
Int J Softw Tools Technol Transfer (2009) 11:95–104
DOI 10.1007/s10009-009-0101-x

SPECIAL SECTION ON TACAS07

An abstraction-based decision procedure for bit-vector arithmetic

Randal E. Bryant · Daniel Kroening · Joël Ouaknine ·
Sanjit A. Seshia · Ofer Strichman · Bryan Brady

Published online: 12 February 2009
© Springer-Verlag 2009

Abstract We present a new decision procedure for finite-
precision bit-vector arithmetic with arbitrary bit-vector oper-
ations. Such decision procedures are essential components
of verifications systems, whether the domain of interest is
hardware, such as in word-level bounded model-checking of
circuits, or software, where one must often reason about pro-
grams with finite-precision datatypes. Our procedure alter-
nates between generating under- and over-approximations
of the original bit-vector formula. An under-approximation
is obtained by a translation to propositional logic in which
some bit-vector variables are encoded with fewer Boolean
variables than their width. If the under-approximation is
unsatisfiable, we use the unsatisfiable core to derive an
over-approximation based on the subset of predicates that
participated in the proof of unsatisfiability. If this over-
approximation is satisfiable, the satisfying assignment guides
the refinement of the previous under-approximation by
increasing, for some bit-vector variables, the number of Bool-
ean variables that encode them. We present experimental
results that suggest that this abstraction-based approach can

B. Brady, R. E. Bryant, and S. A. Seshia were supported in part by
SRC contract 1355.001. This research was also supported in part by
the MARCO Gigascale Systems Research Center and by NSF grant
CNS-0627734.

R. E. Bryant
Carnegie Mellon University, Pittsburgh, USA

D. Kroening · J. Ouaknine
Oxford University Computing Laboratory, Oxford, UK

S. A. Seshia · B. Brady
University of California, Berkeley, USA

O. Strichman (B)
The Technion, Haifa, Israel
e-mail: ofers@ie.technion.ac.il

be considerably more efficient than directly invoking the SAT
solver on the original formula as well as other competing
decision procedures.

Keywords Bit-vector · Decision-procedures

1 Introduction

Decision procedures for quantifier-free fragments of first-
order theories find widespread use in hardware and software
verification. Current uses of decision procedures fall into one
of two extremes. At one end, a Boolean satisfiability solver
is directly employed as the decision procedure, with systems
modeled at the bit-level. Sample applications of this kind
include bounded model checking [5,10] and SAT-based pro-
gram analysis [28]. At the other extreme, verifiers use deci-
sion procedures that reason over arbitrary-precision abstract
types such as the integers and reals (Z and R).

In reality, system descriptions are best modeled with a
level of precision that is somewhere in between. System
descriptions are usually at the word-level; i.e., they use finite-
precision arithmetic and bit-wise operations on bit-vectors.
Of course, reasoning about hardware designs or programs
written in languages that support finite-precision arithmetic,
such as C, are naturally modeled (or treated directly) at the
word-level. Ignoring the finiteness of the represented num-
bers can make a reasoning system unsound.

The following formula, for example, obviously holds over
the integers:

(x − y > 0) ⇐⇒ (x > y). (1)

If x and y are interpreted as finite-width bit-vectors, however,
this equivalence no longer holds, due to possible overflow of
the subtraction operation. As another example, consider the

123

96 R. E. Bryant et al.

following small C program:

unsigned char number = 200;
number = number+ 100;
printf("Sum : %d\n",number);

The program may return a surprising result, as most
architectures use 8 bits to represent variables with type
unsigned char:

11001000 = 200
+ 01100100 = 100
= 00101100 = 44

When represented with 8 bits by a computer, 200 is stored as
11001000. Adding 100 results in an overflow, as the ninth bit
of the result is discarded.

The direct use of a SAT solver as cited earlier (also known
as “bit-blasting”) is the conceptually simplest way to imple-
ment a bit-vector decision procedure, even though it ignores
higher-level structure present in the original decision prob-
lem.

Naïve bit-blasting is used, for example, in Microsoft, for
verifying device drivers. Cook et al. [11] report experimen-
tal results that quantify the impact of replacing Zapato, a
decision procedure for a fragment of linear arithmetic, with
Cogent, a bit-vector decision procedure based on bit-blasting.
The increased precision of Cogent not only improved the
performance of Slam, it also resulted in the discovery of a
previously unknown bug in a Windows device driver.

However, the bit-blasting approach can be too computa-
tionally expensive in practice (see, for example, [1]). There
is therefore a pressing need for better decision procedures for
bit-vector arithmetic.

What is this article about? We present a decision procedure
for quantifier-free bit-vector arithmetic that uses
automatic abstraction-refinement. This procedure is now
implemented in the verification system uclid, and we shall
call it by this name from hereon. Given an input bit-vector
formula φ, uclid first builds an under-approximation φ from
φ by restricting the number of Boolean variables used to
encode each bit-vector variable (see details of this encoding
in Sect. 3.1). The reduced formula is typically much smaller
and easier to solve. If φ is satisfiable, so is φ, and the algo-
rithm terminates. In case the Boolean formula is found to
be unsatisfiable, the SAT solver is able to output a reso-
lution proof of this fact, from which the unsatisfiable core
used in this proof can be extracted. Using this core, an over-
approximation φ is built. This over-approximation uses the
full set of bits of the original vectors, but only a subset of
the constraints. This subset is determined by examining the
unsatisfiable core of φ. If φ is unsatisfiable, so is φ, and
uclid terminates. Otherwise, the algorithm refines the under-
approximation φ by increasing, for at least one bit-vector
variable, the number of Boolean variables encoding it.

Specifically, the new size is implied by the value of this
variable in the satisfying assignment to φ. This process is
repeated until the original formula is shown to be either sat-
isfiable or unsatisfiable. The algorithm is trivially guaranteed
to terminate due to the finite domain.

