA ConnectInd event, disable the RTX timer, and move to
state CONFIG.” As this example shows, both states (W4 L2CAP CONNECT RSP and
CONFIG) and events (L2CAP ConnectRsp and L2CA ConnectInd) are required to
properly capture the desired L2CAP behavior.

Generally, in concurrent programs, communication among modules proceeds
via actions (events) which can represent function calls, requests and acknowledg-
ments, etc. These communications can be data-dependent and carry data on its
channels. Existing model checking techniques typically use either state-based or
event-based formalisms to represent finite-state models of programs. In principle,
both frameworks are interchangeable: an action can be encoded as a change in
state variables, and likewise one can equip a state with different actions to reflect
different values of its internal variables. Neither approach on its own is practical,
however, when it comes to the specification of data-dependent communication
claims: considerable domain expertise is then required to annotate the program
and to specify proper specifications in temporal logic.

In this paper, we define the specification logic SE-AΩ which combines the
high expressive power of AΩ with the ability to refer to states and events si-
multaneously. The hybrid state/event-based semantics of SE-AΩ allows us to

1 ACTL denotes the universal fragment of CTL, in which the formulas range over all
possible execution paths.



represent software specifications directly without program annotations or privi-
leged insights into program execution.

Extending branching-time logics with event modalities presents some inter-
esting challenges. For example, there is no natural generic extension of standard
CTL operators such as U (until) to a state/event-based framework (see, e.g.,
[18]); SE-AΩ, however, enables us to employ different variants of CTL operators
for actions and data valuations simultaneously.

Notwithstanding its high expressive power and versatility, SE-AΩ lends itself
naturally to an efficient verification strategy which combines counterexample-
guided abstraction refinement (CEGAR [20, 6]) and compositional reasoning:
starting with a coarse initial abstraction, our CEGAR scheme computes increas-
ingly precise abstractions of the target system by analyzing spurious counterex-
amples until either a real counterexample is obtained or the system is found to
be correct. More precisely, given a system M composed of n concurrent com-
ponents M1, . . . ,Mn, and a SE-AΩ specification ϕ, the verification of M |= ϕ

proceeds as follows:

1. Abstract. Create an abstraction M̂ such that all behaviors of M̂ are pre-
served by M . This is done component-wise without constructing the full
state space of M .

2. Verify. Verify whether M̂ |= ϕ. If so, report success and exit. Otherwise,

extract an abstract counterexample Ĉ that indicates in which way ϕ fails in
M̂ .

3. Refine. Check whether Ĉ gives rise to a real counterexample over M . If Ĉ
corresponds to a genuine behavior of M then report a failure along with a
fragment of each Mi that illustrates why M 2 ϕ. If Ĉ is spurious, on the
other hand, refine M̂ using Ĉ to obtain a more precise abstraction and repeat
from Step 1. This refinement step, like the initial abstraction, is performed
component-wise.

Of the three steps in this abstract-verify-refine process only the verification stage
of our technique requires the explicit composition of a system. The other stages
can be performed one component at a time. Since verification is performed only
on abstractions (which are usually much smaller than the corresponding concrete
systems), our approach is able to significantly alleviate the state space explosion
problem.

Another key characteristic of our algorithm is that the verification step han-
dles both states and events directly, i.e., without conversion into either a pure
state-based or a pure event-based framework. The model checking is therefore
significantly more efficient than alternative conversion-based approaches, since it
has been observed that such conversions can lead to a quadratic blowup in both
time and space even for reachability properties [3, 4]. The core of the model
checking algorithm relies on automata-theoretic methods to evaluate the ω-
regular path operators. Note that the universality of SE-AΩ is crucial to our
approach, in that it enables violations to be concisely represented as (tree-like)
counterexamples.



Previously proposed state/event-based formalisms [25, 18, 16, 3, 4] have been
limited to either linear-time specifications or finite-state systems. The novelty of
our approach is the application of branching-time state/event-based reasoning
to infinite-state concurrent systems using powerful state space reduction tech-
niques, namely CEGAR and compositional reasoning. In this respect, not only
do we substantially extend the expressiveness of the state/event linear temporal
logic SE-LTL presented in [3, 4], but we also show how to validate branching-
time counterexamples in a compositional manner, based on new results relating
simulation and weak simulation relations for parallel processes (see Theorem 4
in Section 5).

We have implemented our approach in the CMU SEI ComFoRT [17] rea-
soning framework, based on the C model checker magic [22]. magic extracts
state/event finite-state models from C programs automatically via predicate ab-
straction [12, 2]. We evaluated the applicability of our framework in experiments
with a piece of robot controller software. In our experiments SE-AΩ has been
extremely useful for both specifying the branching structure of the protocol ex-
ecutions, and in order to make assertions on both actions and data valuations.

The rest of this article is organized as follows. In Section 2 we summarize
related work. This is followed by some preliminary definitions in Section 3. In Sec-
tion 4 we present the SE-AΩ logic, followed by model-checking, counterexample-
validation and abstraction-refinement procedures described in Section 5. Finally,
we discuss the applications of our techniques to an industrial system in Section 6
and conclude by outlining some future work in Section 7.

