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Abstract—Alternating timed automata are a powerful ex-
tension of classical Alur-Dill timed automata that are closed
under all Boolean operations. They have played a key role,
among others, in providing verification algorithms for promi-
nent specification formalisms such as Metric Temporal Logic.
Unfortunately, when interpreted over an infinite dense time
domain (such as the reals), alternating timed automata have
an undecidable language emptiness problem.

The main result of this paper is that, over bounded time
domains, language emptiness for alternating timed automata
is decidable (but nonelementary). The proof involves showing
decidability of a class of parametric McNaughton games that
are played over timed words and that have winning conditions
expressed in the monadic logic of order augmented with the
distance-one relation.

As a corollary, we establish the decidability of the time-
bounded model-checking problem for Alur-Dill timed automata
against specifications expressed as alternating timed automata.
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I. INTRODUCTION

Timed automata were introduced by Alur and Dill in [1]
as a natural and versatile model for real-time systems. They
have been widely studied ever since, both by practitioners
and theoreticians. A celebrated result concerning timed
automata, which originally appeared in [2], is the PSPACE
decidability of the language emptiness (or reachability)
problem.

Unfortunately, the language inclusion problem—given
two timed automata .4 and B, is every timed word accepted
by A also accepted by B?—is known to be undecidable. A
related phenomenon is that timed automata are not closed
under complementation. For example, the automaton below
accepts every timed word in which there are two a-events
separated by one time unit:

The complement automaton would have to accept a timed
word precisely when no two a-events are separated by one
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time unit. Intuitively, this is not expressible by a timed au-
tomaton, since such an automaton would need a potentially
unbounded number of clocks to keep track of the time delay
from each a-event. We refer the reader to [3] for a formal
analysis of these considerations.

In one sense, the non-closure under complementation is
easy to remedy—one simply generalises the transition mode
to allow both conjunctive and disjunctive transitions, an idea
borrowed from the theory of untimed automata that dates
back 30 years [4]. Such untimed alternating automata have
played key roles in algorithms for complementing Biichi
automata (see, e.g., [5]), temporal logic verification [6], [7],
and analysis of parity games [8]. In the timed world, the
resulting alternating timed automata [9], [10], [11], [12]
subsume ordinary timed automata and can be shown to be
closed under all Boolean operations. They have been used,
among others, to provide model-checking algorithms for
various fragments of Metric Temporal Logic (MTL); see,
e.g., [9], [13], [14]. Unfortunately, the price to pay for the
increase in expressiveness is the undecidability of language
emptiness!

This undecidability follows immediately from the unde-
cidability of universality for timed automata. The proof of
the latter in [1] uses in a crucial way the unboundedness
of the time domain. Roughly speaking, this allows one to
encode arbitrarily long computations of a Turing machine.
On the other hand, many verification questions are naturally
phrased over bounded time domains [15], [16], [17]. For
example, a run of a communication protocol might normally
be expected to have an a priori time bound. In fact, most
hard real-time problems, which typically involve deadlines,
timeouts, and delays, are only pertinent over a finely cir-
cumscribed time span.

This leads us to consider the time-bounded language
emptiness problem for alternating timed automata: given an
alternating timed automaton A and a time bound [V, is some
finite timed word of duration at most N is accepted by
A? (Note that since we are working with a dense model
of time, time-bounded words may still contain arbitrarily
many events.) The main result of this paper is that this
problem is decidable but nonelementary. Since alternating
timed automata are closed under all Boolean operations, an



immediate corollary is the decidability of the time-bounded
model-checking problem for timed automata against speci-
fications expressed as alternating timed automata.

Our proofs exploit the close correspondence between
automata and monadic predicate logic. Biichi [18] and
Rabin [19] have respectively proven decidability of monadic
second-order logic (MSO) over the naturals and the infinite
binary tree using translations of MSO to automata. Con-
versely, automata can easily be transformed into equivalent
MSO formulas. The proof of our main result involves
a translation from alternating timed automata to monadic
predicate logic over the structure (T,<,+1), where T is
a bounded interval of real numbers and +1 is the relation
defined by +1(x, y) if and only if z+1 = y. The +1 relation
is used to encode timing constraints in automata.

We translate timed alternating automata into games over
(T, <,+1) with winning conditions expressed in monadic
predicate logic. The class of games that we obtain is a vari-
ation of that introduced by McNaughton [20] in connection
with Church’s problem [21], [22], [23]. Given an MSO(<)
formula ¢(X,Y’), Church’s problem asks whether there
exists a causal operator F' such that VX o(X, F(X)). (Fisa
causal operator if the truth value of F'(X)(n) for a monadic
predicate X and individual n only depends on the values of
X (m) for m < n.) Thus Church’s problem generalises the
satisfiability problem for MSQ to a uniformisation problem.
The games that we introduce can be generalised and used
to analyse a natural extension of Church’s problem for
MSO(<, +1) over bounded intervals of the reals, but we do
not pursue this direction here. For our current purpose the
key result is a procedure to determine winners of games from
this class. This enables us to establish the decidability of the
language emptiness problem for alternating timed automata.

