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Abstract. This paper investigates the time-bounded version of the reachability
problem for hybrid automata. This problem asks whether a given hgbtiomma-

ton can reach a given target location witflintime units, wheréT is a constant
rational value. We show that, in contrast to the classical (unboundachability
problem, the timed-bounded versiordiscidablefor rectangular hybrid automata
provided only non-negative rates are allowed. This class of systerhpriaatical
interest and subsumes, among others, the class of stopwatch autdreatso
show that the problem becomes undecidable if either diagonal constabntth
negative and positive rates are allowed.

1 Introduction

The formalism of hybrid automata [1] is a well-establishedd®l for hybrid systems
whereby a digital controller is embedded within a physiecali®nment. The state of a
hybrid system changes both through discrete transitiotisso€ontroller, and continu-
ous evolutions of the environment. The discrete state ofylséem is encoded by the
location ¢ of the automaton, and the continuous state is encodeddiywalued vari-
ablesX evolving according to dynamical laws constraining the fiesivativeX of the
variables. Hybrid automata have proved useful in many aafitins, and their analysis
is supported by several tools [6, 5].

A central problem in hybrid-system verification is treachability problemwhich
is to decide if there exists an execution from a given initghtion/ to a given goal
location/’. While the reachability problem is undecidable for simplessks of hybrid
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automata (such as linear hybrid automata [1]), the deditiafiontier of this problem

is sharply understood [7, 8]. For example, the reachalplibblem is decidable for the
class of initialized rectangular automata where (i) the ftmmstraints, guards, invari-
ants and discrete updates are defined by rectangular dotswéthe forma < & < b
orc < z < d (wherea, b, c,d are rational constants), and (ii) whenever the flow con-
straint of a variable: changes between two locatiohand/’, thenz is reset along the
transition from¢ to ¢’. Of particular interest is the class of timed automata winch
special class of initialized rectangular automata [2].

In recent years, it has been observed that new decidalektylts can be obtained
in the setting of time-bounded verification of real-timetsyss [10, 11]. Given a time
boundT € N, the time-bounded verification problems consider onlydsawith dura-
tion at mostT. Note that due to the density of time, the number of discretesitions
may still be unbounded. Several verification problems foetl automata and real-time
temporal logics turn out to be decidable in the time-bounfdachework (such as the
language-inclusion problem for timed automata [10]), ob&of lower complexity
(such as the model-checking problem KoTL [11]). The theory of time-bounded veri-
fication is therefore expected to be more robust and beteaaed in the case of hybrid
automata as well.

Following this line of research, we revisit the reachapiptoblem for hybrid au-
tomata with time-bounded traces. Thime-bounded reachability problefor hybrid
automata is to decide, given a time bouRde N, if there exists an execution of du-
ration less tharT from a given initial locatior? to a given goal locatiort’. We study
the frontier between decidability and undecidability fbrstproblem and show how
bounding time alters matters with respect to the classezdhrability problem. In this
paper, we establish the following results. First, we shaat the time-bounded reacha-
bility problem isdecidablefor non-initialized rectangular automata when only pesiti
rates are allowed The proof of this fact is technical and, contrary to mostidil-
ity results in the field, does not rely on showing the exiséeatan underlying finite
(bi)simulation quotient. We study the properties of timmshded runs and show that if
a location is reachable withil time units, then it is reachable by a timed run in which
the number of discrete transitions can be bounded. Thigimailows us to reduce the
time-bounded reachability problem to the satisfiabilityaoformula in the first-order
theory of real addition, decidable EXPSPACE [4].

Second, we show that the time-bounded reachability protideumdecidablefor
non-initialized rectangular hybrid automata if both pwsitand negative rates are al-
lowed. Third, we show that the time-bounded reachabiligbpgm isundecidablefor
initialized rectangular hybrid automata with positive gitar flows if diagonal con-
straints in guards are allowed. These two undecidabilgylte allow to precisely char-
acterize the boundary between decidability and undeditabi

The undecidability results are obtained by reductions fthenhalting problem for
two-counter machines. We present novel encodings of theusioa of two-counter
machines that fit into time-bounded executions of hybricdenata with either negative
rates, or diagonal constraints.

