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ABSTRACT
The Skolem Problem asks, given a linear recurrence sequence (𝑢𝑛),
whether there exists 𝑛 ∈ N such that 𝑢𝑛 = 0. In this paper we con-

sider the following specialisation of the problem: given in addition

𝑐 ∈ N, determine whether there exists 𝑛 ∈ N of the form 𝑛 = 𝑙𝑝𝑘 ,

with 𝑘, 𝑙 ≤ 𝑐 and 𝑝 any prime number, such that 𝑢𝑛 = 0.
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1 INTRODUCTION
A sequence (𝑢𝑛)∞𝑛=0 of real algebraic numbers is called a linear
recurrence sequence if its terms satisfy a recurrence relation 𝑢𝑛 =

𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 + · · · + 𝑎ℓ𝑢𝑛−ℓ , with fixed real algebraic constants

𝑎1, . . . , 𝑎ℓ such that 𝑎ℓ ≠ 0. Such a recurrence is said to have order ℓ

and a sequence (𝑢𝑛) satisfying the recurrence is wholly determined

by the initial values 𝑢0, . . . , 𝑢ℓ−1. The study of linear recurrence

sequences is motivated by a wide range of phenomena, in areas

such as analysis of algorithms, and biological and economic mod-

elling. Natural decision problems for linear recurrence sequences

include: whether all the terms in a sequence are positive, whether

the terms of the sequence are eventually positive, and whether

the sequence contains a zero. The latter, commonly known as the
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Skolem Problem [6, 7], is the main object of study in the current

paper.

Let (𝑢𝑛) be a linear recurrence sequence. A remarkable result of

Skolem, Mahler, and Lech states that the set {𝑛 ∈ N : 𝑢𝑛 = 0} is
the union of a finite set together with a finite number of (infinite)

arithmetic progressions. The original result, proved by Skolem [14]

for the field of rational numbers, was subsequently extended to

the field of algebraic numbers by Mahler [9, 10], and then further

extended to any field of characteristic 0 by Lech [8]. All known

proofs of the Skolem-Mahler-Lech Theorem (as it is now known)

employ techniques from 𝑝-adic analysis. These proofs are non-

constructive and the decidability of the Skolem Problem remains

open. Berstel and Mignotte, however, gave an effective method to

obtain all of the arithmetic progressions in the statement of the

theorem [2].

For fields of positive characteristic, the conclusion of the Skolem-

Mahler-Lech Theorem does not hold. Indeed, Lech [8] gave the

following illustrative example. Let 𝐾 = F𝑝 (𝑡) and consider the

sequencewith terms𝑢𝑛 = (1+𝑡)𝑛−𝑡𝑛−1. Then (𝑢𝑛) satisfies a linear
recurrence over 𝐾 , but 𝑢𝑛 = 0 if, and only if, 𝑛 = 𝑝𝑘 . Nevertheless,

Derksen [5] established an analogue of the Skolem-Mahler-Lech

Theorem for fields of positive characteristic, namely he proved that

the set of zeroes in a field of characteristic 𝑝 is a 𝑝-automatic set.

The proof of Derksen was moreover effective, allowing to construct

for a given sequence the automaton representing the set of its zeros.

Returning to the characteristic-zero setting, progress on the de-

cidability of the Skolem Problem has been made by restricting

the problem to linear recurrence sequences of low order. Decid-

ability of the Skolem Problem for sequences of order at most 2

is straightforward and the results are considered folklore. Break-

through work by Mignotte, Shorey, and Tijdeman [11], and, inde-

pendently, Vereshchagin [15], showed decidability of the Skolem

Problem for linear recurrence sequences of order 3 and 4. Tech-

niques from 𝑝-adic analysis and algebraic number theory are em-

ployed in both [11] and [15]. Both papers moreover make critical

use of Baker’s theorem for linear forms in logarithms of algebraic

numbers. The approach via Baker’s Theorem taken in the above

papers does not appear to extend easily to recurrences of higher

order. In particular, decidability of Skolem’s Problem remains open

for recurrences of order 5. However, the recent resurgence of re-

search activity concerning the decidability of various sub-cases of

the Skolem Problem and related questions (see the survey [13])

gives an indication of its fundamental importance to the field.