This approach has the potential of being practically
efficient in one of the following two scenarios:

1. The bit-vector formula is satisfiable, and there exists a
numerically ‘small’ solution, i.e., a solution that can be
represented with a small number of bits.

2. The bit-vector formula is unsatisfiable, and a relatively
small number of terms in this formula participate in the
proof (i.e., the proof still holds after replacing the other
terms with new inputs).

Whether this potential is fulfilled depends on one’s ability to
find such small solutions and small unsatisfiable cores1 effi-
ciently: for the former, we search for gradually increasing
solutions in terms of the number of bits that are needed in
order to represent them, and hence are guaranteed to find a
small one if it exists; for the latter, modern SAT solvers are
quite apt at finding small cores when they exist. In practice,
as our experiments show, one of these conditions frequently
holds and we are able to detect it with our tool faster than
analyzing the formula head-on without any approximations.

Our approach can be seen as an adaptation to bit-vector
formulas of our previous work [18] on abstraction-refinement
of quantifier-free Presburger Arithmetic, which, in turn, was
inspired by the proof-based abstraction-refinement approach
to model checking that was proposed by McMillan and
Amla [20]. Other than the different problem domain
(bit-vectors vs. Presburger formulas), we also extend the the-
oretical framework to operate on an arbitrary circuit repre-
sentation of the formula, rather than on a CNF representation.
We also employ optimizations specific to bit-vector arithme-
tic. On the applied side, we report experimental results on a
set of benchmarks generated in both hardware and software
verification. Our experiments suggest that our approach can
be considerably more efficient than directly invoking the SAT
solver on the original formula as well as other state-of-the-art
decision procedures.

This article extends the proceedings version [8] mainly by
adding more technical background and motivation, elaborat-
ing more on the over-approximation technique and clarifying
various issues.

Related Work Current decision procedures for bit-vector
arithmetic fall into one of three categories:

1 A small unsatisfiable core of the CNF encoding of a formula does
not necessarily correspond to a small number of terms from the original
formula, but obviously the two measures are correlated.

123

An abstraction-based decision procedure for bit-vector arithmetic 97

1) Bit-blasting and its variants: Many current decision pro-
cedures are based on bit-blasting the input formula to SAT,
with a variety of methods for encoding the various bit-vec-
tor operations. Most of the modern tools apply various sim-
plifications and high-level reasoning before the bit-blasting
phase. The Cogent [11] procedure mentioned earlier belongs
to this category. The most current version of CVC-Lite [14]
pre-processes the input formula using a normalization step
followed by equality rewrites before finally bit-blasting to
SAT. Wedler et al. [26] have a similar approach wherein they
normalize bit-vector formulas in order to simplify the gener-
ated SAT instance. STP [15] is a decision procedure for both
bit-vector arithmetic and the theory of arrays; it performs a
lazy instantiation of array axioms as well as arithmetic and
Boolean simplifications on the bit-vector formula before bit-
blasting to MiniSat. Yices [13] applies bit-blasting to all bit-
vector operators except for equality. The tool Spear [2], by
Babić and Hu, is based on bit-blasting and a fast SAT solver
with numerous optimization parameters.
2) Canonizer-based procedures: Earlier work on deciding
bit-vector arithmetic centered on using a Shostak-like
approach of using a canonizer and solver for that theory.
The work by Cyrluk et al. [12] and by Barrett et al. on the
Stanford Validity Checker [4] fall into this category; the latter
differs from the former in the choice of a canonical represen-
tation. These approaches are very elegant, but are restricted
to a subset of bit-vector arithmetic comprising concatena-
tion, extraction, and linear equations (not inequalities) over
bit-vectors.
3) Procedures for modular and bounded arithmetic: The third
category of systems focuses on techniques to handle (linear
and non-linear) modular arithmetic. The most recent work in
this area is by Babić and Musuvathi [3], who encode non-
linear operations as non-linear congruences and make novel
use of Newton’s p-adic method for solving them. However,
this approach does not treat some of the operations that we
handle such as integer division, and seems harder to extend to
new operations. Brinkmann and Drechsler [6] use an encod-
ing of linear bit-vector arithmetic into integer linear program-
ming with bounded variables in order to decide properties of
RTL descriptions of circuit data-paths, but do not handle any
Boolean operations. Parthasarathy et al. [23] build on this
approach by using a lazy encoding with a modified DPLL
search, but non-linear bit-vector arithmetic is not supported.
Huang and Cheng [17] give an approach to solving bit-vector
arithmetic based on combining ATPG with a solver for linear
modular arithmetic. This approach is limited in its treatment
of non-linear operations which it handles by heuristically
rewriting them as linear modular arithmetic constraints.

McMillan and Amla [20] use a technique related to ours
in order to accelerate model checking algorithms over finite
Kripke structures. Specifically, they invoke a bounded model
checker to decide which state variables should be made vis-

ible in order to generate a ‘good’ abstraction for the next
iteration of model checking. Gupta et al. [16] propose a sim-
ilar model-checking framework, which among others makes
greater use of counterexamples and uses abstract models for
both validation and falsification attempts. Our approach dif-
fers from both of these in the following respects: we use
a bit-vector decision procedure instead of a model checker,
and we seek to eliminate constraints rather than variables (or
gates or latches, as the case may be).

Lahiri et al. [19] present an algorithm for deciding satisfi-
ability of quantifier-free Presburger arithmetic that is based
on alternating between an under- and an over-approxima-
tion. The under-approximation is constructed as in [18]. The
over-approximation uses a Craig Interpolant.

2 Preliminaries

2.1 Boolean satisfiability

We begin by recalling some well-known terms and observa-
tions concerning Boolean formulas and satisfiability (SAT).
A literal is either a variable or its negation. A clause is a
disjunction of zero or more literals, with the empty clause
denoting False. A formula is said to be in conjunctive nor-
mal form (CNF) if it is a conjunction of clauses.