® This class is interesting from a practical point of view as it includes, anotingrs, the class
of stopwatch automata [3], for which unbounded reachability is undelgda



2 Definitions

LetZ be the set of intervals of real numbers with endpointé in { —co, +oo}. Let X

be a set of continuous variables, andXet= {z’ | z € X} andX = {i | z € X} be
the set of primed and dotted variables, corresponding otisply to variable updates
and first derivatives. Aectangular constrainbver X is an expression of the forme I
wherex belongs toX and/ to Z. A diagonal constrainbver X is a constraint of the
formz — y ~ ¢ wherex, y belong toX, cto Z, and~ is in {<, <,=,>, >}. Finite
conjunctions of diagonal and rectangular constraints dvare calledguards over X
they are calledate constraintsand overX U X’ they are calledipdate constraintsA
guard or rate constraint igctangularif all its constraints are rectangular. An update
constraint igectangularif all its constraints are either rectangular or of the farms .
We denote by (X), R (X),U (X) respectively the sets of guards, rate constraints, and
update constraints ove¥.

Linear hybrid automata.A linear hybrid automatorfLHA) is a tupleH = (X, Loc,
Edges, Rates, Inv, Init) where X = {z1,...,z|x|} is a finite set of continuousari-
ables Loc is a finite set oflocations Edges C Loc x G (X) x U (X) x Loc is a
finite set ofedges Rates : Loc — R (X) assigns to each location a constraint on the
possible variable ratednv : Loc — G (X) assigns afnvariant to each location; and
Init € Loc is aninitial location. For an edge = (¢, g,r,¢'), we denote bygrc (¢) and
trg (e) the location/ and?’ respectivelyg is called theguard of e andr is theupdate
(orrese) of e. In the sequel, we denote bynax the maximal constant occurring in the
constraints of Rates(?) | ¢ € Loc}

A LHA H is singular if for all locations/ and for all variables: of H, the only
constraint over: in Rates(¢) is of the formi € I wherel is a singular interval; it is
fixed rateif for all variablesx of H there existd,, € 7 such that for all locationéof H,
the only constraint oti: in Rates(¢) is the constraint € I,.. It is multirateif it is not
fixed rate. It isnon-negative raté for all variablesx, for all locations/, the constraint
Rates(¢) implies thati must be non-negative.

Rectangular hybrid automataA rectangular hybrid automatofRHA) is a linear hy-
brid automaton in which all guards, rates, and invariargs@ctangular. In this case, we
view each reset as a functionX’ — Z U { L} that associates to each variable X
either an interval of possible reset valu€s), or L when the value of the variable
remains unchanged along the transition. When it is the cage (th) is either L or a
singular interval for eacls, we say that- is deterministic In the case of RHA, we can
also view rate constraints as functioRates : Loc x X — 7 that associate to each
location? and each variable an interval of possible ratd%ates(¢)(x). A rectangular
hybrid automatori is initialized if for every edgg(¢, g, r, ¢') of H, for everyz € X, if
Rates(¢)(z) # Rates(¢')(z) thenr(z) # L, i.e., every variable whose rate constraint
is changed must be reset.

LHA semantics.A valuationof a set of variablesY is a functionr : X — R. We
further denote by the valuation that assigristo each variable.



Given an LHAH = (X, Loc, Edges, Rates, Inv, Init, X ), a stateof H is a pair
(¢,v), wherel € Loc andv is a valuation ofX. The semantics of{ is defined as
follows. Given a stata = (¢,v) of H, anedge ste¢,v) = (¢',v') can occur and
change the state t@’, /) if ¢ = (¢, 9,7, ¢') € Edges, v = g, V' (z) = v(x) for all x
st.r(z) = L, andv/(z) € r(x) for all z s.t.r(z) # L; given a time delay € R,
a continuous time step/, v) 5 (¢,v") can occur and change the state(tov’) if
there exists a vector = (r1,...7x|) such that |= Rates({), v’ = v + (r - t), and
v+ (r-t) Elnv(f) forall 0 <¢ <t.