https://doi.org/10.1145/3373207.3404036
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In this paper we pursue an alternative approach to restricting the

order of the recurrence as a means of obtaining decidable speciali-

sations of Skolem’s Problem. We consider general recurrences, but

ask to decide the existence of zeros of certain prescribed forms. For

example, we ask whether one can show decidability of the Skolem

Problem when we consider only those 𝑛 ∈ N that are prime powers.

Our first basic result—which we will generalise in various ways in

the rest of the paper—is the following, which applies to a class of

simple linear recurrence sequences (i.e., those sequences without
repeated characteristic roots):

Theorem 1.1. Suppose that each term in a linear recurrence se-
quence (𝑢𝑛) can be written as an algebraic exponential polynomial
𝑢𝑛 = 𝐴1𝜆

𝑛
1
+· · ·+𝐴𝑚𝜆𝑛𝑚 with𝐴1, . . . , 𝐴𝑚 ∈ Z and 𝜆1, . . . , 𝜆𝑚 distinct

algebraic integers. Fix 𝑐 ∈ N. Then one can decide whether there exists
𝑛 ∈ {𝑝𝑘 : 𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

In general, a simple linear recurrence sequence (𝑢𝑛) has the
property that each of its terms is given by an algebraic exponential

polynomial 𝑢𝑛 = 𝐴1𝜆
𝑛
1
+ · · · + 𝐴𝑚𝜆𝑛𝑚 with 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒 alge-

braic integers in a number field 𝐾 . In Theorem 1.1 we assumed that

𝐴1, . . . , 𝐴𝑚 ∈ Z. More generally, a linear recurrence sequence (𝑢𝑛)
can always be written in the form 𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛

1
+ · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 ,

where the 𝐴𝑖 are univariate polynomials and the 𝜆𝑖 are characteris-

tic roots of the recurrence relation. We establish decidability results

for linear recurrence sequences (𝑢𝑛) in this general setting. We

consider the case of rational polynomial coefficients in Section 3;

that is, 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] and, more generally, algebraic polyno-

mial coefficients in Section 5. We outline two generalisations of

Theorem 1.1 below.

First, assume that the linear recurrence sequence (𝑢𝑛) satisfies
𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛

1
+ · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 such that 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥]. The

next result follows as a corollary to Theorem 3.3. In the proof of

Theorem 3.3 we introduce and analyse an associated simple linear

recurrence (𝑣𝑛) with terms 𝑣𝑛 = 𝐴1 (0)𝜆𝑛
1
+ · · · +𝐴𝑚 (0)𝜆𝑛𝑚 .

Theorem 1.2. Let (𝑢𝑛) be a recurrence sequence with rational
polynomial coefficients and (𝑣𝑛) the associated simple recurrence. Fix
𝑐 ∈ N. If 𝑣1 ≠ 0 then one can decide whether there exists 𝑛 ∈ {𝑝𝑘 :

𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

Now suppose that the terms of (𝑢𝑛) are given by𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛
1
+

· · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 where the coefficients 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥] are uni-
variate polynomial with 𝔒 the ring of integers of a finite Galois

extension 𝐾 over Q. As before, let (𝑣𝑛) be the associated simple

recurrence. To each rational prime 𝑝 we associate a constant 𝑓 (𝑝)
(the inertial degree of 𝑝Z in𝐾 ). The next result follows as a corollary
to Theorem 4.1.