Linear conversion to CNF: Let β be a Boolean formula
with variables b1, . . . , bn . It is possible to construct a Bool-
ean formula cnf(φ) with variables b1, . . . , bn+p (where the
bn+1, . . . , bn+p are fresh Boolean variables), such that

– cnf(β) is in CNF:

cnf(β) =
m∧

j=1

B j ,

where each B j is a Boolean clause,
– cnf(β) is satisfiable iff β is satisfiable; more precisely,

∃bn+1, . . . , bn+p. cnf(β)

is tautologically equivalent to β, and
– The number of variables and the number of clauses in

cnf(β) are both linear in the size of β.

Linear-time algorithms for computing cnf(β) are well-
known since Tseitin [24].

Tseitin suggested to add one new variable for every log-
ical gate in the original formula, and several clauses (e.g.,
three for ‘and’ and ‘or’ nodes, two for ‘xor’) to constrain the
value of this variable to be equal to the gate it represents, in
terms of the inputs to this gate. The original formula is satis-
fiable if and only if the conjunction of these clauses together

123

98 R. E. Bryant et al.

Fig. 1 Tseitin’s encoding. Assigning an auxiliary variable to each log-
ical gate (here in square brackets) enables us to translate each propo-
sitional formula to CNF, while increasing the size of the formula only
linearly

with the new variable associated with the top-most operator,
is satisfiable. This is best illustrated with an example.

Example 1 Given a propositional formula

b1 �⇒ (b2 ∧ b3), (2)

with Tseitin’s encoding we assign a new variable to each
subexpression, or, in other words, to each logical gate, e.g.,
‘and’ (∧), ‘or’ (∨), ‘not’ (¬) etc.

For this example, let us assign the variable a2 to the ‘and’
gate (corresponding to the subexpression b2 ∧ b3) and a1 to
the ‘implication’ gate (corresponding to b1 �⇒ a2), which
is also the top-most operator of this formula. Figure 1 illus-
trates the derivation tree of our formula, together with these
auxiliary variables in square brackets. We need to satisfy a1,
together with two equivalences:

a1 ⇐⇒ (b1 �⇒ a2)

a2 ⇐⇒ (b2 ∧ b3).
(3)

The first equivalence can be rewritten in CNF as:

(a1 ∨ b1) ∧
(a1 ∨ ¬a2) ∧
(¬a1 ∨ ¬b1 ∨ a2),

(4)

and the second equivalence can be rewritten in CNF as:

(¬a2 ∨ b2) ∧
(¬a2 ∨ b3) ∧
(a2 ∨ ¬b2 ∨ ¬b3).

(5)

Thus, the overall CNF formula is the conjunction of (4), (5)
and the unit clause

(a1), (6)

which represents the top-most operator. ��
SAT solvers A CNF SAT solver is an algorithm that deter-
mines, given a Boolean formula β in CNF, whether β is
satisfiable. If so, it outputs a satisfying assignment for β. If,
on the other hand, β is unsatisfiable, modern SAT solvers can
also generate a proof of unsatisfiability [20,29] based on the
binary resolution inference-rule. The leafs of such proofs (the
assumptions) constitute an unsatisfiable core, i.e., an unsat-
isfiable subset of the clauses of β. In practice, SAT solvers
tend to find small unsatisfiable cores if they exist. Indeed, in
many cases in practice, formulas contain a large number of
redundant constraints.

2.2 Bit-vector arithmetic

The quantifier-free fragment of the first-order theory of
bit-vector arithmetic that we consider here includes finite-
precision integer arithmetic with linear and non-linear oper-
ators, as well as standard bit-wise operators, such as left shift,
logical and arithmetic right shifts, extraction, concatenation,
and so forth. In fact, the approach we use in this paper is
orthogonal to the the set of operators, since it only relies on
the given finite width for each variable, as well as on the
existence of a propositional encoding of the formula.

At present, uclid supports all bit-vector arithmetic con-
structs defined in the grammar that appears in Fig. 2. Standard
notation has been used in describing the above grammar,
and we only point out certain aspects of the notation. Terms
denote bit-vectors while formulas are Boolean-valued expres-
sions. The expression

formula ? term : term

is an “if-then-else” expression that selects between two terms
on the basis of the value of its Boolean first argument. The
expression term[i : j] denotes the extraction of bits i through
j of the bit-vector expression term. The operator % denotes
the integer mod operator, while @ denotes concatenation.

Each bit-vector expression is associated with a type. The
type is the width of the expression in bits and whether it
is signed (two’s complement encoding) or unsigned (binary
encoding). Assigning semantics to this language is straight-
forward, e.g., as done in [6].

Note that all arithmetic operators (addition: +, subtrac-
tion: −, multiplication: ∗, division: ÷, modulo: %) are finite-
precision, and come with an associated operator width.

Note also that the relational operators >,<,≤,≥, the
non-linear arithmetic operators (∗,÷, %) and the right-shift
depend on whether an unsigned, binary encoding is used or
a two’s complement encoding is used. We assume that the
type of the expression is clear from the context.

This paper addresses the satisfiability problem for bit-
vector formulas: given a bit-vector formula φ, is there an
assignment to the bits in φ under which φ evaluates to True?
It is easy to see that this problem is NP-complete.

3 The decision procedure

We now present the main contribution of this paper, a SAT-
based decision procedure that operates by generating increas-
ingly precise abstractions of bit-vector formulas.

Notation Formulas in bit-vector arithmetic are denoted by
φ, φ′, φ1, φ2, . . . , and Boolean formulas by β, β1, β2,
We denote by φ the input bit-vector arithmetic formula and
by v1, v2, v3, . . . , vn its bit-vector variables. Each such var-
iable vi has an associated bit-width wi .

123

An abstraction-based decision procedure for bit-vector arithmetic 99

Fig. 2 Supported grammar:
uclid supports all bit-vector
arithmetic operators defined in
the above grammar

Fig. 3 Abstraction-based
approach to solving bit-vector
arithmetic

Under−approx.

Potential
calls to SAT solver

3.1 Overview

We first give a broad overview of our decision procedure,
which is illustrated in Fig. 3. Details of design decisions are
described later in this section.