A pathin H is a finite sequence , eo, . . ., e,, Of edges such thatg (e;) = src (e;+1)
forall1 <i < mn—1.Acycleis a pathey, eq, .. ., e, such thatrg (e,,) = src(eq). A
cycleey, es, ..., e, issimpleif src(e;) # src(e;) for all i # j. A timed pathof H is a
finite sequence of the form = (t1,e1), (t2,€2), ..., (tn,en), Suchthaey,... e, isa
path inH andt; € R™ for all 0 < i < n. We lift the notions of cycle and simple cycle
to the timed case accordingly. Given a timed patk= (t1,e1), (t2,€2),..., (tn, en),
we denote byr(i : j] (with 1 < i < j < n)the timed pathit;,e;), ..., (t;,e;).

A runin H is a sequencey, (to, eg), s1, (t1,€1), - -+, (tn—1, €n—1), Sn SUCh that:

— (to, 60), (tl, 61), ey (tn—l, €n_1) is a timed path i, and
— forall 1 < i < n, there exists a staté of  with s; — s/ <5 s;,.

Given a runp = sg, (to,€p),...,8n, letfirst(p) = so = (o,0), last(p) = sn,
duration (p) = Z?;ll t;, and|p| = n + 1. We say thap is (¢) strictif ¢; > 0 for all
1 < i < n-—1; (it) k-variable-boundedfor &k € N) if vy(x) < kforall z € X, and
S; L, (¢;,v;) implies thaty;(z) < k forall 0 < i < n; (#i) T-time-boundedfor
T € N) if duration (p) < T.

Note that a unique timed patfPath (p) = (to,e0), (t1,€1),- -+, (tn-1,€n-1), IS
associated to each ryn= s, (to, €0), 81, - - - (tn—1,€n—1), Sn. HENCE, we sometimes
abuse notation and denote a puwith first (p) = sq, last (p) = s andTPath (p) = 7
by sy — s. The converse however is not true: given a timed patand an initial
statesy, it could be impossible to build a run starting framand followingn because
some guards or invariants aloagmight be violated. However, if such a run exists it is
necessarily uniqueshen the automaton is singular and all resets are deterriinis
that case, we denote Run (so, 7) the function that returns the unique rprsuch that
first (p) = so andTPath (p) = = if it exists, and L otherwise.

Time-bounded reachability problem for LHAVhile the reachability problem asks to
decide the existence of any timed run that reaches a givenayzdion, we are only
interested in runs having bounded duration.

Problem 1 (Time-bounded reachability proble@)ven an LHAH = (X, Loc, Edges,
Rates, Inv, Init), a locationGoal € Loc and a time bound € N, thetime-bounded

reachability problemis to decide whether there exists a finite run= (Init,0) =
(Goal, -) of H with duration (p) < T.

In the following table, we summarize the known facts regagdiecidability of the
reachability problem for LHA, along with the results on titheunded reachability that



we prove in the rest of this paper. Note that decidabilityirfidialized rectangular hybrid
automata (IHRA) follows directly from [7]. We show decidbtyi for (non-initialized)
RHA that only have non-negative rates in Section 3. The uddédity of the time-
bounded reachability problem for RHA and LHA is not a consswe of the known
results from the literature and require new proofs that arengin Section 4.

HA classes ReachabilitjTime-Bounded Reachability
LHA U 1] U (see Section 4)
RHA Ul7] U (see Section 4)
non-negative rates RHA U [7] D (see Section 3)
IRHA D[7] D[7]

3 Decidability for RHA with Non-Negative Rates

In this section, we prove that the time-bounded reachglplioblem isdecidablefor
the class of (non-initializedjectangularhybrid automata havingon-negative rates
while it is undecidabldor this class in the classical (unbounded) case [7]. Nattthis
class is interesting in practice since it contains, amomhgrst the important class of
stopwatch automata significant subset of LHA that has several useful apptoat[3].
We obtain decidability by showing that for RHA with non-néga rates, a goal location
is reachable withirT time units iff there exists a witness run of that automatoiictvh
reaches the goal (withif' time units) by a rurp of length|p| < KX where K}
is a parameter that depends 'Brand on the size of the automatéf Time-bounded
reachability can thus be reduced to the satisfiability ofrenfda in the first order theory
of the reals encoding the existence of runs of length at fidétand reachingzoal.