Theorem 1.3. Suppose that (𝑢𝑛) is a recurrence sequence with
algebraic polynomial coefficients and (𝑣𝑛) the associated linear re-
currence as above. Fix 𝑐 ∈ N. If 𝑣1 ≠ 0 then one can decide whether
there exists 𝑛 ∈ {𝑝𝑘𝑓 (𝑝) : 𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

We motivate our decidability results with a discussion of the

decidability of the Skolem Problem for linear recurrence sequences

of order 5. The authors of [7] claim to prove that the Skolem Problem

is decidable for integer linear recurrence sequences of order 5;

however, as pointed out in [12], there is a gap in the argument. The

critical case for which the decidability of the Skolem Problem is

open is that of a recurrence sequence of order 5whose characteristic

polynomial has five distinct roots: four distinct roots 𝜆1, 𝜆1, 𝜆2, 𝜆2 ∈
C such that |𝜆1 | = |𝜆2 |, and a fifth root 𝜌 ∈ R of strictly smaller

magnitude. In this case the terms of such a recurrence sequence (𝑢𝑛)
are given by 𝑢𝑛 = 𝑎

(
𝜆𝑛
1
+ 𝜆𝑛

1

)
+ 𝑏

(
𝜆𝑛
2
+ 𝜆𝑛

2

)
+ 𝑐𝜌𝑛 . Here 𝑎, 𝑏, 𝑐 ∈ R

are algebraic numbers. If |𝑎 | and |𝑏 | are not equal then there is no

known general procedure to determine {𝑛 ∈ N : 𝑢𝑛 = 0}.
Next we consider an example of a linear recurrence sequence

from the aforementioned critical case. We motivate the results

herein and also illustrate the techniques used in this paper by

demonstrating that the sequence does not vanishes at any prime

index.

Example 1.4. For this example set 𝜆1 = 39 + 52i, 𝜆2 = −60 + 25i

and 𝜌 = 1. (Our choices of Pythagorean triples (39, 52, 65) and
(25, 60, 65) ensure that |𝜆1 | = |𝜆2 | = 65.) Let (𝑣𝑛) be the linear

recurrence sequence whose terms satisfy

𝑣𝑛 = 𝜆𝑛
1
+ 𝜆𝑛

1
+ 3

(
𝜆𝑛
2
+ 𝜆𝑛

2

)
+ 𝜌𝑛 .

There are no rational primes 𝑝 ∈ N for which 𝑣𝑝 = 0.

We omit many technical definitions and details in the following

presentation (for such details we refer the reader to the preliminariy

material in the next section).

Proof of Example 1.4. Let 𝐾 be the splitting field of the min-

imal polynomial (over Q) associated to (𝑣𝑛). We find that 𝐾 =

Q(𝜆1, 𝜆1, 𝜆2, 𝜆2, 1) � Q(𝑖). The dimension 𝑑 of the field𝐾 as a vector

space over Q is 2. There is a computable constant 𝑁 ∈ N depending

only on 𝑣1 and the field𝐾 introduced in the preliminaries—the norm

of the principal ideal generated by 𝑣1—with the following property.

Suppose that 𝑝 ∈ N is a rational prime. Then, by Corollary 3.1 and

Lemma 3.2, 𝑣𝑝 = 0 only if 𝑝 | 𝑁 .

Assume that 𝑣𝑝 = 0 for some prime 𝑝 ∈ N. We calculate 𝑣1 =

−281, which we use to determine 𝑁 . Here 𝑁 = |𝑣1 |𝑑 = 281
2
. Thus

𝑝 | 𝑁 = 281
2
from our assumption. By happy coincidence, 281 is a

rational prime and so it is sufficient to check whether 𝑣𝑝 = 0 for the

only possible candidate 𝑝 = 281. Using Mathematica we compute

𝑣281 ≈ 3.7 × 10
509

(to two significant figures). We conclude that

there does not exist a rational prime 𝑝 ∈ N such that 𝑣𝑝 = 0. □

This paper is organised as follows. In Section 2, we recall prelim-

inary terminology and background material from algebraic num-

ber theory and recurrence sequences. In Section 3, we prove de-

cidability results locating zeroes of recurrence sequences of the

form 𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛
1
+ · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 with polynomial coefficients

𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] having integer coefficients. The main result in