2 Related Work

Extensions of temporal logics to increase the expressiveness of temporal opera-
tors have been proposed by various authors [7, 31, 29, 30, 28, 11]. Wolper [31] and
Vardi and Wolper [30] extended LTL by regular expressions and Büchi automata
respectively. Vardi and Wolper [29] and Thomas [28] have proposed extended
branching-time logics, but have not addressed model checking. Clarke et al. [7]
describe the logic ECTL that similarly to our work considers ω-regular automata
in the context of branching-time logic. However, this work does not deal with
abstraction refinement or compositional methods. Clarke et al. [9] define a class
AΩ of universal branching logics (cf. Section 1) for a systematic study of the
complexity and completeness of counterexamples in model checking. SE-AΩ ex-
tends AΩ essentially in that it incorporates events in addition to states. Note
moreover that [9] does not offer a model checking algorithm for AΩ. Naturally,
the algorithm for SE-AΩ that we present in this paper also applies to AΩ.

The formalization of a general notion of abstraction first appeared in [10].
The abstractions used in our approach are conservative in that whenever the ab-
stract system meets a given specification, then so does the concrete system, but
not necessarily vice-versa (see [19, 8]). Conservative abstractions usually lead to
significant reductions in the state space but in general require an iterated abstrac-
tion refinement mechanism (such as CEGAR) in order to establish specification



satisfaction. CEGAR has been used, among others, in [24] (in non-automated
form), and [1, 26, 21, 14]. In particular, CEGAR-based schemes have been used
for the verification of safety properties [1, 6, 14, 2] as well as liveness [3, 4] prop-
erties.

Compositionality and abstraction have been extensively studied in process
algebra (e.g., [15, 23, 27]). However, there mainly actions (as opposed to states)
have been considered. Abstraction and compositional reasoning have been com-
bined [5] within a single CEGAR scheme to verify safety properties of concurrent
C programs. Our work, on the other hand, deals with a significantly more ex-
pressive specification language.

3 Preliminaries

Definition 1 (Labeled Kripke Structure). A labeled Kripke structure
(LKS) is a 6-tuple (S , init ,AP ,L, Σ,T ) where (i) S is a finite non-empty set
of states, (ii) init ∈ S is an initial state, (iii) AP is a finite set of atomic state
propositions, (iv) L : S → 2AP is a state-labeling function, (v) Σ is a finite set
of actions (alphabet) and (vi) T ⊆ S ×Σ × S is a transition relation.

Note that Labeled Kripke Structures are similar to “doubly-labeled transition
systems” introduced in [25].

Given an LKS M = (S , init ,AP ,L, Σ,T ), we write S (M), init(M), AP(M),
L(M), Σ(M) and T (M) to mean S , init , AP , L, Σ and T respectively. Given

s, s′ ∈ S and a ∈ Σ we write s
a

−→ s′ to mean (s, a, s′) ∈ T . Also, let Succ(s, a) =

{s′ ∈ S | s
a

−→ s′} and Enabled(s) = {a ∈ Σ | Succ(s, a) 6= ∅}. Finally, a path

of M is an infinite sequence of consecutive transitions s0
a0−→ s1

a1−→ s2
a2−→ . . . .

Note that we do not require paths to begin with init .

Definition 2 (Parallel Composition). Let M1 and M2 be two LKSs such
that AP(M1) ∩ AP(M2) = ∅. Then the parallel composition of M1 and M2,
denoted by M1‖M2, is an LKS obeying the following conditions: (i) S (M1‖M2) =
S (M1) × S (M2), (ii) init(M1‖M2) = (init(M1), init(M2)), (iii) AP(M1‖M2) =
AP(M1) ∪ AP(M2), and (iv) Σ(M1‖M2) = Σ(M1) ∪ Σ(M2). Moreover, for
all s1, s

′
1 ∈ S (M1), s2, s

′
2 ∈ S (M2), and a ∈ Σ(M1‖M2), the labeling function

L(M1‖M2) and the transition relation T (M1‖M2) are defined as follows:

– L(M1‖M2)((s1, s2)) = L(M1)(s1) ∪ L(M2)(s2).

– If s1
a

−→ s′1 and s2
a

−→ s′2 then (s1, s2)
a

−→ (s′1, s
′
2).

– If s1
a

−→ s′1 and a 6∈ Σ(M2) then (s1, s2)
a

−→ (s′1, s2).

– If s2
a

−→ s′2 and a 6∈ Σ(M1) then (s1, s2)
a

−→ (s1, s
′
2).

This notion of parallel composition is derived from CSP [15, 27]; it is commu-
tative and associative, so that no parentheses are needed when composing more
than two LKSs together.