It is worth noting that we reduce the language emptiness
problem for alternating timed automata to a uniformisation
problem for first-order logic over (T, <,+1). By contrast, in
the classical translations of (untimed) automata to monadic
logic, language emptiness is reduced to a satisfiability
problem for second-order logic over (N, <). In particular
the paper [7] shows how to encode run dags of (untimed)
alternating automata directly in MSO(<). It does not seem
possible to give a corresponding reduction of the language
emptiness problem for alternating timed automata to the
satisfiability problem for monadic second-order logic over
(T, <,+1). Intuitively this is because one cannot compute
an a priori bound on the width of the run dags of a given
alternating timed automaton. In Section VI we give a more
formal argument that there is no ‘reasonable’ reduction of
language emptiness for alternating timed automata to the
satisfiability problem for MSO(<, +1).

Related Work. The quest for a decidable class of timed
automata with good closure properties has led to a con-
siderable body of work, including the introduction of de-
terminisable subclasses of timed automata [24], restrictions

to one-clock automata [10], [11], and bounded-variability
semantics [25]. See also Henzinger er al.’s paper on fully
decidable formalisms [26].

The present paper substantially generalises some of the
main results of [27], in which we established the decidabil-
ity of both the time-bounded language inclusion problem
for timed automata (2EXPSPACE-complete), and the time-
bounded MTL model-checking problem for timed automata
(EXPSPACE-complete). Both decidability results now easily
follow from our new Theorem 13, since MTL formulas can
be encoded as one-clock alternating timed automata of a
particular type [9]. Theorem 13, in which no restrictions
whatsoever are placed on alternating timed automata, does
not seem amenable to the proof techniques of [27] and
instead requires novel game-theoretic tools. The increased
expressiveness, however, comes at the price of a significant
blow-up in complexity: from 2EXPSPACE to nonelemen-
tary, cf. Theorem 17.

There is an extensive body of work concerning games
on timed automata and related timed-graph formalisms.
This originates in [28], [29] and encompasses concurrent
games [30] and tool support [31]. Turn-based games on
timed automata can easily be encoded as McNaughton
games in the sense of the present paper, thanks to the
expressiveness of the logic MSO(<, +1). However the gen-
erality of our class of McNaughton games entails that our
decidability results are restricted to bounded time domains,
in contrast with [29].

A key aspect of our technical development is the use of
parametric games. This is related to the works of [32], [33]
on Church’s problem with parameters.

II. ALTERNATING TIMED AUTOMATA

Let X be a finite alphabet and let R, denote the set of
non-negative reals. A timed event is a pair (a,t), where
t € Ry is called the timestamp of the event a € X. A timed
word is a finite sequence w = (a1, t1)(ag,t2) ... (an,t,) of
timed events whose corresponding sequence of timestamps
is strictly increasing. We denote by untime(w) the under-
lying untimed word ajas...a,. A set of timed words is
called a timed language. If T C R then TX* denotes the
set of timed words w = (a1, t1)(asg,t2) ... (an,t,) such that
t1,ta,...,t, € T.In this paper we are particularly interested
in timed languages L C TX* for bounded T. For uniformity
we assume that T = [0, N), where N € N, although our
results can easily be adapted to allow T to be an arbitrary
bounded interval.

A. Automata

Let C be a set of clock variables. A clock valuation is a
function v : C' — R,. If r C C is a set of clock variables
then v[r := 0] denotes the valuation that maps each clock
variable x € r to 0 and agrees with v on all other clocks.
The zero clock valuation O is defined by 0(x) = 0 for all



x € C. The set ®(C) of clock constraints ¢ is defined by
the following grammar:

p:=true|false | o1 A2 | p1 Vs |z ~Ek,

where k € N and ~ € {<,<,=,#,>,>}.
Recall from [1] that the transition relation of a timed
automaton can be seen as a partial function

§:SxExP(C)— P(SxP()),

where S is the set of locations and ¥ is the alphabet of
the automaton. The meaning of (s',7) € (s, a,¢) is that
from state (s,v), where v satisfies o, the automaton can
read letter a and transition to state (s, v[r := 0]).

In the definition of an alternating timed automaton the
transition function is generalised to a partial function

§: 95X x®(C) — BL(S x P(C)),

where B (S x P(C)) denotes the set of positive Boolean
formulas generated by the grammar

0:=(s,7) | 1V Oy | 0L NO,

where (s,r) € S x P(C). Here disjunction corresponds to
nondeterministic choice whereas conjunctive transitions are
executed in parallel. For example, if (s, a, ) = (s1,71) A
(s2,72) then from state (s,v), where v satisfies ¢, the
automaton can read letter a and simultaneously move to
(s1,v[r1 :=0]) and (s2,v[ry := 0]).

Definition 1: An alternating timed automaton is a tuple
A= (%,85,C, s, F,d), where

e X is a finite alphabet

e S is a finite set of locations

o C'is a finite set of clock variables

e 5o € S is the initial location

e F C S is a set of accepting locations

e 0 1 SxEXDC) — Bi(SxP(C)) is a partial

function with finite domain.

To simplify our exposition we assume that the image
of the transition function § consists solely of formulas
in disjunctive normal form. We also make the following
Partition Assumption: for each location s and letter a € 3,
the set of constraints ¢ such that (s, a, ¢) is defined forms
a partition of the set (R, ) of clock valuations. Neither of
the above two assumptions affects the expressiveness of the
model.

Before formally defining the language accepted by an
alternating timed automaton, we give some examples.

