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Abstract. We present a survey of algorithms, mostly drawn from the
broad field of logic in computer science, that rely on Schanuel’s conjec-
ture for termination and/or correctness. Schanuel’s conjecture is a central
hypothesis in transcendental number theory that generalises many ex-
isting classical results such as the Lindemann-Weierstrass theorem and
Baker’s theorem on linear independence of logarithms of algebraic num-
bers. The algorithmic use of Schanuel’s conjecture was spearheaded by
computer algebraists in the 1970s, as well as by Macintyre and Wilkie in
the 1990s, most notably to establish the decidability of real arithmetic
expanded with the exponential function. Since then, many further ap-
plications have been recorded in the literature. We present and discuss
several of these algorithms, with a particular focus on the precise role
played by Schanuel’s conjecture.

1 Introduction

It is not uncommon for correctness properties of algorithms to be conditional
upon hypotheses that are unproven, but plausibly true. The most emblematic
examples come from cryptography, where the security of protocols, i.e., the com-
putational infeasibility of breaking a scheme, is predicated on conjectures such as
the impossibility to factor large numbers efficiently, or more generally P ̸= NP.

In the fields of computer algebra, automata theory, and dynamical systems,
various decision problems hinge on variants of the following subroutine:

Problem 1. Given a polynomial p ∈ Q[x1, . . . , xk], and q1, . . . , qk ∈ Q>0, decide
whether p(log q1, . . . , log qk) > 0.

The number-theoretic hurdle in following the obvious approach of using
increasingly precise approximations of log q1, . . . , log qk is that these numbers
might “unexpectedly” be algebraically dependent3 with p as a witness, i.e.,
p(log q1, . . . , log qk) = 0. The purported decision procedure could not effectively
detect this case because it would never terminate if it were to arise.
3 Throughout this paper, algebraic (in)dependence and transcendence are meant to
be over the field Q of rational numbers, unless otherwise specified.
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However, if we are promised that log q1, . . . , log qk are algebraically indepen-
dent, i.e., f(log q1, . . . , log qk) ̸= 0 for all nonzero f ∈ Q[x1, . . . , xk], then instead
of the usual trichotomy, we are only faced with a dichotomy between strict in-
equalities, which the strategy above is guaranteed to resolve. Crucially, only
termination is conditional upon the promise: correctness of the output is un-
conditional, since there are well-known techniques for approximating logarithms
within any required error bound.

Unfortunately, unconditional promises of algebraic independence often stretch
beyond the capabilities of contemporary number-theoretic techniques. A classi-
cal example is the widely expected algebraic independence of e and π, which
has yet to be established. This is where Schanuel’s conjecture [19, Pages 30-31],
a central hypothesis in transcendental number theory going back to the 1960s,
enters the picture.

Conjecture 1 (Schanuel’s conjecture). If the complex numbers β1, . . . , βk are lin-
early independent over Q, then the set {β1, . . . , βk, exp(β1), . . . , exp(βk)} con-
tains a subset of k algebraically independent numbers.

As immediate examples, consider:

– The numbers 1 and iπ, where i is the imaginary unit, are linearly independent
over Q. If Schanuel’s conjecture holds, the set {1, iπ, e,−1} contains a subset
of two algebraically independent numbers: by inspection, these must be iπ
and e. From this assertion we can then prove the algebraic independence of
π and e through elementary algebra.

– The transcendental numbers log 2, log 3, log 5 are linearly independent overQ,
thanks to the fundamental theorem of arithmetic. Indeed, if they weren’t,
there would be an integer linear relationship between log 2, log 3, log 5, e.g.,
a log 2 = b log 3 + c log 5 with a, b, c positive (the other possibilities are anal-
ogous). Upon exponentiating, it would imply that 2a can also be factored
as 3b5c, a contradiction. If Schanuel’s conjecture holds, these linearly in-
dependent numbers must also be the three algebraically independent num-
bers in the set {log 2, log 3, log 5, 2, 3, 5}. There being no nonzero polynomial
p ∈ Q[x1, x2, x3] such that p(log 2, log 3, log 5) = 0 guarantees that the obvi-
ous approach discussed earlier would resolve this specific class of instances
of Prob. 1.

Schanuel’s conjecture is in fact a powerful and far-reaching generalisation of
a number of classical results in transcendental number theory, three of which we
state below. Recall that a complex number α ∈ C is algebraic if p(α) = 0 for
some polynomial p ∈ Q[x], and is transcendental otherwise. The collection of
algebraic numbers forms an algebraically closed field, which we denote by Q.

Theorem 1 (Lindemann-Weierstrass, 1885). If α1, . . . , αk are algebraic
numbers that are linearly independent over Q, then exp(α1), . . . , exp(αk) are
algebraically independent over Q.

Theorem 2 (Gelfond-Schneider, 1934). If α and β are algebraic numbers
such that α ̸= 0, 1 and β is irrational, then αβ is transcendental.
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Theorem 3 (Baker, 1966). If α1, . . . , αk are algebraic numbers such that
log(α1), . . . , log(αk) are linearly independent over Q, then 1, log(α1), . . . , log(αk)
are linearly independent over Q.

As we observed in the example of log 2, log 3, log 5 above, Schanuel’s con-
jecture would strengthen the consequence of Baker’s theorem to assert that
log(α1), . . . , log(αk) are in fact algebraically independent.

In this paper, we survey the algorithmic applications of Schanuel’s conjecture.
We start with the role it plays in the foundations of computer algebra, and
consequently, the logical reasoning about real numbers. The latter proves to be
an especially convenient interface for further applications in logic, as well as
in both discrete and continuous dynamical systems, which include recurrence
sequences, automata, and stochastic processes.

Schanuel’s conjecture was naturally of immediate interest to computer al-
gebraists, who sought to expand their domain of operations to encompass ele-
mentary functions such as expx, log x, sinx, arccosx, without compromising on
the critical ability to recognise when an expression evaluates to 0. There were
significant strides in this endeavour as early as 1970 [7]. Throughout the last
three decades of the 20th century, Richardson developed an influential line of
work culminating in [28], which achieved the above goal: this body of research
showed, through both theory and practice, that assuming Schanuel’s conjecture,
the exponential field of elementary numbers (Sec. 2.2), which is countable, alge-
braically closed, and also closed under the elementary functions, is computable,
i.e., there is an effective representation scheme that is amenable to arithmetic
operations, elementary functions such as exp, log, sin, arccos, etc., and zero test-
ing. The specific role of Schanuel’s conjecture is to guarantee the termination of
the fundamental zero-testing algorithm for elementary numbers.

As [28, Introduction] notes, the consensus [2,3,30] among the eminent num-
ber theorists of the 1970s was that Schanuel’s conjecture is very likely correct,
but would be extremely hard to prove. Little has changed since. In order to ap-
proach the resolution of Schanuel’s conjecture, Zilber [38] showed in 2005 that
there is a unique exponential field B with cardinality |C| that axiomatically
“imitates” the complex numbers with exponentiation, and satisfies Schanuel’s
conjecture along with a property called strong exponential-algebraic closure. If
B and C are isomorphic, then Schanuel’s conjecture for C follows. Conversely,
if B and C are not isomorphic, then at least one among Schanuel’s conjecture
and strong exponential-algebraic closure fails to hold for the complex numbers.
Unfortunately, neither proof nor refutation of the isomorphism seems accessible.