Definition 3 (Simulation). Let M1 and M2 be LKSs with Σ(M1) = Σ(M2) =
Σ, and AP(M2) = AP(M1). A relation R ⊆ S (M1) × S (M2) is said to be a
simulation relation iff it satisfies the following conditions:

1. If (s1, s2) ∈ R then L(M1)(s1) = L(M2)(s2).
2. For any s1, s

′
1 ∈ S (M1), s2 ∈ S (M2), and a ∈ Σ, if (s1, s2) ∈ R and

s1
a

−→ s′1 then there exists s′2 ∈ S (M2) such that s2
a

−→ s′2 and (s′1, s
′
2) ∈ R.

For two LKSs M1 and M2, if there exists a simulation relation R such that
(init(M1), init(M2)) ∈ R then we say that M1 is simulated by M2 and denote
this by M1 6 M2. The following is well-known [23]:

Theorem 1. Let M1, . . . ,Mn, N1, . . . , Nn be LKSs such that Ni 6 Mi for 1 ≤
i ≤ n. Then (N1‖ . . . ‖Nn) 6 (M1‖ . . . ‖Mn).

In our framework, (existential) abstractions are obtained by ‘lumping’ to-
gether states of a concrete LKSs: abstract states are disjoint sets of concrete
states; cf. [8]. In the remainder of this paper, we often use the letter M to denote

a concrete LKS and its hatted counterpart M̂ to denote an abstract LKS. Note
that an abstraction M̂ of M is entirely determined by an equivalence relation
R ⊆ S (M) × S (M). We only consider admissible equivalence relations, i.e., we
require that for all s, s′ ∈ S (M), whenever (s, s′) ∈ R then L(M)(s) = L(M)(s′).
Given a state s ∈ S (M), we denote its corresponding equivalence class by [s]R

(or simply [s] when R is clear from context.)

Definition 4 (Abstraction). Let M be an LKS and R be an admissible equiv-
alence relation on S(M). Then MR is the abstract quotient LKS induced by
R such that (i) S (MR) = {[s] | s ∈ S (M)}, (ii) init(MR) = [init(M)],
(iii) AP(MR) = AP(M), (iv) for all [s] ∈ S (MR), L(MR)([s]) = L(M)(s)
(well-defined since R is admissible), (v) Σ(MR) = Σ(M), and (vi) T (MR) =
{([s], a, [s′]) | (s, a, s′) ∈ T (M)}.

For s ∈ S(M) and a ∈ Σ(M), the set of abstract successors of s along a is
defined to be AbsSucc(s, a) = {[s′] ∈MR | (s, a, s′) ∈ T (M)}.

It is easy to see that for any M and R, M 6 MR. Combining this with
Theorem 1 we get the following result.

Lemma 1. Let M1, . . . ,Mn be LKSs and R1, . . . , Rn be equivalence relations.
Then (M1‖ . . . ‖Mn) 6 (MR1

1 ‖ . . . ‖MRn
n ).

4 The Logic SE-AΩ

Following [9], we define a universal branching-time logic called State-Event Uni-
versal Logic (SE-AΩ). The logic is interpreted over LKSs and can be used to
specify properties involving both data and actions in a natural manner. SE-AΩ
is defined in negation normal form, i.e., negations are only applied to atomic
propositions. Unlike ACTL or ACTL∗, it does not have a fixed set of operators.



Rather, any ω-regular language can serve as a temporal operator. Since the logic
is universal, every such operator is preceded by a universal path quantifier A.

Similarly to usual temporal operators, the new operators are applied to other
formulas in the logic. Syntactically, this is done by defining an ω-regular language
O over a set of markers that serve as placeholders for the formulas to which O is
applied. Since SE-AΩ is aimed at specifying both actions and data, its operators
can be applied to subsets of actions as well as formulas over atomic propositions.

Formally, let Mark = {m1,m2, . . .} be a denumerable set of markers and let
m = {m1, . . . ,mn} be a finite subset of Mark . Let O be an ω-regular language
over the alphabet 2m. The corresponding n-ary temporal operator will be de-
noted by O. Let AP be a set of atomic propositions and Σ be a set of actions.
Then the syntax of SE-AΩ is defined inductively as follows.

– If p ∈ AP then p and ¬p are formulas.
– If ϕ1 and ϕ2 are formulas then so are ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2.
– Let O be an n-ary temporal operator and for 1 ≤ i ≤ n, ϕi be either a

formula or a subset of Σ. Then AO(ϕ1, . . . , ϕn) is a formula.

The semantics of SE-AΩ is defined over LKSs. More precisely, given an SE-
AΩ formula ϕ, an LKS M , and s ∈ S (M) we write M, s |= ϕ to mean that s
satisfies ϕ, defined inductively as follows:

– For p ∈ AP , M, s |= p iff p ∈ L(s) and M, s |= ¬p iff p 6∈ L(s).
– M, s |= ϕ1 ∨ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2.
– M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2.
– M, s |= AO(ϕ1, . . . , ϕn) iff for every path π starting from s, we have M,π |=

O(ϕ1, . . . , ϕn) [as defined below].