Example 2: We define an automaton A over alphabet
Y = {a} that accepts those words such that for every
timed event (a,¢) with ¢ < 1 there is an event (a,t + 1)
exactly one time unit later. A has a single clock x and set
of locations {s,u,v}, with s initial, s and v accepting and

z>1 z#1
— S U v
r<1 U
Figure 1. Automaton A

u non-accepting. The transition function is defined by

8(s,a,x < 1) = (s,0) A (u,{z})

5(s,a,z > 1) = (s,0)
S(u,a,x £ 1) = (u,0) 0

o(u,a,x =1) = (v,0).

The automaton is illustrated in Figure 1 in which we
represent the conjunctive transition out of s by connecting
two arrows with an arc.

A run of A starts in location s. Every time an a-
event occurs in the first time unit, the automaton makes a
simultaneous transition to both s and u, thus opening up a
new thread of computation equipped with a fresh copy of
the clock z. The automaton must eventually leave location
u, which is non-accepting, and it can only do so exactly one
time unit after first entering the location.

Example 3: We define an automaton 53, shown in Fig-
ure 2, over alphabet {a} that accepts those words such
that for all consecutive pairs of events (a,t;) and (a, ;1)
with ¢;,¢;11 < 1 there is no subsequent event (a,t;) with
t; +1 <t; <t;41 + 1. Excepting some corner cases!, this
requirement says that for each event (a,t;) with 1 < ¢; < 2
there is an event (a,t; — 1) exactly one time unit earlier.
Indeed, if there were no such event then letting (a,t;) be
the latest event with ¢; < ¢t; — 1 and (a,t;41) the earliest
event with ¢; — 1 < ?;11 we see that the input word would
be rejected by B.

B has two clocks z and y, and set of locations {s, u, v, w},
with s initial and locations s, u and v accepting. The
transition function is defined by

0(s,a,x <1
o(s,a,x >1

)= (

)= (
0(u, a, true) = (v, {y})

)=

)=

d(v,a,x <1Vy>1
d(v,a,z > 1Ay <1

From location s every time an a-event occurs the automaton
starts a new thread in location wu, resetting clock x. On the
next a-event this new thread transitions to location v, reset-
ting clock y. Thereafter, if an a-event occurs with > 1 and

'We should also require that if (a,tj) is the first or last event with
1 <t; < 2, then there be an earlier event (a, ¢;) with t; = ¢t; — 1. Based
on the same ideas involved in the definition of 1, one can easily define an
automaton C that accepts precisely those words satisfying this requirement.



z<1Vy>1

H@ reset(z) m reset(y) % T>1A w
/

Figure 2. Automaton 3

y < 1, the thread transitions to location w and becomes non-
accepting; by this mechanism the automaton blocks timed
events (a, tj), t > 1, for which there is a consecutive pairs
of events (a,t;) and (a,t;41) with t; +1 <t; <t;11 + 1.

B. The Acceptance Game.

In general a run of an alternating automaton is defined to
be a tree of states. However in this paper we exploit the fact
that acceptance of a timed word w = (a1,t1) ... (an,t,) by
an alternating timed automaton A = (X, 5,C, so, F, §) has
a game-theoretic characterisation [10].

Define the acceptance game G (A, w) between Automaton
and Pathfinder as follows. A state of G(A,w) is a triple
(i,s,v), where 0 < i < n is the round number, s € S'is a lo-
cation and v is a clock valuation. Play starts in state (0, sg, 0)
and consists of n rounds. Suppose that at the beginning of
the (i + 1)-th round, 0 < ¢ < n — 1, the state is (4, s;, ;)
and write v/ = v; + t;41 — t;. By the Partition Assumption
there is a unique clock constraint ¢ such that v/ satisfies
v and 6(s;, a;, ) is defined. Moreover the latter formula is
in disjunctive normal form. Then Automaton moves first by
selecting a disjunct 0 of d(s;, a;, ); Pathfinder responds by
choosing a conjunct (s,r) of , and the next game state is
(i +1,s,V[r := 0]). Automaton wins if the game ends in
an accepting state after the last round.

A partial play is a finite sequence of consecutive game
states. A strategy for Automaton is a mapping that assigns
to each such sequence a next move of Automaton. Such a
strategy is winning if Automaton wins any play in which the
strategy is followed. We say that a timed word w € TX*
is accepted by A if and only if Automaton has a winning
strategy in G(A, w). The language Lt(A) is the set of words
in TX* that are accepted by \A.

One of the motivations for introducing alternating timed
automata is that they enjoy better closure properties than
ordinary timed automata, cf. [10], [11].

Proposition 4: For any time domain T C R, the class
of languages L. C TX* accepted by alternating timed
automata is effectively closed under union, intersection, and
complement.

Closure under union and intersection is straightforward
since we allow both disjunctions and conjunctions in the
transition function. Thanks to the Partition Assumption one
can complement an automaton by simply interchanging

accepting and non-accepting states and exchanging con-
junctions and disjunctions in the transition function. (The
convention that transitions be written in disjunctive normal
form can easily be re-established.)

Example 5: Taking the intersection of the automaton .4
in Example 2, the automaton B in Example 3, and the
automaton C mentioned in the footnote to Example 3,
all defined over alphabet {a}, one obtains the automaton
Acopy. Over time domain T = [0,2), Ly(Acopy) consists
of those timed words w = (a,t1)(a,t2)...(a,t2,) such
that t;4, = t; + 1 for 1 < ¢ < n, i.e., such that the +1
function defines a one-to-one correspondence between the
set of events in the first time unit and the set of events in
the second time unit.

