
APEX: An analyzer for
open probabilistic programs?

Stefan Kiefer1, Andrzej S. Murawski2, Joël Ouaknine1,
Björn Wachter1, and James Worrell1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK

Abstract.We present APEX, a tool for analysing probabilistic programs
that are open, i.e. where variables or even functions can be left unspec-
ified. APEX transforms a program into an automaton that captures the
program’s probabilistic behaviour under all instantiations of the unspeci-
fied components. The translation is compositional and effectively leverages
state reduction techniques. APEX can then further analyse the produced
automata; in particular, it can check two automata for equivalence which
translates to equivalence of the corresponding programs under all envi-
ronments. In this way, APEX can verify a broad range of anonymity and
termination properties of randomised protocols and other open programs,
sometimes with an exponential speed-up over competing state-of-the-art
approaches.

1 Introduction

APEX is an analysis tool for open probabilistic programs. Such programs are very
well suited to analyse randomised algorithms and, in particular, anonymity in
security protocols: they (i) represent the behaviour of an algorithm succinctly for
a range of inputs, and (ii) allow to differentiate internal behaviour from externally
observable behaviour, so that anonymity can be established by proving that secret
information is not externally observable.

APEX’s key technology is the use of game semantics [2], which provides a com-
positional translation of open probabilistic programs to probabilistic automata.
Probabilistic automata [10] are essentially nondeterministic automata whose tran-
sitions are decorated with probabilities. A theorem [8] guarantees that two open
probabilistic programs are equivalent if and only if the probabilistic automata are
language equivalent, i.e., accept every word with the same probability. Language
equivalence between probabilistic automata reduces to a linear-algebra problem
for which efficient algorithms have been developed, see [5] and the references
therein. APEX performs both the translation from programs to automata and the
language-equivalence check. Thus, given two open probabilistic programs, APEX
either proves them equivalent, or provides a word that separates the programs.

APEX has been applied to a range of case studies [6]: it provides the most
efficient automatic verification of dining cryptographers to date, an analysis of

? Research supported by EPSRC. The first author is supported by a postdoctoral fel-
lowship of the German Academic Exchange Service (DAAD).



Hibbard’s algorithm for random tree insertion, and of Herman’s self-stabilisation
algorithm.

Example: The Grade Protocol in APEX. We illustrate the use of APEX
by analysing a protocol for a group of students, who have been graded and
would like to find out the sum of their grades (e.g., to compute the average)
without revealing the individual grades. This is accomplished with the follow-
ing randomised algorithm. Let S ∈ N be the number of students, and let
{0, . . . , G − 1} (G ∈ N) be the set of grades. Define N = (G − 1) · S + 1. We
assume that the students are arranged in a ring, as depicted in Figure 1, and
that each pair of adjacent students shares a random integer between 0 and N −1.

S1 S2

S3

S4S5

S6

Fig. 1.

Thus a student shares a number l with the student on
its left and a number r with the student on its right,
respectively. Denoting the student’s grade by g, the
student announces the number (g + l− r) modN . The
sum of the announced numbers (mod N) is telescop-
ing, so it equals the sum of all grades. We require that
no participant glean anything from the announcements
other than the sum of all grades. This correctness con-
dition can be formalised by a specification in which the
students make random announcements subject to the condition that the sum of
the announcements equals the sum of their grades.

\\ Implementation

const N := S*(G -1)+1;

grade:int%G, out:var%N |-
var%(S+1) i; i:=0;
var%N first; first :=rand[N];
var%N r; r:=first;
while(i<S) do {

var%N l;
i:=succ(i);
i f (i=S) then

left:= first
else

left:=rand[N];
out:= (grade + l) - r;
r:= l;

} : com

\\ Specification

const N := S * (G-1) + 1;

grade:int%G, out:var%N |-
var%S i;
var%N total;
i:=1;

while(i) do {
total := grade + total;
var%N r;
r := rand[N];
out:=r;
total := total - r;
i:=succ(i)

};
out:= grade + total: com

Fig. 2. Grade protocol: APEX programs.

Figure 2 shows two APEX programs: on the left, the implementation of the grade
protocol to be verified against the specification program, given on the right. The
input language of APEX is an imperative sequential programming language with a
C-like syntax and support for procedures and arrays. There are several constructs
to define probability distributions, e.g., the expression rand[N] gives a uniform
distribution over the numbers {0, . . . , N − 1}, coin is a shorthand for rand[2],



and coin[0:1/4, 1:3/4] a biased coin. Variables are defined over finite ranges,
e.g., var%N total; declares a variable over range {0, . . . N−1}. There are internal
variables such as the counter i which are defined locally, and externally observable
program variables through which the program communicates with the outside
world. Externally observable variables are declared before the turnstile symbol
|-; in our example, there are two such variables: the individual grades of students
are read from variable grade, while out is an output variable that announces the
random numbers generated by the protocol.