The decision procedure performs the following steps:

1. Initialization: For each variable vi , we select a corre-
sponding number si of Boolean variables to encode it
with, where 0 ≤ si ≤ wi .
We will call si the encoding size of bit-vector variable vi .

2. Under-approximation and encoding to SAT: An under-
approximation, denoted φ, is generated by restricting the
values of each vi to range over a set of cardinality 2si .
Thus, the Boolean encoding of vi will comprise si Bool-
ean variables; note, however, that the length of the vector
of Boolean variables replacing vi remains wi .
There are several ways to generate such an under-
approximation and its Boolean encoding. One option is
to encode vi using Boolean variables on its si low order
bits and then zero-extend it to be of length wi . The other
is to “sign-extend” it instead. For example, if si = 2
and wi = 4, the latter would generate the Boolean vec-
tor [vi1, vi1, vi1, vi0] (where vi j are Boolean variables).
Our implementation currently uses the latter encoding,
as it enables searching for solutions at both ends of the
ranges of bit-vector values (e.g., in the example above
the possible values are 0000, 0001, 1110 and 1111). This
is especially useful in cases where the formula contains
comparisons to high values (such as MAXINT in C).
Further exploration of this aspect is left to future work.
A Boolean formula β is then computed from φ using stan-
dard circuit encodings for bit-vector arithmetic operators.

The width of the operators is left unchanged. The formula
β is passed to an off-the-shelf SAT solver. The only fea-
ture required of this SAT solver is that its response on
unsatisfiable formulas be accompanied by an unsatisfi-
able core.
If the SAT solver reports that β is satisfiable, then the
satisfying assignment is an assignment to the original
formula φ, and the procedure terminates. However, if β

is unsatisfiable, we continue on to the next step.
3. Over-approximation from the unsatisfiable core: The

SAT solver extracts an unsatisfiable core C from the proof
of unsatisfiability of β. We use C to generate an over-
approximating abstraction φ of φ. The formula φ is also
a bit-vector formula, but typically much smaller than φ.
The algorithm that generates φ is described in Sect. 3.2.
The key property of φ is that its translation into SAT,
using the same sizes si as those that were used for φ,
would also result in an unsatisfiable Boolean formula.
The satisfiability of φ is then checked using a sound and
complete decision procedure P for bit-vector arithmetic,
e.g., a bit-blasting approach.
If φ is unsatisfiable, we can conclude that so is φ. On
the other hand, if φ is satisfiable, it must be the case that
at least one variable vi is assigned a value that is not
representable with si Boolean variables (recall the key
property enjoyed by φ cited earlier). This larger satis-
fying assignment indicates the necessary increase in the
encoding size si for vi . Proceeding thus, we increase si

for all relevant i , and go back to Step 2.

Remark 1 Note that in this step it would be permissible
to merely use a sound, but not necessarily complete, bit-
vector arithmetic decision procedure P . In other words,
we require that the outcome of P be correct whenever

123

100 R. E. Bryant et al.

this outcome is ‘Unsat’, but we can tolerate spurious sat-
isfying assignments. Indeed, in cases where P provides a
satisfying assignment that is not a satisfying assignment
for φ, we can simply increase si by 1 for each i such that
si < wi , and go back to Step 2. Of course, bit-blasting is
both sound and complete.

Since si increases for at least one i in each iteration of
this loop, this procedure is guaranteed to terminate in O(n ·
wmax) iterations, where wmax = maxi wi . Each such itera-
tion involves a call to a SAT solver and a decision procedure
for bit-vector arithmetic.

One of the main theoretical advances we make over the
earlier work on Presburger arithmetic [18] is a different
method for generating the abstraction. We describe this in
the following section.

3.2 Generating an over-approximating abstraction

The earlier work assumed that φ was in CNF, whereas our
procedure works with an arbitrary directed acyclic graph
(DAG) or circuit-based representation, which is the format
in which the input problems are typically given. While φ can
be transformed to CNF (in two different ways, listed below),
we argue below that neither of those approaches is desirable,
primarily due to the presence of nested if-then-else (ITE)
expressions at arbitrary locations in φ.
1) Eliminating ITE using new variables: By giving each ITE
expression in the formula a fresh bit-vector variable name,
we can eliminate all ITEs with just a linear increase in the
number of bit-vector variables and formula size.

Introducing such new bit-vector variables restricts the
amount of cheap simplifications one can perform on the for-
mula before passing it to a SAT solver. For many formulas,
such simplifications (corresponding, for example, to standard
Boolean identities) are essential for scalability. For example,
consider the ITE-based formula ITE(b, T1, T2) = v where T1

and T2 are bit-vector terms. Using fresh variables v1 and v2

for T1 and T2 respectively, we would obtain the transformed
ITE-free expression as (b �⇒ v = v1) ∧ (¬b �⇒ v =
v2) ∧ (v1 = T1) ∧ (v2 = T2). Now, if owing to simplifica-
tions v always differs from T1 and T2 in the least significant
bit, the ITE-based formula will simplify to False. However,
the ITE-free representation will require the SAT solver to
propagate implications to be able to perform the same sim-
plification. This inability to adequately simplify the formula
before passing it to SAT can result in an unnecessarily large
SAT problem with a resultant slowdown.

Note that the number of input bit-vector variables (vi ’s)
is usually a few orders of magnitude smaller than the size of
the formula φ. As a result, when treating the new variables
as inputs, the SAT solver’s performance has been observed
to suffer a great deal. Since the value of each such new var-

iable is implied by the values of the original variables, it
may seem that one way to deal with the above problem is
to restrict the SAT solver from splitting on the bit-encodings
of the new ITE variables. However, such restrictions have
also been found to severely adversely affect the run-time of
current SAT engines. (It is rarely the case that changing the
generic decision heuristic of a modern SAT solver due to
high-level information improves performance).
2) Direct elimination of ITE: Another way of eliminating
ITEs is to expand out the cases without introducing new vari-
ables. However, this leads to a worst-case exponential blow-
up in formula size, which is commonly witnessed in practice.

