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Abstract

Two decades ago, Alur, Henzinger, and Vardi introduced the reachability problem for parametric timed
automata in the seminal paper [2]. Their main results are that reachability is decidable for timed automata
with a single parametric clock, and undecidable for timed automata with three or more parametric clocks.

In the case of two parametric clocks, decidability was left open, with hardly any progress (partial or
otherwise) that we are aware of in the intervening period. As pointed out by Alur et al., this case also sub-
sumes Ibarra et al.’s reachability problem for “simple programs” [14], another long-standing open problem,
as well as the decision problem for a fragment of Presburger arithmetic with divisibility.

In this manuscript we establish a correspondence between reachability in parametric timed automata
with at most two parametric clocks (and arbitrarily many nonparametric clocks) and reachability for a
certain class of parametric one-counter machines. We then leverage this connection (i) to improve Alur et
al.’s decision procedure for one parametric clock from nonelementary to 2NEXP; (ii) to show decidability for
two parametric clocks provided the timed automaton uses only a single parameter; (iiii) to show decidability
for various resulting classes of parametric one-counter machines; and (iv) to show decidability of reachability
for the simple programs of Ibarra et al. in the presence of a single parameter. In addition, we prove that for
one and two parametric clocks the reachability problem is NEXP-hard and PSPACENEXP-hard respectively.
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1. Introduction

The problem of reachability in parametric timed automata was introduced over two decades ago in a
seminal paper of Alur, Henzinger, and Vardi [2]: given a timed automaton in which some of the constants
appearing within guards on transitions are parameters, is there some assignment of integers to the parameters
such that an accepting location of the resulting concrete timed automaton becomes reachable?

As is well known, embedded computer systems often depend on the precise timing of individual actions.
A standard formalism for modeling such time-dependent systems is that of timed automata—a class of finite
automata extended with clocks. In a timed automaton, all clocks evolve simultaneously, at the same rate,
and each clock can be reset individually by edges of the automaton. Such edges also usually incorporate
timed guards, i.e., simple clock expressions which must be satisfied in order for the corresponding transitions
to be enabled, thus constraining the possible evolutions of the timed system.

Getting such timing constraints right is however difficult. Embedded systems further operate in a
surrounding environment, and therefore leaving some constraints under-specified in the timed-automata
models allows us to elicit the environments in which the system behaves as required. Such considerations
led to the introduction of parametric timed automata [2] in which some of the constraints feature unspecified
parameters. The goal is then to find values of the parameters for which the timed automaton behaves as
intended.
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As one might expect, verification of safety properties leads to the reachability problem for parametric
timed automata: is a bad state reachable for some values of the parameters? This problem, which is the
focus of this manuscript, was first considered by Alur, Henzinger and Vardi [2] over two decades ago, and
shown to be undecidable in full generality. More precisely, given a parametric timed automaton, a clock is
said to be nonparametric if it is never compared with a parameter, and is parametric otherwise. Alur et al.
showed that, for timed automata with a single parametric clock, reachability is decidable (irrespective of the
number of nonparametric clocks). However, the decision procedure given in [2] has provably nonelementary
complexity. In addition, Alur et al. showed that reachability becomes undecidable for timed automata with
at least three parametric clocks.

The decidability of reachability for parametric timed automata with two parametric clocks (and arbitrar-
ily many nonparametric clocks) was left open in [2], with hardly any progress (partial or otherwise) that we
are aware of in the intervening period. Alur et al. further showed that this problem subsumes the question
of reachability in Ibarra et al.’s “simple programs” [14], also open for over 20 years, as well as the decision
problem for a fragment of Presburger arithmetic with divisibility.

In this paper we substantially improve the decision procedure for one parametric clock (from nonele-
mentary to 2NEXP) and give decidability results for classes of two parametric clocks. In this process—and
as a main contribution of interest in its own right—we establish a correspondence between reachability in
parametric timed automata with at most two parametric clocks and reachability for a certain class of para-
metric one-counter machines, a formalism which lends itself more conveniently to analysis. In particular,
we use this connection to substantially improve Alur et al.’s decision procedure, identify the first nontrivial
decidable fragment with two parametric clocks, and make progress on reachability for the simple programs
of Ibarra et al.

It is worth noting that similar connections have previously appeared in nonparametric settings [11], and
subsequently used to determine the precise complexity of reachability in two-clock (nonparametric) timed
automata [7]—another long-standing open problem.

None of our results impose any restriction on the number of nonparametric clocks. More precisely, we
show that:

1. The reachability problem for parametric timed automata with a single parametric clock is equiva-
lent to the reachability problem for parametric one-counter machines with updates −1, 0 and 1, and
comparisons ≤ pi,≥ pi for parameters pi.

2. The reachability problem for parametric timed automata with two parametric clocks is equivalent
to the reachability problem for parametric one-counter machines with updates ±ci,±pi, comparisons
≤ pi,≥ pi and a few other technical operations for constants ci ∈ N and parameters pi.

In Sec. 7, we then use the relationship between parametric timed automata and the respective classes of
parametric one-counter machines to show that:

3. In the case of a single parametric clock (with arbitrarily many nonparametric clocks and arbitrarily
many parameters), the reachability problem is in 2NEXP and NEXP-hard improving the nonelemen-
tary decision procedure of Alur et al.

4. The reachability problem is decidable for the class of parametric one-counter machines mentioned
in (1).

5. The reachability problem is decidable for parametric timed automata with two parametric clocks (and
arbitrarily many nonparametric clocks), if the automaton uses only a single parameter. Further, the
problem is PSPACENEXP-hard.

6. We show that the reachability problem is decidable for the class of parametric one-counter machines
mentioned in (2) if they use only a single parameter.

7. We use the techniques developed to solve the reachability problem for the simple programs of Ibarra
et al. provided they use only a single parameter.
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At the time of writing, the result in item 6 corresponds do the largest decidable fragment of parametric
timed automata with two parametric clocks. Our decidability results build upon new developments in the
theory of one-counter machines [10] and their encodings in Presburger arithmetic [9].

As in [2], our results are presented for timed automata interpreted over discrete time. However, for
parametric timed automata with closed (i.e., non-strict) clock constraints and parameters restricted to
ranging over integers,1 standard digitisation techniques apply [12, 23], reducing the reachability problem
over dense time to discrete (integer) time.

2. Related Work

The decidability of reachability for parametric timed automata has been previously achieved in certain
restricted settings. The primary concern in such restricted settings was usually the development of practical
verification tools, and indeed the resulting algorithms tend to have comparatively good complexity. However,
solutions to these special cases do not lead to general decision problems as is the case in this manuscript. For
instance, decidability can be achieved by bounding the allowed range of the parameters [15] or by requiring
that parameters only ever appear either as upper or lower bounds, but never as both [13]: in the latter case,
if there is a solution at all then there is one in which parameters are set either to zero or infinity.

Miller [21] observed that over dense time and with parameters allowed to range over rational numbers,
reachability for parametric timed automata becomes undecidable already with a single parametric clock. In
the same setting, Doyen [6] showed undecidability of reachability for two parametric clocks even when using
exclusively open (i.e., strict) time constraints.

A connection between timed automata and counter machines was previously established in nonparametric
settings [11], and exploited to show that reachability for (ordinary) two-clock timed automata is polynomial-
time equivalent to the emptiness problem for one-counter machines, even when constants are encoded in
binary. Unfortunately, it is not obvious how to extend and generalise this construction to parametric timed
automata, specifically in the case of two parametric clocks and an arbitrary number of nonparametric clocks,
as we handle in the present section. The reduction of [11] was used in [7] to show that emptiness for bounded
one-counter machines, and hence reachability for two-clock timed automata, is PSPACE-complete, solving
what had been a longstanding open problem.

It is known [21] that for one parametric clock but no nonparametric clocks the emptiness problem is
NP-complete. Compare this to 2NEXP-completeness proved in this manuscript if nonparametric clocks are
allowed. It is known that reachability in nonparametric timed automata is PSPACE-complete [3] and thus
allowing nonparametric clocks automatically “extends the automaton with a PSPACE machine”. We use
this observation in our hardness results.

This manuscript is an extended version of [5] conference paper. Main technical contributions novel to
the manuscript are the decidability results of item 6 and item 7 in the list above, to a proof of which
is devoted Section 10. The decidability results obtained in this manuscript proceed via reduction to the
existential fragment of Presburger arithmetic with divisibility. The satisfiability of such formulae has been
long known to be decidable [19, 4]. In some previous works [10, 9] as well as in the conference paper [5] by
the authors, it was claimed to be in NP. However, it was recently pointed out [18] that this is not correct; the
misunderstanding coming mainly from the misunderstanding of an NP upper bound established [20]. The
paper [20] is very technical, difficult to follow and, as pointed out in [18], the NP upped bound claimed in that
paper applies only to formulas of a certain form and of fixed size. When applied to formulae of arbitrary size,
the algorithm in [20] yields only 2NEXP decision procedure in the general case. It was recently showed [18]
that the satisfiability is in NEXP and NP-hard. In particular, the NEXP upper bound claimed in [5] by the
authors for the reachability in one-parametric-clock case is not correct. The decision procedure is correct,
however, in the light of the recent findings the best provable upper bound is 2NEXP.

1Other researchers have considered variations in which parameters are allowed to range over rationals, yielding different
outcomes as regards the decidability of reachability; see, e.g., [21, 6], discussed further below.

3



3. Preliminaries

We study and present several classes of automata in this manuscript. We begin by a general definition,
which is then instantiated for various transition functions. In general, an automaton is a finite collection of
states and edges (transitions) from one state to another. Formally,

Definition 3.1. An automaton A is tuple A = (S, s0,∆, F,Op, λ) where

• S is the set of states,
• s0 is the initial state,
• ∆ ⊆ S × S is the set of edges,
• F is the set of final states and
• λ : ∆→ Op is a function assigning a label from set Op to every edge.

Whenever we define a class of automata in this manuscript, we specify only the set Op of allowed labels
and their respective semantics.

3.1. Working with Paths

A transition e = (q, q′) of A is a tuple in the transition relation ∆ where q ∈ Q is the initial state of the
transition, λ(e) ∈ Σ is the letter associated with the transition and q′ ∈ Q is the final state of the transition.
Two transitions (q1, q2) and (q3, q4) are consecutive if the final state of the first transition equals the initial
state of the second transition: q2 = q3.

A path π through an automaton A is a sequence of transitions (ei)
i=l
i=1 such that the transitions ei and

ei+1 are consecutive. The length of π, denoted |π|, equals l. The word λ(e1), λ(e2), . . . , λ(al) spelled by
(associated with) π is denoted by word(π).

A path through finite automaton A is called accepting if it starts in the initial state q0 and finishes in a
final states s ∈ F . If π is nonempty path then we use first(π) = q1 to denote the initial state of π. We say
that π starts (begins) in q1. If π is finite and nonempty then we use last(π) = q′l to denote the final state of
π. We say that π finishes (terminates) in q′l. If π is finite, we often write π : q1 → q′l.

If the path π is written as π = (ei)
i=l
i=1 and ρ = (fi)

i=k
i=1 is a path such that the transitions el and f1 are

consecutive then the concatenation π·ρ of π and ρ is obtained by appending ρ after π. That is π·ρ = (gi)
i=l+k
i=1

where gi = ei if i ≤ l and gi = fi−l if i > l.
If i ∈ N is an index then π(i) denotes the i-th state (starting from 1) of π. Precisely, π(1) = q1 and

π(i) = q′i−1 for i > 1. For a ≤ b ∈ N the expression π[a . . . b] denotes the subpath of π from index a to index
b inclusively. The expression π[a . . .) denotes the suffix of π starting at index a.

A path π of length at least one is a loop if the first and the last state coincide: first(π) = last(π) and
|π| > 0. If π is a loop and k ∈ N then by πk we denote the path obtained by concatenating π with itself k
times: πk = π.π . . . π︸ ︷︷ ︸

k times

.

4. Different Types of Automata

4.1. Timed Automata

A timed automaton is a finite automaton extended with a finite set of clocks C that all progress at the
same rate and that can be individually reset to zero. Moreover, every transition is labelled by an expression
of the form

∧
i c ./ d where c ∈ C is a clock, ./∈ {≤,=,≥} and d ∈ N is a constant. The set of all such

expression over the set C of clocks is denoted G(C).

Definition 4.1. A timed automaton A over the set of clocks C is an automaton with

Op = 2C ×G(C).
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y ≥ 5 x ≥ 7

y ≤ p

x ≥ p, x← 0

Figure 1: A parametric timed automaton with two clocks {x, y} and a single parameter p. The final state is reachable if, for
example, p = 10.

For each edge e = (s, s′) with λ(e) = (R,G), the set R specifies which clocks are reset by taking the edge
and G is the guard specifying for which clock values the edge is enabled.

A configuration (s, ν) of A consists of a state s and function ν : C → T assigning a value from the time
domain T to each clock. Timed automata can be interpreted either over dense time (T = R≥0) or over
discrete time (T = N≥0).

The initial clock valuation ν0 assigns 0 to every clock and the initial configuration is (s0, ν0).
An execution of a timed automaton is a combination of staying in the same state letting the time evolve

and (instantaneous) state transition by taking an edge. Precisely, a transition exists from configuration
(s, ν) to (s′, ν′) in A ,written (s, ν)→ (s′, ν′), if either

• there exists t ∈ T such that s = s′ and ν(c) + t = ν′(c) for every clock c ∈ C
• or there is an edge e = (s, s′) ∈ E with λ(e) = (R,G) such that G is satisfied for current clock values

ν and ν′(c) =

{
0 if c ∈ R
ν(c) if c 6∈ R

A run of a timed automaton is a sequence π = c1, c2, . . . , ck of configurations such that ci → ci+1 for
each i. A run is called accepting if c1 is the initial configuration and ck is in a final state. When clear from
the context, we use runs to denote both sequences of configurations as well a the sequences of underlying
edges.

For many practical consideration, requiring all guards in a timed automaton to be concretely specified
is too restrictive. We now introduce parametric extension of timed automata which allows the constraints
to be parametrised.

Formally, let P be a finite set of parameters. Then for the set of clocks C, the expression G(C,P )
denotes the set of guards (similarly to G(C)) where the clocks can be compared to constants as well as to
parameters:

∧
i c ./ d where c ∈ C is a clock, ./∈ {≤,=,≥} and d ∈ N ∪ P .

Definition 4.2. A parametric timed automaton A over the set of clocks C and parameters P is an au-
tomaton with

Op = 2C ×G(C,P ).

An example of a parametric timed automaton is shown in Figure 1. By instantiating parameters, we
obtain timed automata.

An assignment for P is a function γ : P → N assigning a natural number to each parameter. Given
a parametric timed automaton A and an assignment γ, the expression Aγ denotes the timed automaton
obtained by instantiating every parameter p ∈ P at γ(p). The main problems studied in this manuscript is
the problem of finding a parameter valuation such that a given parametric timed automaton has an accepting
run, i.e., for some input values of parameters, is there a terminating computation for the parametric timed
automaton? Formally,

Problem 4.3.
Name: Existential Emptiness Problem
Input: Parametric Timed Automaton A

Problem: Is there an assignment γ such that Aγ has an accepting run?

The existential emptiness problem is also known in literature [2] as the parametric reachability or the
emptiness problem for parametric timed automata. We omit “existential” in this manuscript and write
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simply “emptiness problem”. We say that two automata A1 and A2 have equivalent emptiness problem if
the solution of the emptiness problem for A1 is true if and only if the solution of the emptiness problem for
A2 i true.

4.2. One-Counter Machines

Counter machines are obtained from finite automata by adding counters. We deliberately use the word
“machine” to describe automata extended with counters as this disambiguates presentation in sections 6
and 7 where we show a relationship between timed automata and counter machines and study the properties
of the former using the latter.

Each counter of a counter machine ranges over natural numbers and each edge can increment, decrement
or test for zero each of the counters independently. It is well-known [22] that having two counters makes
the machine as computationally powerful as a Turing machine.

In this manuscript, we focus on problems related to reachability in (parametric) timed automata. We will
prove that such problems are equivalent to reachability in certain classes of (parametric) counter machines
with only a single counter.

Definition 4.4. A one-counter machine C is an automaton with

Op = {+c,−c,=c,≥c : c ∈ N}.