Let π = s0
a0−→ s1

a1−→ s2 . . . be a path of M and πi be its suffix starting from
si. We first define when π satisfies an argument ϕk of the operator O. M,π |= ϕk

iff either ϕk ⊆ Σ and a0 ∈ ϕk, or ϕk is a formula and M, s0 |= ϕk.
Let O(ϕ1, . . . , ϕn) be as above, and O be the ω-regular language correspond-

ing to O. Recall that the alphabet of O is 2m where m = {m1, . . . ,mn}. Then
M,π |= O(ϕ1, . . . , ϕk) iff there is a word o = o1o2 · · · ∈ O such that for all i ≥ 0
and for all mk ∈ oi, M,πi |= ϕk. Note that this requires that for every mk ∈ oi,
ϕk must hold. However, other ϕj may, or may not, hold as well. We will need
to take this fact into account in the model checking algorithm, presented in the
next section.

Lastly, we write M |= ϕ to mean M, init(M) |= ϕ.
As an example, let O = {m1,m2}

∗{m1,m3}{m4}{}
ω be an ω-regular expres-

sion. Then O(ϕ, {a}, {b}, ψ) represents an ‘until’ operator that captures paths
in which ϕUψ holds along a sequence of a actions ending with the action b.
This example demonstrates that in addition to formulas ϕk that should hold,
the logic SE-AΩ allows us to restrict the actions that can be performed, by using
ϕk ⊆ Σ.

As a second example, let O = ({m1}{})
ω be another ω-regular expression.

Then O(p) is an operator which requires that the atomic proposition p hold at all



even positions (starting at 0) along every path. Note that this formula does not
constrain states that occur in odd positions. It is well-known that this formula
cannot be captured in LTL.

These two examples illustrate that SE-AΩ formulas are used to describe ω-
regular ‘constraint patterns’ along the paths of LKSs. For a much more principled
and detailed account of the underlying ideas and workings of this logic, we refer
the reader to [9].

An important property of the logic SE-AΩ is that it is preserved by the
simulation relation. This is formalized by the following lemma.

Lemma 2. Given two LKSs M1 and M2 and an SE-AΩ formula ϕ, if M2 |= ϕ

and M1 6 M2, then M1 |= ϕ.

5 Compositional CEGAR Verification for SE-AΩ

LetM1, . . . ,Mn be LKSs and let ϕ be an SE-AΩ formula. In seeking to determine
whether M = M1‖ . . . ‖Mn |= ϕ, we wish to avoid constructing the full LKS M ,
since the size of its state space increases exponentially with the number of its
components. We therefore first compute a (typically much smaller) abstraction

M̂i of each component Mi, and only then check whether M̂ = M̂1‖ . . . ‖M̂n |= ϕ.

If this holds, we conclude that M |= ϕ as well. Otherwise, we extract from M̂ a

counterexample Ĉ violating ϕ, and check whether this counterexample is valid,
i.e., whether it corresponds to a real execution of M . In the affirmative, we
conclude that M 6|= ϕ. Otherwise, we use this spurious counterexample to refine
our abstractions, and repeat the process until either a real counterexample is
found or the property is shown to hold. The main strength of our approach is
the fact that the abstraction, counterexample-validation, and refinement steps
are all carried out one component at a time, so that it is never necessary to
construct the full state space of the concrete system M .2

5.1 Model Checking

Let M̂ be an LKS3, s ∈ S (M̂), and ϕ be an SE-AΩ formula. We give a

model-checking algorithm to determine whether M̂, s |= ϕ. We proceed by
structural induction on ϕ, starting with the case in which ϕ is of the form
AO(ϕ1, . . . , ϕn). Let O be the ω-regular language over m = {m1, . . . ,mn} cor-
responding to O. The algorithm consists of the following steps: (i) compute from

M̂ and s the ‘smallest’ ω-regular language Os over the alphabet 2m such that
M̂, s |= AOs(ϕ1, . . . , ϕn), and (ii) check whether Os is ‘subsumed’ by O.

2 Except, of course, in the worst case in which no proper abstraction of the system
leads to a definite answer.

3 In the interests of consistency and clarity, we present our approach in both this
section and the next in terms of the abstract LKS cM , although it naturally applies
to concrete systems as well.



Intuitively, the idea is to interpret each path π in M̂ as a sequence of max-
imal subsets of formulas (among ϕ1, . . . , ϕn) that hold along π. We then check
whether replacing each ϕj with the corresponding marker mj results in a se-
quence belonging to O.

In order to do so we build an automaton Bs obtained from M̂ by replacing
every action a, in transitions of the form (q, a, q′), with the subset of markers
corresponding to the formulas that hold for the transition. More precisely, if ϕj

is an SE-AΩ formula, we include the corresponding marker mj provided that

M̂, q |= ϕj , and if ϕj ⊆ Σ(M̂), we include mj if a ∈ ϕj .

To make this more rigorous, we first recall the notion of Büchi automata:

Definition 5 (Büchi Automaton). A Büchi automaton is a 5-tuple B =
(S , I , Σ,T ,Acc) where (i) S is a finite non-empty set of states, (ii) I ⊆ S
is a set of initial states, (iii) Σ is a finite alphabet, (iv) T ⊆ S × Σ × S is a
transition relation, and (v) Acc ⊆ S is a set of accepting states.