The connection between model theory and transcendence theory, however,
had come to the fore nearly a decade prior to Zilber’s work when in 1996, Mac-
intyre and Wilkie [22] used Schanuel’s conjecture to prove the termination of
their now celebrated algorithm to decide the first-order theory Texp of the real
numbers with the exponential function. As we survey decision procedures that
rely upon Schanuel’s conjecture, we observe that several do so solely by virtue
of queries to Texp: such is the influence of [22] on making the algorithmic con-
sequences of Schanuel’s conjecture accessible. Although Schanuel’s conjecture is
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only used to prove termination of the algorithm deciding Texp, [22, Sec. 5] nev-
ertheless hedges against its failure by identifying that the decidability of Texp is
equivalent to an ostensibly weaker hypothesis (Conj. 2), whose resolution was
still expected to be inaccessible.

The synergy between transcendence theory, computer algebra, and model
theory continues to be explored to this day. In 2016, Macintyre [21] exhibited
remarkable evidence to suggest that Schanuel’s conjecture is fundamental to
computability: more precisely, he showed that any countable exponential field
that obeys Zilber’s axioms (which, in particular, entail Schanuel’s conjecture) is
computable.

In this survey, we begin by explaining the foundational computer-algebraic
applications in Sec. 2. In Sec. 3.1 and 3.2, we then explain how these advances,
when combined with model theory, established the decidability of first-order
logical theories. Queries formulated in first-order logic are typically (but not
exclusively) the means through which Schanuel’s conjecture is invoked by algo-
rithms that decide problems in monadic second-order logic (Sec. 3.3), discrete
dynamical systems (Sec. 4), quantitative verification (Sec. 5), and continuous
dynamical systems and MDPs (Sec. 6).

2 Computer Algebra

As discussed earlier, Schanuel’s conjecture is useful for zero-testing in computer
algebra because it can be intuited as a promise of algebraic dependence among
numbers being formally certifiable. We shall next make this intuition concrete by
summarising [29], and subsequently survey the more general case of recognising
zero among the elementary numbers [27,28]. These procedures are uncondition-
ally correct, and require Schanuel’s conjecture only to guarantee termination.

2.1 Zero-testing elementary expressions

The problem considered in [29] is that of testing whether expressions involving
addition, subtraction, multiplication, division, taking n-th roots for a positive
integer n, division, exp, and log4 evaluate to zero. Formally, an expression E is
given as a parse tree whose leaves represent rational numbers, and internal nodes
carry elementary operations, and we have to decide whether it is the case that
the value V (E) = 0. Observe that this entails recursively solving subproblems:
in order for V (E) to be well defined, for every subexpression5 Ei that evaluates
a divisor, or the argument of log, it is necessary that V (Ei) ̸= 0.

4 We take the principal branch of the logarithm. A complex number z = p + iq can
also be expressed as z = ex+iy, choosing y ∈ (π, π]. This choice defines log z =
x + iy. Similarly, we assume that n-th roots of numbers except 0 are interpreted
as exp((log z)/n). Note that with this set of operations, we can also implement
trigonometric, inverse trigonometric functions, and their hyperbolic analogues.

5 Technically, we take the parse tree to be a directed acyclic graph in order to avoid
duplicate subexpressions. We assume an ordering such that if i < j, then Ei cannot
have Ej as a subexpression.



Algorithmic Applications of Schanuel’s Conjecture 5

For example, i can be expressed as either (−1)1/2 or exp(log(−1)/2), and
thus the difference of these two expressions is 0. Similarly, π can be expressed as
log(−1)/(−1)1/2. We shall adopt E = (−1)1/2 − exp(log(−1)/2) as our running
(toy) example.

We begin by classifying subexpressions. We shall use the letter A to denote
subexpressions that are either arguments to exp or outputs of log, and the letter
B to denote subexpressions that are either outputs of exp or arguments to log.
In our example, we have A1 = log(−1), A2 = log(−1)/2, B1 = −1, B2 =
exp(log(−1)/2). In this way, we shall maintain that either Aj = log(Bj), or
Bj = exp(Aj). We note that an expression can be both an Aj and a Bk, e.g., if
E′ = exp(exp(1)), then B′

1 = A′
2 = exp(1).

We shall use αj , βj to respectively denote V (Aj), V (Bj). In our running ex-
ample, A1 = iπ,A2 = iπ/2, B1 = −1, B2 = i. By definition, we always have that
βj = exp(αj), and for every pair (αj , βj), there is an input to the operand, and
an output to the operand, e.g., if Aj = log(Bj) then αj is the output number.
We use γj to denote the output component of the pair. By the structure of E,
we have that V (E), and in fact each α1, β1, . . . , αk, βk is an algebraic expression
in γ1, . . . , γk (where k is the number of subexpressions rooted at exp or log).

Now, if we assume that α1, . . . , αk are linearly independent over Q, then
Schanuel’s conjecture promises us that there are k algebraically independent
numbers among α1, . . . , αk, β1, . . . , βk. By the preceding observation, the only
way to ensure this is for γ1, . . . , γk to be algebraically independent. Recall that
we have V (E) = f(γ1, . . . , γk) for some algebraic function f . If f ≡ 0, then we
have proof that V (E) = 0 regardless of our assumption of linear independence
above. If not, then we are promised in particular that V (E) ̸= 0. We thus
run a semi-algorithm to compute V (E) to arbitrary precision to cover this case,
Schanuel’s conjecture assuring us that this will eventually certify that V (E) ̸= 0.

If the linear independence assumption fails, then there exist c1, . . . , cj ∈ Z
with cj ̸= 0 such that c1α1 + · · · + cjαj = 0. If we find these integers, we can
use them to obtain an equivalent expression E′ of a “reduced order”, i.e., E′

has fewer subexpressions using exp, log, and V (E′) = V (E). In our example, we
have that 2α2 = α1, and B2 = exp(A2). We can replace B2 with (B1)

1/2, to get
the reduced order E′ = (−1)1/2−(−1)1/2. More generally, if Bj = exp(Aj), then

we replace Bj with (B−c1
1 · · ·B−cj−1

j−1 )1/cj , and if Aj = log(Bj), then we replace
Aj with −(c1A1 + · · · + cj−1Aj−1)/cj . Clearly, the order can be reduced only
finitely often.

However, in order to soundly obtain such an equivalent E′, one needs to
prove that a purported6 linear dependency holds. Towards such a formal proof,
we shall recursively associate with each subexpression Ei of E, an algebraic
function η(Ei) as follows. If Ei is exp(Aj) for some j, then η(Ei) = xj , likewise
if Ei is log(Bj) for some j, then η(Ei) = yj . Otherwise, if Ei = op(Ei1 , . . .) for
some algebraic operation op, then we set η(Ei) = op(η(Ei1), . . .). Finally, if Ei

is a rational constant, then η(Ei) returns the same constant, e.g., η(−1) = −1.

6 Algorithms such as LLL (Lenstra-Lenstra-Lovász lattice basis reduction) or PSLQ
[13] can greatly optimise the enumeration of potential dependencies.
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Returning to our running example, we have that η(A1) = x1, η(B1) =
−1, η(A2) = x1/2, η(B2) = y2. By easy symbolic reasoning, we see that if
c1η(A1)+· · ·+cjη(Aj) ≡ 0 (is identically 0), then c1α1+· · ·+cjαj = 0. Similarly,
if η(B1)

c1 · · · η(Bj)
cj−1 ≡ 0 and |c1α1+· · ·+cjαj | < 1, then c1α1+· · ·+cjαj = 0

because it must be an integer multiple of 2πi. In this manner, associated alge-
braic functions serve as certificates; however, if a linear dependency exists, is it
guaranteed there to be a certificate?