Unlike two-counter machine, the reachability problem for one-counter machines is decidable and in fact
in NP [10] even when the constants are encoded in binary. A configuration (s, x) of C consists of a state
s ∈ S and counter value x ∈ N. That is, the counter is always required to stay nonnegative. The initial
configuration of C is (s0, 0). A configuration (s, x) is accepting if s ∈ F is final state.

A configuration (s′, x′) is reachable in one step from (s, x) (written (s, x)→ (s′, x′)) in C if there exists
an edge e = (s, s′) ∈ E such that

• if λ(e) = ±c then x± c = x′

• if λ(e) = ∼ c then x = x′ and x ∼ c where ∼ ∈ {=,≥}

A run of a one-counter automaton is a sequence π = c1, c2, . . . , ck of configurations such that ci → ci+1

for each index i. A run is called accepting if c1 is the initial configuration and ck is in a final state.
Notice that the ‘≥ c’ edge is a syntactic sugar for a gadget consisting of a ‘−c’ edge followed by a ‘+c’

edge. To show equivalence between parametric timed automata and parametric one-counter machine we
shall also require the other comparison ‘≤ c’ edge. This is analogous to nonparametric settings where an
equivalence was established previously [11].

A simple bounded one-counter machine M is obtained by extending the codomain Op of the function λ
assigning an operation to each edge by ‘≤c’ operation for c ∈ N.

Definition 4.5. A simple bounded one-counter machine C is an automaton with

Op = {+c,−c,=c,≥c,≤c : c ∈ N}.

Configuration (s′, x′) is reachable in one step from configuration (s, x) using a ‘≤c’ transition

• if λ(e) = ≤c then x = x′ and x ≤ c

It was shown in [7] that allowing ‘≤ c’ edges makes the reachability problem PSPACE-complete.
In order to show the reductions from parametric timed automata we also need two more types of opera-

tions: ‘≡ 0 mod c’ and ‘+[0, c]’ for c ∈ N. Configuration (s′, x′) is reachable in one step from configuration
(s, x) using these edges provided it satisfies:

• λ(e) = +[0, c] and x ≤ x′ ≤ x+ c
• λ(e) = ≡ 0 mod c and x = x′ and x ≡ 0 mod c
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+7 ≤ p ≥ p

+p +1

Figure 2: Example of a parametric bounded one-counter machine. The final state is reachable for all p ∈ [7,∞).

Definition 4.6. A bounded one-counter machine1 C is an automaton with

Op = {+c,−c,=c,≥c,≤c,+[0, c],≡ 0 mod c : c ∈ N}.

We use counter(s, x) = x to denote the counter value in the configuration (s, x). We extend the definition
to runs componentwise: if π is a run in C then counter(π) is a sequence of natural numbers obtained by
applying counter to each element of π. For a contant K ∈ N, we write counter(π) ≤ K (resp. counter(π) ≥
K) if the comparison holds for every element: ∀i . counter(π(i)) ≤ K (resp. ∀i . counter(π(i)) ≥ K).

If the last configuration last(π1) of run π1 is the same as the first configuration first(π2)) of run π2 then
π1, π2 can be concatenated into a single run π1π2 in the obvious way.

Each run in C modifies the counter. By effect(π) we denote the change in the counter: effect(π) =
counter(last(π)) − counter(first(π)). A run π is called positive if effect(π) > 0. It is called negative if
effect(π) < 0. Note that if π is a loop and a ∈ N then effect(πa) = a effect(π).

Further, for a run π we define div(π) = maxi | counter(π(i)) − counter(first(π))| to be the maximum
difference between the counter and its initial value in the run π. If a run π can be written as π = π1π2 then
it follows from the triangle inequality that div(π) ≤ div(π1) + div(π2).

A path in C is a path in the underlying graph. Given an initial configuration (s, x), a path π starting
in a state s uniquely determines a run in C. The run follows edges as given by π and the counter value is
updated accordingly. Thus, if the initial configuration is known, we often identify runs with paths and vice
versa.

To reason about parametric timed automata, we introduce parametric one-counter machines. Formally,
let P be a finite set of parameters. An assignment for P is a function γ : P → N assigning a natural number
to each parameter.

Definition 4.7. A parametric bounded one-counter machine C over the set of parameters P is an automaton
with

Op = {+c,−c,+p,−p,≤ c,= c,≥ c,≤ p,= p,≥ p,+[0, p],≡ 0 mod c : c ∈ N, p ∈ P}.

We deliberately omitted the parametric version of ‘≡ 0 mod p’ as such an operation is not needed in
the reduction from parametric timed automata to parametric bounded one-counter machines. Parametric
version of simple one-counter machines is obtained in the analogous way.

Definition 4.8. A simple parametric bounded one-counter machine C over the set of parameters P is an
automaton with

Op = {+c,−c,+p,−p,≤ c,= c,≥ c,≤ p,= p,≥ p : c ∈ N, p ∈ P}.

Given a parametric one-counter machine C and an assignment γ the expression Cγ denotes the one-
counter machine obtained by instantiating every parameter p ∈ P at γ(p). As for timed automaton, we have
an equivalent notion of the emptiness problem for counter machines.

Problem 4.9.
Name: Existential Emptiness Problem
Input: Parametric Bounded One-Counter Machine C

Problem: Is there an assignment γ such that Cγ has an accepting run?

1Note that our definition is more general than the one given in [11].
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Figure 3: A parametric one-counter automaton.

5. Presburger Arithmetic

Presburger Arithmetic with Divisibility is the first-order logical theory over the structure 〈N, <,+, |, 0, 1〉
where | denotes the standard divisibility operator on natural numbers. The existential fragment (formulae
of the form ∃x1, x2, . . . , xk.ϕ where ϕ has no quantifiers) is denoted as ∃PAD.

For example, the relation ‘x ≡ y mod z’ can be expressed by a ∃PAD formula:

ϕ(x, y, z) := ∃p . (z|p ∧ x− p = y ∧ y < z).

The satisfiability of ∃PAD formulae was shown to be decidable in [19, 4] and recently to be in NEXP [18].
Unlike claimed in several previous works [5, 10, 9], the satisfiability of ∃PAD is not known to be in NP. At
the time of the writing, the precise complexity of satisfiability of ∃PAD sentences is unknown; with the best
lower bound NP-hard and the best upper bound NEXP. We refer the reader to the Related Work section
and [18] for a more thorough discussion of the current state of ∃PAD satisfiability.

Given a set S ⊆ Nk we say that S is ∃PAD definable if there is a finite set R of ∃PAD formulae2, each
formula with free variables y1, . . . yk such that (n1, . . . , nk) ∈ S ⇐⇒

∨
ϕ∈R ϕ(n1, . . . , nk). Note that ∃PAD

sets are closed under union, intersection and projection.
It was shown in [9, 10] that the reachability relation of parametric one-counter machines is ∃PAD defin-

able.

Lemma 5.1 ([9], Lemma 4.2.2). Given a parametric one-counter machine C (i.e., no upper bounds, ‘+[0, p]’
or ‘≡ 0 mod c’ transitions) and states s, t, the relation Reach(C, s, t) = {(x, y, n1, . . . , nk) | (s, x) →∗
(t, y) in Cγ where γ(pi) = ni} is ∃PAD definable.

6. Relationship Between Parametric Timed Automata and Parametric Bounded One-Counter
Machines

Let us restate the main problem studied in this manuscript:

Name: Existential Emptiness Problem
Input: Parametric Timed Automaton A

Problem: Is there an assignment γ such that Aγ has an accepting run?

As stated in the introduction and preliminaries the problem becomes undecidable for automata with
three or more parametric clocks. In this section we show that given a parametric timed automaton with at
most two parametric clocks there is a parametric bounded one-counter machine with equivalent emptiness
problem. Then in the subsequent sections we show how to decide the emptiness problem for the latter class.

The convention used in this and the following section is that timed automata are denoted by A and
counter machines are denoted by C. The following theorem shows that it suffices to restrict to runs over
integer-time only.

Theorem 6.1. Let A be a parametric timed automaton such that all constraints in C are closed (i.e., c ≤ d,
c ≥ d) then the following are equivalent.

2A single formula would be logically sufficient, but would result in exponential blowup. Instead, a ∃PAD decision procedure
needs to only guess a formula in R and check its satisfiability
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• There is an assignment γ1 such that there is an accepting run π1 in Aγ1 over discrete time.
• There is an assignment γ2 such that there is an accepting run π2 in Aγ2 over dense time.

Proof. Clearly, the integer-valued run π1 is a run in Aγ1 also over dense time.
Conversely, suppose that there is such γ2 and π2. Then, Aγ2 is a closed timed automaton with an

accepting run π2. Hence, by [23], there is an integer-valued accepting run π1 in Aγ2 . That is, the clock
values in π1 are always integers. But then π1 is an accepting run in Aγ1 over discrete time.

6.1. Nonparametric Clock Elimination

Let A be a parametric timed automaton. In this section we show, by modifying the region construction [3],
how to build a parametric timed automaton with equivalent emptiness problem but without nonparametric
clocks.

Note that once the value of a nonparametric clock c is above the largest constant appearing in A, the
precise value of the clock does not affect any comparison. Since we restrict to discrete time, the value of c
is always a natural number. We eliminate all nonparametric clocks by storing in the state space of A the
values of clocks up to the largest constant. However, we must ensure that the eliminated clocks progress
simultaneously with the remaining parametric clocks. This motivates parametric 0/1 timed automata where
the +1 updates correspond to the progress of time whereas the +0 updates correspond to taking an edge
in A.

Definition 6.2. A parametric 0/1 timed automaton over the set of clocks C and parameters P is an
automaton with

Op = {+0,+1} × 2C ×G(C,P ).

Formally, the following result appeared in [2].

Lemma 6.3 ([2]). Let A = (S, s0, C, P, F,E, λ) be a parametric timed automaton. Then there is a para-
metric 0/1 timed automaton A′ = (S′, s′0, C

′, P ′, F ′, E′, λ′) such that C ′ ⊆ C contains only parametrically
constrained clocks of C and A and A′ have equivalent emptiness problem. Moreover, |A′| = O(2|A|).

6.2. One Parametric Clock

In case the original parametric timed automaton A uses only one parametric clock we show that the
corresponding parametric 0/1 timed automaton has a simple structure.

For the rest of the section, fix a parametric timed automaton A with one parametric clock. By Lemma 6.3,
there is an exponentially larger parametric 0/1 automaton B with one (parametrically constrained) clock
such that A and B have equivalent emptiness problem.

Now, B has a single clock which is incremented by 0 or 1 in each transition. So B is almost a parametric
bounded one-counter machine, only that B may contain clock resets. However, clock resets can be eliminated
from B by introducing −1 transitions.

Lemma 6.4. Let B be a parametric 0/1 timed one-clock automaton. Then there is a parametric bounded
one-counter machine C such that B and C have equivalent emptiness problem. Further, all updates in C
are either −1, 0 or +1 and |C| = O(|B|).

Proof. Counter machine C has the same states and +0,+1 transitions as B. By modifying B if necessary, we
can assume that all edges resetting a clock are +0 edges without any comparison (Automata constructed in
Lemma 6.3 have this property). Each transition resetting a clock is then replaced by a gadget (see Figure 4)
that subtracts 1 from the counter until the counter equals 0.

Hence, to decide the emptiness problem for A it suffices to decide the emptiness problem for a para-
metric bounded one-counter machine with only −1, 0,+1 counter updates. We establish such a result in
Theorem 8.6, which then yields:

Theorem 6.5. The emptiness problem for parametric timed automata with one parametric clock is decidable
in 2NEXP time.

9



= 0

−1

Figure 4: Gadget implementing a clock reset.

Decidability of the emptiness problem for the above class of timed automata was first given in [2], albeit
with nonelementary complexity. Our proof is different, uses one-counter machines and yields a 2NEXP
algorithm.

For the lower bound, we show that the problem is at least NEXP-hard. Note that the upper bound
proof works by reduction to the satisfiability of (exponentially large) ∃PAD formula. The complexity of the
latter problem is still open [18] and lies between NP-hard and NEXP. Hence, depending on the results on
the ∃PAD satisfiability, the upper bound can lie between NEXP and 2NEXP. Therefore, depending on the
developments in ∃PAD, the NEXP lower bound might be optimal and the emptiness problem for parametric
timed automata with one parametric clock can still be solvable in NEXP.

Alternatively, strengthening the lower bound of the emptiness problem to 2NEXP would entail that ∃PAD
is not in NP (Unless NEXP and 2NEXP coincide).

Theorem 6.6. The emptiness problem for parametric timed automata with one parametric clock and one
parameter is NEXP-hard.

Proof. The proof is by reduction from SuccinctSAT, a well-known NEXP-complete problem. A similar
construction was used in [8] to show that LTL model checking of parametric one-counter machines is NEXP-
hard.

The SuccinctSAT problem is the adaptation of the classical SAT problem in which the input formula is
not given explicitly but instead is encoded by a Boolean circuit C. If C has k inputs, we require that the
size of C is polynomial in k. Such circuits can encode exponentially larger formulas as follows.

We assume that the input and the output of the circuit C are bit strings—the values on the input and
the output wires. We denote the concatenation of bit strings u and v by u · v.

Let b be an n bit number and i ∈ {0, 1, 2}. The circuit operates in such a way that evaluating the circuit
C(b · i) = v ·w gives the index of the variable v = f(b, i) in the ith literal in the bth clause. Moreover, if the
literal is negated then w = 1, otherwise, w = 0.

Let ϕ be a 3SAT formula encoded by circuit C. The variables of ϕ are denoted by x1, x2, . . .. Indexing
the clauses of ϕ by n bit strings, we thus write ϕ as

ϕ =
∧
b∈Bn

[
(¬)xf(b,0) ∨ (¬)xf(b,1) ∨ (¬)xf(b,2)

]
.

where f(b, i) is the index of the ith variable in the bth clause.
We shall construct a parametric timed automaton A with one parametric clock using a single parameter

p such that a final state of A is reachable for some value of p if and only if the value of p encodes a satisfying
assignment for ϕ.

An assignment v : {x1, x2, . . .} → {0, 1} for ϕ is encoded in p as follows. Let πk be the k-th prime.

v(xk) =

{
1 if πk|p
0 if πk 6 | p

That is, (v(xk) = 1) ⇐⇒ πk|p. By choosing distinct primes as the basis of the encoding, any assignment
to variables in ϕ can be represented by a number and vice versa.
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Algorithm 1 Algorithm iterating over all clauses of ϕ and checking that each is satisfiable. Sdivides(p, x)
stands for subroutine calculating whether x divides p and x← Snthprime(v) assigns the vth prime to x.

for b← 0 to 2n do . Iterate over all clauses

s← false . Denotes whether some literal evaluates to true

for i← 0 to 2 do . Try all three literals

v · w ← C(b · i)
r ← Snthprime(v) . Calculate the corresponding prime number

if w = 0 ∧ Sdivides(p, r) then
s← true

end if
if w = 1 ∧ Snotdivides(p, r) then
s← true

end if
end for
if s = false then . If the current clause is not satisfied under the assignment; reject

reject
end if

end for
accept . All clauses are satisfies; accept

The timed automaton A then implements the algorithm that iterates over all clauses and checks that
each clause is satisfiable under the assignment encoded in p (see Algorithm 1). Hence, ϕ is satisfiable if
and only if some value of p encodes a satisfying assignment which holds if and only if a final state of A is
reachable.

To implement the algorithm using a parametric timed automaton, we provide various gadgets: a gadget
to calculate the kth prime number and gadgets to check (non)divisibility of p by the calculated prime
numbers.

Note that the problem of calculating the kth prime number is in PSPACE. Now, it is well known that the
reachability for nonparametric timed automata is PSPACE-complete [3] and so many different ways exist of
using timed automata to calculate PSPACE functions. A particular approach is sketched below.

Since A has no restrictions on the number of nonparametric clocks, we use two nonparametric clocks
xa, xb to store a single bit; interpreting the bit as 1 when xa = xb and as 0 otherwise. Note that clock
comparisons and resets can be used to check and set the bit, respectively3. We use nonparametric clocks as
a memory. Now, A uses polynomially many clocks to store polynomially many bits. It is easy to see that
using the finite state control of A and polynomially many bits, parametric timed automaton A can calculate
any PSPACE function. Similarly, we use n bits to iterate over all possible values of b in the algorithm.