A path of B is an infinite sequence π = q0
a0−→ q1

a1−→ . . . such that q0 ∈ I,
and for every i, (qi, ai, qi+1) ∈ T . π is accepting if it visits the set Acc infinitely
often.

The language Os is represented by a Büchi automaton Bs, which is derived
from M̂ as follows: Bs = (Ss, Is, Σs,Ts,Accs), where (i) Ss = S (M̂), (ii) Is =

{s}, (iii) Σs = 2m, (iv) Accs = S (M̂), and (v) Ts is the set of transitions such

that for each (q, a, q′) ∈ T (M̂), Ts includes a transition (q,m′, q′) such that
m′ ⊆ m and the following condition holds: for 0 ≤ j ≤ n, mj ∈ m′ iff either

ϕj ⊆ Σ(M̂) and a ∈ ϕj or ϕj is a formula and M̂, q |= ϕj .

Note that in order to construct Bs we need to know whether M̂, q |= ϕi for

every q ∈ S (M̂) and every i ∈ {1, . . . , n}. This is achieved by invoking the model
checking algorithm recursively.

In the second step, we must check whether Os is subsumed by O. Observe
first that it is not enough to simply check whether Os ⊆ O. This is because the
definition of M,π |= O(ϕ1, . . . , ϕn) determines which of the ϕj must be true at
a certain point on π, but allows additional ϕj to be true as well.

We solve this difficulty by introducing the notion of monotonicity (cf. [9]).
In order to define monotonicity of SE-AΩ consider two ω-regular languages O
and O′ over m that satisfy: for every w = w1w2 · · · ∈ O there exists w′ =
w′

1w
′
2 · · · ∈ O′ such that for every i ≥ 1, wi ⊆ w′

i. Then for every model M̂ ,

if M̂ |= AO′(ϕ1, . . . , ϕk) then M̂ |= AO(ϕ1, . . . , ϕk). For example, let m =
{m1,m2,m3}, and suppose that O = {m2}

ω and that Os = {m1,m2}
ω. Then

M̂, s |= AOs(ϕ1, ϕ2, ϕ3) and, thanks to monotonicity, M̂, s |= AO(ϕ1, ϕ2, ϕ3)
as well, even though Os 6⊆ O. It is clear that what is in fact required is to check
whether Os ⊆ ↑O, where ↑O = ({m2}+{m1,m2}+{m2,m3}+{m1,m2,m3})

ω.
The language ↑O is called the monotonic closure of O and, intuitively, is obtained
by replacing in O every occurrence of a set of markers m′ ⊆ m by the sum of all
the sets of markers m′′ such that m′ ⊆ m′′ ⊆ m. Formally:



Definition 6 (Monotonic Closure). Let B = (SB , IB , 2
m,TB ,AccB) be a

Büchi automaton accepting some ω-regular language O. The monotonic clo-
sure of O is the ω-regular language ↑O accepted by the Büchi automaton
↑B = (S↑B , I↑B , 2

m,T↑B ,Acc↑B) constructed from B as follows: S↑B = SB,
I↑B = IB, Acc↑B = AccB, and T↑B = {(q,m′′, q′) | ∃m′ ⊆ m′′ � (q,m′, q′) ∈ TB}.

The correctness of our two-step procedure is encapsulated by the following:

Theorem 2. M̂, s |= AO(ϕ1, . . . , ϕn) iff Os ⊆ ↑O.

The other cases (in which ϕ is not an ω-regular operator) are straightforward.

To summarize, M̂, s |= ϕ iff:

– p ∈ L̂(s) if ϕ = p and p 6∈ L̂(s) if ϕ = ¬p, where p ∈ AP .

– M̂, s |= ϕ1 and M̂, s |= ϕ2 if ϕ = ϕ1 ∧ ϕ2.

– M̂, s |= ϕ1 or M̂, s |= ϕ2 if ϕ = ϕ1 ∨ ϕ2.
– Os ⊆ ↑O if ϕ = AO(ϕ1, . . . , ϕn), where Os and ↑O are defined as above.

5.2 Counterexample Generation

Let M̂ be an LKS, s ∈ S (M̂), and ϕ be an SE-AΩ formula. Suppose that

M̂, s 6|= ϕ. In this section, we show how to compute a counterexample to ϕ, i.e.,

a fragment of M̂ beginning at state s that violates ϕ. As for the model-checking
algorithm of SE-AΩ, we give a recursive procedure:

– If ϕ = ϕ1 ∨ ϕ2, then compute counterexamples Ĉ1 and Ĉ2 to ϕ1 and ϕ2

respectively, and glue Ĉ1 and Ĉ2 at their initial states. Indeed, M̂, s 6|= ϕ1∨ϕ2

iff M̂, s 6|= ϕ1 and M̂, s 6|= ϕ2.
– If ϕ = ϕ1∧ϕ2, then compute a counterexample either to ϕ1 or to ϕ2. Indeed,
M̂, s 6|= ϕ1 ∧ ϕ2 iff M̂, s 6|= ϕ1 or M̂, s 6|= ϕ2.