III. MONADIC SECOND-ORDER LOGIC

Throughout this section we assume a fixed time domain
T = [0,N). We consider monadic second-order logic
(MSO) over the structure (T, <, +1), where +1(z, y) holds
if and only if z + 1 = y. The syntax of MSO(<,+1)
has as vocabulary first-order variables %1, ¢, ..., monadic
predicate variables X, Xo,..., and the binary relations +1
and <. Atomic formulas are of the form X(t), t1 < ta,
+1(¢1,t2), and t; = to. Well-formed formulas are obtained
from atomic formulas using Boolean connectives, the first-
order quantifiers 3¢ and V¢, and the second-order quantifiers
3X and VX. If we omit the +1 relation then we obtain the
sub-logic MSO(<). We denote sets of monadic predicates in
boldface and write ¢(X) for a formula whose free second-
order variables are drawn from the set X. In the sequel
we reserve the letters W, X, Y to denote monadic predicate
variables, and P, @, R to denote their interpretations as
subsets of T.

Example 6: Fix a finite set W of monadic predicate vari-
ables, and consider the timed word w = (a1,t1) ... (ap,t,)
over alphabet ¥ = P, (W) consisting of the nonempty
subsets of W. We associate with w a structure M, that
extends (T, <, +1) with interpretations of the monadic pred-
icate variables W, where W € W is interpreted as the set
{ti W e ai}.

Shelah [34] showed that the satisfiability problem for
MSO(<) over the non-negative reals (and hence also over
any nonempty interval of reals) is undecidable. He also
proved, however, that decidability can be recovered by
restricting second-order quantification to countable sets.
Given our interest in modelling finite timed words in the
manner of Example 6, the following stronger Finiteness
Assumption is natural and is assumed henceforth: all free
predicate variables are interpreted by finite sets, and second-
order quantification ranges over finite sets. Decidability of
MSO(<) under this restriction follows from Shelah’s result
mentioned above; cf. also [35].

Let W be a set of predicate variables. Observe that the
interpretation M,, of W arising from a timed word w, as



described in Example 6, obeys the Finiteness Assumption.
Conversely any interpretation of W satisfying the Finiteness
Assumption arises from a unique timed word. Thus we
may identify the set of models of a formula (W) of
MSO(<,+1) with a timed language. If we furthermore
assume, without loss of generality, that W contains a
distinguished predicate Wi,;; with a fixed interpretation as
the set {0}, then for timed words w and w’, the struc-
tures M,, and M, are order isomorphic if and only if
untime(w) = untime(w’).2 Building on this observation,
we can represent the set of models of an MSO(<) formula
(up to order isomorphism) as a regular untimed language.

Definition 7: A collection M of interpretations of W in
T is said to be regular if there exists a regular (untimed)
language L on alphabet ¥ = P, (W) such that

M={M, : w € TE*, untime(w) € L}.

The following proposition follows from [35, Theorem 1].
Proposition 8: The set of models of (W) € MSO(<)
is effectively regular.

IV. MCNAUGHTON GAMES

McNaughton [20] gave a formulation of Church’s problem
in terms of two-player games over the structure (N, <) with
MSO(<) winning conditions. In this section we introduce
a class of McNaughton-type games over bounded time
domains T = [0, N) with MSO(<, +1) winning conditions.
These games are shown to generalise the class of accep-
tance games for alternating timed automata as defined in
Section II. Following [32], [36] we consider games with
parameters. The presence of parameters is crucial both in
setting up the correspondence with the acceptance game and
in our inductive proof of decidability for the McNaughton
games.

Let o(W,X,Y) be an MSO(<,+1) formula with free
variables among W, X and Y. We think of X as a set
of variables under the control of Player I, Y as a set of
variables under the control of Player II, and W as a set of
parameters: each instantiation of W yields a different game.
Let P be an interpretation of W and, recalling the Finiteness
Assumption, let t; < ¢ < --- < t, be an enumeration of
UP, ie., the set of points at which some predicate in P
holds. The McNaughton game G(p, P) is a turn-based game
in which Player I and Player II run through the sequence of
timestamps t1, . .., t,, successively choosing values for their
predicates at each timestamp. More formally:

(i) The game consists of n rounds. In the ¢-th round
Player I chooses a bit vector b; € {0, 1}* and then Player II
chooses a bit vector b}, € {0,1}Y;

(ii) At the conclusion of the game, Player I has constructed
an interpretation Q of X that assigns to X € X the set {¢; :

2We include the predicate Wipit since an order isomorphism from My,
to M,,, must map O to itself.

1 <4 < n,b;(X) = 1}. Likewise, Player II has constructed
an interpretation R of Y that assigns to Y € Y the set
{t; :1<i<nbi(Y)=1}

(i) f T E ¢(P,Q,R) then Player I is the winner;
otherwise Player II is the winner.

We say that the sequence of moves in the first ¢ rounds of
G(p,P) determines a partial play (by,b}) ... (b;,b;), where
b; € {0,1}* and b} € {0,1}Y for 1 < j < i. A strategy
for Player I is a function from the set of partial plays to the
set {0,1}X. Such a strategy is winning if Player I wins all
plays in which the strategy is followed.

In the next section we consider the decidability of the

following two questions:
Decision Problem. Given a formula o(W,X,Y), does
there exist an interpretation P of the parameters W for
which Player I has a winning strategy in the game G(p, P)?
Winning-Parameters Problem. Compute a representation
of the set of parameters P for which Player I has a winning
strategy in the game G(p, P).