In our implementation of the algorithm in Algorithm 1, we use m bits to store the kth prime number in
binary. Further, the algorithm uses subroutines to check whether p is divisible by a given number. We use
the gadget shown in Figure 5 to check (non)divisibility of p by prime numbers. Notice that the gadgets and
hence the entire proof uses only a single parameter p.

6.3. Two Parametric Clocks

We now move to parametric timed automata with two parametric clocks. Decidability in this case
in general is open since the introduction of the problem [2] over two decades ago. This is analogous to
reachability in nonparametric timed automata where the precise complexity in the two-clock case was a major
open problem until recently shown to be PSPACE-complete [7] (as opposed to NL-complete for one clock [17]).

3Alternatively, resetting clocks xa, xb whenever they reach 1 and checking for the clocks being simultaneously 0 or 1, we
can implement bits without direct comparison of two clocks.
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w, c← 0 · · ·

accept

r0 = 1, w = 1, w ← 0

r0 = 0, w = 0

r1 = 1, w = 2, w ← 0

r1 = 0, w = 0

r2 = 1, w = 4, w ← 0

r2 = 0, w = 0

c < p,w = 0

w = 0 c = p

Figure 5: Parametric timed automaton implementing r divides p. The bits r0, r1, r2, . . . , rm represent r =
∑

i ri2
i in binary.

An auxiliary clock w counts to the powers of 2. The gadget is entered on the left. Note that one traversal through the gadget
takes r time units. Clock c measures p. Note that the transition to the accepting state can be taken only if r divides p. Gadget
checking r does not divide p is obtained by changing the final test w = 0, c = p to w = 0, c > p.

Similarly, for counter machines, the reachability is NP-complete for one counter [10] but undecidable for two
counters [22].

In this section we show that the decidability of the emptiness problem for parametric timed automata
with two parametric clocks is equivalent to the emptiness problem for parametric bounded one-counter
machines. The difference from the results in the previous section is that the counter can be compared as
well as incremented/decremented by a parameter.

The equivalence is then used in Section 9 to show decidability of the emptiness problem in case the
parametric timed automaton uses only a single parameter.

First, observe that a counter can be stored as a difference of two clocks, which can be used to show the
easier direction of the equivalence.

Theorem 6.7. Let C be a parametric bounded one-counter machine. Then there is a parametric timed
automaton A with two parametric clocks such that A and C have equivalent emptiness problem. If C has no
‘≡ 0 mod c’ transitions then A has no nonparametric clocks. Otherwise, A has one nonparametric clock.
Moreover, A is constructible in P.

Proof. A similar proof appeared in [11]. Timed automaton A tracks the state of C and the counter value of
C is stored as the difference x− y of two clocks. Since the clocks progress simultaneously, the difference is
constant.

Parametric timed automaton A has the same set of parameters as C together with a fresh parameter M .
Intuitively, M is an upper bound on counter values in an accepting run of C. Automaton A ensures that
whenever the clock x or y reaches M the clock is reset.

Resetting clocks when they reach M allows us to implement counter operations in A. For example, an
update +p can be implemented by resetting y when y = p. The test ≤ p can be implemented by checking
y = 0 ∧ x ≤ p. And the update ‘+[0, p]’ can be implemented by resetting y when y ≤ p. All other counter
updates and comparisons can be implemented similarly.

To check ‘≡ 0 mod c’ we introduce a fresh clock z (see Figure 6). Clock z resets together with x when
x = M . Thus, clocks x and z are zero at the same time. Then every time z reaches c, the clock z is reset.
Therefore, z counts modulo c. So ‘≡ 0 mod c’ reduces to checking that when y = M the value of z equals 0.

Note that since at any single time we make at most one ‘≡ 0 mod c’ check, the clock z can be reused
in different gadgets for ‘≡ 0 mod c’ checks for different constants. Hence only one clock suffices for all ‘≡ 0
mod c’ checks.

Finally, observe that x and y are parametrically constrained (by M and parameters already in C)
whereas z is not.

6.4. Reduction to Parametric Bounded One-Counter Machines

For the converse, fix A to be a parametric timed automaton with two parametric clocks. We reduce A
to a parametric bounded one-counter machine C with equivalent emptiness problem. As the first step, we
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x = M

x← 0, z ← 0

y = M ∧ z = 0

y ← 0

z = c
z ← 0

Figure 6: Gadget testing that the value stored as x− y is divisible by the given constant c ∈ N.

construct (Lemma 6.3) a parametric 0/1 timed automaton B with two parametrically constrained clocks,
denoted x and y, with the emptiness problem equivalent to A. We now transform B to C.

Denote the counter of C by z. For the time being, we need to relax the assumption that z stays
nonnegative. That is, subtracting 5 when the counter is 2 results in the counter being −3. In Remark 6.9
we later show how to restore the nonnegativity of the counter.

The idea of the reduction is that, after a clock of B is reset, that clock equals zero and we use z to store
the value of the other clock. We construct C in such a way that after a reset of y, counter z stores the value
of x and after a reset of x, counter z stores −y. Initially C starts with the counter equal to 0.

Machine C then operates in phases. Each phase corresponds to a run of B between two consecutive
resets of some (possibly different) clock.

Suppose y was the last clock to reset. After the reset, the configuration of B is (s, (z, 0)) for some state
s ∈ B and the counter z = x. We show how C calculates the configuration after the next clock reset in B.

After time ∆, the clocks go from configuration (z, 0) to (z + ∆,∆). Based on the guards, different
transitions in Bγ are enabled as time progresses. For the time being, we assume that the order of the
parameters is p1 < p2 < . . . < pk. Later we relax this assumption by building a separate automaton for
each possible permutation.

Let region R(i,j) be the set of clock valuations [pi, pi+1]× [pj , pj+1]. Then the set of enabled transitions
depends only on the region R(i,j) the clocks (x, y) lie in.4

Therefore, machine C guesses (see Figure 7):

• the regions R(i0,j0), R(i1,j1), . . . , R(im,jm) in the order in which they are visited by the clocks (x, y),
• the states s0, s1, . . . , sm of B when each region Rl is visited for the first time,
• the state t of B in which the next reset occurs,
• which clock is reset next.

Machine C then checks that the sequence is valid. First, C checks, that (z, 0) lies in R0. Second, it
checks that the regions are adjacent:

(il+1 − il = 1 ∧ jl+1 = jl) or (il+1 = il ∧ jl+1 − jl = 1) or (il+1 − il = jl+1 − jl = 1).

The last case corresponds to the clocks hitting a corner of a region. Note that this forces m ≤ 2k. Then, C
checks that starting in clock configuration (z, 0), the regions can be visited in the guessed order.

4Our definition of rectangular regions differs slightly from the one usually given in the literature [3]. However, as all
inequalities are nonstrict the regions are sufficient. For ease of presentation, we also use the convention p0 = 0 and pk+1 =∞.
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0 z p1 p2 p3

p1

p2

p3

Figure 7: Regions for three parameters p1 < p2 < p3. The dotted line shows an evolution of clock configuration, which visits
R(0,0), R(1,0), R(2,0), R(2,1), R(2,2), R(3,2), R(3,3).

Consider region R(u,v) for some u, v. When the region is visited for the first time, then either clock x
equals pu or clock y equals pv. In the former case, the clock configuration of B is (pu, pu − z), in the latter
case, it is (pv + z, pv). The configuration depends on the direction in which R(u,v) is visited. See Figure 7.

• If il+1 − il = 1 then C checks that clock x reaches pil+1
before clock y reaches pjl+1. That is,

pil+1
− z ≤ pjl+1. Equivalently, pil+1

≤ z + pjl+1, which can be easily tested by a parametric bounded
one-counter machine5. In Figure 7 this corresponds to region R(1,0), which is visited before R(2,0).

• Similarly, if jl+1 − jl = 1 then C checks that clock y reaches pjl+1
before clock x reaches pil+1. That

is, pil+1 − z ≥ pjl+1
− z. Equivalently, pil+1 ≥ pjl+1

+ z, which can be easily tested by a parametric
bounded one-counter machine. In Figure 7 region R(2,1) is visited before R(2,2).

We say that Rl was reached from left in the first and that Rl was reached from bottom in the second case.
The notation Rl is the shorthand for the lth visited block R(il,jl). See Figure 7 for the intuition behind the
names.

Finally, C checks reachability within individual regions. Let cl be the configuration in which the region
Rl is visited for the first time. Then C checks that a run from cl to cl+1 exists in Rl.

Now, with each R(i,j), we introduce a one-counter machine B(i,j) obtained from B assuming clock
x ∈ [pi, pi+1] and clock y ∈ [pj , pj+1], instantiating all comparisons accordingly and by removing all edges
resetting a clock.

Formally, for each i and j, the automaton B(i,j) is obtained from B by

• removing all edges resetting a clock,
• removing all edges labelled by x ≥ pk for k > i,
• removing all edges labelled by x ≤ pk for k ≤ i,
• replacing by an +0 edge all edges labelled by x ≥ pk for k ≤ i,
• replacing by an +0 edge all edges labelled by x ≤ pk for k > i,
• removing all edges labelled by y ≥ pk for k > j,
• removing all edges labelled by y ≤ pk for k ≤ j,
• replacing by an +0 edge all edges labelled by y ≥ pk for k ≤ j,
• replacing by an +0 edge all edges labelled by y ≤ pk for k > j,

Notice that B(i,j)’s are 0/1 automata without resets, comparisons or parameters, i.e, one-counter ma-
chines. In particular, the reachability relation for B(i,j)’s is semilinear. Formally, for a pair of states s and t
of a one-counter machine X define Π(X, s, t) to be the set of counter values reachable at t by a run starting
in state s and counter equal to 0: Π(X, s, t) = {v | ∃π ∈ X . first(π) = (s, 0) ∧ last(π) = (t, v)}.

Lemma 6.8. Let X be a one-counter machine with 0/1 updates. Then for any states s, t ∈ X the set Π(s, t)
is effectively semilinear: Π(X, s, t) = D ∪

⋃
1≤j≤r{aj + bjN} where D ⊆ N is finite and aj , bj ∈ N.

5The test can be implemented by the sequence of the following edges: +pjl+1,≥ pil+1
,−pjl+1
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+px −py −a ≡ 0 mod b +a +py −px

Figure 8: Gadget testing that for given a, b ∈ N there is k ∈ N such that z + px − py = a+ kb, i.e., z + px − py − a ≡ 0 mod b.
Letter z denotes the current counter value.

s t
= pil +a ≤ pil+1

+1 +b

Figure 9: A gadget implementing a reset of clock y in the left/left situation.

Proof. It was shown in [9], Lemma 4.1.18, that the reachability relation in nonparametric one-counter
machines is definable in the existential fragment of Presburger arithmetic (without divisibility). It is well
known that this fragment defines effectively semilinear sets.

Edges in B(i,j) never decrease the clock and hence the restriction to paths starting with the counter
equal to 0 in the definition of Π(X, s, t) is sufficient.

Now, to check that a run from cl to cl+1 exists in Rl, machine C distinguishes whether Rl and Rl+1 are
reached from bottom or from left and uses the semilinearity of the reachability relation of the correspond-
ing B(i,j).

The translation is technical. For example, suppose Rl = R(px,py) for some parameters px and py. Then
cl = (sl, (px, px − z)) or cl = (sl, (py + z, py)) depending on the direction. If Rl was reached from left and
Rl+1 from bottom then C has to check that (sl+1, (py+1 + z, py+1)) is reachable from (sl, (px, px− z)). That
is, that z + py+1 − px ∈ Π(Bl, sl, sl+1). This and all other semilinear constraints can be checked by C using
‘≡ 0 mod c’ transitions (cf. Figure 8).

We now explain how to handle the remaining cases. Consider region Rl = R(px,py) for some parameters
px and py, i.e., Rl = (px, px+1) × (py, py+1). Then, Rl is visited for the first time in configuration cl =
(sl, (px, px− z)) or cl = (sl, (py + z, py)). Then C checks that it is possible to go from cl to cl+1 in Rl. The
check distinguishes whether Rl and Rl+1 were reached from bottom or from left.

• Rl reached from left, Rl+1 reached from left. Thus, C has to check that (sl+1, (px+1, px+1− z))
is reachable from (sl, (px, px − z)). That is, that px+1 − px ∈ Π(Bl, sl, sl+1), which can be checked by
C (similarly as in Figure 8).

• Rl reached from left, Rl+1 reached from bottom. Thus, C has to check that (sl+1, (py+1 +
z, py+1)) is reachable from (sl, (px, px − z)). That is, that py+1 + z − px ∈ Π(Bl, sl, sl+1), which can
be checked by C (Figure 8).

• Rl reached from bottom, Rl+1 reached from left. Thus, C has to check that (sl+1, (px+1, px+1−
z)) is reachable from (sl, (py + z, py)). That is, that px+1 − py − z ∈ Π(Bl, sl, sl+1), which can be
checked by C.

• Rl reached from bottom, Rl+1 reached from bottom. Thus, C has to check that (sl+1, (py+1 +
z, py+1)) is reachable from (sl, (py+z, py)). That is, that py+1 +z−py−z = py+1−py ∈ Π(Bl, sl, sl+1),
which can be checked by C.

Finally, we show how to simulate by C a clock reset in B. Suppose that instead of resetting the clock,
we let the time evolve. Then eventually the clock configuration transitions to another region. Denote that
region by Rl+1.

First, suppose that y is the next clock to be reset. Then the first thing to check is whether there is a
transition leaving t that resets the clock y.
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Simulation of a clock reset distinguishes whether Rl and Rl+1 were reached from bottom or from left.
By Lemma 6.8, the set Π(Bl, sl, t) is semilinear. So, C guesses a generator (a, b) in Π(Bl, sl, t) that it will
use to reach t. Then C checks whether state t can be reached using that generator. There are four cases to
consider depending on the direction from which Rl and Rl+1 are reached. In all four cases, automaton C
nondeterministically chooses the counter value when t is reached.

• Rl reached from left, Rl+1 reached from left. Thus, B reaches Rl in the configuration (sl, (px, px−
z)). Since Rl+1 would be reached from left, machine B resets when clock x < px+1. So C has to set
the counter to a value px + Π(Bl, sl, t) ∈ [px, px+1]. To do that, C first sets the counter to px. Then
C adds a to the counter and starts nondeterministically incrementing the counter by b, checking that
the counter stays below px+1. See Figure 9.

• Rl reached from left, Rl+1 reached from bottom. Thus, B reaches Rl in the configuration
(sl, (px, px−z)). And B resets when clock x < py+1 +z. Thus, the new counter value z′ = px+a+kb ≤
z+py+1. So C increments the counter by py+1. Then, it keeps subtracting 1 from the counter checking
that it is at least ≥ px + a. Then C nondeterministically terminates when it holds that z′− px− a ≡ 0
mod b.

• Rl reached from bottom, Rl+1 reached from left. Thus, B reaches Rl in the configuration
(sl, (py+z, py)). And B resets when clock x < px+1. Now, C first increments the counter to py. Second,
it adds a to the counter and starts nondeterministically incrementing the counter by b, checking that
the counter stays below px+1.

• Rl reached from bottom, Rl+1 reached from bottom. Thus, B reaches Rl in the configuration
(sl, (py+z, py)). And B resets when clock x < py+1+z. Thus C increments the counter by a number in
the range py+[0, py+1−py] of the form a+kb. This can be achieved, by first calculating z mod b using
the ‘≡ 0 mod b’ transitions, then incrementing the counter using +[0, py−1 − py] and then checking
that the new counter value z′ satisfies z′ ≡ z + a mod b.

This finishes a reset of y. The case of resetting x can be handled analogously. Notice that once the value
of a clock becomes larger than pk its exact value is irrelevant to any future comparison. Hence, C tracks x
and y only up to pk and remembers which clocks exceed it. Hence, we can assume that the counter of C is
always inside [−pk, pk].

Next, we modify C to ensure that the counter is always nonnegative (and inside [0, 2pk]). See Figure 10
for the automaton we build. Let C ′ be obtained from C by adding a new initial state and a +pk edge from
the new to the original initial state. Further, any comparison edge (s,G, t) (e.g., where G is ≤pi) is replaced
by a gadget of three edges (s,−pk, q), (q,G, q′) and (q′,+pk, t) which subtract pk from the counter, perform
the original check and then add pk to the counter thereby offsetting the counter by pk.