For simplicity of the proofs, we consider RHA with the followg restrictions: (i) the
guardsdo not contain strict inequalitiegnd (ii) the rates arsingular. We argue at the
end of this section that these restrictions can be made utithes of generality. Then,
in order to further simplify the presentation, we show howgyatactically simplify the
automaton while preserving the time-bounded reachalpilitperties. The details of the
constructions can be found in the appendix.

Proposition 1. Let H be a singular RHA with non-negative rates and without strict
inequalities, and leGoal be a location ofH{. We can build a hybrid automatd’ with
the following the properties:

H; M’ is a singular RHA with non-negative rates

H, H’ contains only deterministic resets

H; for every edgd?, g,r,¢') of H', g is eithertrue or of the formz; = 1 A zy =
IN---Azp=1,andr =2 =0A---Az) =0.

and a set of location$' of H’ such thatH{ admits aT'-time bounded run reachinGoal
iff H' admits a strictl-variable-bounded, an@'-time bounded run reaching.

Proof (Sketch)The proof exposes three transformations that we apply o order to
obtainH’. The first transformation turr® into DetReset (), containing determinis-
tic resets only. The idea is to replace (non-determinisésgts ir{ with resets td in



DetReset (H) and to compensate by suitably altering the guards of sulesédransi-
tions in DetReset (). To achieve this, locations iDetReset () are elements of the
form (¢, p), where( is a location ofH and p associates an interval to each variable,
wherep(j) represents the interval in which variahlewas last reset.

With the second transformation, we can restrict our angalysiuns where the vari-
ables are bounded bly The idea is to encode the integer parts of the variablesen th
locations, and to adapt the guards and the resetsHLbe an RHA obtained from the
first step, with maximal constantmax. We build CBound (H’) whose locations are of
the form(¢,1i), where/ is a location ofH’, andi is a function that associates a value
from {0, ..., cmax} to each variable. Intuitivelyi(j) represents the integer partof
in the original run ofH’, whereas the fractional part is tracked by (hence all the
variables stay in the interv@), 1]). Guards and resets are adapted consequently.

The third and last construction allows to consider only nwrhere time is strictly in-
creasing. We describe it briefly assuming all the invarianésrue to avoid technicali-
ties. Consider a sequence of edges and null time delays fifthe:;, 0, 5,0, ...,0, ¢,
(remark that this sequence ends and starts with an edgeg 8irtime delays are null,
the only effect of firing such as sequence is to reset (to zgtbéfirst construction) all
the variables that are reset by one of ¢h's. Thus, this sequence can be replaced by a
single edge = (¢, g, r, ¢') with the same effect, that is, whefés the origin ofey, ¢ is
the destination of,,, r resets to zero all the variables that are reset by one ef thand
g summarizes the guards of all thgs (taking the resets into account). Moreover, we
only need to consider sequences wheres, . .., e, is a path where each simple loop
appears at most once (traversing a second time a simple loolawnly reset variables
that are already equal to zero because the time delays dyeTuls, the construction
amounts to enumerate all the possible patlvehere each simple loop appears at most
once, and to add to the automaton an edgé¢hat summarizeg as described above.
Since there are finitely many suetthe construction is effective.

As a consequence, to prove decidability of time-boundechaaility of RHA with non-
negative rates, we only need to prove that we can decide ehathRHA respecting
H; throughH3; admits astrict run p reaching the goal withifl' time units, and where
all variables are bounded lyalongp.

Bounding the humber of equalitieds a first step to obtain a witness of time-bounded
reachability, we bound the number of transitions guardeédalities along a run of
bounded duration:

Proposition 2. LetH be an LHA, with set of variable¥ and respecting hypothedis
throughHs. Letp be aT-time bounded run of.. Then,p contains at mostX |- rmax-T
transitions guarded by an equality.