In Section V we prove the computability of the winning-
parameters problem in case ¢ is an MSO(<) formula, and as
a consequence establish decidability of the decision problem
for MSO(<, +1) winning conditions.

In the remainder of this section we sketch a reduction
of the language emptiness problem for alternating timed
automata over time domain T to the decision problem for
McNaughton games also over T. To this end, given an
alternating timed automaton 4 = (%,S5,C, s, F,d), we
construct a formula  4(W,X,Y) of MSO(<,+1) so as
to establish a correspondence between the acceptance game
G(A,w) for a given timed word w (cf. Section II) and the
McNaughton game G(p 4, P) for a given interpretation P
of W that is determined by w.

The set of parameters W = {W, : 0 € X} contains a
predicate variable for each alphabet symbol. A timed word
w € TY* naturally determines an interpretation P of W
over T, cf. Example 6.

We imagine that Player I and Player II in G(p4,P)
respectively take the roles of Automaton and Pathfinder in
G(A,w). For each expression 0 € B, (S x P(C)) that is a
conjunction of atoms we postulate a variable Xy whose truth
value encodes the choice of Automaton to select § in a given
round of G(A,w). Similarly, for each atom « € S x P(C)
we postulate a variable Y, whose truth value encodes the
choice of Pathfinder to select atom « in a given round of
G(A,w).

We instrument the formula ¢ 4 so that Player I wins the
McNaughton game G(¢ 4, P) if and only if Automaton wins
the acceptance game G(A, w). The key components of ¢ 4
are subformulas ¢, (t) and @paen(t) respectively ensuring
that Player I and Player II correctly simulate Automaton and
Pathfinder at each time point .

The formula @paen(t) ensures that at time ¢ Pathfinder
only chooses one atom «, and moreover that « is a conjunct



of the expression # chosen by Automaton at time ¢ (written
0 = «). This is expressed as:

A[Ya®) =V Xo®) | A N\ ~(Yalt) AY5(E).

a O=a a#f3

The formula @, (t) ensures that at time ¢ Automaton
chooses a disjunct 6 of the transition function 4. It is the
conjunction over all locations s € S, inputs ¢ € ¥ and
guards ¢ € ®(C'), such that d(s,0,v) is defined, of the
formulas

Vo ((states(v) A next(v,t) A Wy (t) A consty(t)) —

VX))

0=6(s,0,%)

Here states(v) and next(v,t) are easily defined auxiliary
formulas, respectively expressing that the automaton is in
state s at time v, and that v and ¢ are consecutive timestamps
in the input word. Similarly, const,(t) expresses that the
clock constraint ¢ € ®(C') holds at time ¢. For example, in
case ) = x ~ k we define consty(t) to be the formula

u <t Aresety(u) AVw(u < w <t — —reset,(w))
Ju
ANt—un~k

where reset,(u) is an auxiliary formula expressing that
clock x was reset at time w (which information is available
from Y, (u)).

@aut and @pa¢, are components of a formula ¢ 4 which
encodes the winning condition of Automaton in the accep-
tance game. Specifically, ¢ 4 expresses that play must start in
an initial location, it must end in an accepting location, and
for all time points ¢ at which some W, holds (i.e., all time
points of the input word) @ay(t) holds unless @patn had
previously failed. This is all straightforward to formalise,
and in fact this can be accomplished such that ¢ 4 has no
second-order quantifiers, that is, it is a formula in the first-
order fragment of MSO(<, +1).

The games G(A, w) and G(p 4, P) are essentially isomor-
phic, and it is now straightforward to prove the following:

Proposition 9: Automaton wins the acceptance game
G(A,w) if and only if Player I wins the McNaughton game
G(pa,P), where P is the set of parameters associated with
the timed word w.

V. MAIN RESULT

In this section we show decidability of the decision
problem for McNaughton games over bounded time do-
mains. From this we derive decidability of the time-
bounded language emptiness problem for alternating timed
automata. The proof has three parts: first we recall from [27]
a satisfiability preserving and reflecting translation from
MSO(<, +1) to MSO(<) over bounded time domains; next
we show how to solve the winning-parameters problem
for McNaughton games with MSO(<) winning conditions;

finally we combine the first two contributions to solve the
decision problem for games with MSO(<,+1) winning
conditions.

Throughout this section, let T = [0, N) be a fixed time
domain.

A. Eliminating the Metric

Given an MSO(<, +1) formula ¢, we define a straight-
forward syntactic transformation into an MSO(<) formula
© such that there is a natural bijection between models of
¢ over [0, N) and models of & over [0,1).

Let X be the set of monadic predicates appearing in .
With each predicate X € X, we associate a collection
Xo,...,Xny—1 of N fresh monadic predicates. We then
writt X = {X; | X € X,0 < i < N — 1}. Intuitively,
each X; is a predicate on [0, 1) that represents X over the
subinterval [i,i + 1). Formally, an interpretation of X € X
over [0, N) yields an interpretation of X; over [0,1) by
defining X,;(¢) if and only if X(i 4+ t). Note that this
correspondence yields a bijection between interpretations of
X on [0, N) and interpretations of X on [0, 1).

We can assume that ¢ does not contain any (first- or
second-order) existential quantifiers, by replacing them with
combinations of universal quantifiers and negations if need
be. It is also convenient to rewrite ¢ into a formula that
makes use of a unary function +1 instead of the +1 relation.
To this end, replace every occurrence of +1(x,y) in ¢ by
(x<N-1Az+1=y).