Remark 6.9. We can assume that the counter of C is always inside [0, 2pk].

Note that the construction depends on the order of parameters. However, we can build an automaton for
every possible order of parameters. Then check the order of parameters and transition into the automaton
for the appropriate order (see Figure 10).

Finally, note that all ‘≡ 0 mod c’ transitions are nonparametric. That is, c ∈ N is always a natural
number and never a parameter.

Theorem 6.10. For a parametric timed automaton A with two parametric clocks we can compute a para-
metric bounded one-counter machine C with equivalent emptiness problem.

Our reduction was inspired by the work in [11]. Performing one phase in a single stage of C and using
semilinearity of reachability in individual regions are the main differences from the reduction of [11].

Already for a single parameter, we have a PSPACENEXP lower bound. Note that PSPACENEXP = PNEXP [1],
however, we give a more involved proof showing PSPACENEXP-hardness as opposed to PNEXP as we believe
that the construction can be useful in improving the lower bound further.

Theorem 6.11. The emptiness problem for parametric timed automata with two parametric clocks and a
single parameter is PSPACENEXP-hard.
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(a) Automaton C′ obtained from C by offset-
ting the counter by pk. Each comparison edge
is replaced by three edges which subtract pk
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and then add pk to the counter.
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(b) Parametric bounded one-counter automaton checking the
order of parameters and transitioning into a corresponding
subautomaton.

Figure 10: Gadgets used in the last step of the reduction from parametric timed automata to parametric one-counter machine

Proof. We first describe the PSPACENEXP-hard problem we reduce from. Recall from the proof of Lemma 6.6
that SuccinctSAT, whereby a 3SAT formula is represented by a Boolean circuit, is a NEXP-complete problem.
So consider a PSPACE Turing Machine T that makes NEXP oracle calls by means of SuccinctSAT. Precisely, T
is allowed to generate polynomial-size circuits encoding 3SAT formulae and then pass them to a SuccinctSAT
oracle. It is clear that such machines can solve PSPACENEXP problems.

Given such a machine T , we now describe how to build in polynomial time a parametric timed automaton
with two parametric clocks simulating T . As the first step, we build a polynomial-size parametric timed
automaton A with two parametric clocks deciding SuccinctSAT. This automaton is then used inside a
nonparametric timed automaton as a NEXP oracle. Hence, the PSPACENEXP-hardness follows.

The construction of A is an extension of ideas from Lemma 6.6 for building a parametric timed automaton
with one parametric clock. Recall that in the lemma we used a circuit C to encode a 3SAT formula ϕ. Further
recall that in the lemma, we described how to use nonparametric clocks as memory. Automaton A uses
polynomially many clocks to represent polynomial-size memory. The input to A is the description of circuit
C encoded in this polynomial-size memory.

If C has n+2 inputs then ϕ can have as many as 3 ·2n variables, which we denoted by x1, x2, . . .. Further
recall that we represented an assignment v to variables in ϕ by a number Z ∈ N such that v(xk) = 1 if and
only if πk|Z where πk is the kth prime.

Now, πk ≤ 2k2. Hence, any valid assignment is represented by a number at most lcm(1, 2, 3, . . . , 2(3·2n)2).
On the other hand, πk ≥ k and so some assignments are represented only by numbers greater than (3 · 2n)!,
which is doubly exponential in n. Thus, storing Z directly would require exponentially many bits.

Let M be a parameter and suppose that M ≥ lcm(1, 2, 3, . . . , 2(3 · 2n)2). Then instead of using expo-
nentially many bits, automaton A stores the value of an assignment as a difference x− y of two parametric
clocks x and y. The clocks operate modulo M . That is, whenever a clock reaches value M , the clock is reset.
With this convention, the assignment stored by clocks x and y is the value of x when y equal 0. Notice that
with this convention, resetting y when y = 1 increments the value of the stored assignment by one. The
resetting trick is used by A to iterate over all assignments. The initial values of x and y, and hence the
assignment, is 0.

Automaton A then checks whether an individual assignment satisfies ϕ similarly as is done in Lemma 6.6.
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Algorithm 2 Algorithm iterating over all valid assignments and for each assignment iterating over all
clauses of ϕ and checking that each is satisfiable. The automaton accepts if the formula is satisfiable and
rejects otherwise.

for i← 1 to 2(3 · 2n)2 do
if Snotdivides(M, i) then . Checks that lcm(1, . . . , 2(3 · 2n)2)|p

reject
end if

end for
ass← 0 . Stores the value of the assignment

while ass 6= M do . Try all possible assignments

for b← 0 to 2n do . Iterate over all clauses

ok ← true . Denotes whether the current assignment satisfies ϕ

s← false
for i← 0 to 2 do . Check if some literal is true under the current assignment

v · w ← C(b · i)
r ← Snthprime(v)
if w = 0 ∧ Sdivides(M, r) then
s← true

end if
if w = 1 ∧ Snotdivides(M, r) then
s← true

end if
end for
if s = false then
ok ← false

end if
end for
if ok = true then . Accept if found a satisfying assignment

accept
end if
ass← ass+ 1

end while
reject . No assignment satisfies ϕ; reject
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Automaton A implements the Algorithm 2 that iterates over all clauses and checks that each is satisfied
by the assignment. In order to check that an individual assignment satisfies ϕ, automaton A needs to be
able to extract the value of each variable from the assignment. That is, A needs to be able to calculate the
value of the kth prime πk and to check whether πk divides the value of the assignment. In Lemma 6.6 we
described how A can calculate and represent πk in binary πk =

∑
i ri2

i where ri are bits.
Then checking whether πk divides the assignment is done by modifying the gadget from Figure 5 used

for the divisibility in Lemma 6.6. We modify the gadget so that it can be entered only when x is reset and it
can be exited only when y is reset. This guarantees that exactly x− y timeunits elapse during the traversal
of the gadget.

This way, timed automaton A can iterate over all assignments for ϕ and check if at least one makes
the formula true. Finally, to ensure that M is big enough, the automaton iterates over all numbers k ∈
{1, 2, 3, . . . , 2(3 · 2n)2} and checks that k|M . This is possible, without using any additional parameters, as
only polynomially many bits (clocks) are needed to store the value of each possible k = 1, . . . , 2(3 · 2n)2.
The algorithm that is hard-wired into A is described in Algorithm 2.

Notice that A uses only two parametric clocks (x and y). Further notice that the only input to the
algorithm is the circuit C. The function f which takes an encoding of a circuit C, input x and returns
f(C, x) = C(x) the value of C on x, is PSPACE computable. So we can modify the algorithm in Algorithm 2
to take an encoding of a circuit and accept if and only if the corresponding formula is satisfiable. Since Suc-
cinctSAT is NEXP-complete, the algorithm can be used as a general NEXP oracle. The resulting automaton
is constructible in polynomial time and is of polynomial size in the input. Thus, we can use it as an oracle
in a PSPACE algorithm.

So the parametric timed automaton B simulating T works as follows. Automaton B uses polynomially
many bits (clocks) to simulate T , making the same transitions as T does. Then whenever T makes an oracle
call, automaton B resets x and y and then starts executing parametric timed automaton A on the circuit
encoding the corresponding 3SAT formula.

Hence, there is a reduction from PSPACENEXP problems to the emptiness problem for parametric timed
automata with two parametric clocks. Observe that the value of the parameter M can be reused between
the “oracle” calls, as M is an upper bound on the largest valid assignment encoded by a circuit with n
inputs.

7. Decidability Results for Parametric Bounded One-Counter Machines

We gave a reduction from the emptiness problem for parametric timed automata with at most two
parametric clocks to the emptiness problem for parametric bounded one-counter machines. In this section
we study the decidability of the reachability in the resulting one-counter machines. We use the equivalence
to derive a 2NEXP algorithm for parametric timed automata with a single parametric clock, a decision
procedure for parametric timed automata with two parametric clocks and a single parameter, and a decision
procedure for parametric bounded one-counter machines with a single parameter.

We further show in later sections how the decidability results generalise to the reachability in simple
programs of O. Ibarra et al. [14]—another long-standing open problem.

Our results rest in part on new developments in the theory of one-counter machines [10] and their
encodings in Presburger arithmetic [9]. As no upper bounds are imposed on the value of the counter in
the above publications and as their techniques make crucial use of the unboundedness of the counter, their
results are, however, not directly applicable in the present setting.

8. Machines with Constant Updates

In Section 6.2 we showed that the emptiness problem for parametric timed automata with one parametric
clock reduces to the emptiness problem for parametric bounded one-counter machines with all counter
updates either −1, 0 or +1. For the rest of the section, fix a machine C of the latter type. We now show
how to decide the emptiness problem for C.
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Figure 11: Factoring of a run, which starts and finishes with the counter equal to 0. The y axis shows the counter value, hypo-
thetical values of the parameters and their neighbourhoods. Label Ci marks the interval corresponding to counter machine Ci.

To show that C halts, we have to find an assignment γ and an accepting run π in Cγ . Even without
knowing γ, we show that π splits into subruns of a simple form independent of γ the existence of which is
reducible to satisfiability of certain ∃PAD formulae.

Let γ be a parameter assignment and assume that we guessed the order of parameters, let’s say, γ(p1) <
γ(p2) < . . . < γ(pk), but not the precise values of parameters. Let c1 and c2 be arbitrary configurations of
Cγ such that c1 →∗ c2 in Cγ .

We now show how to decide the existence of a run c1 →∗ c2 in Cγ . Consider a shortest run π : c1 → c2.
Note that for any constant M ∈ N, the run π can be factored into subruns between successive parameters
and subruns around individual parameters (see Figure 11). Formally, π = π0 → π1 → π2 → · · · → πl such
that (π0 can be possibly empty)

• Even-indexed runs: γ(pr)−M ≤ counter(π2i) ≤ γ(pr) +M for some parameter pr,
• Odd-indexed runs: γ(pr) + M < counter(π2i+1) < γ(pr+1) −M for some consecutive parameters
γ(pr) < γ(pr+1),

• Even- and odd-indexed runs are joined by an edge: last(πi)→ first(πi+1).

Now, notice that every transition in C changes the counter by at most 1. Hence, counter(first(π2i)) =
pr +M or counter(first(π2i)) = pr−M for some parameter pr. Similarly, counter(first(π2i+1)) = pr +M + 1
or counter(first(π2i+1)) = pr+1−M−1. Thus, first(πi) is always of the form first(πi) = (si, pf(i)+x) for some
state si, some |xi| ∈ {M,M + 1} and parameter pf(i). Hence, first(πi) is uniquely determined by the triple
(si, f(i), xi). Similarly, last(πi) is uniquely determined by some triple (ti, g(i), yi) with |yi| ∈ {M,M + 1}.

By minimality, π visits every configuration at most once. Hence an odd-indexed run can start in only
one of 2nk configurations (n states, k parameters). Hence, the number of odd-indexed runs, and hence the
total number of runs is O(nk).

Lemma 8.1. Let π be a shortest accepting run in Cγ . Then the factoring of π has O(nk) parts.

In Lemma 8.3, we show how to pick a small M such that we can then decide the existence of a run from
c1 to c2.

Assumming M is fixed, to decide the existence of a run from c1 to c2 we guess a factoring of the above
form. First we show how to decide the existence of individual even- and odd-indexed runs, which we later
combine to decide the existence of entire factorings.

We begin by showing how to calculate the odd-indexed runs. Let c1, c2 be configurations of Cγ between
two successive parameters:

γ(pi) < counter(c1), counter(c2) < γ(pi+1).

Consider a counter machine Ci, which is obtained from C by evaluating all comparisons as if the counter
was between γ(pi) and γ(pi+1). Formally, Ci is obtained from C by
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• removing all transitions of the form ≥pj for j > i,
• removing all transitions of the form ≤pk for k ≤ i,
• all transitions ≤pj for j > i are replaced by +0 transitions in Ci,
• all transitions ≥pk for k ≤ i are replaced by +0 transitions in Ci,
• for i > 0 and c ∈ N we also remove all ≤c transitions from Ci.

Note that the definition of Ci’s depends only on the order of parameters in γ. Then provided the counter
value stays between γ(pi) and γ(pi+1) the runs in Cγi and Cγ coincide.

Recall that for a one-counter machine Z, configurations c,d of Z and numbers x, y ∈ N, we write (c,d) ∈
Z(x, y) if there is a run π : c → d such that the counter stays between x and y, i.e., x < counter(π) < y.
Then we have:

Lemma 8.2. Let γ be an assignment with γ(pi) < γ(pi+1) for every i. Let c,d be configurations with
γ(pi) < counter(c), counter(d) < γ(pi+1). Then

(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ (c,d) ∈ Cγi (γ(pi), γ(pi+1))

Proof. Immediate from the definition of Ci.

Now, consider an arbitrary run π : c1 → c2 in Ci. During the run, the counter value can become
less than γ(pi) or greater than γ(pi+1). So π does not necessarily correspond to a run in C. However,
notice that Ci is a one-counter machine without parameters or ≤x constraints, i.e. an ordinary one-counter
machine. Thus Ci has the following property [16]: If there is a run between two configurations then there
is a run between the same configurations such that the run does not deviate much from the initial and the
final counter value. Formally:

Lemma 8.3 ([16], Lemma 42). Let X be a one-counter machine. There is a constant M (polynomial in
|X| and the magnitude of the largest constant appearing in X) such that for any configurations c1 and c2
of X the following holds:

• Let U = min(counter(c1), counter(c2)) and V = max(counter(c1), counter(c2)).
• If c1 →∗ c2 then there is a run π : c1 → c2 such that U −M ≤ counter(π) ≤ V +M .

So as long as γ(p1) +M < counter(c1), counter(c2) < γ(p2)−M , the runs c1 → c2 in Ci correspond to
runs in C.

Lemma 8.4. Let γ be an assignment with γ(pi) + M < γ(pi+1) for all i. Let c,d be configurations with
γ(pi) +M < counter(c), counter(d) < γ(pi+1)−M . Then

(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ c→∗ d in Cγi .

Proof. Since Ci simulates C in the interval (γ(pi), γ(pi+1)) it is obvious that the biimplication holds if we
restrict to runs inside the interval (γ(pi), γ(pi+1)) (Lemma 8.2):

(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ (c,d) ∈ Cγi (γ(pi), γ(pi+1))

It thus suffices to show that

(c,d) ∈ Cγi (γ(pi), γ(pi+1)) ⇐⇒ c→∗ d in Cγi

The left-to-right implication is immediate. For the converse, suppose that c →∗ d in Cγi . Since,
γ(pi) +M < counter(c), counter(d) < γ(pi+1)−M , by Lemma 8.3, there exists a run π in Cγi from c to d
such that γ(pi) < counter(π) < γ(pi+1). Hence (c,d) ∈ Cγi (γ(pi), γ(pi+1)) as required.
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For the even-indexed runs, the reachability around individual parameters, i.e. in intervals (γ(pi) −
M,γ(pi) + M), can be precomputed. Suppose that γ(pi−1) < γ(pi) −M < γ(pi) + M < γ(pi+1) so that
the interval (γ(pi)−M,γ(pi) +M) does not contain γ(pi−1) or γ(pi+1). Let −M < x, y < M and let π be
a run from (s, γ(pi) + x) to (t, γ(pi) + y) such that γ(pi) −M ≤ counter(π) ≤ γ(pi) + M . Then for every
component π(j), we can write counter(π(j)) = γ(pi) + zj for some −M ≤ zj ≤ M . But now, the run π is
valid for any specific value of γ(pi) as only zj determines which transitions are enabled in Cγ .

Lemma 8.5. Let γ, δ be parameter assignments with γ(pi) + M < γ(pi+1), δ(pi) + M < δ(pi+1) for all i.
Let s, t ∈ c be states and −M < x, y < M integers. Then

((s, γ(pi) + x), (t, γ(pi) + y)) ∈ Cγ(γ(pi)−M,γ(pi) +M) ⇐⇒
((s, δ(pi) + x), (t, δ(pi) + y)) ∈ Cδ(δ(pi)−M, δ(pi) +M)

Furthermore, it is decidable in polynomial time whether ((s, γ(pi)+x), (t, γ(pi)+y)) ∈ Cγ(γ(pi)−M,γ(pi)+
M) for any (and all) such assignment γ.