Bounding runs without equalitied)nfortunately, it is not possible to bound the number
of transitions that do not contain equalities, even alongna-ounded run. However,
we will show that, given a time-bounded rgrwithout equality guards, we can build a
run p’ that is equivalent te (in a sense that its initial and target states are the same),
and whose length iboundedby a parameter depending on the size of the automaton.
More precisely:



Proposition 3. Let’H be an RHA with non-negative rates. For ahyariable bounded
and —L—-time bounded rum = sy — s of H that contains no equalities in the

rmax-+1
guards,H admits al-variable bounded and—rmalxﬂ—time bounded rup’ = sy — s
such thatp/| < 2|X| + (2|X| + 1) - |Loc]| - (2(Fdeesl+1) 1 1),

Note that Proposition 3 applies only to runs of duration as%. However,
this is not restrictive, since ari¥-time-bounded run can always be split into at most
T (rmax+1) subruns of duration at morsntmlxﬁ, provided that we add a self-loop with
guardtrue and no reset on every location (this can be done without Ibgsmerality
as far as reachability is concerned).

To prove Proposition 3, we rely on@ntraction operatiorthat receives dmed
pathand returns another one of smaller length. ket (¢1,e1), (t2,¢e2),..., (tn, en)
be a timed path. We definént () by considering two cases. Lg¢t k, j/, k' be four
positions such that < j < k < j° < k' < nande;...ex = € ...¢ is asimple
cycle If suchy, k, 5/, k' exist, then let:

Cnt(m)=m[l:5—1](ej,tj+tjr) - (en,tp +tw) whk+1:5 =1 -7k +1:n]

Otherwise, we letCnt () = . Observe that andCnt () share the same source and
target locations, even whetjk’ + 1 : n] is empty.

Then, given a timed path, we letCnt’ (r) = 7, Cnt’ (1) = Cnt (Cnt'" (7)) for
anyi > 1, andCnt” (7) = Cnt" (mr) wheren is the least value such th@ht" () =
Cnt™! (7). Clearly, sincer is finite, and sincéCnt (7)| < |x| or Cnt (x) = = for
anym, Cnt* (7) always exists. Moreover, we can always bound the lengtinof (7).
This stems from the fact th&nt* () is a timed path that contains at most one occur-
rence of each simple cycle. The length of such paths can bededuusing classical
combinatorial arguments.

Lemma 1. For any timed pathr of an LHAH with |Loc| locations andEdges| edges:
|Cnt* ()] < |Loc]| - (2(Edsesl+1) 4 1),

Note that the contraction operation is purely syntactic\wocks on the timed path

only. Hence, given a rug, = s, we have no guarantee thBtin (sq, Cnt* (7)) #

L. Moreover, even in the alternative, the resulting run migat, Lo’ (), s’ with

s # s'. Nevertheless, we can show thatt* () preserves some propertiesaf For

atimed pathr = (t1,e1), ..., (tn, en) Of an LHA H with rate functionRates, we let

Effect (r,z) = >, Rates(¢;)(x) - t;, where/; is the initial location ofe; for any

1 < i < n. Note thus that, for any ruft, v) = (¢, '), for any variabler which is not

reset alongr, v/ (z) = v(z) + Effect (7, z). It is easy to see th&nt" (7) preserves the
effect of . Moreover, the duration dint™ (7) andr are equal.

Lemma 2. For any timed pathr: (¢) duration (7) = duration (Cnt* (7)) and (i:) for
any variablez: Effect (7, x) = Effect (Cnt* (7) , x).

We are now ready to show, given a timed patfwith duration (7) < rm;xH and
without equality tests in the guards), how to build a timethp@ontraction (7) that

fully preserves the values of the variable, as stated ind%itipn 3. The key ingredient




to obtainContraction () is to applyCnt* to selected portions ef, in such a way that
for each edge: that resets a variable for tHest or thelast time along, the time
distance between the occurrence @ind the beginning of the timed path is the same in
both7 andContraction (7).