Section 3 is Theorem 3.3. In Section 4 we prove decidability re-

sults for linear recurrence sequences with polynomial coefficients

𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥], where 𝔒 is the ring of integers of a Galois

number field. The main result in Section 4 is Theorem 4.1. In Sec-

tion 5 we show that the problem of deciding whether a given linear

recurrence sequence has a prime zero is NP-hard. This matches the

best known lower bound for the general Skolem Problem.
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2 ALGEBRAIC NUMBER THEORY AND
LINEAR RECURRENCE SEQUENCES

In this section we recall some basic notions concerning algebraic

numbers and linear recurrences that will be used in the sequel.

A complex number 𝛼 is algebraic if there exists a polynomial

𝑃 ∈ Q[𝑥] such that 𝑃 (𝛼) = 0. The minimal polynomial of 𝛼 ∈ A
is the unique monic polynomial 𝜇𝛼 ∈ Q[𝑥] of least degree such
that 𝜇 (𝛼) = 0. The degree of 𝛼 , written deg(𝛼), is the degree of its
minimal polynomial. An algebraic integer 𝛼 is an algebraic number

whose minimal polynomial has integer coefficients. The collection

of all algebraic integers forms a ring B.
A number field 𝐾 is a field extension of Q whose dimension as a

vector space over Q is finite. We call the dimension of this vector

space the degree of the number field and use the notation [𝐾 : Q]
for the degree of 𝐾 . Call a number field 𝐾 Galois if it is the splitting
field of some separable polynomial over Q. Let𝔒 = B ∩ 𝐾 be the

ring of algebraic integers in 𝐾 . Because B ∩ Q = Z, we refer to the

elements of Z as rational integers. For each 𝛼 ∈ 𝐾 there exists a

non-zero 𝑞 ∈ Z such that 𝑞𝛼 ∈ 𝔒.

Given a number field 𝐾 of degree 𝑑 over Q, there are exactly 𝑑
distinct monomorphisms 𝜎𝑖 : 𝐾 → C. We define the norm 𝑁𝐾 (𝛼)
of 𝛼 ∈ 𝐾 by

𝑁𝐾 (𝛼) =
𝑑∏
ℓ=1

𝜎ℓ (𝛼).

Then 𝑁𝐾 (𝛼) ∈ Q and furthermore 𝑁𝐾 (𝛼) ∈ Z if 𝛼 ∈ 𝔒.

Suppose that 𝑃 ∈ Z[𝑥] is a polynomial with integer coefficients.

The height of 𝑃 is the maximum of the absolute values of its coeffi-

cients and write ∥𝑃 ∥ for the bit length of the list of its coefficients

encoded in binary. It is clear that the degree of 𝑃 is at most ∥𝑃 ∥,
and the height of 𝑃 is at most 2

∥𝑃 ∥
.

There is a standard representation of an algebraic number 𝛼 as

a tuple (𝜇𝛼 , 𝑎, 𝑏, 𝜀) where 𝜇𝛼 is the minimal polynomial of 𝛼 and

𝑎, 𝑏, 𝜀 ∈ Q with 𝜀 > 0 sufficiently small so that 𝛼 is the unique

root of 𝜇𝛼 inside the ball of radius 𝜀 centred at 𝑎 + 𝑏i ∈ C. Given a

polynomial 𝑃 ∈ Z[𝑥], we can compute a standard representation

for each of its roots in time polynomial in ∥𝑃 ∥.
We recall some standard terminology and basic results about

ideals in𝔒. The ideal 𝔞 = 𝑎𝔒 generated by a single element 𝑎 ∈ 𝔒

is called principal. For two ideals 𝔞 and 𝔟 of𝔒, define the sum and

product by

𝔞 + 𝔟 := {𝑎 + 𝑏 : 𝑎 ∈ 𝔞, 𝑏 ∈ 𝔟}, and

𝔞𝔟 :=

{ 𝑘∑
𝑗=1

𝑎 𝑗𝑏 𝑗 : 𝑎 𝑗 ∈ 𝔞, 𝑏 𝑗 ∈ 𝔟

}
.