We make a thematic invocation of Schanuel’s conjecture to answer affir-
matively. Suppose that we have c1α1 + · · · + cjαj = 0 with j minimal, i.e.,
cj ̸= 0 and α1, . . . , αj−1 are linearly independent. Let λj be the input component
among αj , βj . We have by structure that α1, β1, . . . , αj−1, βj−1, λj are algebraic
in γ1, . . . , γj−1. In particular, either η(c1A1+ · · ·+ cjAj), or η(B

c1
1 · · ·Bcj

j −1) is
of the form f(z1, . . . , zj−1), where f(γ1, . . . , γk−1) would return c1α1+ · · ·+cjαj

or βc1
1 · · ·βcj

j −1 respectively. The arguments γ1, . . . , γk−1, by Schanuel’s conjec-
ture, are algebraically independent. The only way to realise f(γ1, . . . , γk−1) = 0
therefore, would be f ≡ 0, implying that the minimal dependency, when enu-
merated, would constitute a desired symbolic proof.

Note that in the worst case, if Schanuel’s conjecture is false, then no proof
would be observed, and we would continue our search for a dependency, but
never make unsound progress towards a decision in the algorithm.

In summary, we run a semi-algorithm that seeks to prove that V (E) ̸= 0 by
brute approximation, and a semi-algorithm that seeks to reduce the (finite) order
of E. If Schanuel’s conjecture holds, at least one of them will terminate. Having
terminated, the algorithm gives a certificate (an approximate, or an identically
zero function) of whether V (E) = 0.

2.2 Zero-testing elementary numbers

Recall that elementary numbers constitute an algebraically closed subfield of the
complex numbers, which is closed under applications of elementary functions and
computable (i.e., there is an effective representation scheme that is amenable
to arithmetic operations, elementary functions such as exp, log, sin, arccos, etc.,
and zero testing) assuming Schanuel’s conjecture. We now follow [28, Sec. 2] and
record the concepts required to define elementary numbers.

The first building block is an exponential system, which consists of polyno-
mials p1, . . . , pr ∈ Q[x1, . . . , xn] and expressions w1 − exp(z1), . . . , wk − exp(zk)
where {w1, . . . , wk, z1, . . . , zk} ⊆ {x1, . . . , xn}. We use F = ⟨F1, . . . , Fr+k⟩ to
collectively denote the entire exponential system.

An elementary point γ = (γ1, . . . , γn) ∈ Cn is a nonsingular root of an
exponential system F = ⟨F1, . . . , Fn⟩, i.e., γ satisfies F (γ) = 0, and the Jacobian

determinant JF (γ) = det
(

∂Fi

∂xj

)
1≤i,j≤n

(γ) ̸= 0. A number ζ ∈ C is elementary

if there is an elementary point γ ∈ Cn and a polynomial p ∈ Q[x1, . . . , xn] such
that ζ = p(γ). Naturally, an elementary number ζ is represented by (γ, p). It is
clear how to represent p; we discuss how we represent an elementary point γ.
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1. We are given an exponential system F = ⟨F1, . . . , Fn⟩, which is straightfor-
ward to represent.

2. We are given an approximate α ∈ (Q[i])n, i.e., all coordinates of α have
rational real and imaginary parts.

3. We are given a rational precision ε > 0, which defines an ε-neighbourhood
B(α, ε) around α such that:
– The infimum over β ∈ B(α, ε) of |JF (β)| is greater than 0, and is effec-

tively computable.
– The neighbourhood passes a fixed standard test (e.g., [27, Sec. 2], see

also [28, Sec. 2.1] for a survey of alternatives) that Newton’s iteration7

converges to the unique root of F in the neighbourhood, thereby proving
that α approximates γ to precision ε.

The algorithm of [28] decides whether a representation as described above
encodes 0, and relies on Schanuel’s conjecture to guarantee termination.

3 Logic

In this section, we discuss how decidability results for expansions of classi-
cal structures follow when the computability enabled by Schanuel’s conjecture
is combined with model theory in the case of first-order logic, and with au-
tomata theory, dynamical systems, and infinite-word combinatorics in the case
of monadic second-order logic.

3.1 First-order theory of the reals with exponentiation

Tarski [31] famously showed that the first-order theory T0 of the structure
⟨R; +,−, ·, <, 0, 1⟩ is decidable by virtue of admitting quantifier elimination. In
other words, there is an algorithm to translate any first-order formula that is
interpreted over the real numbers, and uses the functions +,−, ·, the predicate
<, and the constants 0, 1, into an equivalent formula (over the same signature)
without quantified variables. In particular, sentences (formulas without free vari-
ables) are translated into Boolean combinations of inequalities involving integers.
The question naturally arose: could we expand the signature with, e.g., the ex-
ponentiation function and yet obtain a structure with a decidable theory?

Macintyre and Wilkie [22] proved that the first-order theory Texp of the struc-
ture ⟨R; +,−, ·, <, 0, 1, exp⟩, i.e., the real numbers expanded with the exponential
function is decidable subject to Schanuel’s conjecture (for R). To be specific, the
decidability of Texp is equivalent to a weaker version of Schanuel’s conjecture
[22, Sec. 5], which is stated in computational terms (Conj. 2). In view of the
fact that this work built an accessible interface for the algorithmic applications
of Schanuel’s conjecture, it is worth insisting on the fact that results which are
conditional because they invoke the decidability of the first-order theory of the
reals with exponentiation are technically reliant upon a weaker hypothesis.

7 This approximates a root as the limit of the recurrence αi+1 = αi − J−1
F (αi)F (αi).



8 T. Karimov et al.

The decision procedure is underpinned by the proposition that the complete
theory Texp can be axiomatised by T ∪ Eexp, where T is a recursive set of sen-
tences, and Eexp is the existential fragment of Texp [22, Thm. 2.6]. In order to
decide whether a given sentence φ is in Texp, we enumerate formulas in Texp

until arriving at either φ or ¬φ. This enumeration performs the following tasks
in parallel: (i) enumerate sentences from the recursive set T ; (ii) enumerate sen-
tences that can be deduced from the ones enumerated thus far; (iii) iterate in
parallel over existential sentences φe, running the subroutine described below on
each φe until either: (a) it certifies that φe ∈ Eexp, (b) ¬φe has been enumerated
as a member of Texp. Schanuel’s conjecture is needed to guarantee that each
φe ∈ Eexp will indeed be certified.

We now explain the ingredients to devise a subroutine whose termination
certifies that φe ∈ Eexp. An arbitrary existential sentence can effectively be
translated8 into the form

∃x1 · · · ∃xn. p(x1, . . . , xn, exp(x1), . . . , exp(xn)) = 0 , (1)

where p ∈ Z[x1, . . . , x2n]. We shall use Fp : Rn → R to denote the function that
maps x = (x1, . . . , xn) to p(x1, . . . , xn, exp(x1), . . . , exp(xn)). The task is thus to
certify that Fp has a root. Due to the following lemma [36, Lem. 6], the existence
of a root of Fp implies the existence of one that can be “isolated”.