The precise construction goes as follows. ket (¢1,e1),. .., (tn,e,) be atimed
path. For each variable, we denote by5T the set of positions such that; is either
thefirst or thelast edge inx to resetr (hence|ST| € {0, 1,2} for anyz). Then, we
decomposer as:my « (i, €i,) - T2 - (tigs€iy) -+ (tiy, €4y, ) » Trr With {iq, ... ik} =
U, ST. From this decomposition of, we letContraction (7) = Cnt™ (m1) - (ti,, €4,) -
Cnt™ (m2) - (tiy, €55) - -+ (tiy, €3, ) - Cnt” (Teqn).

We first note that, thanks to Lemma|Cpntraction ()| is bounded.

Lemma 3. Let H be an LHA with set of variabl&, set of edge&dges and set of
location Loc, and letr be a timed path of{. Then|Contraction (7)| < 2- | X| 4 (2-
|X|+ 1) - |Loc| - (2(/Bdeesl+1) 4 1),

We can now prove Proposition 3.

Proof (Sketch — Proposition 3)et 7 = TPath (p) and letr’ denoteContraction (7).
We letp’ = sq -, (¢',v"), and provg(i) that firing 7’ from sy will always keep all the
variable values< 1, which impliesRun (s, 7') # L, and(ii) thatp = so = (¢,v)
implies¢’ = ¢ andv = /. These two points hold becauderation (Cnt* (7)) =
duration (7;) for any j. Hence, the first and last resets of each variable happer at th
same time (relatively to the beginning of the timed path)athbr andContraction (7).
Intuitively, preserving the time of occurrence of the fietet (of some variable) guar-
antees that will never exceed alongContraction (), asduration (Contraction (7)) =
duration (7) < ﬁ Symmetrically, preserving the last reset of some variable
guarantees that the final value ofwill be the same in bothr and Contraction (7).
Moreover, the contraction preserves the value of the vimsathat are not reset, by
Lemma 2.

Handling ‘<’ and non-singular ratesLet us now briefly explain how we can adapt the
construction of this section to cope with strict guards ama-singular rates. First, when
the RHAH contains strict guards, the RH&' of Proposition 1 will also contain guards
with atoms of the formx < 1. Thus, when building a ‘contracted pai#f’starting from

a pathp (as in the proof of Proposition 3), we need to ensure thaethe&t guards will
also be satisfied along. It is easy to use similar arguments to establish this: ifessom
guardz < 1 is not satisfied inp’, this is necessarily before the first resetmpfwhich
means that the guard was not satisfiegd @ither. On the other hand, to take non-singular
rates into account, we need to adapt the definition of timel. gatimed path is now
of the form (¢g, ro,€0) - - - (tn, ™, €n), Where eachr; is a vector of reals of sizgX|,
indicating the actual rate that was chosen for each variahken thei-th continuous
step has been taken. It is then straightforward to adapt ¢fiaitions of Cnt, Effect
and Contraction to take those rates into account and still keep the progestaged in
Lemma 1 and 3 and in Proposition 3 (note that we need to relh@wcdnvexity of the
invariants in RHA to ensure that proper rates can be foundwa@ding Cnt (7)).



Theorem 1. The time-bounded reachability problem is decidable fordlass of rect-
angular hybrid automata with non-negative rates.

Proof (Sketch)Given an RHAH, a boundK, and a goalGoal, we can build a for-
mula ¢ of FO(R, <, +) that is satisfiable ifff admits a run of length< K reaching
Goal. By Proposition 1 (and taking into account the above remtrlc®pe with strict
guards and rectangular rates), this is sufficient to dedide-bounded reachability on
RHA with non-negative rates. The required result now foBdvom the decidability of
satisfiability forFO(R, <, +). O

4 Undecidability Results

In this section, we show that the time-bounded reachahplioplem for linear hybrid
automata becomes undecidable if either both positive agdtive rates are allowed,
or diagonal constraints are allowed in the guards. Along Wit decidability result of
Section 3, these facts imply that the class of rectangularithautomata having positive
rates only and no diagonal constraints forms a maximal détédclass. Our proofs rely
on reductions from the halting problem for Minsky two-coenstmachines.