Two ideals 𝔞 and 𝔟 are said to be coprime if 𝔞 + 𝔟 = 𝔒. In this case

we have 𝔞𝔟 = 𝔞 ∩ 𝔟.

For ideals 𝔞, 𝔟 of𝔒 we say 𝔞 divides 𝔟, and write 𝔞 | 𝔟, if there
exists an ideal 𝔠 such that 𝔟 = 𝔞𝔠. In addition, 𝔞 | 𝔟 if, and only

if, 𝔟 ⊆ 𝔞. An ideal 𝔭 of 𝔒 is called prime if 𝔭 | 𝔞𝔟 implies 𝔭 | 𝔞
or 𝔭 | 𝔟. Recall that the ring of integers𝔒 of a number field does

not necessarily have unique factorisation. However every non-

zero ideal of𝔒 can be written as a product of prime ideals and, in

addition, this factorisation is unique up to the order of the factors.

Let 𝔞 be a non-zero ideal of 𝔒 then the quotient ring 𝔒/𝔞 is

finite, which leads us to define the norm of 𝔞 by 𝑁 (𝔞) = |𝔒/𝔞 |.

This norm has a multiplicative property: 𝑁 (𝔞𝔟) = 𝑁 (𝔞)𝑁 (𝔟) for
every pair of non-zero ideals 𝔞, 𝔟 of𝔒. We can connect norms of

elements and ideals as follows. Suppose that 𝑎 ∈ 𝔒 is non-zero then

𝑁 (𝑎𝔒) = |𝑁𝐾 (𝑎) | and, in addition, if 𝑎 ∈ Q then 𝑁 (𝑎𝔒) = |𝑎𝑑 |
where 𝑑 = [𝐾 : Q].

Suppose that 𝔭 is a prime ideal. Since the quotient ring𝔒/𝔭 is

a finite field and, by definition, 𝑁 (𝔭) = |𝔒/𝔭 |, we conclude that
𝑁 (𝔭) = 𝑝 𝑓 where 𝑓 ≤ [𝐾 : Q] and 𝑝 is a rational prime. Indeed,

𝑝 ∈ 𝔭 and, further, it is the only rational prime in 𝔭. Thus, we

say that the prime ideal 𝔭 lies above the prime ideal 𝑝Z. We will

frequently use the following version of Fermat’s Little Theorem:

Theorem 2.1. For any prime ideal 𝔭 and algebraic integer 𝜆 ∈ 𝔒,
𝜆𝑁 (𝔭) − 𝜆 ∈ 𝔭.

We now recall some of the terminology connecting linear recur-

rence sequences and exponential polynomials. For further details

on this correspondence we refer the reader to [6].

We call a sequence of algebraic numbers (𝑢𝑛)∞𝑛=0 satisfying a

recurrence relation 𝑢𝑛 = 𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 + · · · + 𝑎ℓ𝑢𝑛−ℓ with fixed

real algebraic constants 𝑎1, . . . , 𝑎ℓ such that 𝑎ℓ ≠ 0 a linear recur-
rence sequence. Together with the recurrence relation, the sequence

is wholly determined by the initial values 𝑢0, . . . , 𝑢ℓ−1. The polyno-
mial 𝑓 (𝑥) = 𝑥 ℓ −𝑎1𝑥 ℓ−1−· · ·−𝑎ℓ−1𝑥 −𝑎ℓ is called the characteristic
polynomial associated to the relation. Associated to each linear re-

currence sequence (𝑢𝑛) is a recurrence relation of minimal length.

We call the characteristic polynomial of this minimal length relation

the minimal polynomial of the sequence. Moreover, given a recur-

rence relation the minimal polynomial divides any characteristic

polynomial. The order of a linear recurrence sequence is the degree
of its minimal polynomial.