– If ϕ = AO(ϕ1, . . . , ϕn), proceed as follows. Since M̂, s 6|= ϕ, there exists a

pattern in Os that is not in ↑O. Let π = s0
m0−→ s1

m1−→ . . . (where s0 = s) be
an accepting path of Bs such that the ω-word m0m1 . . . does not belong to
↑O. From the theory of Büchi automata we know in fact that such a path can
be chosen to be lasso-like, i.e., end in an infinite loop. Recall now that by the

definition of the automaton Bs, each transition si
mi−→ s′i in TBs

corresponds

to a transition si
ai−→ s′i in T (M̂). Let therefore s0

a0−→ s1
a1−→ . . . be the

corresponding path of π in M̂ , itself also a lasso. This path then clearly
violates O(ϕ1, . . . , ϕn). To compute a counterexample to ϕ, it suffices to
take this path and to glue to each state si counterexamples to all formulas
ϕj such that M̂, si 6|= ϕj . (Note that, while the path is infinite, it comprises
only a finite prefix followed by an infinitely-repeating finite loop.)

Observe that the counterexample Ĉ thus obtained is an LKS that can be
viewed as a fragment of M̂ . If one desires a tree-like4 counterexample, one needs

4 Intuitively, a tree-like counterexample is an LKS whose underlying directed graph
only has cycles as strongly connected components. We refer the reader to [9] for an
extensive discussion of the subject.



simply duplicate states of M̂ during the construction of the counterexample to
avoid inadvertently creating strongly connected components that are not cycles.
In that case Ĉ will not technically be a fragment of M̂ but it will still be simulated
by it (Ĉ 6 M̂).

Owing to the direct manner in which the counterexample Ĉ is extracted from
the LKS M̂ , there is a canonical mapping ρ : S (Ĉ) → S (M̂) which satisfies the

following conditions: (i) ρ(init(Ĉ)) = init(M̂), (ii) for all q ∈ S (Ĉ), L(Ĉ)(q) =

L(M̂)(ρ(q)), and (iii) if (q, a, q′) ∈ T (Ĉ), then (ρ(q), a, ρ(q′)) ∈ T (M̂). We shall
make use of ρ later on in the refinement step.

Example 1. Figure 1 (a) shows an LKSM with AP(M) = {p, q},Σ(M) = {a, b},
and initial state S1. (b) shows the abstract quotient LKS MR induced by the
equivalence relation R having equivalence classes {S1, S2} and {S3, S4}. Let ϕ
be the formula (in CTL∗-like notation) AG({a} ⇒ A(p∨Xp∨XXp)). ϕ asserts
that on all paths, whenever the action a occurs from a state s, then the atomic
proposition p either holds at s or, along any path starting at s, in one of the
next two states. It is not hard to see that MR 6|= ϕ, and indeed (c) shows a

counterexample Ĉ illustrating this. The dotted arrows from Ĉ to MR represent
the canonical mapping ρ.
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Fig. 1. (a) concrete LKS M ; (b) Abstract LKS MR; (c) counterexample bC; (d) refined

abstract LKS MR
′

.

Observe, however, that the counterexample is in fact spurious. Indeed, the
abstract LKS MR′

pictured in (d) is a refinement of MR induced by the equiv-
alence relation R′ having equivalence classes {S1}, {S2}, and {S3, S4}. Since
MR′

|= ϕ, we conclude that M |= ϕ as well.



5.3 Counterexample Validation

Suppose that M̂, s 6|= ϕ for some SE-AΩ formula ϕ, and let Ĉ be a counterex-

ample to ϕ. Recall that M̂ is an abstraction of a concrete LKS M . We say that
Ĉ is a valid counterexample iff Ĉ 6 M . Indeed, from Lemma 2 we get:

Theorem 3. Let ϕ be an SE-AΩ formula. If Ĉ 6 M and Ĉ 6|= ϕ, then M 6|= ϕ.

Intuitively, this holds because SE-AΩ formulas describe properties that are quan-
tified over all possible paths of the structure.

This result suggests a way to formally check whether a counterexample Ĉ is
valid for a concrete system M or not. However, as mentioned earlier, when M is
a concurrent C program built of components M1, . . . ,Mn, we are faced with the
problem that even if each componentMi has a finite state space, constructing the
state space of M might be prohibitive in practice due to exponential blowup. To
overcome this problem, we propose to check if the concrete system M simulates
the counterexample Ĉ in a compositional way by checking whether for every
i ∈ {1, . . . , n}, Mi weakly simulates the ith projection of Ĉ.

Definition 7 (ith Projection). Let M = M1‖ . . . ‖Mn be a parallel compo-

sition of LKSs, and let Ĉ be a further LKS. For any i ∈ {1, . . . , n}, Ĉ �i

is the LKS defined by: (i) S (Ĉ �i) = S (Ĉ), (ii) init(Ĉ �i) = init(Ĉ), (iii)

AP(Ĉ �i) = AP(Mi), (iv) for any s ∈ S(Ĉ �i), L(Ĉ �i)(s) = L(Ĉ)(s) ∩ L(Mi),

(v) Σ(Ĉ�i) = Σ(Mi) ∪ {τ}5, and (vi) T (Ĉ�i) is defined as follows:

– If (s, a, s′) ∈ T (Ĉ) and a ∈ Σ(Mi) then (s, a, s′) ∈ T (Ĉ�i).