A two-counter machin@/ consists of a finite set of control stat@san initial state
qr € Q, afinal stategr € Q, a setC of counters [C] = 2) and a finite seb,,; of
instructions manipulating two integer-valued countemstductions are of the form:

qg: c:=c+1goto ¢, or
q: if ¢=0thengoto ¢’ elsec:=c¢— 1gotoq”.

Formally, instructions are tuplés, o, ¢, ¢') wheregq, ¢’ € Q are source and target states
respectively, the actioa € {inc,dec, 07} applies to the countere C.

A configurationof M is a pair(q, v) whereq € @ andv : C' — N is a valuation of
the counters. Amccepting rurof M is a finite sequence = (qo, v9)do(q1,v1)01 - . .
On—1(qn,vn) Whered; = (¢, a;, ¢, qi+1) € dpr are instructions anély;, v;) are con-
figurations of M such thatqy = q;, vo(¢) = O forall ¢ € C, ¢, = qr, and for
all 0 < i < n, we havev;1(c) = vi(c) for ¢ # ¢;, and (i) if « = inc, then
vit1(c) = vi(e;) + 1, (i) if a = dec, thenv;(¢;) # 0 andv;11(c;) = vi(e;) — 1,
and (iii) if & = 07, thenv;11(¢;) = v;i(¢;) = 0. Thehalting problemasks, given a two-
counter machind/, whetherM has an accepting run. This problem is undecidable [9].

Undecidability for RHA with negative rates. Given a two-counter machink/, we
construct an RHAH ,; (thus without diagonal constraints) such thathas an accepting
run if and only if the answer to the time-bounded reachahiibblem for(H ;,, Goal)
with time boundl is YES. The construction o, crucially makes use of both positive
and negative rates.

Theorem 2. The time-bounded reachability problem is undecidabledotangular hy-
brid automata even if restricted to singular rates.



Fig. 1. Gadget for division of a variable by k2. The variabley is internal to the gadget. The
duration of the division i® - (+ + 7= ) wherev is the value of: before division.

Proof (Sketch)First, remark that the main difficulty of the reduction is tacedeun-
boundedcomputations of\/ within aboundedime slot. The execution steps df are
simulated inH,; by a (possibly infinite) sequence ks within one time unit. The
ticks occur attimgg = 0,4, = 1 — %7152 =1- %, etc. The counters are encoded as
follows. If the value of countet € C afteri execution steps af/ is v(c), then the vari-
ablex. in Hjy, has valuewlm at timet;. Note that this encoding is time-dependent
and that the value of,. at timet; is always smaller thah — ¢; = -, and equal to}-

if the counter value i9. To maintain this encoding (if a counteris not modified in
an execution step), we need to dividg by 4 before the next tick occurs. We use the
divisor gadget in Fig. 1 to do this. Using the diagram in theifig it is easy to check
that the value of variable. is divided byk? wherek is a constant used to define the

variable rates. Note also that the divisionudfc.) by k2 takesv(z.) - (+ + 7z) time
units, which is less thaﬁ'”fl'—”“) for k > 2. Sincev(z.) < % at stept;, the duration of
the division is at mosﬁ = t;y1 — t;, the duration of the next tick.

The divisor gadget can also be used to construct an autorpgigrthat generates
the ticks. Finally, we obtaift{,,; by taking the product afd;;, with an automaton that
encodes the instructions of the machine. For example, asgutire set of counters is
C = {c,d} the instruction(g, inc, c¢,q’) is encoded by connecting a locatiépto a
location?,, synchronized with divisor gadgets that divigeby 16 andz, by 4 (details
omitted).

Undecidability with diagonal constraints. We now show that diagonal constraints
also leads to undecidability. The result holds even if ev@nyable has a positive, sin-
gular, fixed rate.

Theorem 3. The time-bounded reachability problem is undecidable fdAlthat use
only singular, strictly positive, and fixed-rate variables

Proof. The proof is again by reduction from the halting problem feotcounter ma-
chines. We describe the encoding of the counters and theéationuof the instructions.