Let 𝜇 be the minimal polynomial of a linear recurrence sequence

(𝑢𝑛) and 𝐾 the splitting field of 𝜇. Over 𝐾 the polynomial fac-

torises as a product of powers of distinct linear factors 𝜇 (𝑥) =∏𝑚
𝑖=1 (𝑥 − 𝜆𝑖 )𝑛𝑖 . Here the constants 𝜆1, . . . , 𝜆𝑚 ∈ 𝐾 are the charac-

teristic roots of (𝑢𝑛) with multiplicities 𝑛1, . . . , 𝑛𝑚 . The terms of a

linear recurrence sequence can be realised as an exponential poly-
nomial such that 𝑢𝑛 =

∑𝑚
𝑖=1𝐴𝑖 (𝑛)𝜆𝑛𝑖 . Here the 𝜆𝑖 are the distinct

characteristic roots of the recurrence (𝑢𝑛) alongside polynomial co-

efficients 𝐴𝑘 ∈ 𝐾 [𝑥]. If the characteristic polynomial of a sequence

has no repeated roots, the terms in the sequence are each given by

an exponential polynomial 𝑢𝑛 =
∑𝑚
𝑖=1𝐴𝑖 (0)𝜆𝑛𝑖 with constant coef-

ficients. A linear recurrence sequence that satisfies this condition

is called simple.
Suppose that (𝑢𝑛)∞𝑛=0 is a linear recurrence sequence with char-

acteristic roots 𝜆1, . . . , 𝜆𝑚 ∈ 𝐾 . For each 𝑖 ∈ {1, . . . ,𝑚} there exist
non-zero 𝑞𝑖 ∈ Z such that 𝑞𝑖𝜆𝑖 ∈ 𝔒. Consider the linear recur-

rence sequence (𝑤𝑛)∞𝑛=0 with terms given by𝑤𝑛 = 𝑞𝑛
1
· · ·𝑞𝑛𝑚𝑢𝑛 . By

construction, 𝑤𝑛 = 0 if and only if 𝑢𝑛 = 0 and, further, the char-

acteristic roots of (𝑤𝑛) are algebraic integers in𝔒. Thus, without

loss of generality, we assume that each 𝜆𝑖 ∈ 𝔒 and, in addition,

that 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥].
Let (𝑢𝑛) be a linear recurrence sequence with terms

𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛1 + · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚
where 𝜆1, . . . , 𝜆𝑚 ∈ 𝔒 and𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥]. We associate to (𝑢𝑛)
a simple linear recurrence (𝑣𝑛) given by an exponential polynomial

𝑣𝑛 = 𝐴1 (0)𝜆𝑛
1
+ · · · +𝐴𝑚 (0)𝜆𝑛𝑚 .
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We are interested in determining whether 𝑢𝑛 = 0 for 𝑛 = ℓ𝑝𝑘

with 𝑘, ℓ ∈ N bounded and 𝑝 any rational prime. In particular, our

method is limited to those coefficients ℓ ∈ {0, 1, . . . , 𝑐} for which
𝑣ℓ ≠ 0. We introduce the set L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}
consisting of such coefficients. In the case that (𝑢𝑛)∞𝑛=0 is simple

we have that 𝑢𝑛 = 𝑣𝑛 for each 𝑛 ∈ N, and so we need only consider

the ℓ ≤ 𝑐 such that 𝑢ℓ ≠ 0. In the case that (𝑢𝑛)∞𝑛=0 is not simple it

is possible that (𝑣𝑛) is identically zero; for example, 𝑢𝑛 = 𝑛𝜆𝑛 . If

𝑣0 ≠ 0 then (𝑣𝑛) is not identically zero. Otherwise 𝑣0 = 𝑢0 = 0 and

we have identified a zero term at an index of the desired form.