Next, replace every instance of Vx ¢ in ¢ by the formula

Vo (Ylz/z) Nble +1/x) Ao APl + (N —1)/x]),

where t[t/x] denotes the formula resulting from substituting
every free occurrence of the variable z in v by the term ¢.
Intuitively, this transformation is legitimate since first-order
variables in our target formula will range over [0, 1) rather
than [0, V).

Having carried out these substitutions, use simple arith-
metic to rewrite every term in ¢ as x + k, where z is a
variable and k£ € N is a non-negative integer constant.

Every inequality occurring in ¢ is now of the form z+k <
N —1or x+ k; < y+ ks. Replace every inequality of the
first kind by true if k+2 < N and by false otherwise, and
replace every inequality of the second kind by (i) z < y, if
k1 = ko; (ii) true, if k1 < ko; and (iii) false otherwise.

Every equality occurring in ¢ is now of the form z+k; =
y + ko. Replace every such equality by x = y if ky = ko,
and by false otherwise.

Every use of monadic predicates in ¢ now has the form
X(xz + k), for k < N — 1. Replace every such predicate by
X k ((E)

Finally, replace every occurrence of VX1 in ¢ by
VXoVXy ...VXN_1. The resulting formula is the desired
©. Note that i does not mention the 41 function, and is
therefore indeed a sentence in MSO(<).



The correspondence between ¢ and  is formalised in the
following proposition.

Proposition 10: The formula ¢(X) holds in the structure
([0, N),<,+1) under interpretation P if and only if the
transformed formula %(X) holds in the structure ([0,1), <)
under interpretation P.

B. The Regularity Lemma

Recall from Definition 7 that, due to the Finiteness
Assumption, we can represent the set of interpretations
satisfying an MSO(<) formula ¢(X) as a regular untimed
language.

Lemma 11: Let ¢(W,XY) be an MSO(<) formula.
Then the set {P : Player I wins G(¢,P)} is effectively
regular.

Proof: According to Proposition 8 we can compute
a deterministic finite automaton A = (Q, X, o, 0, F') over
alphabet ¥ = P, (W U X UY) whose language represents
the set of models of ¢. We seek an automaton over alphabet
31 = P4+(W) representing the set of interpretations P of
W such that Player I wins G(¢, P).

Let w = wiws ... w, € X7 represent an interpretation of
'W. By distinguishing the contribution of input bits between
two protagonists, respectively called Player I and Player 1II,
we define a graph game® T'(A,w), which can be seen as a
discrete analogue of G(p, P).

There are two kinds of vertices in I'(A, w), Player-I ver-
tices and Player-II vertices respectively. For each automaton
state ¢ € @ and position 0 < i < n, we include a Player-I
vertex (g, ¢); if moreover 0 < i < n—1 then we also include
a Player-II vertex (q,i,b) for each bit vector b € {0, 1}*.
If 0 < i < n—1 then we include an edge from (g,%) to
(g,1,b), corresponding to a choice of bit vector b by Player I;
for b’ € {0,1}Y we also include an edge from (g,i,b) to
(¢’ i+ 1), where ¢’ = 6(q, (wi4+1,b,b")), corresponding to
a choice of bit vector b’ by Player II.

The rules of the game I'(A,w) are as follows. Player I
chooses moves at Player-I vertices and Player II chooses
moves at Player-1I vertices. Play starts in the vertex (gg, 0)
and Player I wins if play reaches a vertex (¢,n) with g € F.

The game I'(A, w) essentially represents an untiming of
G(p, P): the moves in each game are the same once one
elides the timestamp associated with each round in the latter
game. In particular, Player I wins I'(A, w) if and only if
Player I wins G(p, P).

For E C @ a set of automaton states and w € X%, we
define the set Force,, (E) of states from which Player I can

3Graph games are a simple and classical notion [23]. We treat them
informally to avoid overburdening the reader with yet more game-theoretic
formalism.

force play into E on input w by

Force.(E) = E
Force, (E) = {q : 3b1 Vb2 §(q, (u,b1,b2)) € E} w € 3
Force,, (E) = Force, (Force,, (F)) u € Xy, w € Xy

Given w € X7, it is straightforward that Player I wins
I'(A,w) if and only if ¢y € Force, (F'). From this obser-
vation one can build an automaton 53 on alphabet ¥; that
accepts those words w such that Player I wins I'(A, w).
The set of states of B is P(Q), with F the unique final
state, and {S C Q : go € S} the set of initial states. We
include a transition S —= T on input b € ¥, if and only if
S = Forcey(T). [ |

A result similar to Lemma 11 has been proven in [32],
[33] for parametric games over (N, <).

C. The Decision Procedure

Theorem 12: Let T = [0,N) be a fixed time domain.
Given an MSO(<, +1) formula ¢(W,X,Y), it is decidable
whether there exists an interpretation P of W over T such
that Player I wins G(p, P).

Proof: Applying the transformation described in sub-
section V-A to ¢(W,X,Y) yields an MSO(<) formula

P(W,X,Y), where W = {W, : W € W,0 < i < N},
X ={X;,: X e€eX0<i<N}jad¥Y = {V; :
Y eY, 0 < i < N}. Then interpretations P, Q, R of
W,X,Y as predicates on [0, N) naturally yield interpre-

tations P, Q, R of W, XY as predicates on [0,1) where,
e.g., P;(t) holds if and only if P(i +¢) holds, 0 < ¢t < 1
and 0 < ¢ < N. By Proposition 10 we have that (P, Q,R)
holds if and only if 3(P, Q, R) holds.