Lemma 1. Suppose Fp has a root. Then there exist q1, . . . , qn ∈ Z[x1, . . . , x2n]
and γ = (γ1, . . . , γn) ∈ Rn such that:

1. γ is a root of Fp, i.e., Fp(γ1, . . . , γn) = 0;
2. γ is a nonsingular root of the function ⟨Fq1 , . . . , Fqn⟩ : Rn → Rn.

For example, (log 2, log 3, log 5) is a nonsingular root of ⟨exp(x)− 2, exp(y)−
3, exp(z)− 5⟩. Nonsingularity ensures that such roots can be approximated via
(an appropriate version of) Newton’s method [36, Lem. 5], and as discussed
in Sec. 2.2, given a sufficiently precise neighbourhood of the root, we can use
standard tests to prove that Newton’s method will converge.

Our task is thus to enumerate (q1, . . . , qn, α, ε) until we find a tuple such that
α ∈ Qn approximates to precision ε ∈ Q a point γ which is a nonsingular root
of ⟨Fq1 , . . . Fqn⟩, and moreover satisfies Fp(γ) = 0. The verification at each iter-
ation is reminiscent (albeit with slight technical differences) of the zero-testing
in Sec. 2.2, and requires Schanuel’s conjecture for termination.

Intuitively, we use Schanuel’s conjecture to argue that if some γ satisfies
algebraic and transcendental dependencies from ⟨Fq1 , . . . Fqn⟩ as well as Fp, then
it is no coincidence; rather, p, q1, . . . , qn are related in a manner that we can elicit,
and furthermore use as a formal proof of Fp having a root [36, Cor. of SC]. In
fact, [22, Sec. 5] identifies that the validity of the following weaker hypothesis is
sufficient as well as necessary for the decidability of Texp:

8 We translate ∃x. F1(x) < 0 ∧ · · · ∧ Fk(x) < 0 ∧ Fk+1(x) = 0 ∧ · · · ∧ Fm(x) = 0 to
∃x.∃t. (F1(x) + exp(t1))

2 + · · ·+ (Fk(x) + exp(tk))
2 + Fk+1(x)

2 + · · ·+ Fm(x)2 = 0.
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Conjecture 2 (Weak Schanuel’s conjecture). Given p, q1, . . . , qn ∈ Z[x1, . . . , x2n],
we can compute a positive η ∈ N such that if γ ∈ Rn is a nonsingular root of
⟨Fq1 , . . . Fqn⟩ and |Fp(γ)| ≤ 1/η, then Fp(γ) = 0.

We note that this η certainly exists: [22] argues this via Khovanskii’s theorem,
which implies that ⟨Fq1 , . . . , Fqn⟩ only has finitely many nonsingular roots. It is
only the effectiveness of η that is conditional.

Before proceeding, we illustrate the difference between Schanuel’s conjecture
and the above weak variant with the example problem of determining, given
nonzero p ∈ Z[x, y, z], whether p0 = p(log 2, log 3, log 5) = 0. Schanuel’s conjec-
ture immediately declares that this cannot be the case. The weak variant is more
circumspect: it computes η(ex − 2, ey − 3, ez − 5, p(x, y, z)) such that if p0 ̸= 0,
then |p0| > 1/η. It remains to approximate p0 to precision 1/3η.

We now return our attention to showing how to verify a purported certifi-
cate (q1, . . . , qn, α, ε) that Fp has a root. We first check (by a standard Newton’s
method-based test) that it is well-formed, i.e., α indeed approximates to pre-
cision ε a nonsingular root γ of ⟨Fq1 , . . . Fqn⟩. We then evaluate Fp(α) and use
continuity to check that this value implies Fp(γ) < 1/η.

Conversely, it is elementary to argue by continuity of Fp that if Fp(γ) = 0,
then there is a well-formed certificate with sufficiently high precision which is
guaranteed to be accepted.

3.2 Extensions and related first-order decidability results

The result above has an analogue of a more technical number-theoretic flavour:
the 2013 PhD thesis of Mariaule [24] shows the decidability of the first-order
theory of the ring Zp of p-adic integers with the (p-adic) exponential function.

For the reals, however, Macintyre and Wilkie have actually adapted the above
techniques to prove a stronger (unpublished) result (see [21, Thm. 3.1(4)]): as-
suming Schanuel’s conjecture, the first-order theory Tel of the reals with expo-
nentiation and restricted trigonometric functions, i.e., the theory of the structure
⟨R; +, ·, <, exp, sin ↾ [0, n], cos ↾ [0, n]⟩ is decidable. Here, a restricted function
f ↾ [0, n] (where n ∈ N returns f(x) for x ∈ [0, n], and 0 otherwise. We believe
that the proof of decidability of Tel requires Schanuel’s conjecture for C only
for termination of the algorithm, and proceeds by adapting the model-theoretic
machinery of [35] to prove a “combined” (and effective) version of the two main
results therein,9 and hence deduce that Tel is effectively model-complete and ax-
iomatised analogously to Texp. Furthermore, [35, Thm. 5.1] in particular can be
seen as the required analogue of Lem. 1 to enable the detection of roots of the
ensuing elementary functions by enumerating guesses for an elementary-point
root, and using the techniques surveyed in Sec. 2.2 to verify the guesses.

We observe that the introduction of trigonometric functions takes us to the
frontiers of decidability: if we were to allow unrestricted trigonometric functions,

9 In fact, for the applications we survey in Sec. 6, it suffices to consider the restriction
of all three functions to bounded intervals. In this case, one only needs carefully
assess the proof of the first main result of of [35] for effectiveness.
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we would get undecidable theories: indeed the expanded first-order theory of
⟨R; +, ·, <, sin⟩ is undecidable because one can express the predicate “x is an
integer” as ∀w. sin(w) = 0 ⇒ sin(xw) = 0. With access to both addition and
multiplication, we can then encode any given instance of Hilbert’s 10th problem10

as a sentence. However, decidability subject to Schanuel’s conjecture is recovered
for the theory T+,sin of ⟨R; +, <, sin⟩ [6, Thm. 2.10].

The question of whether we can get decidable theories if we relinquish mul-
tiplication in favour of direct access to the integers was very recently considered
in [6], which studied Presburger arithmetic with the sine function. In this set-
ting, we only have access to addition and the sine function, the variables are
interpreted over the integers, and the terms are interpreted over the reals. The
first main result of [6] is that the resulting theory is undecidable, already with
four alternating blocks of quantifiers. The second main result, however, is that
the existential fragment is decidable subject to Schanuel’s conjecture. Rather
atypically, the decision procedure relies on Schanuel’s conjecture for correctness
(of the step [6, Thm. 4.5]) as well as termination (deciding whether a sentence
obtained by [6, Thm. 4.18] is in T+,sin). In particular, if Schanuel’s conjecture
does not hold, the step of [6, Thm. 4.5] fails and the algorithm might incor-

rectly decide sentences of the form ∃x1, . . . xn.
∧k

i=1 ti(x1, . . . , xn) = 0, i.e., a
conjunction of equalities.