We have therefore devised an abstraction-generation algo-
rithm A that operates directly on the DAG representation of
φ, denoted Dφ . The inputs to A are Dφ , the root node, and the
unsatisfiable core C. The output is a DAG Dφ representing

φ, which is an over-approximation of φ. Let Nφ and Nφ be
the set of nodes in Dφ and Dφ , respectively.

Before describing the algorithm, we need to describe the
process of transforming the Boolean encodings of φ and
φ into CNF. It can be seen as a generalization of Tseitin’s
encoding (which introduces fresh variables for internal nodes,
as described in Sect. 2) to the case of bit-vector formulas.
Each internal node n ∈ Nφ is annotated with a set of CNF
clauses c(n) that relate the output of that node o(n) to its
inputs, according to the operator in the node. These output
variables then appear as input to the parent nodes of n. Then
a conjunction of the clauses in {c(n)|n ∈ Nφ} and one more
unit clause with the variable encoding the top node, is the
CNF representation of φ. A subset of these clauses consti-
tutes the UNSAT core C. These definitions and notations also
apply to Dφ , and we will use them for both DAGs when the
meaning is clear from the context. For a formula (or equiva-
lently, a set of clauses) C , we denote by vars(C) the set of
variables that appear in C .

Procedure A (see Algorithm 1) recurses down the struc-
ture of Dφ and creates Dφ . It replaces a Boolean node n with
a new variable and backtracks, if and only if none of the vari-
ables in vars(c(n)) are present in the unsatisfiable core C2.
It uses the functions left-child(Dφ, n) and right-child(Dφ, n)
to return the left and right child of n on Dφ , respectively.

The replacement of Boolean nodes with new variables can
be further optimized using the “pure-literal rule”: if nφ is a
Boolean-valued node and only appears unnegated, replace it
by True; likewise, if nφ only appears negated, replace it by
False. In other words, in such cases no new Boolean variable
is needed.

2 The same replacement criterion can be applied to bit-vector-valued
nodes, which can then be replaced with fresh bit-vector variables. Our
implementation ignores this option, however, and we shall therefore
also ignore this possibility in the proof.

123

An abstraction-based decision procedure for bit-vector arithmetic 101

Algorithm 1 An algorithm for abstracting an NNF formula
φ such that only subformulas that do not contribute to the
UNSAT core C are replaced with a new variable

procedure A(DAG Dφ , node n, unsat-core C)
if n is a leaf then return ;
end if
if n is Boolean and vars(c(n)) ∩ vars(C) = ∅ then

Replace n in Dφ with a new Boolean variable;
return ;

end if
A(Dφ, left-child(Dφ, n), C);
A(Dφ, right-child(Dφ, n), C);

end procedure

Note that the resulting DAG Dφ can be embedded into Dφ .

For each node n ∈ Nφ we will denote by n̄ its counterpart in
Dφ before the abstraction process begins (after the abstrac-
tion some of them can be eliminated by simplifications).

The correctness of our abstraction technique is formalized
by the following two theorems:

Theorem 1 φ is an over-approximating abstraction of φ.

Proof Let α be a satisfying assignment of φ. We show how
to construct ᾱ, a satisfying assignment for φ. First, for each
variable v ∈ vars(φ) such that the (leaf) node representing
v is still present in Dφ , define ᾱ(v) = α(v). Second, for

each Boolean variable b ∈ {vars(φ)\vars(φ)} (i.e., the new
abstracting variables) represented by node n ∈ Dφ , define
ᾱ(b) to be equal to the Boolean value of the correspond-
ing node in Dφ , as implied by α. For example, if α(b1) =
True, α(b2) = False and the node b1 ∨b2 was replaced with
a new variable b, then ᾱ(b) = True ∨ False = True. Clearly,
ᾱ satisfies φ, since every node in Dφ is evaluated the same
as its counterpart in Dφ . Hence, if φ is satisfiable, then so is
φ, which implies the correctness of the Theorem. ��

Next, we have to prove termination. Termination is implied
if we can show that any satisfying assignment to φ requires
width larger than the current one si (i.e., the width with which
the unsatisfiable core C was derived), or, equivalently:

Theorem 2 The SAT encoding of φ with encoding sizes si is
unsatisfiable.

Proof We will prove that the CNF encoding of φ with sizes
si contains the clauses of the UNSAT core C.

Three observations about this encoding are important for
our proof:

1. First, for an internal node n that represents a Boolean oper-
ator, each clause in c(n) contains the output variable of its
node. For example, the CNF of an ‘and’ node o = a ∧b is
(o∨¬a∨¬b), (¬o∨a), (¬o∨b), and indeed o, the output
variable of this node, is present in all three clauses. The
same applies to the other Boolean operators. Hence, we

can write o(cl) for a clause cl to mean the output variable
of the node that cl annotates (hence, o(cl) ∈ cl).

2. Second, the same observation applies to predicates over
bit-vectors. For simplicity, we concentrate only on the
bit-vector equality predicate. In such a node, each clause
contains either the output variable or an auxiliary vari-
able present only in this node. For example, the CNF of
the node o = (v1 = v2) for 2-bit bit-vectors v1 and v2, is
the following:

(x ∨ v1[0] ∨ v2[0]), (x ∨ ¬v1[0] ∨ ¬v2[0]),
(¬x ∨ v1[0] ∨ ¬v2[0]), (¬x ∨ ¬v1[0] ∨ v2[0]),
(o ∨ ¬x ∨ ¬v1[1] ∨ ¬v2[1]), (o ∨ ¬x ∨ v1[1] ∨ v2[1]),
(¬o ∨ v1[1] ∨ ¬v2[1]), (¬o ∨ ¬v1[1] ∨ v2[1]),
(¬o ∨ x)

(the first four clauses encode x = (v1[0] = v2[0]), the
other clauses encode o = x ∧ (v1[1] = v2[1]) where x is
the local auxiliary variable).