Observe, however, that there is a significant difference
between the game G(p, P), which is played over the interval
[0,N), and the game G(,P), played over [0,1). For
example, in the former, for X € X and 0 < ¢t < 1, Player 1
chooses the value of X (t) before X (¢t + 1). However, in the
latter, these values, respectively represented as Xo(t) and
X1 (t), are chosen at the same time.

Instead we associate with G(p,P) a sequence of Mc-
Naughton games Gy,...,GN_1, each over the interval
[0,1), and each with an MSO(<) winning condition. In-
tuitively the i-th game G; corresponds to the restriction of
G(¢, P) to the time interval [¢,7+ 1). Accordingly we have
Player I choose the value of X;, X € X and Player II choose
the value of Y;, Y € Y in G;. The key insight in defining
G is to treat the variables X;, X € X and Y}, Y € Y as
additional parameters for each j < 7. That is, the respective
choices of Player I and Player II in the preceding games G,
J < i become parameters in G;. (Strictly speaking each G;
is a family of games, one game for each instantiation of the
extra parameters in ;.)

To be precise, the winning condition of G; is an MSO(<)
formula ¢; with free variables W, {X; : XeX0<;5<



i} and {Y; : Y € Y,0 < j <i}. Of these, Player I controls
X;, X € X, Player Il controls Y;, Y € Y, and the remaining
variables are parameters. The definition of the ¢; proceeds
backwards, from ¢ _1 down to g, and is such that Player I
wins G(g, P) if and only if he wins Gy = G(yp, P). This
equivalence allows us to decide the winner of G(p, P).

To start with we define ony_1 := © A xny—1, Where x;,
which constrains Player I and Player II to move only when
one of the predicates W;, W € W is true, is defined by

</\ X; C U Wz‘)V(\/ Y, & U Wi)-
Xex Wew Yey Wew

Suppose we have defined the game G;;; involving pa-

rameters W, {X; : 0 < j < i, X € X} and {V]
0 <j <14Y € Y} By the Regularity Lemma the set
of interpretations of these parameters such that Player I
wins G, is effectively regular and is expressible by an
MSO(<) formula ¢; with the above parameters as its set
of free variables. The winning condition for the game G; is
then defined to be y; := ¥; A x;, where x; is as defined
above.

This completes the definition of the games Gy, ...,Gn_1.
There is a natural bijective correspondence between the
set of positions of G(p,P) and the set of positions of
(the various instantiations of) the G;, where a position of
G(p, P) with timestamp ¢ corresponds to a position of G ;|
with timestamp ¢ — [¢|. Moreover this association preserves
the identity of the winning player. In particular, Player I
wins G(¢, P) if and only if he wins G(po, P). We omit the
details. ]

Recalling from Section IV the reduction of the language
emptiness problem for alternating timed automata to the
game decision problem for MSO(<,+1), we obtain the
following theorem, which is the central result of our paper:

Theorem 13: The time-bounded language emptiness
problem for alternating timed automata is decidable.

Note, as an immediate corollary, that Theorem 13 entails
the decidability of the time-bounded model-checking prob-
lem of timed automata against alternating timed automata
specifications.

VI. COMPLEXITY

Define a family of functions exp;, : N — N by expy(n) =
n and exp,q(n) = 2P A function f : N — N is
nonelementary if it grows faster than any exp,,.

Our procedure for determining language emptiness for
alternating timed automata has nonelementary complexity.
This blow-up does not arise from the translation of MSO(<)
formulas to automata in the proof of Proposition 8, since
the quantifier-alternation depth of the relevant formulas is
bounded independently of the automata. Rather, the culprit
is the exponential blow-up that occurs with each application
of the Regularity Lemma in the proof of Theorem 12.

In this section we give a nonelementary lower bound
for the language emptiness problem for alternating timed
automata. We prove this by reduction from the emptiness
problem for star-free regular expressions.
A star-free regular expression over alphabet ¥ is built
from the symbols ) and o, for any ¢ € ¥, using the opera-
tions of union (4), concatenation (), and complementation
(—). Such an expression E denotes a language L(E) C ¥*
which is defined as follows:
L(®)=0and L(c) = {o};
L(E+ E')=L(E)UL(E");
L(E-FE)=L(E)-L(E);
L(-E)=%*\L(E).

The following result was shown in [37].

Theorem 14: The language emptiness problem for star-
free regular expressions is nonelementary.

We give a polynomial-time reduction of the language
emptiness problem for star-free regular expressions to the
time-bounded language emptiness problem for alternating
timed automata. Note that since language emptiness for (un-
timed) alternating automata is PSPACE-complete [4], such
a reduction would not be possible in the untimed setting.
Before describing the reduction we need some auxiliary
notions concerning regular expressions.

The operator depth odp(E) of a regular expression E is
defined as follows:

odp(0) = odp(s) = 1;
odp(E + E’) = max{odp(FE),odp(E’)} + 1;
odp(E - E') = max{odp(E),odp(E")} + 1;
odp(—F) = odp(E).
Note that negation does not count toward the operator depth.