– If (s, a, s′) ∈ T (Ĉ) and a 6∈ Σ(Mi) then (s, τ, s′) ∈ T (Ĉ�i).

The introduction of τ actions also naturally leads to a weak version of sim-
ulation, which we define next specialized to the case in which only the system
being simulated is capable of performing τ ’s.

Definition 8 (Weak Simulation). Let Ĉ and M be LKSs such that Σ(Ĉ) =

Σ(M) ∪ {τ} and AP (Ĉ) = AP (M). A relation R ⊆ S (Ĉ) × S (M) is said to be
a weak simulation relation iff R satisfies the following conditions:

1. If (s1, s2) ∈ R then L(Ĉ)(s1) = L(M)(s2).

2. For any s1, s
′
1 ∈ S (Ĉ), s2 ∈ S (M), and a ∈ Σ(Ĉ) \ {τ}, if (s1, s2) ∈ R and

s1
a

−→ s′1 then there exists s′2 ∈ S (M) such that s2
a

−→ s′2 and (s′1, s
′
2) ∈ R.

3. For any s1, s
′
1 ∈ S (Ĉ) and s2 ∈ S (M), if (s1, s2) ∈ R and s1

τ
−→ s′1 then

(s′1, s2) ∈ R.

For two LKSs Ĉ and M , if there exists a weak simulation relation R such
that (init(Ĉ), init(M)) ∈ R then we say that Ĉ is weakly simulated by M and

denote this by Ĉ 4 M .

5 We assume that τ is a fresh action not otherwise present in the alphabet of LKSs.



The following key result forms the basis of our compositional approach to
counterexample validation.

Theorem 4 (Compositionality). Let M1, . . . ,Mn be LKSs and let Ĉ be a

further LKS. Then Ĉ 6 (M1‖ . . . ‖Mn) iff Ĉ�i 4 Mi for 1 ≤ i ≤ n.

Proof. (Sketch.) Consider the case n = 2; the general case is handled in a similar

manner. Suppose first that Ĉ 6 M1‖M2. Let R ⊆ S(Ĉ) × S(M1‖M2) be a
corresponding simulation relation. Define R1 = {(s, s1) | ∃s2 �

(
s, (s1, s2)

)
∈ R},

and R2 = {(s, s2) | ∃s1 �
(
s, (s1, s2)

)
∈ R}. It is readily verified that R1 (resp. R2)

is a weak simulation relation between Ĉ�1 and M1 (resp. Ĉ�2 and M2). Therefore

Ĉ�1 4 M1 and Ĉ�2 4 M2.
In the other direction, let R1 and R2 be two weak simulation relations wit-

nessing Ĉ�1 4 M1 and Ĉ�2 4 M2 respectively. Let R = {
(
s, (s1, s2)

)
| (s, s1) ∈

R1 ∧ (s, s2) ∈ R2}. It is easy to check that R is a simulation relation between Ĉ

and M1‖M2, as required. ut

Putting everything together, we get:

Corollary 1. Let M1, . . . ,Mn be LKSs, ϕ an SE-AΩ formula, and Ĉ an ab-
stract counterexample to M1‖ . . . ‖Mn |= ϕ. Then Ĉ is a valid counterexample

iff Ĉ�i 4 Mi for every i ∈ {1, . . . , n}.

Checking whether Ĉ�i 4 Mi is done in a standard manner by a fixpoint
computation of the maximal weak simulation relation between Ĉ�i and Mi.

5.4 Abstraction Refinement

We now describe our counterexample-guided refinement procedure. Suppose that
Ĉ 66 M ; then the counterexample Ĉ is spurious, and we need to refine our ab-
straction M̂ = M̂1‖ . . . ‖M̂n. We achieve this by examining each of the abstrac-

tions M̂i individually: for i ∈ {1, . . . , n}, we refine M̂i if Ĉ�i 64 Mi. To this end,

fix j an index in {1, . . . , n} such that Ĉ�j 64 Mj . Recall that M̂j is a quotient LKS

of the form M
Rj

j , where Rj is an equivalence relation on S(Mj). Our refinement
step consists in producing a strictly finer equivalence relation than Rj .

Recall the canonical mapping ρ : S (Ĉ) → S (M̂) defined in Section 5.2, and

let ρj : S (Ĉ) → S (M̂j) be its corresponding jth projection. We have:

Lemma 3. Suppose that for any s ∈ S (Ĉ), any a ∈ Enabled(s), and any s1, s2 ∈

ρj(s), we have that AbsSucc(s1, a) = AbsSucc(s2, a). Then Ĉ�j 4 Mj.