APEX checks whether the programs are equivalent. In this case it finds that
they are, so one can conclude that the grade protocol guarantees anonymity.

2 How APEX Works

APEX is implemented in C and OCaml and consists of approximately 18K lines
of code. Figure 3 shows APEX’s architecture. It has two main components: an
automaton construction routine and an equivalence checker.

Parser

program 1 program 2

AST 1 AST 2

Automata Construction

conditional

while
sequence

...

automaton 1 automaton 2

Equivalence Checker

yes no

word

Fig. 3. APEX architecture

2.1 Automaton Construction

The automaton constructor builds a proba-
bilistic automaton using game semantics. The
construction works at the level of the pro-
gram’s abstract syntax tree (AST). The leaves
of the tree correspond to variables and con-
stants, while internal nodes correspond to se-
mantic operations of the language like arith-
metic expressions, probabilistic choice, condi-
tionals, sequential composition of commands,
and loops. APEX labels each AST node with
the automaton that captures its semantics, by
proceeding bottom-up and composing the au-
tomata of the children. Ultimately, the au-
tomaton computed for the root of the AST
gives the semantics of the entire program.

Figure 4 shows the probabilistic automata
obtained from the programs in Figure 2 (with S = 2 and G = 2). Transitions in
the automaton contain only reads and writes to observable variables; e.g., label
1 grade means that value 1 has been read from variable grade and write(2) out
means that value 2 has been written to variable out. Actions on internal variables
are hidden. Each transition is also labeled (comma-separated) with a probability.

2.2 Equivalence Checking

To check equivalence of the input programs, it suffices for APEX to check the cor-
responding probabilistic automata for language equivalence. If they are not equiv-



11

10

13

12

(0,1)0

3

2

5
4

7

6
9

8

0 grade, 1write(1) out, 1

1 grade, 1write(1) out, 1

write(0) out, 1

write(2) out, 1

0 grade, 1/3

1 grade, 1/3
1 grade, 1

1 grade, 1/3 write(2) out, 1

1 grade, 1/3

0 grade, 1/3

0 grade, 1/3

write(1) out, 1

write(0) out, 1

0 grade, 1write(2) out, 1

write(0) out, 1

0 grade, 1

1 grade, 1

(a) Implementation automaton

(0,1)
0

3

25

4

7

6

9

8
1 grade, 1write(1) out, 1/3

write(1) out, 1

write(0) out, 1/3

0 grade, 1
write(2) out, 1

1 grade, 1

0 grade, 1

0 grade, 1
write(0) out, 1write(1) out, 1/3

0 grade, 1

write(0) out, 1/3

1 grade, 1

write(2) out, 1/3

write(2) out, 1/3

1 grade, 1

(b) Specification automaton

Fig. 4. Probabilistic automata for the grade protocol.

alent, APEX presents a counterexample word, which corresponds to a run which
is executed with different probabilities in the two programs. APEX uses efficient
linear-algebra-based algorithms [5] for the equivalence check and the counterex-
ample extraction.

3 Comparison With Other Tools

PRISM [4] is the leading probabilistic model checker with a large collection of case
studies. As regards anonymity, model checking is considerably less convenient than
equivalence checking. In [9], for example, the authors establish anonymity of the
Dining Cryptographers protocol by considering all possible visible behaviours,
and proving for each that the likelihood of its occurrence is the same regardless
of the payer. This leads to exponentially large specifications, and correspondingly
intractable model-checking tasks.3 In practice, a proper verification of the protocol
can only be carried out for a handful of cryptographers [6], while APEX scales to
around 800 cryptographers on a state-of-the-art workstation.

Mage [1] is a software verification tool based on game semantics which ap-
plies to non-probabilistic programs. To our knowledge, APEX is the only game-
semantics-based tool for probabilistic programs.

4 Novel Features

We discuss several new features and algorithmic improvements that have not been
covered in previous publications [5, 6, 8].

3 The state space of the underlying Markov chain generated by PRISM also grows
exponentially, but this is mitigated by PRISM’s use of symbolic representations in the
form of MTBDDs.



Variable Binding by Reachability Analysis. Game semantics views a state variable
as an automaton that answers read requests and stores values on writes. The
subprogram in which the variable lives, i.e. its scope, is an open program in
terms of this variable. A variable-binding operator closes this subprogram by
synchronous composition of the subprogram with the automaton of the variable.
At the semantic level, both variable and scope are represented as automata.