Given a star-free regular expression F over alphabet X
and a word v € X* we define the membership game
G(u, E). This is a two-player game with N rounds, where
N is the operator depth of E. The two players are Prover,
who is trying to show u € E, and Refuter, who is trying
to show u & E. The positions of the game are pairs (v, F')
where v is a sub-word of u and F has the form G or =G
for G a sub-expression of E. The initial position is (u, E).
Suppose the position at the start of a given round is (v, F),
where v = vy ...v,; then the round proceeds as follows:

o If FF = I} - F5 then Prover moves first by choosing
an index ¢ in v. Refuter responds by selecting either
(v1...v5-1, F1) or (v;...vp, Fy) as the position in the
next round;

o If F = —(F} - Fy) then Refuter moves first by choosing
an index ¢ in v. Prover responds by selecting either
(v1...v;-1,—Fy) or (v ...v,,F3) as the position in
the next round;

o If ' = I} + F5 then Prover selects either (v, F7) or
(v, F3) as the position in the next round;

o If F = —(F; + F») then Refuter selects either (v, ~F7)
or (v, —Fy) as the position in the next round.



The positions (v, o), (v, o), (v,0), and (v, —0) are termi-
nal. In these cases Prover wins if v is a member of the
corresponding expression and Refuter wins otherwise.

It is clear that Prover has a winning strategy in G(u, E)
if and only if u € L(FE).

Definition 15: Suppose that E is a star-free regular ex-
pression over alphabet X. Given a time domain T = [0, V),
we associate with E a timed language Lp(E) C TX*
containing those timed words w = (a1,t1)...(an,t,)
satisfying the following two properties:

(i) There exists a word u € L(F) such that untime(w) =
u® consists of N copies of u;

(i) Each successive copy of w in w is separated by one
time unit, that is, t; 1, = t; +1 for 1 <i < Nn—Ju
where |u| denotes the length of w.

Example 16: In case T = [0,2) and ¥ = {a} then
Lp(2*) = Lv(Acopy), Where Acopy is the automaton
defined in Example 5.

Let E be a star-free regular expression of operator depth
N and write T = [0, N). It holds by construction that Ly(E)
is nonempty if and only if L(E) is nonempty. Next we define
an alternating timed automaton Ag such that Ly(Ag) =
Ly(E).

There are two ideas behind the definition of Ag. The
first, following Example 16, is that L(X*) is the language
of a simple variant of Ac.py—call it B—that accepts its
input if and only if the sub-word occurring in the first time
unit is repeated in all subsequent time units. The second
idea is that for an arbitrary expression F we can define Ap
as the intersection of B with another automaton. Note that
if w is accepted by B then untime(w) = u” for some
u € X*. The definition of Ag is such that Ag simulates
the membership game G(u,E) by playing one round in
each time unit. Intuitively, A simulates moves of Prover by
disjunctive transitions and moves of Refuter by conjunctive
transitions.

Recall that a position of the membership game G(u, F) is
a pair (v, F'), where v is a sub-word of u and F’ has the form
G or =G for a sub-expression G of E. In order to remember
the game position (v, F') between successive time units, Ag
stores [’ in its finite control, while it records v by resetting
a clock z as it reads the first letter of v and resetting a clock
y as it reads the last letter of v. Automaton Ag consists of
N gadgets; one time unit passes between control entering
and exiting each gadget.

There is an initialisation gadget that resets clock x on the
first event of the timed word and resets clock y on the last
event in the first time unit.

The gadget for F' = F} - F5 is illustrated in Figure 3 (we
omit the labels on transitions). Referring to the appropriate
clause in the membership game, the choice of when to take
the transition exiting location s simulates the move of Prover
to select an index of the input word; the two conjunctive

)
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Figure 3. Gadget for F; - F»
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Figure 4. Gadget for —(F; - F2)

branches of this transition simulate the choice of Refuter
either to choose the left sub-word or the right sub-word.*
The gadget for F' = —(F} - F5) is illustrated in Figure 4.
It operates along similar lines as the gadget for F} - F> and
we omit detailed explanation.
Theorem 17: The time-bounded language emptiness
problem for alternating timed automata is nonelementary.
It can be seen from the proof of Theorem 17 that the
nonelementary lower bound applies for automata with only
two clocks. On the other hand, for a fixed time bound
the decision procedure for language emptiness presented in
Theorem 13 is elementary. The translation of the language
emptiness problem to the decision problem for McNaughton
games detailed in Proposition 9 involves a winning con-
dition ¢4 whose quantifier depth is absolutely bounded.
Furthermore the decision procedure for McNaughton games
presented in Theorem 12 is elementary if the quantifier depth
of the winning condition and the time bound are both fixed.
We conclude by observing that there cannot be an el-
ementary procedure that computes an MSO(<,+1) for-

4Strictly speaking, to handle the case in which v is the empty word, we
should include transitions in Figures 3 and 4 that allow clocks = and y to
be reset simultaneously. But these are omitted for readability.



mula ¢ from a given alternating timed automaton .4 such
that (i) ¢ and A define identical timed languages over
all time domains T; (ii) the quantifier alternation depth of
© is bounded independently of A. The existence of such
a procedure would contradict Theorem 17 given that the
satisfiability problem for MSO(<,+1) over bounded time
intervals is elementary for formulas of a fixed quantifier-
alternation depth [27]. By contrast there is a straightforward
translation from (untimed) automata over words to the
existential fragment of MSO(<) [18], [19].
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