Since, by assumption, Ĉ�j 64 Mj , it follows from Lemma 3 that there exist a

state s ∈ S (Ĉ), an action a ∈ Enabled(s), and two states s1, s2 ∈ ρj(s) such that
AbsSucc(s1, a) 6= AbsSucc(s2, a). Let R′

j be a new equivalence relation derived
from Rj by sub-partitioning the equivalence class ρj(s) as follows: q, q′ belong to



the same sub-partition iff AbsSucc(q, a) = AbsSucc(q′, a). R′
j is clearly a proper

refinement of Rj , and is moreover admissible since Rj was admissible. It should

be noted that the refined abstract LKS M
R′

j

j is however not guaranteed to refute

the (projected) counterexample Ĉ�j .

As an example, Figure 1 shows the abstract LKS MR and its refinement MR′

which, in this case, refutes the spurious counterexample Ĉ.
Since the refinement procedure always yields a proper refinement and since

each LKS is finite, the CEGAR-based SE-AΩ verification algorithm always ter-
minates. In particular, spurious counterexamples are always eventually refuted.

6 Experimental Evaluation

We implemented our compositional approach for verification of branching-time
logics as part of the ComFoRT reasoning framework, which is based on the C
model checker magic developed at Carnegie Mellon [2, 22]. magic extracts finite
LKS models from C programs. We applied our model checking algorithm to
verify a set of benchmarks whose abstract models were automatically extracted
by magic.

Here, we report on the verification of a piece of code provided by our in-
dustrial partner, one of the market leading robot manufacturers worldwide. We
analyzed the IPC (InterProcess Communication) protocol used to mediate com-
munication in a multi-threaded robot controller program. We model checked the
synchronous communication portion of the IPC protocol which was implemented
in terms of messages passed between queues owned by different threads. In the
synchronous communication protocol, a sender sends a message to a receiver and
blocks until an answer is received or it times out. A receiver asks for its next
message and blocks until a message is available or it times out. Whenever the
receiver gets a synchronous message, it is then expected to send a response to
the message’s sender. The target of our verification was to validate this commu-
nication scheduling.

We specified a set of more than twenty SE-AΩ properties most of which
were expressed using both states and events. That was required to make proper
assertions on the communication actions carrying data. Sample properties that
were verified are summarized in Table 1.

The first property expresses the fact that whenever the message queue re-
ceives a request to queue a new message (p1) when the queue is full (p2) or
receives a request to retrieve a message (p3) when the queue is empty (p4),
then it enters an error state (p5). In this property propositions p1, p3 are events
addMessage, takeMessage respectively, p2: numMessages == queue size and p4:
numMessages == 0 are the guards of events p1, p2, and p5: error == 1 is a condi-
tion of the queue error state. The second property in Table 1 is a general descrip-
tion of a claim that states that if some condition (p1) is true, then an action (p2)
will eventually occur. We checked the following instances of this property: p1 was
set to define a condition consisting of the event begin ReadMessageQueue and the



Table 1. Verification properties

N Property IPC Domain Description Informal Description

1 AG(((p1 ∧ p2)
∨ (p3 ∧ p4)) →

AG p5)

Whenever the message queue receives
a request to queue a new message (p1)
when the queue is full (p2) or receives a
request to retrieve a message (p3) when
the queue is empty (p4), then along all
paths it enters an error state (p5)

If a condition ((p1 ∧ p2)
∨ (p3 ∧ p4)) holds, then
assertion (p5) holds glob-
ally for each execution
path.

2 AG(p1 → AF
p2)

If a condition (p1) true, then action
(p2) will eventually occur

For each execution path
if a condition (p1) is
true, then it will eventu-
ally result in action (p2).

state assertion numMessages == 0 (begin ReadMessageQueue ∧ numMessages
== 0); p2 was defined for the following choices: an event ReadMessageQueue
(i) retrieves a message from the queue; (ii) calls PulseEvent; (iii) does not time-
out.

In our experiments SE-AΩ has been extremely useful for both (i) specifying
the branching structure of the protocol executions and (ii) for to making as-
sertions on both communications and data valuations. For example, Property 1
from Table 1 both makes use of branching and combines states and actions.

7 Conclusions and Future Work

In this paper we presented a framework for verifying branching-time temporal
logic specifications on concurrent software systems. We defined a powerful uni-
versal branching-time logic, SE-AΩ, that incorporates the ability to make asser-
tions about both states (data) and events (communication). This logic provides
flexibility in specifying properties of complex distributed software systems.

We also presented a compositional abstraction-based model checking algo-
rithm for SE-AΩ. This algorithm increasingly refines abstractions of the system
under consideration based on an analysis of branching counterexamples to the
specification that it generates. In this way the state explosion problem is delayed
for significantly longer than if the entire system were model-checked up front.
To the best of our knowledge, this is the first counterexample-guided, composi-
tional abstraction refinement scheme to perform verification of branching-time
specifications. The key ingredient enabling our compositional approach is a new
result relating simulation and weak simulation relations for parallel processes.

For future work, we would like to evaluate the expressiveness of the SE-AΩ
logic in comparison to other universal logics, and estimate the complexity of our
algorithm.

Acknowledgements. We thank the anonymous referees for their careful read-
ing and many insightful suggestions.
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