Proof. For any run π from (s, γ(pi)+x) to (t, γ(pi)+y)) in Cγ such that γ(pi)−M < counter(π) < γ(pi)+M
and for any index j we can write counter(π(j)) = γ(pi) + zj for some −M ≤ zj ≤ M . But now, the run π
is valid for any specific value of γ(pi) as only zj determines which transitions are enabled in Cγ .

Thus consider the graph G with vertices (s, z) where s is a state of C and −M < z < M . There is an
edge from (s, z) to (s′, z′) in G if and only if there is an edge (s, z′ − z, s′) in C, which goes from s to s′

and updates the counter appropriately. Similarly, if there is an edge (s,≤ pi, s
′) in C then we add an edge

(s, z)→ (s′, z) for all z ≤ 0. Similarly for other cases.
Now, any run in C completely contained in (γ(pi)−M,γ(pi) +M) corresponds to a path in G and vice

versa. Recall, Lemma 8.3, that M is polynomial in |C|. Thus, |G| is also polynomial in |C|.
Therefore, for every pair of states s and t and values z, z′ in (−M,M), we can calculate using a standard

graph algorithm (e.g. breadth-first search), whether there is a path from (s, γ(pi) + z) to (t, γ(pi) + z′).

Combining the previous lemmas on decidability of even- and odd-indexed runs, We now prove that the
existence of a run between any two configurations c1 and c2 is definable in the existential fragment of
Presburger Arithmetic with Divisibility (∃PAD definable).

Theorem 8.6. Given states s, t ∈ C the set G(C, s, t) = {(x, y, n1, . . . , nk) | (s, x)→∗ (t, y) in Cγ where γ(pi) =
ni} is ∃PAD definable.

Proof. First, consider the case such that ni+M < ni+1 for every i. The variable ni denotes the value of γ(pi)
in the constructed ∃PAD formulae. We encode the existence of a factoring π = π0 → π1 → π2 → · · · → πl
as a ∃PAD formula.

Note that first(πi) is always of the form first(πi) = (si, pf(i) + x) for some |xi| ∈ {M,M + 1} and
parameter pf(i). Hence, first(πi) is determined by the triple (si, f(i), xi). Similarly, last(πi) is determined
by some triple (ti, g(i), yi) with |yi| ∈ {M,M + 1}.

Now, in Lemma 8.4 we showed that the odd-indexed runs π2i+1 correspond to runs in some one-counter
machine Ch(2i+1). By Lemma 5.1, the existence of a run in Ch(2i+1) is ∃PAD expressible as:

ϕ2i+1 = Reach(Ch(2i+1), s2i+1, t2i+1)(nf(2i+1) + x2i+1, ng(2i+1) + y2i+1, n1, . . . , nk)

where h(2i+ 1) denotes the appropriate one-counter machine Ch(2i+1) the run π2i+1 lies in.
In Lemma 8.5, we showed that the even-indexed runs are independent of γ, can be precomputed and

the reachability relation can be hardwired into the formula. By taking a conjunction of the corresponding
∃PAD formulae we obtain a single ∃PAD formula. Precisely, given states s1, . . . , sl and t1, . . . , tl and offsets
x1, . . . xl and y1, . . . yl and indices f(1), . . . , f(l) and g(1), . . . , g(l) and h(1), . . . h(l), consider the formula:
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G(s, t,−→s ,−→t ,−→x ,−→y , f, g, h)(x, y,−→n ) =
∧
i

ϕ2i+1

∧ s = s1 ∧ nf(1) + x1 = x ∧ t = tl ∧ ng(l) + yl = y

∧ ψ(f, g, h,−→s ,−→t ,−→x ,−→y )∧
i

ni +M < ni+1

The formula asserts that there is a run from (s, x) to (t, y) with the particular factoring. The conjunct

ψ(f, g, h,−→s ,−→t ,−→x ,−→y ) encodes that the even-indexed subruns are valid (precomputed using Lemma 8.5)
and that odd- and even-indexed runs are adjacent (directly computable) and that the values of f(i), g(i)
and h(i) are consistent (directly computable)6. The last conjunct encodes the restriction γ(pi)+M < γ(pi+1)
from Lemmas 8.4 and 8.5.

This final restriction is relaxed as follows. If the parameters are not in the increasing order γ(pi) < γ(pi+1)
then we build appropriate formulae by relabelling the parameters so that the resulting permutation of
parameters is in increasing order.

If γ(pi) ≤ γ(pi+1) < γ(pi) + M then note that M depends only on |C| and so only finitely many
possibilities exist for γ(pi+1) − γ(pi). Hence we replace each occurrence of pi+1 in C by pi + w for the
appropriate w < M .

Now, there are only finitely many possibilities for −→s ,−→t ,−→x ,−→y , f, g and h. So all such formulae together
define the reachability relation in C. Hence, the relation is ∃PAD definable.

Recall that satisfiability of ∃PAD formulae is in NEXP [18] and for a parametric timed automaton A with
one parametric clock the corresponding one-counter machine C is exponential in size in |A| (Lemmas 6.3
and 6.4). Hence, the emptiness problem for A is decidable in 2NEXP time (Theorem 6.5). We have also
showed a lower bound of NEXP-hard (Theorem 6.6). However, as the complexity of satisfiability of ∃PAD
formulae is still open, only known to lie between NP-hard and NEXP, the lower bound might be optimal
and further progress depends on the developments in the ∃PAD-satisfiability problem.

9. Parametric Timed Automata with Two Parametric Clocks

We now move to study parametric one-counter machines arising from parametric timed automata with
two parametric clocks. We do not solve the problem in full as this is a long-standing open problem [2].
However, we develop new counter-machines techniques to solve the problem in case of a single parameter.

So let A be a parametric timed automaton with two parametric clocks and a single parameter p. By
Remark 6.9, if the corresponding parametric bounded one-counter machine C has an accepting run then it
has one where the counter is bounded by 2 · γ(p).

Now, notice that C has a single parameter but may contain ‘≡ 0 mod ci’ or ‘+[0, p]’ transitions. We
first show how to decide the emptiness problem in case C has no ‘≡ 0 mod ci’ or ‘+[0, p]’ transitions. Later
we show how to decide the emptiness problem if both types of transitions are allowed in C.

So let C be a simple parametric bounded one-counter machine (no ‘≡ 0 mod c’ or ‘+[0, p]’ transitions)
with a single parameter p. For given k ∈ N we decide the existence of an accepting run π such that
counter(π) ≤ k · γ(p) holds.7 Now, for any such run π and index i we can write counter(π(i)) = aγ(p) + b
where a ≤ k and b < γ(p). Since a is bounded, we build a one-counter machine G keeping a in the state
space and b in the counter. We do not enforce b < γ(p) (or any other ≤ x constraint) in G. Instead,
we use Lemma 8.3 on G and split π into subruns close to and far from a multiple of γ(p). We write
π = τ0 → π1 → τ1 . . . πl → τl such that

6Consistent means that h(i) and h(i+ 1) are consecutive, the indices f(i) and g(i) are consecutive and consistent with h(i),
etc.

7k = 2 in case C was obtained by reduction from a parametric timed automaton with one parameter
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• for every τi the value counter(τi) mod γ(p) ∈ [0, . . . ,M ] ∪ [γ(p)−M,γ(p)),
• for every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M).

For a run ρ and a subset S ⊆ N of natural numbers, the notation counter(ρ) ∈ S denotes the fact that for
every i we have counter(ρ(i)) ∈ S.

Then we use techniques on factoring of runs analogous to those used for one parametric clock (Sec-
tion 8) to build an ∃PAD formula encoding the existence of an accepting run. Decidability follows from the
decidability of satisfiability of ∃PAD formulae. In general, we have:

Lemma 9.1. Given C with one parameter p, no ‘≡ 0 mod c’ and no ‘+[0, p]’ transitions, k ∈ N and states
s, t ∈ C the set G(C, s, t, k) = {(x, y, q) | ∃π : (s, x) → (t, y) ∈ Cγ such that counter(π) ≤ k · q where q =
γ(p)} is ∃PAD definable.

Before proving the lemma, we first show how to decide the existence of τi’s and πi’s. Given C and
k ∈ N we introduce the one-counter machine Ck. Let S be the set of states of C. Then the states of Ck are
S×{0, . . . , k−1}. Intuitively, if z < γ(p), the configuration ((s, i), z) of Ck shall represents the configuration
(s, i · γ(p) + z) of C. Machine Ck has the following transitions:

• ((s, i),±c, (t, i)) if (s,±c, t) is a transition in C,
• ((s, i),+0, (t, i± 1)) if (s,±p, t) is a transition in C,
• ((s, 0),+0, (t, 0)) if (s,≤ p, t) is a transition in C,
• ((s, i),+0, (t, i)) for i ≥ 1 if (s,≥ p, t) is a transition in C.

Intuitively, the “submachine” S × {i} should handle C when the counter of C lies in [iγ(p), (i + 1)γ(p)].
Now, the simulation is not perfect, as the counter of G can be larger than γ(p) thereby incorrectly en-
abling/disabling various transitions. However, note that G has no parameters or ≤ p transitions, i.e it is an
ordinary one-counter machine. Hence, by Lemma 8.3, there is a constant M ∈ N such that we can assume
that runs deviate by at most M from the initial and the final counter values.

Lemma 9.2. Let γ be an assignments, s1, s2 states of C and 0 ≤ a1, a2 < k and M < b1, b2 < γ(p)−M be
natural numbers. Then the following are equivalent.

• There is a run π from (s1, a1γ(p) + b1) to (s2, a2γ(p) + b2) in Cγ such that counter(π) ≤ kγ(p) and
counter(π) mod γ(p) ∈ (M,γ(p)−M).

• There is a run π′ from ((s1, a1), b1) to ((s2, a2), b2) in Cγk .

Proof. Analogous to lemma 8.4. Suppose that a run π exists. Then let f be a function that sends the
configuration (s, aγ(p)+b) of Cγ where 0 ≤ b < γ(p) to the configuration ((s, a), b) of Cγk . By the construction
of Ck and restrictions on π, the path f(π) obtained by applying f to every component of π is a valid path
in Cγk from ((s1, a1), b1) to ((s2, a2), b2).

Conversely, suppose that there is a run π′. By Lemma 8.3, we can assume that 0 < counter(π′) < γ(p).
So let g be a function that sends the configuration ((s, a), b) of Cγk to the configuration (s, aγ(p) + b) of Cγ .
By the construction, the path g(π′) obtained by applying g to every component of π′ is a valid path in Cγ

from (s1, a1γ(p) + b1) to (s2, a2γ(p) + b2).

The above lemma shows how to handle πi runs. For the τi runs, recall that for every τi we have counter(τi)
mod γ(p) ∈ [0, . . . ,M ] ∪ [γ(p)−M,γ(p)). As in Lemma 8.5, the existence of runs τi is independent of γ(p)
and can be precomputed. Consider the graph with vertices {0, . . . , k} × {−M, . . . ,M}. Each vertex (i, j)
corresponds to counter value i · γ(p) + j in Cγ . The edges mimic the transitions in Ck. Now, the graph is
independent of γ(p) and so we can calculate reachability between any pair of vertices.

Lemma 9.3. Let γ be an assignment. Given k ∈ N and states s1, s2 of C and numbers 0 ≤ a1, a2 ≤ k and
b1, b2 ∈ [0, . . . ,M ] ∪ [γ(p) −M, . . . ,M) it is decidable in polynomial time whether there is a path π from
(s1, a1γ(p) + b1) to (s2, a2γ(p) + b2) in Cγ such that counter(π) mod γ(p) ∈ [0, . . . ,M ] ∪ [γ(p) −M,γ(p)).
Moreover, the existence of such a path is independent of γ(p).
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We now have all the pieces necessary to prove Lemma 9.1.

Proof. (of Lemma 9.1)
The proof is analogous to the proof of Theorem 8.6. Let c1, c2 be two configurations of Cγ . Consider

a shortest run π : c1 → c2 in Cγ . Then π can be split into subruns close to and far from a multiple of
γ(p). We write π = τ0 → π1 → τ1 . . . πl → τl such that for every τi the value counter(τi) mod γ(p) ∈
[0, . . . ,M ] ∪ [γ(p)−M,γ(p)). And for every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M).

Notice that the configuration first(τi) is uniquely determined by the state of C, bcounter(first(τi))/γ(p)c
and counter(first(τi)) mod γ(p). Now, C has only finitely many states, bcounter(first(τi))/γ(p)c ≤ k and
counter(first(τi)) mod γ(p) can have only one of 2M + 1 values. Recall that π is a shortest run from c1 to
c2. In particular, π visits each configuration of Cγ at most once. Hence there are only O(nkM) different
initial configurations for τi’s and hence l = O(nkM).

Now, by Lemma 9.2, the existence of πi can be witnessed by Ck. Further, by Lemma 9.3, the existence of
runs τi is independent of γ(p) and can be precomputed. The runs in Ck are ∃PAD expressible (Lemma 5.1).
By taking a conjunction of the corresponding ∃PAD formulae we obtain a single ∃PAD formula(∧

i

Reach(Ck,first(πi), last(πi))(counter(first(πi)), counter(last(πi)), p)

)
∧ ψ

defining the reachability relation for a particular factoring where (as in Theorem 8.6) the formula ψ en-
codes that τi’s are valid (directly computable) and that τi and πi can be connected by an edge (directly
computable).

Since there are only finitely many initial and final states of πi’s and τi’s, which uniquely determine the
factoring, by taking the set of all such ∃PAD formulae, we conclude that the reachability relation is ∃PAD
definable.

9.1. Elimination of ‘≡ 0 mod c’ Transitions

Next, we show how to handle ‘≡ 0 mod c’ transitions. Let C be a parametric bounded one-counter
machine with ‘≡ 0 mod c’ transitions. We now show how to eliminate ‘≡ 0 mod c’ transitions from C.

Let K = {c1, . . . , cr} be the set of all constants appearing as ‘≡ 0 mod ci’ in C. Intuitively, we modify
C to store in its state space the counter modulo each ci. However, knowledge of p mod ci for each i is
necessary for that.

Given D = (d1, . . . , dr), let CD be the parametric bounded one-counter machine which is obtained from
C and which tracks the counter modulo each ci assuming that p ≡ di mod ci. Formally, the states of CD
are S × Zc1 × . . . × Zcr where S are the states of C and Zci denotes the ring of integers modulo ci. Let
(v1, . . . , vr) ∈ Zc1 × . . .× Zcr . Then CD contains the following transitions:

• ((q, v1, . . . , vr),±c, (q′, v1 ± c, . . . , vr ± c) if (q,±c, q′) is a transition in C,
• ((q, v1, . . . , vr),±p, (q′, v1 ± d1, . . . , vr ± dr) if (q,±p, q′) is a transition in C,
• ((q, v1, . . . , vr),+0, (q′, v1, . . . , vr)) if vi = 0 and (q,≡ 0 mod ci, q

′) is a transition in C,
• ((q, v1, . . . , vr), G, (q

′, v1, . . . , vr)) if (q,G, q′) is a transition in C and G is a guard (comparison).

Notice that there are no ‘≡ 0 mod c’ transitions in CD. By construction, runs in CγD are equivalent to runs
Cγ provided di ≡ γ(p) mod ci. That is:

Lemma 9.4. Let C be a parametric bounded one-counter machine with a single parameter p, let γ be an
assignment such that γ(p) = di mod ci for each i. Let (s, x), (t, y) be configurations of C. Then (s, x) →∗
(t, y) in Cγ if and only if ((s, x mod c1, . . . , x mod cr), x)→∗ ((t, y mod c1, . . . , y mod cr), y) in CγD.

Proof. Let π be a run π : (s, x) → (t, y). Define f : N → Z by f(v) = (v mod c1, . . . , v mod cr). Let τ
be the run obtained from π by sending each configuration (si, vi) to (si × f(vi), vi). By construction, each
transitions (si × f(vi), vi)→ (si+1 × f(vi+1), vi+1) is valid in CγD.

For the converse, for configuration c = ((si, v1, . . . , vr), wi) let g(c) be the function that gives g(c) =
(si, wi). Let π : ((s, x mod c1, . . . , x mod cr), x) → ((t, y mod c1, . . . , y mod cr), y) be a run in CγD. Let
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τ be the run obtained by applying g to π. By construction, each transitions (si, wi)→ (si+1, wi+1) is valid
in CγD.