3 COEFFICIENTS IN Z[𝑥]
3.1 Decidability results
Given a positive rational integer𝑛, recall the multinomial expansion

with exponent 𝑛 is given by the identity

(𝐴1𝑥1 + · · · +𝐴𝑚𝑥𝑚)𝑛 =
∑

𝑏1+···+𝑏𝑚=𝑛

(
𝑛

𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑚

) 𝑚∏
𝑡=1

𝐴
𝑏𝑡
𝑡 𝑥

𝑏𝑡
𝑡

with the combinatorial coefficient representing the quotient(
𝑛

𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑚

)
=

𝑛!

𝑏1!𝑏2! · · ·𝑏𝑚!

.

We shall make use of the following result, commonly called the

freshman’s dream.

Corollary 3.1. Suppose that 𝐴1, . . . , 𝐴𝑚 ∈ Z and 𝜆1, . . . , 𝜆𝑚 lie
in the ring𝔒 of integers of some number field 𝑘 . Then for any prime
𝑝 and 𝑘 ∈ N we have the following congruence:

(𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝
𝑘

≡ 𝐴1𝜆
𝑝𝑘

1
+ · · · +𝐴𝑚𝜆𝑝

𝑘

𝑚 (mod 𝑝𝔒).

Proof. Let us expand the left-hand side using the aforemen-

tioned multinomial identity. Now consider each of the combina-

torial coefficients in this expansion. If exactly one of the choices

𝑏1, . . . , 𝑏𝑡 is equal to 𝑝
𝑘
then the corresponding coefficient is equal

to 1, and otherwise it is an integer multiple of 𝑝 . Hence

(𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝
𝑘

≡ 𝐴𝑝
𝑘

1
𝜆
𝑝𝑘

1
+ · · · +𝐴𝑝

𝑘

𝑚 𝜆
𝑝𝑘

𝑚 (mod 𝑝𝔒).
The result follows by repeated application of Fermat’s Little Theo-

rem, 𝐴
𝑝𝑘

𝑖
≡ 𝐴𝑖 (mod 𝑝Z). □

In combinationwith Corollary 3.1, we use the following technical

lemma in the proof of Theorem 1.1.

Lemma 3.2. Suppose that 𝑏 ∈ 𝔒 is non-zero. There are only finitely
many rational primes 𝑝 such that 𝑝𝔒 | 𝑏𝔒 and, in addition, 𝑁 (𝑏𝔒)
is an effective bound on such primes.

Proof. Since the ideal norm is multiplicative we have 𝑝𝑑 =

𝑁 (𝑝𝔒) | 𝑁 (𝑏𝔒) where 𝑑 = [𝐾 : Q]. We can calculate 𝑁 (𝑏𝔒) ∈ Z
and so obtain an effective bound on any rational prime 𝑝 such that

𝑝𝔒 | 𝑏𝔒. □

Proof of Theorem 1.1. Let us assume that the algebraic inte-

gers 𝜆1, . . . , 𝜆𝑚 all lie in a given number field 𝐾 , and let us denote

by𝔒 the ring of algebraic integers in 𝐾 . We note that it is decidable

whether𝑢𝑝0 = 𝑢1 = 𝐴1+· · ·+𝐴𝑚 = 0. Thus we can assume, without

loss of generality, that 𝑢1 ≠ 0. We shall prove the case 𝑘 = 1. The

proof for higher powers follows with only minor changes to the

argument below.

By Corollary 3.1, the following congruence holds modulo 𝑝𝔒,

𝑢
𝑝

1
= (𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝 ≡ 𝐴1𝜆

𝑝

1
+ · · · +𝐴𝑚𝜆𝑝𝑚 = 𝑢𝑝 .