3.3 Monadic second-order (MSO) theories of the natural numbers
with integer-power predicates

In 1966, Elgot and Rabin [12] showed that monadic second-order (MSO) theo-
ries of structures of the form ⟨N;<, aN⟩ are decidable, where a ≥ 2 is a natural
number and aN denotes the predicate {an : n ∈ N}. It remained open until
recently whether expanding the structure with multiple such predicates results
in decidable theories, when [4] provided a positive resolution: for any a, b, the
MSO theory of ⟨N;<, aN, bN⟩ is decidable. However, the decidability of the MSO
theory of ⟨N;<, aN1 , . . . , a

N
d ⟩ (e.g., the MSO theory of ⟨N;<, 2N, 3N, 5N⟩) was es-

tablished subject to Schanuel’s conjecture. In this subsection, we explain the role
of Schanuel’s conjecture, and present a slightly improved result.

Theorem 4. Let 2 ≤ a1 < · · · < ad be natural numbers. The MSO theory of
⟨N;<, aN1 , . . . , a

N
d ⟩ is decidable subject to the decidability of Texp (the first-order

theory of the reals with exponentiation).11

We can assume, without loss of generality, that a1, . . . , ad are pairwise mul-
tiplicatively independent, i.e., for all i, j ∈ {1, . . . , d} and integers p, q ≥ 1,

10 Hilbert’s 10th problem takes as input a polynomial equation and asks whether it has
an integer solution. It was famously shown undecidable in 1970 by Matiyasevich.

11 Technically, we only work with the structure ⟨R;<,+, ·, log a1, . . . , log ad⟩ (the usual
first-order structure of the reals, expanded with constants), which, due to Tarski
[32], admits quantifier elimination. Consequently, decidability hinges on the ability
to decide polynomial (in)equalities in log a1, . . . , log ad.
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api ̸= aqj . We then define the order word α ∈ {a1, . . . , ad}ω, which records the
order in which the powers of a1, . . . , ad (excluding 1) appear. For example, the
order word of the powers 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, . . . of 2, 3, 5
is 23252325322352 · · · . In [4], it was shown that deciding whether a sentence is
in the MSO theory of ⟨N;<, aN1 , . . . , a

N
d ⟩ is equivalent to deciding whether a given

automaton A accepts the order word α.
The key insight is that the order word enjoys a toric structure. Consider the

example of 2, 3, 5, and the factorisation of α based on occurrences of powers of
a1 = 2. We get 2·32·52·32·532·2·352 · · · . The k-th factor conveys whether there
were powers of 3 and 5 between 2k−1 and 2k, and in what order they occurred.
Equivalently, it conveys whether there were integer multiples of log 3, log 5 (there
can be at most one of each kind) between (k− 1) log 2 and k · log 2, and in what
order. We capture the above through the torus T in Fig. 1. Due to [25, Thm. 3]
(stated below), it would suffice to elicit effective almost-periodicity from the toric
order word in order to prove our decidability result.

(log 2, log 2)

(log 5, log 3)

52 2

32
352

532

Fig. 1. The above torus T helps construct the order word through the orbit of a point
that starts at (log 2, log 2) and travels in discrete steps of (log 2, log 2). The label of the
(open) region it lands in determines the next letters of the order word; the starting
point prints 2 and is the only point that lands on a boundary.

Theorem 5. Define a word α ∈ Σω to be effectively almost-periodic if, given
any u = u(0) · · ·u(ℓ− 1) ∈ Σ+, we can compute a return time R ∈ N such that
either:

– For all n ≥ R, α(n) · · ·α(n+ ℓ− 1) ̸= u, or
– For all n, there exists an m ∈ [n, n+R) such that α(m) · · ·α(m+ ℓ−1) = u.

If α is effectively almost-periodic, then given any Büchi automaton A, we can
decide whether A accepts α.

It remains to show how, given a word u ∈ {a1, . . . , ad}+, the toric structure helps
us to compute a return time. We work with our running example of powers of
2, 3, 5 for ease of exposition; it is straightforward to generalise the arguments.
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Let us take the example of u = 5232532. As the first step, we factor12 it based
on occurrences of a1 = 2, and obtain 52·32·532 = b0b1b2. In order for u = b0 · · · bℓ
to be observed, there must be a sequence of points (x0, y0), . . . , (xℓ, yℓ) in the
torus T such that:

– For each i, (xi+1, yi+1) is obtained by taking a single step of (log 2, log 2)
from (xi, yi), i.e., xi+1 = xi + log 2 or xi + log 2 − log 5 as appropriate to
ensure that 0 ≤ xi < log 5 (and likewise for y). Thus, the sequence is uniquely
determined by (x0, y0).

– The point (x0, y0) is in a region that has b0 as its suffix. In our example,
(x0, y0) must be in the region of 52 or 352. Likewise (xℓ, yℓ) must be in a
region that has bℓ as its prefix.

– All other points (xi, yi) must be in the region that prints bi.

Points (x0, y0) that satisfy the above constraints, i.e., define a sequence of
points that land in the appropriate regions, are easily (e.g., by linear program-
ming) seen to comprise a bounded union Iu of open sets of the torus T. By
construction, there is a direct correspondence between occurrences of u and vis-
its to Iu: in particular, u has gaps of at most R between consecutive occurrences
in the order word if and only if the orbit visits Iu at least once in every R steps.

The orbit is dense in some (not necessarily proper) subtorus of T. More
specifically, by Kronecker’s theorem in Diophantine approximation [15], the orbit
is dense in the subtorus13 Torbit given by{
(x, y) ∈ T : for all b, c ∈ Z, if

b · log 2
log 5

+
c · log 2
log 3

∈ Z, then
bx

log 5
+

cy

log 3
∈ Z

}
.

By invoking the compactness of the (sub)torus Torbit, we can prove that if Ju =
Iu ∩ Torbit is nonempty, then there exists an R such that the orbit of any point
in Torbit visits Ju, and hence Iu, within R steps. On the other hand, if Ju is
empty, then u can never occur in the order word.

We have thus far proven that the order word α is not merely almost-periodic,
but in fact enjoys the stronger property of uniform recurrence: every u occurs
either with bounded gapsR(u), or never at all. It remains to effectively compute a
return time R.14 The problem with the strategy of brute enumeration to compute
R is that we cannot unconditionally obtain Torbit: it can so happen that we
enumerate R forever because Iu is nonempty but Ju is empty as a consequence
of Torbit ⊂ T.

The original paper [4] invoked Schanuel’s conjecture to argue that Torbit = T,
since indeed in our example, the reciprocals of log 2, log 3, log 5 would have to be
linearly independent over the rationals. This guaranteed that the enumeration

12 The case where there is just a single factor (because, e.g., there is no a1) is trivial.
13 We continue with the example of powers of 2, 3, 5 for ease of exposition, the general

statement for a1, . . . , ad is completely analogous.
14 One implementation can use the open-cover characterisation above. Alternately, we

can also use the property that all words v of length R+ |u| for which Jv is nonempty
must contain u as a contiguous subword.
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of potential R would terminate. In this case, Baker’s theorem (Thm. 3) allows
us to determine whether Ju = Iu is nonempty.

However, we show that relying upon the decidability of Texp suffices. The key
observation is that it is not always necessary to know Torbit exactly in order to
compute R. We justify this as follows. Consider a “restricted” torus Tres such
that T ⊇ Tres ⊇ Torbit. For an arbitrary word v, we define Kv as Iv ∩ Tres, and
observe that Iv ⊇ Kv ⊇ Jv. If Ku is empty, it implies the emptiness of Ju, and
thus the non-occurrence of u. Conversely, if for some R the orbit of every point
in Tres visits Ku within R steps, it implies that the actual orbit visits Iu every
R steps, thereby certifying the occurrence of u with gaps bounded by R.