Using the above lemma together with the result (Theorem 9.1) for machines without ‘≡ 0 mod c’ tran-
sitions we obtain:

Theorem 9.5. Let C be parametric bounded one-counter machine with ‘≡ 0 mod ci’ transitions and a
single parameter p. Given k ∈ N and states s and t, the set H(C, s, t, k) = {(x, y, q) | ∃π : (s, x) → (t, y) ∈
Cγ such that counter(π) ≤ k · q where q = γ(p)} is ∃PAD definable.

Proof. For a fixed c ∈ N the ∃PAD formula ϕc(x, y) = (∃q . c · q+ y = x)∧ y < c asserts that x ≡ y mod c.
Thus, given D ∈ Zc1 × . . . × Zcr , we construct the formula H ′(A, s, t, k,D)(x, y, p) asserting that D is

consistent with p and that (s, x)→∗ (t, y) in CD:

H ′(C, s, t, k,D)(x, y, p) = ∃−→v (r),−→w (r) . G(CD, s× v, t× w, k)(x, y, p) ∧∧
i

[(x ≡ v(i) mod ci) ∧ (y ≡ w(i) mod ci) ∧ (p ≡ D(i) mod ci)]

Since ∃PAD definable sets are closed under finite union and there are only finitely many possible D’s,
we get the desired result.

9.2. Elimination of ‘+[0, p]’ Transitions

In this subsection suppose that the parametric bounded one-counter machine C contains ‘≡ 0 mod c’ as
well as ‘+[0, p]’ transitions. We show that the reachability relation of C is ∃PAD definable also in this case.

Let K = {c1, . . . , ck} be the set of all constants appearing in ‘≡ 0 mod ci’ transitions in C and let
R = lcm(K) be their least common multiple. Suppose that Cγ is nonempty and take π to be a shortest
accepting run in Cγ . We will show that all but a bounded number (depending only on C) of traversals of
‘+[0, p]’ edges increment the counter by at most R or by at least γ(p)−R.

So suppose that at least two ‘+[0, p]’ transitions appear along π. Then, we can write π as π = τ1
e1−→

τ2
e2−→ τ3 where e1 and e2 are ‘+[0, p]’ transitions.
Denote the counter updates at e1 and e2 by f1 and f2, respectively. If R < f1, f2 < γ(p)−R then consider

the run τ ′2 which is obtained from τ2 by incrementing the counter by R. That is, for every index i, we have
state(τ2(i)) = state(τ ′2(i)) and counter(τ ′2(i)) = counter(τ2(i)) + R. This corresponds to incrementing the
counter in e1, e2 by f1 +R, f2 −R respectively.

Now, τ ′2 might not be a valid run. In particular, three things can potentially occur.

• There is a transition (q, ‘ ≡ 0 mod c′, q′) from τ ′2(i) to τ ′2(i + 1) for some i and counter(τ ′2(i)) 6≡ 0
mod c. However, as τ2(i) ≡ 0 mod c by assumption on π and c|R, we have c|τ2(i) +R = τ ′2(i) and so
this situation cannot happen.

• There is a transition (q,≤ p, q′) from τ ′2(i) to τ ′2(i + 1) for some index i and counter(τ ′2(i)) > γ(p).
Hence, counter(τ2(i)) > γ(p) − R. By assumption, we also have counter(τ2(i)) ≤ γ(p). Therefore,
γ(p) − R < counter(τ2(i)) ≤ γ(p). But by minimality, π visits every configuration at most once and
so such a situation can occur at most nR times—R times per each of n states. Otherwise, we would
obtain a shorter run by cutting out the subrun between two occurrences of configuration τ2(i).

• there exists index i such that counter(τ ′2(i)) > k ·γ(p). But then we have k ·γ(p)−R < counter(τ2(i)) ≤
k · γ(p). By minimality, π visits every configuration at most once and so such a situation can occur at
most nR times—R times per each of n states.

We use the above observations to repeatedly increment some transition e1 = +[0, p] and simultaneously
decrement some other transition e2 = +[0, p] by R; eventually stopping when no such pair of transitions
exists.

Formally, let e1 be the first ‘+[0, p]’ transition such that there is a transition e2 = +[0, p] so that e1, e2

satisfy condition (ii) or (iii) above. Then ei1 can be incremented by R and e2 can be decremented by R.
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So let π′ be the run π′ = τ1
e1−→ τ ′2

e2−→ τ3. Replace π by π′ and repeat the process creating the runs
π′, π′′, π′′′, . . .. Note that counter(π′) is lexicographically larger than counter(π). As π is of finite length and
all transitions can be incremented by at most |π|γ(p), the procedure eventually terminates for some π(k).
Let {f1, . . . , fv} be the set of increments caused by ‘+[0, p]’ transitions along π(k). By above, each fi is
either at most R, at least γ(p)−R or one of at most nR different values. Thus, we have shown:

Lemma 9.6. Let C be a parametric bounded one-counter machine with a single parameter p and γ :
{p} → N be an assignment. If there is an accepting (bounded) run in Cγ then there is an accepting
(bounded) run π such that at most nR counter increments by ‘+[0, p]’ transitions that are not in the set
{+0,+1, . . . ,+R,+p−R, . . . ,+p}. That is,

|{i | π(i) = +[0, p] and R < counter(π(i+ 1))− counter(π(i)) < γ(p)−R}| ≤ 2nR.

Proof. The case of runs bounded by a multiple of γ(p) is covered in the paragraphs above.
If a run is not bounded by a multiple of γ(p), then note that the third condition above does not occur.

Hence, the cardinality of the set under consideration is at most nR.

We now show that the existence of such a factoring can be specified by a ∃PAD formula.

Theorem 9.7. Given C with ‘≡ 0 mod c’ and ‘+[0, p]’ transitions and a single parameter p. Let s, t ∈ C
be states. Then the set I(C, s, t, k) = {(x, y, q) ∈ N3 | ∃π : (s, x) →∗ (t, y) in Cγ such that counter(π) ≤
k · γ(p) where γ(p) = q} is ∃PAD definable.

Proof. Let Z be the parametric bounded one-counter machine obtained from C by replacing each ‘+[0, p]’
transition by 2R + 2 transitions: +0,+1, . . . ,+R,+p − R, . . . ,+p. Then π(k) (as defined in a paragraph
above) can be factored as π(k) = π0 → π1 → · · · → πv where each πi is a run in Zγ and there is a ‘+[0, p]’
transition between πi and πi+1.

Given v ≤ 2nR and states s = s1, s2, . . . , sv, t1, . . . , tv−1, tv = t the formula

I ′(C, s, t, v, k,−→s ,−→t )(x, y, p) = ∃−→x ,−→y .
∧

i=1...v

I(Z, si, ti, k)(xi, yi, p) ∧ x1 = x ∧ yv = y∧
i=1...v−1

(0 ≤ yi+1 − xi ≤ p ∧ E(ti, ‘ + [0, p]′, si+1)

asserts that such a factoring of length v exists where first(πi) = (si, xi) and last(πi) = (ti, yi). The predicate
E(q, ‘ + [0, p]′, q′) encodes that there is a ‘+[0, p]’ transition between q and q′ in C.

Since v ≤ 2nR there are only finitely many possibilities for −→s and
−→
t . As ∃PAD sets are closed under

finite union, the result follows.

As an immediate corollary (using Remark 6.9) we get the following result on parametric timed automata:

Theorem 9.8. The emptiness problem is decidable for parametric timed automata with two parametric
clocks and a single parameter.

10. Parametric Bounded One-Counter Machines with One Parameter

In the previous section we showed how to decide the emptiness problem for parametric timed automata
with two parametric clocks with a single parameter. The decidability proof works by reduction to parametric
bounded one-counter machines with a single parameter p and accepting runs with counter(π) ≤ 2γ(p). We
now relax the restriction on counter(π) ≤ 2γ(p). This simple modification leads to a substantially compli-
cated proof based around the analysis of subruns exceeding 2γ(p). See Figure 12 showing the reductions
between the automata, one-counter machines classes and Presburger arithmetic with divisibility.

Let C be a parametric bounded one-counter machine with a single parameter. We show in this section
how to decide the emptiness problem for C. Note that by Theorem 6.7, machine C has the emptiness
problem equivalent to some parametric timed automaton with two parametric clocks with two parameters.
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1 parameter
Undecidable [2]

bounded

Presburger arithmetic
with divisibility

1 Parametric Clock 2 Parametric Clocks 3 Parametric Clocks

±1,≤ p,≥ p ±1,±p,≤ p,≥ p

1 parameter

Lemma 6.4 Theorem 6.7Remark 6.9

Theorem 8.6 Theorem 10.14 Lemma 9.1

Figure 12: Diagram of reductions from Parametric Timed Automata to Parametric One-Counter Machines and Presburger
Arithmetic with Divisibility

simple ‘≡ 0 mod c’ ‘≡ 0 mod c’, ‘+[0, p]’

bounded runs Theorem 9.1 Theorem 9.5 Theorem 9.7
unbounded runs Theorem 10.14 Theorem 10.16 Theorem 10.17

Table 1: Parametric Bounded One-Counter Machines, One Parameter Case

However, the decidability of the emptiness problem for the latter class is open in general. Thus, solving
decidability in this special class of one-counter machines is a necessary step towards resolving the general
case of the emptiness problem for parametric timed automata.

We begin by considering the situation when C has neither ‘≡ 0 mod c’ nor ‘+[0, p]’ transitions. The
results for the various cases of the single parameter problem are summarised in Table 1.

Firstly, to handle the corner cases when the value of γ(p) is too small, the decision procedure begins
by instantiating γ(p) at each value in [0, . . . , cmax ] and checking whether the final state is reachable in the
resulting nonparametric one-counter automaton. The value cmax denotes the largest constant used in C.
Since reachability is decidable in nonparametric bounded one-ounter automata, determining whether there
is an accepting run in Cγ for some γ(p) ≤ cmax is decidable. Thus, for the remaining sections we assume
that γ(p) is greater than the largest constant cmax occuring in C.

In general, the decidability of the emptiness problem for C is quite involved and depends on the theory
of ordinary parametric one-counter machines [9] (summarised in Section 10.3). We begin by giving a quick
overview.

10.1. Proof Outline For Simple Parametric Bounded One-Counter Machines

We first show the result for simple parametric bounded one-counter machines (no ‘≡ 0 mod c’ or ‘+[0, p]’
transitions). To show that such a machine C halts, we have to find an assignment γ and an accepting run
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π in Cγ . So suppose that there is some γ, consider any accepting run π in Cγ and factor π as follows

π = τ0 → π1 → τ1 → π2 → τ2 → . . .→ πt → τt (1)

where counter(τi) ≤ 2γ(p) < counter(πi) for every i. Notice that since counter(πi) ≥ 2γ(p), the runs πi’s do
not use any ≤ p transitions. Intuitively, such runs correspond to runs in some one-counter machine. Using
theory of one-counter machines developed in [9, 10], each individual πi can be factored in a special way.
Building upon that theory, we show in Section 10.2 that there is K ∈ N depending only on C (and not on
γ) such that all but a bounded number of πi’s have counter(π) ≤ K · γ(p).

Rewriting (1), we then have that there are K,L ∈ N depending only on C (and not on γ) such that
π = τ0 → π1 → τ1 → π2 → τ2 → . . . → πt → τt and t ≤ L and counter(τi) ≤ K · γ(p) < counter(πi) for
every i.

In Theorem 10.14 we use results from [9, 10] and Theorem 9.1 to show that both πi’s and τi’s are ∃PAD
definable, respectively. Hence, ∃PAD definability of reachability in C follows.

For the rest of the section, fix a simple parametric bounded one-counter machine C with a single param-
eter p. Denote the number of states of C by n. We show how to obtain a factoring of runs in Cγ .

10.2. Properties of Parametric Bounded One-Counter Machines

Let γ be an assignment and π a run in Cγ . As in (1), write π as π = τ0 → π1 → τ1 → π2 → τ2 → . . .→
πt → τt such that counter(τi) ≤ 2γ(p) < counter(πi) for every i. The goal of this section is to show that
irrespective of γ, all but a small number of πi’s are bounded by K · γ(p) for some constant K ∈ N where
the value of K as well as the number of subruns πi’s violating the K · γ(p) upper bound depends only on C
(and is independent of γ).

Notice that since counter(πi) ≥ 2γ(p), the runs πi’s do not use any ≤ p transitions. Hence, we can think
of them as runs in a one-counter machine. The machine C>p is obtained from C by removing all ≤ p,≤ c
transitions and leaving all other transitions and states unchanged. Then C>p is a parametric one-counter
machine without upper bounds. Moreover, C>p simulates runs of C when the counter stays above γ(p).
Formally,

Lemma 10.1. Let s, t ∈ C be states of C and 0 < x, y ∈ N be positive natural numbers. Then there is
a run π : (s, γ(p) + x) → (t, γ(p) + y) in Cγ such that counter(π) > γ(p) if and only if there is a run
π′ : (s, γ(p) + x)→ (t, γ(p) + y) in Cγ>p.

Proof. Consider π : (s, γ(p) + x) → (t, γ(p) + y) in Cγ such that counter(π) > γ(p). Then π does not use
any ≤ p transitions. Hence, π is a run in Cγ>p. The converse is symmetric.

We now turn to study runs in parametric one-counter machines. In the following section we study
properties of runs in one-counter machines that will be useful to bound subruns πi’s.

10.3. Properties of Runs in One-Counter Machines

Let Z be a one-counter machine (with no upper bounds and no parameters). The reachability problem
for such machines was shown decidable in [10, 9] and a result of [10, 9] also characterised the reachability
between any two configurations. We now outline the results obtained in those publications.

Let c1, c2 be two configurations of Z. We aim to show that if there is a run from c1 to c2 then there is
one of a special form. So suppose that there is a run π from c1 to c2.

Further, suppose that there is loop with positive net effect followed by a loop with negative net effect in
π. Let α be the first loop in π with a positive net effect and let β be the last loop in π with negative net
effect: effect(α) > 0 > effect(β). Then π can be written as:

π = π1 → α→ τ → β → π3.

Notice that for any k ∈ N, we have k| effect(β)| effect(α) + k effect(α) effect(β) = 0. Therefore, the run
πk = π1 → α(1+k| effect(β)|) → τ → β(1+k| effect(α)|) → π3 obtained from π by taking the the loop α exactly
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a · α

f +
∑
ki · si
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Figure 13: Factoring of a run as π1 · π2 · π3 is shown on the left. The right figure shows how the counter value changes during
the run. The loops α and β are positive and negative respectively. Thus, they can be used to pump up the counter arbitrarily
high and then bring it back. Hence, the order of traversals of loops s1, . . . , s5 does not matter.

1 + k| effect(β)| times and by taking the loop β exactly 1 + k effect(α) times starts and finishes in the same
configuration as π does. Moreover, as α is a positive loop, the counter along the run πk never becomes
negative and so πk is a valid path in Z for every k > 0.

Therefore, the counter value in τ can be made arbitrarily large by pumping the counter arbitrarily high
using α and then bringing the counter back using β. In particular, we can ignore in τ the order in which
individual loops are visited as we can assume that the counter is large enough so that no transition makes
counter negative. Thus, the precise order of transitions in π is irrelevant as long as it gives one connected
path. Such path are described as follows. (See also Figure 13)

Definition 10.2. For simple loops si, path f and numbers ki we say that path π is of the form f +
∑
i kisi

if the expression describes how many times each transition of Z is visited by π. Formally, for each transition
e in Z, we have count(π, e) = count(f, e) +

∑
i ki count(si, e) where the expression count(X, e) denotes the

number of occurrences of a transition e in the set X.

Further, by removing nested negative loops from α, we can assume that α is a simple loop. Similarly,
by removing nested positive loops from β, we can assume that β is a simple loop. Formally, the following
result appeared in [10, 9].

Lemma 10.3 ([10, 9]). Let Z be a one-counter machine (without upper bounds or parameters). For config-
urations c1 and c2 of Z, if there is a run τ : c1 → c2 in Z then there is a run π from c1 to c2 such that
π = π1 · π2 · π3 and

• min counter(π) ≥ min counter(τ),
• There are no positive simple loops in π1,
• There are no negative simple loops in π3,
• π2 = αa → σ → βb where α and β are simple loops such that effect(β) < 0 < effect(α) and σ is of

the form (f +
∑
kisi) where f is a simple path, si’s are simple loops, a, b, ki ∈ N and the set of edges

f ∪ {si}i is connected.