3. Finally, observe that resolution among clauses that relate
the output and input of a node using the output variable as
the resolution variable, results in a tautology. For exam-
ple, recall the CNF representation of the ‘and’ node above:
resolving on the output variable o of that node results in a
tautology. The same observation applies to other Boolean
operators and equality between bit-vectors.

We use these observations for analyzing the three possible
cases for a node n in Dφ : either it is retained in Dφ , replaced
with a new variable, or eliminated. Our goal, recall, is to show
that despite the abstraction implied by these changes to the
DAG, the set of clauses that encode the new DAG Dφ still
contains the UNSAT core C of φ.

Claim 1: for each node n ∈ Nφ for which the corresponding
n̄ ∈ Nφ is retained in the abstraction process, c(n) ∩ C =
c(n̄) ∩ C.

Proof Since n and n̄ encode the same operator and receive
the same type of input (e.g., if n and n̄ represent a bit-vector
operator, then their respective inputs are bit-vectors of the
same width), then c(n) and c(n̄) are equivalent up to renam-
ing of variables. Such a renaming can occur if the abstrac-
tion process replaced one of the inputs (or both) with a new
variable. But this means that none of these inputs are in C,
hence those clauses in c(n̄) that contain renamed literals,
are not in C. Hence, c(n) ∩ C = c(n̄) ∩ C.

Claim 2: for each node n ∈ Nφ that was replaced with a
new variable in Nφ , c(n) ∩ C = ∅.

Proof This is trivial by the construction of the abstraction:
if any of the clauses in c(n) were in C, then this node would
not be replaced with a new variable.

123

102 R. E. Bryant et al.

Claim 3: For each node n ∈ Nφ whose corresponding node
n̄ ∈ Nφ was eliminated (i.e., the paths of this node to the
root were all ‘cut’ by the abstraction), c(n) ∩ C = ∅.

Proof On each path from n to the root node, there exists
one or more nodes other than n that were replaced with free
variables. For simplicity of the proof, we will consider one
such path and denote the closest node to n that was replaced
with a new variable by nc.
We will now prove the claim by induction on the distance
(in terms of number of DAG operators) from n to nc. In
the base case n is a direct child of nc. Falsely assume that
there exists a clause cl ∈ c(n) such that cl ∈ C. c(nc)

contain o(n), the output variable of n, and cl also contains
o(n) (see observations 1 and 2 above). Hence, if cl ∈ C,
then o(n) ∈ vars(C) which contradicts the condition for
abstracting nc with a new variable.
For the induction step falsely assume that there exists a
clause cl ∈ c(n) such that cl ∈ C. By the induction hypoth-
esis, none of the clauses in the parent node of n are in C.
Hence, only clauses from c(n) can contain the output vari-
able of cl in C. This means that o(cl) can only be resolved-on
among c(n) clauses. By noting that this kind of resolution
can only result in a tautology (see observation 3 above), this
resolution step cannot be on the path to the empty clause in
the resolution proof. This contradicts, however, the require-
ment that any variable in every clause that participates in a
proof of the empty clause must be resolved on in order to
eliminate it.

Thus, the set of clauses annotating Dφ contains C and

hence φ is unsatisfiable. ��
In comparison with our previous CNF-based abstraction

scheme [18], we note that, for ITE-free formulas, that app-
roach can generate more compact abstractions, as they do
not introduce new variables. However, for real-world bench-
marks from both hardware and software verification, such
as those discussed in the following section, we found that
elimination of ITEs leads to significant space and time over-
heads. The approach of this paper allows us to extend the
abstraction-based approach to operate on arbitrary DAG-like
formulas. Moreover, we found that the Boolean structure in
the original bit-vector formula is typically not the primary
source of difficulty; it is the bit-vector constraints that are
the problem.

3.3 Abstraction with partially-interpreted functions

It is well-known that certain bit-vector arithmetic operators,
such as integer multiplication of two variables (of adequately
large width), are extremely hard for a procedure based on bit-
blasting. However, for many problems involving these oper-
ators, it is unnecessary to reason about all of the operators’

properties in order to decide the formula. Instead, using a
set of rules (based on well-known rewrite rules) allows us to
perform fine-grained abstractions of functions, which often
suffices. Such (incomplete) abstractions can be used in the
over-approximation phase of our procedure, while maintain-
ing the overall procedure sound and complete (see Remark 1
in Sect. 3.1). This is a major advantage, because these rules
can be very powerful in simplifying the formula.

Therefore, uclid invokes a preprocessing step before call-
ing Algorithm A. In this step, it replaces a subset of “hard”
operators by lambda expressions that partially interpret those
operators. The resulting formula is then bit-blasted to SAT.

For example, uclid replaces the multiplication operator
∗w of width w (for w > 4, chosen according to the capacity
of current SAT engines) by the following lambda expression
involving the freshly introduced uninterpreted function sym-
bol mulw:

λx . λy. I T E(x = 0 ∨ y = 0, 0, I T E(x = 1, y,

I T E(y = 1, x,mulw(x, y)))). (7)

This expression can be seen as partially interpreting multi-
plication, as it models precisely the behavior of this operator
when one of the arguments is 0 or 1, but is uninterpreted
otherwise.

4 Experimental results

The new procedure is now incorporated within the uclid
verification system [25], which is implemented in Moscow
ML [22] (a dialect of Standard ML). MiniSat [21] was
used as the SAT solver to solve over-approximations, while
Booleforce (written by Armin Biere) was used as a proof-
generating SAT solver for under-approximations. The initial
value of si is set to min(4, wi) for benchmarks not involv-
ing hard operators (like multiplication) while it is set to
min(2, wi) otherwise.