Each candidate Tres thus outlines a correct semi-algorithm to compute a
return time R given u. In case Tres = Torbit, then termination is guaranteed (pro-
vided the attendant linear programming is effective) and we have an algorithm.
For effectiveness of R, it suffices to show that there is an enumerable set Tori of
candidate Tres such that we are guaranteed Torbit ∈ Tori.

Recall that Torbit was defined in terms of the integer linear dependencies of
1

log 2 ,
1

log 3 ,
1

log 5 . More generally, the integer linear dependencies of 1
log a1

, . . . , 1
log ad

will have a basis15 b1, . . . , bp, where for all i, bi ∈ Zd,
∑

j
bij

log aj
= 0, and

p < d − 1. Our candidate Tres will be enumerated by linearly independent sets
{c1, . . . , cq} ⊂ Zd, and have the form{

(x2, . . . , xd) ∈ T : for all i,
ci2x2

log a2
+ · · ·+ cidxd

log ad
∈ Z

}
,

where for each i, we have ci1
log a1

+ · · ·+ cid
log ad

= 0.
The conditions necessitate that c1, . . . , cq lie in the free module generated

by b1, . . . , bp, by linear independence it suffices to consider q < d − 1, and by
construction Tres ⊇ Torbit. By definition, Torbit will necessarily be enumerated
when we guess b1, . . . , bp as the basis.

We finally address the outstanding effectiveness concerns. In order to make
the above enumeration effective, we need to resolve the last condition consisting
of equalities, and hence invoke the decidability of Texp (the first-order theory of
the reals with exponentiation). Finally, we argue that having assumed the decid-
ability of Texp, one can effectively implement the linear programming required
to check that Ku ⊆ Tres is nonempty. This completes the proof of Thm. 4.

4 Applications to Discrete Recurrence Sequences

By the turn of the century, Schanuel’s conjecture had been used to prove the ter-
mination of fundamental algorithms in computer algebra and first-order logic.

15 These dependencies constitute a submodule L of the free module Zd; hence L is also
free and generated by a basis B with cardinality at most d (see the text [20, App. 2,
page 880] for a proof). If |B| = d, then by elementary linear algebra, the reciprocals
of logs are all 0, a contradiction. If |B| = d− 1, linear algebra would imply pairwise
multiplicative dependencies between a1, . . . , ad, again a contradiction.
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While choosing an instruction set to devise algorithms, the computability of
elementary numbers is an immensely powerful tool; at a higher level of abstrac-
tion, the decidability of the first-order theory Texp of the real numbers with the
exponential function serves as a conveniently accessible interface.

In this section, we discuss how these subroutines help in solving problems
about discrete recurrence sequences. We start with the Skolem problem for lin-
ear recurrence sequences (LRS). An integer LRS of order k satisfies an integer
recurrence relation un+k = a0un + · · ·+ ak−1un+k−1, and is given by the coeffi-
cients a0, . . . , ak−1 ∈ Z as well as the initial terms u0, . . . , un−1 ∈ Z. The Skolem
problem asks to decide whether a given LRS has a term that is equal to 0. A
practical algorithm to solve the Skolem problem for simple LRS was given in [5]:
this algorithm is unconditionally correct, but relies on two number-theoretic con-
jectures for termination, one of which is a p-adic version of Schanuel’s conjecture.
The role of Schanuel’s conjecture is to test whether expressions [5, Prop. 8] of
the form f(log λ1, . . . , log λk) are equal to 0, where λ1, . . . , λd are characteristic
roots of the LRS, and f is a polynomial whose coefficients are p-adic integers.

A more sophisticated application is that to hypergeometric sequences [18].
These sequences are given by an initial term u0 ∈ Q, and satisfy the recurrence
q(n)un+1 = p(n)un, where p, q ∈ Q[x] are polynomials without roots in N. The
membership problem asks whether some term equals a given t ∈ Q. Difficulties
arise when p, q are harmonious, implying that the sequence converges to a finite
nonzero limit ℓ. This limit is expressed in terms of the gamma function, and is
not known to be elementary, unless we restrict the spectra of p, q [18, Sec. 4,
Property S]. Because the convergence to ℓ is effectively eventually monotone,
the critical task is to decide whether ℓ = t: the result would determine an upper
bound on the iterate by which t can occur in the sequence. We thus use Schanuel’s
conjecture for testing the resulting elementary expression for 0 [18, Sec. 4.2].

For a setting where the above kind of “invariant synthesis” is broader in
scope, we return to the realm of linear algebra, and consider linear dynamical
systems (LDS). An LDS is specified by a starting point s ∈ Qd and an (invert-
ible) update matrix A ∈ Qd×d, and defines a trajectory (s,As,A2s, . . .). The
halting problem for LDS considered in [1] additionally takes a set F ⊆ Rd rep-
resented by a first-order formula over the structure R0 = ⟨R; +, ·, <⟩ or Rexp

(R0 expanded with the exponential function, as discussed in Sec. 3.1), and asks
to decide whether the trajectory intersects F . A “yes” answer is certified by n
such that Ans ∈ F ; a “no” answer is certified by an invariant, i.e., a set I ⊆ Rd

such that for all x ∈ I, Ax ∈ I, s ∈ I, and I ∩ F is empty. The paper [1] con-
siders the task of synthesising invariants that consist of finitely many connected
components by virtue of being defined in Rexp, a structure that is o-minimal.

We now outline the techniques. It is first shown [1, Thm. 5] that there is
a family J of Rexp-definable sets parametrised by t0, such that the set J (t0)
contains the trajectory for every t0 ≥ 1. Furthermore, [1, Lem. 11] asserts that
an invariant of the desired form must belong to this family. Critically, the set
T of t0 for which the set J (t0) is indeed an invariant is Rexp-definable. Finally,
using the decidability of Texp (whose termination is conditional on Schanuel’s
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conjecture), and the fact that T consists of finitely many connected components,
we can test whether T is non-empty, and if yes, effectively return I = J (t0) for
some t0 ∈ T [1, Thm. 12]. We remark that if the set F is defined in R0, then
the Rexp-definable invariant synthesis is unconditional [1, Thm. 13].

5 Applications to Quantitative Verification

A fundamental object in quantitative verification is the weighted automaton,
which can be intuited as “implementing (linear) recurrence with branching.”
In this section, we survey two instances of algorithms for weighted automata
invoking Schanuel’s conjecture through queries to Texp.

Formally, a weighted automaton computes over a (commutative) semiring R,
i.e., a set that is equipped with distinguished elements 0 ̸= 1, a commutative and
associative addition operation + that has 0 as its identity, and a commutative
and associative multiplication operation · that has 1 as its identity, distributes
over +, and has 0 as its absorbing element (for all x, 0 · x = 0). For example,
the usual finite-word automata compute over the Boolean semiring {0, 1} where
+ is disjunction and · is conjunction. In this section, we shall survey results
for weighted automata that compute over the semiring of nonnegative rational
numbers with the usual addition and multiplication.