The automata semantics of the binding operator is defined in terms of the
synchronous product of the two automata, in which transitions involving reads
and writes of the variable are turned into silent ε-transitions which are to be
removed e.g. using ε-removal algorithms [7] to obtain the ultimate result.

In the previous implementation of APEX, the product automaton was formed
by copying the automaton that represents the scope of the variable k times where k
is the number of potential values of the variable (which coincides with the number
of states of the automaton that represents the variable). In practice, many of the
state-value pairs thus created turn out to be unreachable because the variable
typically only takes on a subset of the potential values in its domain at a certain
program location. In the new version of APEX, the binding operator computes
the automaton by enumerating reachable state-value pairs only. In this way, the
peak number of states of the constructed automata is reduced.

Live-Variable Detection. The reachability analysis for variable binding can be
further optimised by taking into account liveness information. A variable is live
if there is a path to a usage of the variable, and is dead otherwise. At a state in
which a variable is dead, the product construction can lump all state-value pairs
with the same state, as the value of the variable has become irrelevant.

Liveness analysis is collected by a simple procedure that tracks the liveness of
the bound variable with a bit and proceeds backwards from the reading occur-
rences of the variable in an automaton. This information is subsequently used in
the product construction.

Early ε-Removal. In the previous version of APEX, product construction and
ε-removal were two distinct phases. Now linear chains of ε-transitions are imme-
diately removed in the product construction, while branching and cyclical struc-
tures are left to the full ε-removal routine. By eliminating the ‘simple’ cases of
ε-transitions, subsequent steps such as bisimulation and ε-removal run faster.

Lumping Bisimulation. APEX applies lumping bisimulation to reduce automata
size. The bisimulation routine runs frequently during the compositional automata
construction. Hence its performance is crucial. Recently we have improved the
underlying algorithms. APEX now features a signature-based refinement algo-
rithm [3] that computes a strong bisimulation. Key to its efficiency is to leverage
very inexpensive algorithms that compute a coarse pre-partition to which the
precise signature-based partition refinement is subsequently applied to obtain the
final lumping. Pre-partitioning proceeds in two phases: (1) APEX lumps states ac-
cording to their minimal distance from an accepting state; whereby the distance is
computed by a backwards depth-first search from the accepting states. (2) APEX



runs an approximate version of signature-based refinement which utilises hash
values of signatures to refine the partition, instead of comparing signatures with
each other. Both steps have helped to significantly lower the cost of lumping.

Counterexample generation. The previous version of APEX did not provide diag-
nostic information in case two programs were inequivalent. Now APEX generates
a counterexample word, i.e., a word which the programs accept with a different
probabilities. The new feature is enabled by the techniques presented in [5].

Online Tool Demo. We have implemented an online version of APEX which offers
a convenient user interface and runs on any device with a recent web-browser:

www.cs.ox.ac.uk/apex

The user can either select from existing case studies, load case studies on the
server, or drag & drop into the input window. Automata are displayed as scalable
vector graphics (SVG). The view can be zoomed with the mouse wheel and the
viewing window can be moved by panning. Further the interface has an equiv-
alence checking mode in which counterexamples are shown. Internally, the tool
runs on a server and the dynamic web pages through which the user interacts
with APEX are generated by PHP scripts.

References

1. Adam Bakewell and Dan R. Ghica. On-the-fly techniques for game-based software
model checking. In TACAS, pages 78–92, 2008.

2. V. Danos and R. Harmer. Probabilistic game semantics. ACM Transactions on
Computational Logic, 3(3):359–382, 2002.

3. Salem Derisavi. Signature-based symbolic algorithm for optimal markov chain lump-
ing. In QEST, pages 141–150, 2007.

4. Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism:
A tool for automatic verification of probabilistic systems. In TACAS, pages 441–444,
2006.

5. S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language
equivalence for probabilistic automata. In CAV, volume 6806 of Lecture Notes in
Computer Science, pages 526–540. Springer, 2011.

6. A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. On automated verification
of probabilistic programs. In Proceedings of TACAS, volume 4963 of Lecture Notes
in Computer Science, pages 173–187. Springer, 2008.

7. M. Mohri. Generic e-removal and input e-normalization algorithms for weighted
transducers. Int. J. Found. Comput. Sci., 13(1):129–143, 2002.

8. A. S. Murawski and J. Ouaknine. On probabilistic program equivalence and re-
finement. In Proceedings of CONCUR, volume 3653 of Lecture Notes in Computer
Science, pages 156–170. Springer, 2005.

9. PRISM case study: Dining Cryptographers.
www.prismmodelchecker.org/casestudies/dining crypt.php.

10. M. O. Rabin. Probabilistic automata. Information and Control, 6 (3):230–245, 1963.