Table 1 shows experimental results obtained on a set of bit-
vector formulas. We compare the run-time of uclid against
bit-blasting to MiniSat, and the STP [9] and Yices [13] deci-
sion procedures. (The latter two procedures jointly won the
bit-vector division of the SMT-COMP’06 competition, and
we compare against the versions that were entered to the
competition.) All results were obtained on a system with a
2.8 GHz Xeon processor and 2 GB RAM. The benchmarks
are drawn from a wide range of sources, arising from verifi-
cation and testing of both hardware and software:3

– Verification of word-level versions of an x86-like proces-
sor model [7] (Y86-std, Y86-btnft);

3 All benchmarks that we have permission to make publicly available
have been submitted to the SMT-LIB repository at http://goedel.cs.
uiowa.edu/smtlib/benchmarks/QF_BV.

123

http://goedel.cs.uiowa.edu/smtlib/benchmarks/QF_BV
http://goedel.cs.uiowa.edu/smtlib/benchmarks/QF_BV

An abstraction-based decision procedure for bit-vector arithmetic 103

Table 1 Comparison of run-time of abstraction-based approach (uclid) with bit-blasting, STP, and Yices

Formula Ans. Bit-blasting uclid STP (s) Yices (s)

Run-time (s) Run-time (s)

Enc. SAT Total Enc. SAT Total

Y86-std UNSAT 17.91 TO TO 23.51 987.91 1011.42 2083.73 TO

Y86-btnft UNSAT 17.79 TO TO 26.15 1164.07 1190.22 err TO

s-40-50 SAT 6.00 33.46 39.46 106.32 10.45 116.77 12.96 65.51

BBB-32 SAT 37.09 29.98 67.07 19.91 1.74 21.65 38.45 183.30

rfunit_flat-64 SAT 121.99 32.16 154.15 19.52 1.68 21.20 873.67 1312.00

C1-P1 SAT 2.68 45.19 47.87 2.61 0.58 3.19 err err

C1-P2 UNSAT 0.44 TO TO 2.24 2.12 4.36 TO TO

C3-OP80 SAT 14.96 TO TO 14.54 349.41 363.95 TO 3242.43

egt-5212 UNSAT 0.064 0.003 0.067 0.163 0.001 0.164 0.018 0.009

The best run-time is highlighted in bold font. A “TO” indicates that a timeout of 3,600 s was reached. An “err” indicates that the solver could not
handle bit-vectors of width as wide as those in the benchmark or quit with an exception. Bit-blasting used MiniSat. uclid used Booleforce for proof
generation and MiniSat on the abstraction. STP is based on MiniSat. “Ans” indicates whether the formula was satisfiable (SAT) or not (UNSAT).
“Enc” indicates time for translation to SAT, and “SAT” indicates the time taken by the SAT solver (both calls)

Table 2 Statistics on the abstraction-based approach (uclid)

Formula Ans. maxi si maxi wi Num. Iter max |φ|
|φ| Speedup

Y86-std UNSAT 4 32 1 0.18 2.06

Y86-btnft UNSAT 4 32 1 0.20 > 3.01

s-40-50 SAT 32 32 8 0.12 0.11

BBB-32 SAT 4 32 1 – 1.78

rfunit_flat-64 SAT 4 64 1 – 7.27

C1-P1 SAT 2 65 1 – 15.00

C1-P2 UNSAT 2 14 1 1.00 >825.69

C3-OP80 SAT 2 9 1 – 8.91

egt-5212 UNSAT 8 8 1 0.13 0.06

“maxi si ” indicates the maximum value of si generated in the entire run. “Num. Iter” indicates the number of iterations of the abstraction-refinement
loop where an iteration is counted if at least one of the SAT solver calls is made. The second to last column compares the size of the largest
abstraction φ created as a fraction of the size of the original formula φ, where sizes are measured as the number of nodes in the DAG representations
of the formulas. “Speedup” indicates the factor by which the abstraction-based approach is faster than its nearest competitor, or slower than the
best solver

– Detection of format-string vulnerabilities in C programs
[27] (s-40-50);

– Hardware verification benchmarks obtained from Intel,
slightly modified (BBB-32, rfunit_flat-64);

– Word-level combinational equivalence checking bench-
marks obtained from a CAD company4 (C1-P1, C1-P2,
C3-OP80); and

– Directed random testing of programs [9] (egt-5212). This
represents the set of benchmarks used in SMT-COMP’06,
which are easily solved within a fraction of a second.5

4 Name withheld on their request.
5 As the run-times on this benchmark is very small, we state them to
three decimal places, unlike the others.

The first three sets of benchmarks involve only (finite-
precision) linear arithmetic. The combinational equivalence
checking benchmarks involve finite-precision multiplication
with large widths (e.g., C1-P1 and C1-P2 involve 65-bit,
49-bit, and 30-bit multiplication), apart from bitwise oper-
ations including extraction and concatenation. The last set
includes linear arithmetic and bitwise operations.

An analysis of uclid’s performance on the benchmarks
is given in Table 2. We observe the following: 1) Only very
few iterations of the abstraction-refinement loop are required
(just 1 in most cases); 2) The abstractions generated are small
in most cases; and 3) uclid yields a speed-up in all but
one case when the number of iterations is 1. In the 2 other
cases, where some si reached the maximum wi , it performs
worse.

123

104 R. E. Bryant et al.

We look more closely at two benchmarks. uclid’s perfor-
mance is orders of magnitude better than the other solvers on
the C1-P2 benchmark: this involves multiplication as noted
earlier, and the abstraction described in Sect. 3.3 was partic-
ularly effective. However, on the benchmark s-40-50, it is 10
times worse than STP, with most of the time spent in encod-
ing. This problem is mainly due to re-generation of the SAT
instance in each step, which an incremental implementation
can fix.

The results indicate a complementarity amongst the solv-
ers with respect to this set of benchmarks: either bit-blasting
(with rewrites as explained in Sect. 3.3) is effective, or the
problem is unsatisfiable with a small UNSAT core, or there
is a satisfying solution within a small range at the high and
low ends of the bit-vector’s value domain. In the latter two
cases, our abstraction-based approach is effective.