We denote by type(π) the tuple (support(π1), α, β, f, {si}, support(π3)). Runs of this form are called fac-
tored. If π2 6= ε then we say that π is pumpable.

Note that there are only finitely many types. Moreover, div(τ) ≤ div(f) +
∑
i ki div(si) ≤ div(f) +

n
∑
i kiM where M is the largest constant appearing in Z.

Now, in the middle segment π2 only the number of traversal of loops matters as, by pumping α and β if
necessary, we can always assume that the counter value is large enough. Therefore, the above Lemma has a
converse stating that once the numbers of traversals are specified a run with the corresponding effect always
exists8:

8The run is a collection of Eulerian traversals of the graph spanned by f and {si}i with the appropriate multiplicities.
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Lemma 10.4 ([9]). Let f be a simple path, si be simple loops such that f ∪ {si}i is connected. Let π1, π3

be runs such that last(π1) = first(f) and last(f) = first(π3) and let a, b, ki > 0 be natural numbers. Then
there is a run π in Z of the form π1 → αa

′ → f +
∑
i kisi → βb

′ → π3 such that effect(π) = effect(π1) +
a effect(α) + effect(f) +

∑
i ki effect(si) + b effect(β) + effect(π3).

In particular, by modifying number of traversals of loops si in a factored run it is always possible to
create another factored run with the corresponding change in effect. Formally,

Lemma 10.5. Let π = π1 → αa → (f +
∑
kisi) → βb → π3 be a factored run. Let u, v ∈ {a, b, k1, k2, . . .}

and ∆u,∆v ∈ N then if u+∆u, v+∆v > 0 then there is a run π′, denoted as π′ = π(u← u+∆u, v ← v+∆v),
such that9

• effect(π′) = effect(π) + ∆u effect(σu) + ∆v effect(σv),
• counter(π′) ≥ min(counter(π), counter(π) + ∆u effect(σu) + ∆v effect(σv))

where σu, σv are the loops associated with u and v, respectively.

Proof. Let π′ be the path as in the statement. Such a path exists by Lemma 10.4. Write π′ as π′ = ρ1ρ2ρ3

where

• ρ1 corresponds to the prefix π1 → αa
′
,

• ρ2 corresponds to the middle segment f +
∑
k′i · s′i,

• ρ3 corresponds to the suffix βb
′ → π3.

Since up to possibly different number of traversals of the positive loop α the path ρ1 agrees with a prefix of
π, we have counter(ρ1) ≥ min counter(π).

Further, by modifying a′ and b′ if necessary, we can assume that min(counter(ρ2)) is sufficiently large
and hence greater than min counter(π).

Finally, note that ρ3 corresponds to a suffix of π where the counter is incremented by ∆u effect(σu) +
∆v effect(σv). Hence, counter(ρ3) ≥ (min counter(π)) + ∆u effect(σu) + ∆v effect(σv).

By taking the minimum over the three cases above, the result follows.

Going back to the factoring (1) of an accepting run π in the parametric bounded one-counter machine
Cγ , we deduce from Lemmas 10.3 and 10.1 that every πi can be factored.

Lemma 10.6. Let c1, c2 be two configurations in Cγ . There is a run π : c1 → c2 such that counter(π) >
2γ(p) if and only if there is a factored run π′ : c1 → c2 such that counter(π′) > 2γ(p).

Proof. The right-to-left implication is immediate. For the left-to-right implication, consider the one-counter
machine C>p. Now, π is a run in Cγ such that counter(γ) > γ(p). Hence, π does not traverse any ≤ p
transitions in C. Hence π is a run in Cγ>p. Applying Lemma 10.3 to π and C>p gives the desired result.

So we assume that every πi in the factoring (1) is factored. In the following lemmas we study factored
runs of different types in order to bound the factoring (1).

10.4. Properties of Factored Runs

In this section we prove tighter bounds on the structure of factored runs. Recall that in Lemma 10.3 we
have associated a type with every run. In the following sections, we partition all factored runs according to
their types into three classes (one class for nonpumpable runs and two classes for pumpable runs). We first
show that all nonpumpable as well as one class of pumpable runs is essentially bounded. Then we show that
the remaining pumpable runs can appear only a bounded number of times.

9The statement naturally generalise to modifying the number of traversals of any number of loops. However, in all the
results in this manuscript we modify exactly two loops and therefore present the result only in this special case.
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Figure 14: Counter machine with only linear runs. The automaton has two loops. A positive loop α with effect(α) = 2p + 4
and a negative loop β with effect(β) = −3p− 6. Notice that α× β = 0 and the common denominator of the loops is p+ 2.

10.5. Nonpumpable Runs

First, consider nonpumpable runs in Cγ . The following lemma says that nonpumpable runs are bounded.

Lemma 10.7. Let π = π1π2π3 be a nonpumpable run in Cγ . Then

counter(π) ≤ nγ(p) + max(counter(first(π)), counter(last(π))).

Proof. A simple path in C is always of length at most n and a transition increases the counter by at most
γ(p). Thus, along any simple path, the counter increases by at most nγ(p). Now, π1 has no positive loops.
So div(π1) ≤ nγ(p) and hence, counter(π1) ≤ counter(first(π1)) + nγ(p).

Similarly, starting from last(π) and considering the reverse of the path π3 we obtain counter(π3) ≤
counter(last(π3)) + nγ(p). Combining the two gives the result.

10.6. Pumpable Runs

Next, consider pumpable runs. For such runs, the cross product between positive and negative loops
occurring in π2 will play a crucial role.

For a run π in Cγ , by counting the number of ±p and the net effect of ±c transitions in π there is a
natural way of writing effect (π) = aγ(p) + b for a, b ∈ Z (see e.g., Figure 14 and Figure 15).

Let σ, τ be two runs and write effect(σ) = aγ(p) + b and effect(τ) = cγ(p) + d. By the cross product of
σ, τ we mean σ × τ = ad− bc.

Definition 10.8. Let T be a type of a factored run and let P and N be the set of positive and negative loops
in T , respectively. We say that T (or a run π of type T ) is linear if for every ρ ∈ P and σ ∈ N the cross
product ρ× σ = 0 equals zero. Otherwise, we say that T (or π) is nonlinear.

Notice that for γ(p) big enough (bigger than cmaxn where cmax is the largest constant occuring in C),
the sign of the effect of a simple loop does not depend on γ(p). Hence the distinction is well defined and
does not depend on γ for all but finitely many cases. By modifying the number of traversals of individual
loops we will show that linear runs are bounded (Lemma 10.9) and that nonlinear runs occur only bounded
number of times (Lemma 10.12).

10.7. Linear Runs

We now show that linear runs are bounded by a multiple of γ(p). For loops ρ and σ with effect(ρ) =
a · γ(p) + b and effect(σ) = c · γ(p) + d the constraint ρ × σ = 0 implies that the vectors (a, b) ∈ N2 and
(c, d) ∈ N2 are collinear. Hence, there is q = (q1, q2) ∈ Q2 such that (a, b) = k1 · q and (c, d) = k2 · q for
some k1, k2 ∈ N. Hence, all loops can be expressed as k · q (see Figure 14). By using this observation and
modifying the number of traversals of loops si, we show that linear runs are bounded.
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Lemma 10.9. Assume γ(p) > cmaxn. Let π : (s, x) → (t, y) be a linear run in Cγ such that counter(π) >
2γ(p). Then there is an equivalent run π′ ∼ π such that

2γ(p) < counter(π′) ≤ max(x, y) + V γ(p)

for some constant V ∈ N depending only on C (and not on γ).

Proof. Let π be factored as π = π1 · π2 · π3 where π2 = αa → (f +
∑
sipi +

∑
tini) → βb where pi’s

are positive loops and ni’s are negative loops. Then Lemma 10.7 implies that counter(π1), counter(π3) ≤
max(x, y) + nγ(p).

Let S be the set of loops in π2 and take a loop σ ∈ S. Then we can uniquely write effect(σ) = gγ(p) + h
for some g, h ∈ Z. Consider the mapping ρ : S → Z2 which sends σ to the point (g, h), i.e., ρ(σ) = (g, h).
Since σ × τ = 0 for all loops σ, τ ∈ S, the mapping ρ sends all loops to a single line. In particular, there is
a rational point q = (q1, q2) ∈ Q2 such that for every σ ∈ S there is an integer k ∈ Z such that ρ(σ) = kq.
Thus, effect(σ) = k(q1γ(p) + q2). We think of all the loops of S as being a multiple of q1γ(p) + q2. By a
slight abuse of notation, we use q = q1γ(p) + q2 and write σ = k · q. Note that q depends only on C (and
not on γ).

We can ignore the order in which transitions are traversed in π2. Thus, we modify the number of
traversals of individual loops in π2 while keeping the net effect of the run unchanged. Write β = xq and
ni = yiq for some x, yi ∈ N. If ti ≥ x then

(ti − x) effect(ni) + (yi + b) effect(β) = (ti − x) effect(yiq) + (yi + b) effect(xq)

= tiyi effect(q)− xyi effect(q) + yix effect(q) + bx effect(q)

= ti effect(yiq) + b effect(xq)

= effect(tini) + effect(bβ)

So if ti > x then, by Lemma 10.5, there is a run π′ of the form π′ = π(ti ← ti − x, b← b+ yi) such that
counter(π′) > 2γ(p) and effect(π′) = effect(π). Repeating the construction if necessary, we can assume that
ti ≤ x for all ni ∈ N . Thus, we just bounded the number of traversals of negative loops by ti ≤ x.

Similarly, write α = yq and pi = ziq for some a, zi ∈ N. Then if si > y then, by Lemma 10.5, there is
a run π′ of the form π(a ← a + zi, si ← si − y) such that effect(π′′) = effect(π) and counter(π′′) > 2γ(p).
Repeating the construction if necessary, we can assume that si ≤ y for all pi ∈ P . Thus, we just bounded
the number of traversals of positive loops by si ≤ y.

Denote f +
∑
sipi +

∑
tini by τ . Then we have

|div(τ)| = div(f +
∑

sipi +
∑

tini) ≤ nγ(p) + |S|y · div(q) + |S|x · div(q) ≤ Kγ(p)

for some constant K depending on S, x and y. Notice that div(q) ≤ nγ(p). Further, |S| as well as x and y
depend only on C (and not on γ).

Now, if (a− x) effect(α) ≥ Kγ(p) ≥ div(τ), then let π′′′ = π1 → αa−x → f +
∑
i kisi → βb−y → π3. By

the assumption, π′′′ is a valid path and effect(π′′′) = effect(π) and counter(π′′′) > 2γ(p). Hence, by repeated
application if necessary, we can assume that div(αa) ≤ Kγ(p) + x div(α) ≤ Kγ(p) + xnγ(p) as α is a simple
loop. Therefore, div(αa) ≤ K ′γ(p) for some constant K ′ ∈ N depending only on C. Hence, we calculate

counter(π) ≤ max counter(π1π3) + div(π2)

≤ max(x, y) + nγ(p) + div(αa) + |div(τ)|+ div(β) {Lemma 10.7}
≤ max(x, y) + nγ(p) +K ′γ(p) +Kγ(p) + nγ(p)

≤ max(x, y) +K ′′γ(p)

for some constant K ′′ ∈ N depending only on C (and not on γ).
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Figure 15: Counter machine with nonlinear runs. The automaton has two loops. A positive loop α with effect(α) = 2p+ 5 and
a negative loop β with effect(β) = −3p−6. Notice that α×β = −2 ·5−(−3 ·5) = 3 and that effect(3α)+effect(2β) = 3 = α×β.

10.8. Nonlinear Runs

The last class of runs are the nonlinear runs. In general, we cannot bound nonlinear runs. However, we
show that we can always assume that the number of nonlinear subruns in Cγ can always be bounded by a
constant depending only on C (and independent of γ).

Consider a nonlinear run from configuration (s, x) to configuration (t, y). By definition, there is a positive
loop ρ and a negative loop σ in the run such that ρ×σ 6= 0. By modifying the number of times ρ and σ are
traversed, we obtain runs from (s, x) to (t, y ± L) for some L ∈ N depending only on ρ× σ (see Figure 15).
Repeating the process, we build nonlinear runs starting in (s, x) and finishing in configurations (t, y + kL)
for almost all valid k ∈ Z.

Lemma 10.10. Assume γ(p) > cmaxn. Let T be a nonlinear type. Then there exists a natural number
L(T ) ≤ n4 depending only on T such that the following property holds. For states s, t ∈ C and counter
values x, y ∈ N,

• if there is a run π : (s, x)→ (t, y) of type T in Cγ such that counter(π) > 2γ(p) and x, y ≤ 3γ(p)
• then for every k ∈ Z with y + kL(T ) > 2γ(p) there is a run π′ : (s, x) → (t, y + kL(T )) in Cγ with

counter(π′) > γ(p).

Proof. Write π = π1 · π2 · π3 = π1 → αa → f +
∑
kisi → βb → π3. By assumption, π2 contains a positive

loop ρ and a negative loop σ such that ρ × σ 6= 0. Write effect(ρ) = aγ(p) + b and effect(σ) = cγ(p) + d.
Then c ≤ 0 ≤ a and a · effect(σ) − c · effect(ρ) = a(cγ(p) + d) − c(aγ(p) + b) = ad − cb = ρ × σ. Hence,
a · k · effect(σ)− c · k · effect(ρ) = k · ρ× σ for any k ∈ N. Denote ρ× σ by P and suppose that path π takes
the loops ρ and σ exactly r and s times, respectively.

First, assume that P > 0. Then for any k ∈ N, by Lemma 10.5, there is a path πk of the form
πk = π(s ← s + ak, r ← r + |c|k) such that counter(πk) > 2γ(p) and effect(πk) = effect(π) + kP . Thus,
counter(last(πk)) = y + kP and so by changing the number of traversals of ρ and σ we can increase the
counter by an arbitrary multiple of P .

Recall that effect(σ) < 0. Therefore, there exists the largest natural number q ∈ N such that qP +
effect(σ) < 0. Hence, −P ≤ qP + effect(σ) < 0. If we denote qP + effect(σ) by R then we have:

q
[
a · effect(σ)− c · effect(ρ)

]
+ effect(σ) = q(ρ× σ) + effect(σ) = qP + effect(σ) = R.

For k ∈ N suppose that y + kR > 2γ(p). Then as 3γ(p) > y it holds that kR > −γ(p). Therefore, by
Lemma 10.5, there is a path τk = π(s← s+ k(qa+ 1), r ← r + |c|qk) such that effect(τk) = effect(π) + kR
and counter(τk) + kR > 2γ(p) + kR > γ(p). Hence, counter(last(τk)) = y + kR.

So let L = lcm(P, |R|) be the least common multiple of P and |R|. Then L ≤ PR ≤ P 2 ≤ n4 and by
above, for every k ∈ Z such that y +KL > 2γ(p) there is a valid run from (s, x) to (t, y + kL) in Cγ .

The case P = ρ× σ < 0 is symmetric.
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Now, there are only L(T ) equivalence classes modulo L(T ). So consider nonlinear runs ρ1, ρ2, ρ3, . . .
ending in configurations (t, y1), (t, y2), (t, y3), etc. If some runs ρi, ρj for i < j finish in the same equivalence
class modulo L(T ) (That is, we have yi ≡ yj mod L(T )) then, using the above lemma, there is a run from
first(ρi) to last(ρj). And so we can skip all ρk for i < k < j.

First we define the notion of runs starting and finishing in the same configurations.

Definition 10.11. Two runs π, π′ are equivalent, written π ∼ π′, if first(π1) = first(π′) and last(π) =
last(π′).

Then we can state the lemma on the rerouting of runs as follows.

Lemma 10.12. Assume γ(p) > cmaxn. Given a run π in Cγ written as π = τ0 → π1 → τ1 → π2 → τ2 →
. . .→ πk → τk where πi’s are nonlinear runs and counter(πi) > 2γ(p) and counter(first(πi)), counter(last(πi)) ≤
3γ(p). Then there is an equivalent run π′ ∼ π such that π′ factors as:

τ0 → π′1 → τf(1) → π′2 → τf(2) → . . .→ π′l → τf(l)

where

• π′i : first(πf(i−1))→ last(πf(i))),
• counter(π′i) ≥ γ(p),
• f : [1 . . . l]→ [1 . . . k] is a strictly increasing function,
• l ≤ Dn5 where D is the number of different types.