In general, a weighted automaton A over the semiring R is given by the tuple
(Q,Σ,∆, I, F ), where Q is the finite set of states, Σ is the alphabet,∆ ⊆ Q×Σ×
R×Q is the finite set of transitions, I : Q → R is the initial weight function, and
F : Q → R is the final weight function.16 Given an input u = u(0) · · ·u(ℓ− 1) ∈
Σ∗, a path of A on u is given as w0, q0, u(0), w1, q1, . . . , qℓ−1, u(ℓ−1), wℓ, qℓ, wℓ+1,
where w0 = I(q0), for all j ∈ {0, . . . , ℓ − 1}, we have (qj , u(j), wj+1, qj+1) ∈ ∆,
and wℓ+1 = F (qℓ). A path on the empty word is simply w0, q0, w1, where w0 =
I(q0), w1 = F (q0). The weight of the path is the product w0 · w1 · · ·wℓ+1. The
weight of the word u is the sum of weights of all paths ofA on u (hence the weight
is 0 if there is no path). The automaton thus defines a function JAK : Σ∗ → R.

For example, a conventional automaton (Q,Σ,∆, I, F ) (where ∆ ⊆ Q×Σ×
Q, I, F ⊆ Q, as is familiar) can be interpreted as a weighted automaton over
the Boolean semiring as follows: we replace each (q, a, q′) ∈ ∆ with (q, a, 1, q′),
construct the initial weight function to assign 1 to elements of I and 0 to others,
and similarly the final weight function assigns 1 to elements of F and 0 to
others. The weight of a path is 1 if it starts in an initial state and ends in an
accepting state, and 0 otherwise; a word is assigned weight 1 if it is accepted by
the automaton, and weight 0 otherwise.

As mentioned before, we shall consider weighted automata over nonnegative
rational numbers. If, in addition, we have that all weights are at most 1, the
sum of all initial weights is 1, all final weights are 0 or 1, and for each state q,
the sum of weights of all outgoing transitions is 1, the automaton is said to
be probabilistic. Probabilistic automata are closely related to other stochastic
models such as Markov chains, and Markov decision processes.

16 In this paper, we only survey works that consider F : Q → {0, 1}.
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Weighted, and indeed even probabilistic automata constitute a powerfully
expressive model of computation: it is folklore [26] (see also [14] for a modern
proof) that the emptiness problem for probabilistic automata, which gives A
and t ∈ [0, 1] and asks whether there is some word u ∈ Σ∗ such that JAK(u) >
t, is undecidable. Even over a unary alphabet, which makes the automaton a
Markov chain, the problem is as hard as the yet unresolved positivity problem
for linear recurrence sequences [33]. In order to obtain decidability results for
weighted automata, works have thus restricted either the structure of the input
automaton, or the language L(A) of words that are assigned nonzero weight.

The former is done by restricting ambiguity : an automaton A is k-ambiguous
if there are at most k nonzero paths for every u ∈ Σ∗. We say that A is finitely
ambiguous if it is k-ambiguous for some k, and unambiguous if k = 1. We
can further parametrise ambiguity, and say that an automaton is polynomially
(respectively, linearly) ambiguous if for all u, there are at most p(|u|) nonzero
paths, where p is a polynomial (respectively, a polynomial of degree 1). This
distinction is technically relevant, because if an automaton fails to be finitely
ambiguous, then it is at least linearly ambiguous [34, Sec. 3]. Furthermore, it
has been shown [11, Proof of Thm. 1] that the emptiness problem is undecidable
even for linearly ambiguous probabilistic automata.

The only hope to recover decidability with this restriction, therefore, is to
assume finite ambiguity. Indeed, [11, Thm. 2] shows that assuming Schanuel’s
conjecture, the containment problem, which gives probabilistic automata A,B
over the alphabet Σ, and asks whether for all u ∈ Σ∗, JAK(u) ≤ JBK(u), is
decidable for the class of finitely ambiguous probabilistic automata, provided
at least one of the input automata is unambiguous. In fact, the decidability is
unconditional if A is finitely ambiguous and B is unambiguous [11, Prop. 5].

Otherwise, the task is equivalent to the integer program with exponentiation
problem that asks whether the system Mx < c,

∑ℓ
i=1 ris

x1
i,1 · · · s

xn
i,n < 1 has a

solution x ∈ Zn, where M is an integer matrix, c is an integer vector, and ri, si,j
are all positive rationals. Obviously, if there is a solution, a semi-algorithm that
simply enumerates integer vectors will find it. It remains to describe a semi-
algorithm that would certify the absence of integral feasible points.

The key technical observation [11, Lem. 10] is that if there is no integer
solution, then the feasible region X of real solutions must be contained in a

“tube”, i.e., a set {y ∈ Rn : d
⊤
y ∈ [a, b]}, where d ∈ Zn, a, b ∈ Z. If we find

such an encompassing tube, we know that any integer feasible point must satisfy

d
⊤
x = i for some integer i ∈ [a, b], and hence can reduce the search for a

certificate of absence to finitely many lower-dimensional systems [11, Lem. 11].

To make the proposed semi-algorithm effective, we need to check whether a
tube purported by d, a, b indeed contains the feasible set X. This is the step that
uses Schanuel’s conjecture for termination, because it is implemented as a query
to Texp. However, given the lack of explicit transcendence in the integer program-
ming with exponentiation problem, we cannot yet rule out the circumvention of
Schanuel’s conjecture.
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The general undecidability of the containment problem motivated the con-
sideration of an approximate variant, namely, the big-O problem for weighted
automata [8], which gives as input a weighted automaton A, two states q, q′, and
asks whether there exists c > 0 such that for all u ∈ Σ∗, we have JAqK(u) ≤
c · JAq′K(u), where Aq is the automaton obtained by modifying the initial weight
function of A to return 1 for q and 0 for all other states. Unfortunately, as
[8] establishes, the big-O problem is also undecidable in general, and relatively
tractable in very special cases (in P for unambiguous automata, in coNP if the
alphabet is unary).

The interesting restriction is that of requiring the languages L(Aq) and
L(Aq′) be bounded : a language L ⊆ Σ∗ is bounded if it is contained in w∗

1 · · ·w∗
k

for some words w1, . . . , wk ∈ Σ∗. The big-O problem for these instances is de-
cidable subject to Schanuel’s conjecture [8, Thm. 28].

The technical algorithm requires a subroutine to test whether a first-order
sentence is in Texp [8, Lem. 37]. The expressions therein involve the logarithms
of variables, as well as the logarithms of real positive algebraic constants as
coefficients of linear terms, and hence, in this case, Schanuel’s conjecture appears
to play a necessary role.

6 Applications to Continuous-Time Systems

In this final technical section, we survey how queries about elementary functions
naturally arise when reasoning about continuous-time (linear) dynamical sys-
tems. These queries often involve trigonometric functions: recall from Sec. 3.2
that in order for the first-order theory of the attendant structure to be de-
cidable, these functions must be restricted to bounded intervals. Consequently,
the literature predominantly considers decision problems whose inputs specify
a bounded time interval [0, N ] of interest. As discussed in Sec. 3.2, Schanuel’s
conjecture then assures17 the decidability of the theory Tel,N of the structure
⟨R;<,+, ·, exp ↾ [0, N ], sin ↾ [0, N ], cos ↾ [0, N ]⟩.