Given a countet, we represent via two auxiliary countersy,.; andc, such that
1)(6) = U(Ctop) - U(Cbot)-
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Incrementing and decrementingire achieved by incrementing eithgs;, or cpot.
Zero-testing fore corresponds to checking whether the two auxiliary courttave the
same value. Therefore, we do not need to simulate decretizentdi a counter.

We encode the value of countegot using two real-valued variablesandy, by
postulating thatx — y| = ﬁ Both z andy have ratet = y = 1 at all times and
in all locations of the hybnd automaton. Incrementifg; how simply corresponds to
halving the value ofx — y|. In order to achieve this, we use two real-valued variables
z andw with ratez = 2 andw = 3.

All operations are simulated in ‘rounds’. At the beginninigaoround, we require
that the variables, y, z, w have respective val (cb ,0,0,0. We first explain how
we merelymaintainthe value of,, throughout a round:

1. Starting from the beginning of the round, let all varia®®olve untik: = z, which
we detect via a diagonal constraint. Recall thatolves at twice the rate of.

2. Atthat pointz = 5;2— andy = 5o —. Resetr andz to zero.

3. Now let all variables evolve until = z, and resey, z andw to zero. It is easy to
see that all variables now have exactly the same valuesybdideat the beginning
of the round. Moreover, the invariajt — y| = 5— is maintained throughout.

Note that the total duration of the above roung;jﬁzm. Toincrement,, we proceed

as follows:

1’. Starting from the beginning of the round, let all variak@eslve untilz = w. Recall
that the rate ofv is three times that of.

2’. Atthat point,x.: 2}% andy = 21,?;50” = 2,,(%100“. Resetr, z, andw to zero.

3’. Now let all variables evolve unti} = z, and resey, ~ andw to zero. We now have

x = and thus the value ¢f — y| has indeed been halved as required.

1
2“(Cbot)+1 1

Note that the total duration of this incrementation rounggis—, wherev(cpor) de-
notes the value of countey,,; prior to incrementation.

Clearly, the same operations can be simulated for coupigusing further auxil-
iary real-valued variables). Note that the durations ofrthwnds forcy,.: andcp, are
in general different—in facty,..-rounds are never faster thagp,,-rounds. But because
they are powers o%, it is always possible to synchronize them, simply by repegat
maintain-rounds foey,, until the round fore,,, has completed.

Finally, zero-testing the original countefwhich corresponds to checking whether
Cbhot = Ctop) IS achieved by checking whether the corresponding vatahhve the
same value at the very beginning ot;ga-round (since they,.- andcq,p-rounds are
then synchronized).

We simulate the second countéof the machine using further auxiliary counters
dpot @anddy,p. It is clear that the time required to simulate one instarcof a two-
counter machine is exactly the duration of the slowest rotitode however that since
CouNnterschot, Crops dbot, aNddsop are never decremented, the duration of the slowest
round is at mostz%, wherep is the smallest of the initial values of,; anddy,;. If a
two-counter machine has an accepting run of lengththen the total duration of the
simulation is at mos§Z:.

11



In order to bound this value, it is necessary before commenitie simulation to
initialize the countersy,q, cop, dbot, @aNAdy,p, t0 @ sufficiently large value, for example
any number greater thdng,(m) + 1. In this way, the duration of the simulation is at
most 1.

Initializing the counters in this way is straightforwardaBing with zero counters
(all relevant variables are zero) we repeatedly incremggt, ciop, dbot, anddie, a
nondeterministic number of times, via a self-loop. When eafcthese counters has
valuek, we can increment all four counters in a single round of dura% as explained
above. So over a time period of duration at mp3f” , & = 2 the counters can be
initialized to [log,(m) + 1].

Let us now combine these ingredients. Given a two-countethina M/, we con-
struct a hybrid automatoi ,, such thatM has an accepting run iff(,; has a run of
duration at most 3 that reaches the final statel.

‘H s uses the real-valued variables described above to encedetimters ofl/. In
the initialization phasek ,; hondeterministically assigns values to the auxiliary ecoun
ters, hence guessing the length of an accepting rul¥ pand then proceeds with the
simulation of M. This ensures a correspondence between an accepting fdraofl a
time-bounded run of{,, that reache&oal.
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