Proof. Write the last configuration last(πi) of π as last(πi) = (ti, yi). Let L be the value from Lemma 10.10
associated with the type of π1. According to Lemma 10.10, if there is i such that ti = t1 and y1 ≡ yi mod L
then there is a run π′1 from first(π1) to (ti, yi). Set f(1) to be the largest such i.

Then consider πf(1)+1 and let L′ be the value from Lemma 10.10 associated with its type. Now, if
there is i′ such that ti′ = tf(1)+1 and yf(1)+1 ≡ yi′ mod L′ then, by Lemma 10.10, there is a run π′2 from
first(πf(1)+1) to (ti′ , yi′). Set f(2) to be the largest such i′.

Repeat this process, until eventually we set f(l) = k for some l. Now, for each type T and each state t
the process is repeated at most L(T ) times (once for each equivalence class). Hence, l ≤ DnmaxT L(T ) ≤
Dn5.

10.9. Factoring of Runs

We now combine the above results and show that any run in Cγ has always an equivalent factoring of
the desired form (1) described on page 29.

Theorem 10.13. Assume γ(p) > cmaxn. Let π be a run in Cγ . Then there are K,L ∈ N depending only on
C (and not on γ) such that π can be written as π = τ0 → π1 → τ1 → π2 → τ2 → . . .→ πt → τt where t ≤ L
and counter(τi) ≤ Kγ(p) and γ(p) < counter(πi) and 2γ(p) < counter(first(πi)), counter(last(πi)) ≤ 3γ(p)
for every i.

Proof. Let π be an accepting run in Cγ and write π = σ0 → π1 → σ1 → π2 → σ3 → . . . → πk → σk such
that counter(σi) ≤ 2γ(p) < counter(πi) for every i. Since every transition of C increases the counter by at
most γ(p), we have 2γ(p) < counter(first(πi)) ≤ 3γ(p).

Let Π be the collection of all nonlinear subruns πi. Applying Lemma 10.12 to π gives us a split:
π = τ ′0 → π′1 → τ ′1 → . . . → π′t → τ ′t such that counter(π′i) ≥ γ(p) and each τ ′i is a concatenation of some
consecutive τj ’s and πk’s where πk 6∈ Π. Further, t ≤ 3Dn5.

Thus, τ ′i can be written as τ ′i = ρ1 . . . ρr such that each ρi equals either (i) tj for some j or (ii) πj for
some linear πj or (iii) πj for some nonpumpable πj .

In each case, we can bound counter(ρi) as follows.

• If ρi = τj for some j then counter(τ ′i) = counter(τj) ≤ 2γ(p).
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• If ρi = πj for some πj 6∈ Π and πj is linear then, by Lemma 10.7, counter(τ ′i) ≤ counter(πj) =
(3 + n)γ(p).

• If ρi = πj for some πj 6∈ Π and πj is not pumpable then, by Lemma 10.9, counter(τ ′i) ≤ counter(πj) ≤
max(x, y) + V γ(p).

So take K to be the maximum of the constants appearing above.

10.10. Decision Procedures

We now show how to use the factoring of runs from Theorem 10.13 to decide the emptiness problem for
C. Recall that the above results assume that γ(p) > cmaxn to ensure that the notion of positive and negative
loops is well defined. Thus, the first step in the decision procedure is to instantiate p at p = 0, . . . , cmaxn and
check the existence of an accepting run (e.g., using Lemma 5.1) in the resulting nonparametric machines.

Suppose that for no value of p = 0, . . . , cmaxn we found an accepting run. Then we can assume that
γ(p) > cmaxn. We now give ∃PAD formulae encoding the existence of an assignment γ and a factoring from
Theorem 10.13 of an accepting run.

Theorem 10.14. Given C and states s, t ∈ C, the J(C, s, t) = {(x, y, q) | (s, x)→∗ (t, y) in Cγ where γ(p) =
q and q > cmaxn} is ∃PAD definable.

Proof. We encode the existence of accepting runs from Theorem 10.13. For runs τi, we use Theorem 9.1 to
express reachability up to a given multiple of γ(p). For runs πi we use Lemma 10.1 and express them as
runs in the parametric one-counter machine C>p—reachability in which is ∃PAD definable (Lemma 5.1).

So, given l—the length of the factoring in Theorem 10.13 and states u0, u1, . . . , ul, v0, v1, . . . , vl ∈ C—the
initial and final states of τ , respectively, consider the following formula:

J ′(C, s, t, l,−→u ,−→v )(x, y, p) = ∃−→x ,−→y .
∧

i=1...l

G(C, si, ti,K)(xi, yi, p)∧
i=1...l

Reach(C>p, ti−1, si)(yi−1, xi, p)∧
i=1...l

(2p < xi < 3p ∧ 2p < yi < 3p)∧
G(C, s0, t0)(x, y0, p) ∧ yl = y∧
p > cmaxn

The formula asserts the existence of a particular factoring from Theorem 10.13. Since there are only finitely
many possible values for l,−→u and −→v , the result follows as ∃PAD sets are closed under finite union.

Since the satisfiability of ∃PAD-definable sets is decidable, we have:

Theorem 10.15. The emptiness problem is decidable for simple parametric bounded one-counter machines
with a single parameter.

10.10.1. Elimination of ‘≡ 0 mod c’ and ‘+[0, p]’ Transitions

In the previous section, we showed decidability of the emptiness problem for simple parametric bounded
one-counter machines. However, recall that our goal is to show decidability for parametric bounded one-
counter machines as the emptiness problem for this class is equivalent (Theorem 6.10 and Theorem 6.7) to
the emptiness problem for parametric timed automata with two parametric clocks. We now show how to
extend our techniques to support ‘≡ 0 mod c’ and ‘+[0, p]’ transitions in the case of a single parameter.

10.10.2. Elimination of ‘≡ 0 mod c’ Transitions

First suppose that C contains ‘≡ 0 mod c’ transitions but no ‘+[0, p]’ transitions. Applying Theo-
rem 10.14 to CD’s from Theorem 9.5 shows that the reachability for machines with ‘≡ 0 mod c’ transitions
is ∃PAD definable. Assuming γ(p) > cmaxn we have:

Theorem 10.16. Given C with ‘≡ 0 mod c’ transitions and states s, t ∈ C. The set K(C, s, t) = {(x, y, q) ∈
N3 | (s, x)→∗ (t, y) in Cγ where γ(p) = q and q > cmaxn} is ∃PAD definable.
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Proof. According to Lemma 9.5 from page 26, it suffices to consider machines CD for all conceivable D’s.
For a fixed c ∈ N the ∃PAD formula ϕc(x, y) = (∃q.c · q + y = x) ∧ y < c asserts that x ≡ y mod c.

So let {c1, . . . , cr} be the set of constants appearing in ‘≡ 0 mod c’ transitions in C. Given D ∈
Zc1× . . .×Zcr , we construct the formula K ′(C, s, t,D)(x, y, p) asserting that D is consistent with p and that
(s, x)→∗ (t, y) in CD:

K ′(C, s, t,D)(x, y, p) = ∃−→v (r),−→w (r) . H(CD, s× v, t× w)(x, y, p)∧
i

[(x ≡ v(i) mod ci) ∧ (y ≡ w(i) mod ci) ∧ (p ≡ D(i) mod ci)]

∧ p > cmaxn

Since ∃PAD definable sets are closed under finite union and there are only finitely many possible D’s,
we get the desired result.

10.10.3. Elimination of ‘+[0, p]’ Transitions

Now suppose that C is a parametric bounded one-counter machine C containing ‘≡ 0 mod ci’ as well
as ‘+[0, p]’ transitions. Recall that in Lemma 9.6 we showed that if there is an accepting run in Cγ then
there is an accepting run where in all but a finitely many cases the counter updates by ‘+[0, p]’ transitions
lie in the set {0, . . . , R, γ(p) − R, . . . , γ(p)} where R = lcm(c1, . . . , cr) is the least common multiple of all
constants appearing in ‘≡ 0 mod ci’ transitions.

The result, analogously to Theorem 9.7, can be directly used to show that the existence of an accepting
run Cγ can be specified by a ∃PAD formula. Assuming γ(p) > cmaxn we have:

Theorem 10.17. Given C with ‘≡ 0 mod c’ and ‘+[0, p]’ transitions and states s, t ∈ C then the set
L(C, s, t) = {(x, y, q) ∈ N3 | (s, x)→∗ (t, y) in Cγ where γ(p) = q and q > cmaxn} is ∃PAD definable.

Proof. Let Z be the machine obtained from C by replacing each ‘+[0, p]’ transition by 2R + 2 transitions:
+0,+1, . . . ,+R,+p−R, . . . ,+p. Then, by Lemma 9.6, we can assume that an accepting run π in Cγ can be
factored as π = π0 → π1 → . . .→ πv where each π is a run in Zγ and there is a ‘+[0, p]’ transition between
πi and πi+1.

Given v ≤ nR and states s = s1, s2, . . . , sv, t1, . . . , tv−1, tv = t the formula

L′(C, s, t, v,−→s ,−→t )(x, y, p) = ∃−→x ,−→y . x1 = x ∧ yv = y∧
i=1...v

K(Z, si, ti)(xi, yi, p)∧
i=1...v−1

0 ≤ yi+1 − xi ≤ p∧
i=1...v−1

E(ti, ‘ + [0, p]′, si+1)

∧ p > cmaxn

asserts that such a factoring of length v exists where first(πi) = (si, xi) and last(πi) = (ti, yi). The predicate
E(q, ‘ + [0, p]′, q′) encodes that there is a ‘+[0, p]’ transition between q and q′ in C.

Notice there are only finitely many different values for v′ ≤ nR and −→s and
−→
t . Since ∃PAD sets are

closed under finite union, the result follows.

Since ∃PAD satisfiability is decidable, we have:

Theorem 10.18. The emptiness problem for parametric bounded one-counter machines with a single pa-
rameter is decidable.

10.10.4. Simple Programs

We now show how to use the developed theory to show decidability for simple programs—a model
introduced by O. Ibarra et al. in 1990’s [14]—the emptiness problem of which is still an open problem. A
simple program is a simple parametric bounded one-counter machine (no ‘+[0, p]’ or ‘≡ 0 mod c’ edges)
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N with the addition that the counter can become negative. For example, subtracting 5 when the counter
equals 2 is valid and yields the counter equal to −3.

In case N has a single parameter p, we show that the emptiness problem for N is decidable. Suppose
that there is an assignment γ and an accepting run in Nγ . Then consider a shortest accepting run π
in Nγ . Split π into positive and negative subruns: π = π1 → ν1 → . . . πk → νk for some k where
counter(νi) ≤ 0 ≤ counter(πi) for each i.

Note that Theorem 10.13 from the previous section applies to positive subruns. Hence, there are K1, L1 ∈
N such that all but L1 subruns πi satisfy, counter(πi) ≤ K1γ(p).

By multiplying the counter by −1, we can think of −1 · νi’s as runs in a simple parametric bounded
one-counter machine. Similarly, there are K2, L2 ∈ N such that all but L2 subruns νi satisfy, counter(νi) ≥
−K2γ(p).

Taking K = max(K1,K2) and L = L1 + L2 we get the following:

Theorem 10.19. Let π be a run in Nγ . Then there are K,L ∈ N depending only on C (and not on
γ) such that π can be written as π = τ0 → π1 → τ1 → π2 → τ2 → . . . → πt → τt where t ≤ L
and | counter(τi)| ≤ Kγ(p) and either γ(p) < counter(πi) or −γ(p) > counter(πi) for every i. Further
2γ(p) < | counter(first(πi))|, | counter(last(πi))| ≤ 3γ(p) for every i.

Since the inverse −1 · νi is a run in a parametric one-counter machine, similarly to Theorem 10.14, a
factoring of the above form can be verified by a ∃PAD formula. Thus, we obtain:

Theorem 10.20. Given a simple program N and states s, t ∈ C, the set Hsp(C, s, t) = {(x, y, q) | (s, x)→∗
(t, y) in Nγ where γ(p) = q} is ∃PAD definable.

Proof. Given N and states s, t ∈ C, the set Hsp(C, s, t) = {(x, y, q) | (s, x)→∗ (t, y) in Nγ where γ(p) = q}
is ∃PAD definable.

Consider the machine N<−p, which is obtained from N by removing all ≥ c,≥ p edges and replacing
all ≤ c,≤ p edges by +0 edges. Finally, let M be obtained from N by multiplying all updates by −1. For
example, edge +p in N<−p becomes −p in M .

Given l – the length of the factoring in Theorem 10.19 and states u0, u1, . . . , ul, v0, v1, . . . , vl ∈ C—the
initial and final states of τ , respectively, consider the following formula:

H ′sp(C, s, t, l,
−→u ,−→v )(x, y, p) = ∃−→x ,−→y .

∧
m=1...l

G(C, sm, tm,K)(xm, ym, p)∧
i

Reach(N>p, ti−1, si)(yi−1, xi, p)∧
j

Reach(M, tj−1, sj)(−yj−1,−xj , p)

∧ G(C, s0, t0)(x, y0, p) ∧ yl = y∧
i

(2p < xi < 3p ∧ 2p < yi < 3p)∧
j

(2p < −xj < 3p ∧ 2p < −yj < 3p)

where index i ranges over πi with counter(πi) > γ(p) and index j ranges over πj with counter(πk) <
−γ(p). The formula asserts the existence of a particular factoring from Theorem 10.19. Since there are only
finitely many possible values for l,−→u ,−→v , the result follows as ∃PAD sets are closed under finite union.

11. Conclusion

In this manuscript we studied the decidability of the emptiness problem for parametric timed automata.
See Table 2 for the currently best-known complexities. Even though we were unable to prove the case of
two parametric clocks in full generality, we believe that the reduction given to one-counter machines might
play an important step in resolving the problem as was the case in nonparametric settings where a similar
reduction [11] led to the resolution of precise complexity for the reachability problem in (nonparametric)
two-clock timed automata [7]. See Figure 12 summarizing the relationship between the classes.
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One Parametric Clock Two Parametric Clocks Three Parametric Clocks
One Parameter General

Upper Bound 2NEXP Decidable Open
Undecidable

Lower Bound NEXP-hard PSPACENEXP

Table 2: Complexity of the emptiness problem for various classes of parametric timed automata

For one parametric clock we showed the emptiness problem decidable in 2NEXP time (Theorem 6.5).
We have also showed a lower bound of NEXP-hard (Theorem Theorem 6.6). However, the upper bound is
obtained by reduction to ∃PAD satisfiability, the precise complexity of which is still unknown, only known
to lie between NP-hard and NEXP. Thus, it is possible that the lower bound is optimal and further progress
depends on the developments in the ∃PAD-satisfiability problem.

For parametric timed automata with two parametric clocks, however, the situation is more complicated.
We established a PSPACENEXP lower bound. It is conceivable that the lower bound can be further improved
to EXPSPACE. In proof of the lower bound (Theorem 6.11), we employed polynomially many nonparametric
clocks to store polynomially many bits. Hence polynomially many clocks can encode numbers exponentially
large in magnitude, which could then be used to point into exponential memory. However, we were unable to
devise a way of storing exponential many bits in two parametric clocks which would then yield an EXPSPACE
lower bound. The resolution of the decidability in two parametric-clocks case is the still open and is unknown
already for two parameters.

It is not clear whether the techniques developed in the closing sections of the manuscript generalise to
such multiparametric settings.

The decision procedures for parametric one-counter machines are of high complexity, on the other hand,
the best lower bound for the emptiness problem for parametric bounded one-counter machines we are aware
of (PSPACE) occurs already in nonparametric setting [7]. Can the lower bound be improved by employing
parameters?

Finally, note that the results presented in this chapter give ∃PAD characterisation of the reachability
relation in the respective classes of parametric bounded one-counter machines. Therefore, it is conceivable
that the results can be used to solve other problems than plain reachability, e.g., model checking or the
existence of a Büchi path in parametric bounded-one counter machines or the corresponding parametric
timed automata.
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