5 Conclusion

We have demonstrated the utility of an abstraction-based
approach for deciding the satisfiability of finite-precision
bit-vector arithmetic. The speed-ups we have obtained, espe-
cially on benchmarks involving non-linear arithmetic opera-
tions, indicate the promise of the proposed approach. The
algorithm is applicable in many areas in formal verifica-
tion (e.g., word-level bounded model checking) and can be
extended to handle floating-point arithmetic. Ongoing and
future work includes generalizing the form of over- and
under-approximations beyond those we have proposed
herein, and making the encoding to SAT incremental.

References

1. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev,
J., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal
verification of backward compatibility of microcode. In: Proceed-
ings of the Computer-Aided Verification (CAV’05). LNCS, vol.
2404, pp. 185–198 (2005)

2. Babic, D., Spear, F.H.: Proceedings of the SAT 2007 competition
(2007)

3. Babić, D., Musuvathi, M.: Modular Arithmetic Decision Proce-
dure. Technical report, Microsoft Research, Redmond (2005)

4. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-
vector arithmetic. In: Proceedings of DAC’98, pp. 522–527. ACM
Press, New York (1998)

5. Biere, A., Cimatti, A., Clarke, E., Yhu, Y.: Symbolic model check-
ing without BDDs. In: TACAS, pp. 193–207 (1999)

6. Brinkmann, R., Drechsler, R.: RTL-datapath verification using inte-
ger linear programming. In: Proceedings of VLSI Design, pp. 741–
746. IEEE (2002)

7. Bryant, R.E.: Term-Level Verification of a Pipelined CISC Micro-
processor. Technical Report CMU-CS-05-195, Computer Science
Department, Carnegie Mellon University (2005)

8. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman,
O., Brady, B.A.: Deciding bit-vector arithmetic with abstraction.
In: Grumberg, O., Huth, M. (eds.) 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’07), pp. 358–372 (2007)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.:
EXE: automatically generating inputs of death. In: 13th ACM
Conference on Computer and Communications Security (CCS
’06), pp. 322–335. ACM, New York (2006)

10. Clarke, E., Kroening, D.: Hardware verification using ANSI-C pro-
grams as a reference. In: Proceedings of ASP-DAC 2003, pp. 308–
311. IEEE Computer Society Press, Washington (2003)

11. Cook, B., Kroening, D., Sharygina, N.: Cogent: accurate theorem
proving for program verification. In: Proceedings of CAV 2005,
pp. 296–300. Springer, Berlin (2005)

12. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision proce-
dure for the theory of fixed-sized bit-vectors. In: Computer-Aided
Verification (CAV ’97), pp. 60–71 (1997)

13. Dutertre, B., de Moura, L.: The Yices SMT solver. Available at
http://yices.csl.sri.com/tool-paper.pdf (2006)

14. Ganesh, V., Berezin, S., Dill, D.: A decision procedure for fixed-
width bit-vectors. Technical Report, Computer Science Depart-
ment, Stanford University (2005)

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and
arrays. In: Computer Aided Verification (CAV ’07), Berlin, Ger-
many, July 2007. Springer, Berlin (2007)

16. Gupta, A., Ganai, M., Yang, Z., Ashar, P.: Iterative abstraction using
SAT-based BMC with proof analysis. In: ICCAD (2003)

17. Huang, C.-Y., Cheng, K.-T.: Assertion checking by combined
word-level ATPG and modular arithmetic constraint-solving tech-
niques. In: Proceedings of DAC, pp. 118–123 (2000)

18. Kroening, D., Ouaknine, J., Seshia, S., Strichman, O.: Abstraction-
based satisfiability solving of Presburger arithmetic. In: Alur R.,
Peled D. (eds.) Proceedings of the 16th International Conference
on Computer Aided Verification (CAV’04). LNCS, vol. 3114, pp.
308–320, Boston, MA, July 2004. Springer, Berlin (2004)

19. Lahiri, S., Mehra, K.: Interpolant Based Decision Procedure for
Quantifier-Free Presburger Arithmetic. Technical Report 2005-
121, Microsoft Research (2005)

20. McMillan, K., Amla, N.: Automatic abstraction without counterex-
amples. In: Garavel, H., Hatcliff, J. (eds.) TACAS’03. Lect. Notes
in Comp. Sci., vol. 2619 (2003)

21. MiniSat. http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat/

22. Moscow, M.L.: http://www.dina.dk/~sestoft/mosml.html
23. Parthasarathy, G., Iyer, M.K., Cheng, K.-T., Wang, L.-C.: An effi-

cient finite-domain constraint solver for circuits. In: Design Auto-
mation Conference (DAC), pp. 212–217 (2004)

24. Tseitin, G.: On the complexity of proofs in poropositional logics.
In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning:
Classical Papers in Computational Logic 1967–1970, volume 2.
Springer-Verlag, 1983. Originally published 1970

25. UCLID verification system. http://www.cs.cmu.edu/~uclid
26. Wedler, M., Stoffel, D., Kunz, W.: Normalization at the arithmetic

bit level. In: Proceedings of DAC, pp. 457–462. ACM Press, New
York (2005)

27. Wisconsin Safety Analyzer Project. http://www.cs.wisc.edu/wisa
28. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfi-

ability. In: Proceedings of the 32nd ACM Symposium on Principles
of Programming Languages (POPL), pp. 351–363 (2005)

29. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from
unsatisfiable boolean formulas. In: In Sixth International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT2003), S. Margherita Ligure (2003)

123

http://yices.csl.sri.com/tool-paper.pdf
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://www.dina.dk/~sestoft/mosml.html
http://www.cs.cmu.edu/~uclid
http://www.cs.wisc.edu/wisa

	An abstraction-based decision procedure for bit-vector arithmetic
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Boolean satisfiability
	2.2 Bit-vector arithmetic

	3 The decision procedure
	3.1 Overview
	3.2 Generating an over-approximating abstraction
	3.3 Abstraction with partially-interpreted functions

	4 Experimental results
	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