A fundamental continuous-time decision problem is the bounded continuous
Skolem problem, which asks whether the solution f : R → R of the ordinary
differential equation f (n) + an−1f

(n−1) + · · · + a0f ≡ 0, with the coefficients
a0, . . . , an−1, and initial conditions f(0), . . . , f (n−1)(0) being real algebraic num-
bers, has a zero in the interval [c, d]. We have that the function f is the first
component of the vector exp(tA)·µ0, where A is the companion matrix 18 derived
from a0, . . . , an−1, and µ0 is the vector of initial conditions. We can therefore
express f(t) =

∑m
j=1 exp(ρjt)(pj(t) sin(ωjt) + qj(t) cos(ωjt)), where ρj , ωj , and

the coefficients of the polynomials pj , qj are real algebraic numbers. As in [9,
Introduction], we can choose N = (d + 1) ·max(ρ1, ω1, . . . , ρm, ωm), and query
Tel,N to arrive at a decision.

17 We recall that this claim is based on unpublished results; however, we outlined
why we believe that Schanuel’s conjecture is needed only for the termination of the
deciding algorithm.

18 The matrix exponential exp(M) is defined as the limit of I+M+M2/2!+M3/3!+· · · .
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However, since the decidability proof of Tel,N is not published, [9] gives a
decision procedure for the bounded continuous Skolem problem by invoking
Schanuel’s conjecture directly (via Prop. 5 therein) in technical algebraic argu-
ments. The technical ingredient that is the difference between the raw Schanuel’s
conjecture and the off-the-shelf decidability of Tel,N is the model-completeness
of the theory. Bereft of this refinement, the direct algorithm of [9] relies on
Schanuel’s conjecture for correctness in Case (i) of the proof of its Thm. 7 (the
main result, which states that the bounded-time continuous Skolem problem is
decidable subject to Schanuel’s conjecture, and is proven via a technical case
distinction): the algorithm trusts Schanuel’s conjecture’s assertion that a func-
tion f has no root without a certificate; on the other hand, in case the claim is
true, the (effectively) model-complete Tel,N would provide a proof in the form
of the claim being a formal consequence of the theory. As usual, the termination
is also conditional as Case (ii) of the proof of Thm. 7 indicates. See also [10] for
an alternative presentation of this argument.

The choice of whether to trust Schanuel’s conjecture for correctness and
forego the cumbersome queries to logical theories that give unconditional cor-
rectness has practical consequences. The work [17] is an applied example of
prioritising efficiency: they give an algorithm to isolate roots of an exponential-
polynomial, and rely on Schanuel’s conjecture to argue its completeness, i.e.,
that the algorithm does not discount any roots, and termination [17, Discussion
of Example 16].

Such root isolation algorithms find immediate applications to verify the evo-
lution of the probability distributions in continuous time Markov chains. A con-
tinuous time Markov chain with k states is specified by a k × k matrix M ,
where the entry M(i, j) = m indicates that a transition from state j to state i
is possible, and its timing is exponentially distributed with rate m. Succinctly,
the dynamics of the probability distribution µ are given by µ(1)(t) = Mµ(t),
and the distribution at time t is given by exp(Mt) · µ0, where µ0 is the initial
distribution at t = 0.

In order to verify the evolution of the distribution, [16] considers CLL, a
continuous (bounded-time) counterpart of LTL, whose atomic propositions are
of the form “the probability of being in state s is at least 0.8”; an example
specification true U [3,7]⟨s,≥ 0.8⟩ asserts “the probability of being in state s
is at least 0.8 at some moment t ∈ [3, 7].” Upon observing the expansion of
exp(Mt) · µ0 and the semantics of CLL, we remark that the satisfaction of a
formula can, in theory, be verified with unconditional correctness by querying
Tel,N for sufficiently large N . However, as [16] demonstrates, trusting Schanuel’s
conjecture for correctness makes the problem more tractable in practice.

As in the discrete case, having techniques to reason about continuous-time
Markov chains equips us to reason about certain policies in continuous-time
Markov decision processes (MDPs), which augment Markov chains by determin-
ing transition dynamics at any given time by an agent’s resolution of a finite
choice of actions. A policy is a function that prescribes these choices; it is called
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stationary if the prescription does not change with time. We observe that fol-
lowing a stationary policy induces a Markov chain.

MDPs form the building blocks of reinforcement learning, and [23] considers
the problem of deciding whether there is a policy that achieves the objective
of visiting a designated good state within given time bound is achieved with
probability above a given threshold. The fact that the optimal policy for this
task is piecewise stationary allows the problem to be formulated as one about
Markov chains in spirit, whence the decidability of Tel,N can be called upon for
a solution.

Finally, we note [37] uses a slight augmentation of MDPs to model the runs
of probabilistic programs while accounting for scheduling delays, and considers
the problem of quantitatively verifying termination within a time bound. The
number-theoretic engine [37, Lem. 6.2] for their results is the root-isolation sub-
routine, which is efficient in practice provided that the implementation trusts
Schanuel’s conjecture for correctness, but in theory can also be implemented
using queries to Tel,N too.
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Pérez, and James Worrell. When is containment decidable for probabilistic au-
tomata? In 45th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2018, page 121. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 2018.

12. Calvin C. Elgot and Michael O. Rabin. Decidability and undecidability of ex-
tensions of second (first) order theory of (generalized) successor. The Journal of
Symbolic Logic, 31(2):169–181, 1966.

13. Helaman R. P. Ferguson, David H. Bailey, and Steve Arno. Analysis of pslq, an
integer relation finding algorithm. Math. Comput., 68(225):351–369, January 1999.

14. Hugo Gimbert and Youssouf Oualhadj. Probabilistic Automata on Finite Words:
Decidable and Undecidable Problems. In Samson Abramsky, Cyril Gavoille, Claude
Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata,
Languages and Programming, pages 527–538, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

15. Steven M. Gonek and Hugh L. Montgomery. Kronecker’s approximation theo-
rem. Indagationes Mathematicae, 27(2):506–523, 2016. In Memoriam J.G. Van der
Corput (1890–1975) Part 2.

16. Ji Guan and Nengkun Yu. A probabilistic logic for verifying continuous-time
Markov chains. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 3–21. Springer, 2022.

17. Cheng-Chao Huang, Jing-Cao Li, Ming Xu, and Zhi-Bin Li. Positive root isolation
for poly-powers by exclusion and differentiation. Journal of Symbolic Computation,
85:148–169, 2018.

18. George Kenison. The Threshold Problem for Hypergeometric Sequences with
Quadratic Parameters. In 51st International Colloquium on Automata, Languages,
and Programming (ICALP 2024). Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2024.

19. Serge Lang. Introduction to Transcendental Numbers. Addison-Wesley series in
mathematics. Addison-Wesley Publishing Company, 1966.

20. Serge Lang. Algebra. Graduate Texts in Mathematics. Springer New York, NY,
3rd edition, 2002.

21. Angus Macintyre. Turing meets Schanuel. Annals of Pure and Applied Logic,
167(10):901–938, 2016. Logic Colloquium 2012.

22. Angus Macintyre, A Wilkie, and P Odifreddi. On the decidability of the real
exponential field. Kreisel’s Mathematics, 115:451, 1996.

23. Rupak Majumdar, Mahmoud Salamati, and Sadegh Soudjani. On decidability
of time-bounded reachability in CTMDPs. In 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2020.
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