Thus 𝑢
𝑝

1
and 𝑢𝑝 lie in the same coset of 𝑝𝔒. It follows that 𝑢𝑝 = 0

only if 𝑢
𝑝

1
∈ 𝑝𝔒. Since 𝑝𝔒 | 𝑢𝑝

1
𝔒 and 𝑢1 ≠ 0 (by assumption), we

can apply Lemma 3.2. As 𝑁 (𝑢𝑝
1
𝔒) has only finitely many prime

divisors, we obtain an effective bound on the rational primes 𝑝 such

that 𝑢𝑝 = 0. We have the desired result: given 𝑐 ∈ N, it is decidable
whether there exists an 𝑛 ∈ {𝑝 : 𝑝 prime} such that 𝑢𝑛 = 0. □

We now turn our attention to decidability results for linear re-

currence sequences whose terms are given by an exponential poly-

nomial with polynomial coefficients in Z[𝑥].
Let (𝑢𝑛) be a linear recurrence sequence whose terms are given

by 𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛
1
+ · · · + 𝐴𝑚 (𝑛)𝜆𝑛𝑚 with 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] and

𝜆1, . . . , 𝜆𝑚 ∈ 𝔒 for some ring of integers in a number field 𝐾 .

We associate a simple sequence (𝑣𝑛) with terms given by 𝑣𝑛 =

𝐴1 (0)𝜆𝑛
1
+ · · · +𝐴𝑚 (0)𝜆𝑛𝑚 to each such sequence (𝑢𝑛). Given 𝑐 ∈ N,

we define the set N𝑐 ⊂ N as follows:

N𝑐 :=
⋃
ℓ∈L𝑐

{ℓ𝑝𝑘 : 𝑝 prime, 𝑘 ≤ 𝑐}.

We recall the set L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0} defined in

the previous section. HenceN𝑐 implicitly depends on the sequence

(𝑢𝑛). If𝑢0 = 0 then we have identified a zero term at a desired index.

Otherwise 𝑢0 ≠ 0 and so, for 𝑐 sufficiently large, N𝑐 is infinite. The
goal of this section is to prove the following theorem.

Theorem 3.3. Let (𝑢𝑛) be a linear recurrence sequence whose
terms are given by an exponential polynomial with rational polyno-
mial coefficients as above. Fix 𝑐 ∈ N. Then one can decide whether
there is an 𝑛 ∈ N𝑐 such that 𝑢𝑛 = 0.

Lemma 3.4 below is a generalisation of Corollary 3.1 in two

senses: the lemma considers sequences that are not necessarily

simple and indices of the form ℓ𝑝𝑘 ∈ N.

Lemma 3.4. Let (𝑢𝑛) be a recurrence sequence as above and (𝑣𝑛)
the associated simple recurrence sequence. Let 𝑝 ∈ N be prime and

𝑘, ℓ ∈ N. Then 𝑣𝑝
𝑘

ℓ
− 𝑢ℓ𝑝𝑘 ∈ 𝑝𝔒.

Proof. We prove the case when 𝑘 = 1. The general case, dealing

with higher powers 𝑝𝑘 , follows with only minor changes.

First, we have the congruence 𝑣
𝑝

ℓ
≡ 𝑣ℓ𝑝 (mod 𝑝𝔒) by Corol-

lary 3.1 since(
𝐴1 (0)𝜆ℓ1 + · · · +𝐴𝑚 (0)𝜆ℓ𝑚

)𝑝
≡ 𝐴1 (0)𝜆ℓ𝑝

1
+ · · · +𝐴𝑚 (0)𝜆ℓ𝑝𝑚 .

Recall that for 𝐴 ∈ Z[𝑥] we have (𝑥 − 𝑦) | (𝐴(𝑥) − 𝐴(𝑦)). By
induction, one can show that 𝑝 | (𝐴(𝑙𝑝) − 𝐴(0)) and so 𝐴(0) ≡
𝐴(ℓ𝑝) (mod 𝑝Z) for each 𝐴 ∈ Z[𝑥]. This is sufficient to deduce a

second congruence

𝑣ℓ𝑝 ≡ 𝐴1 (ℓ𝑝)𝜆ℓ𝑝
1

+ · · · +𝐴𝑚 (ℓ𝑝)𝜆ℓ𝑝𝑚 = 𝑢ℓ𝑝 (mod 𝑝𝔒).

Together these two congruences give 𝑣
𝑝

ℓ
− 𝑢ℓ𝑝 ∈ 𝑝𝔒, the desired

result. □
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Proof of Theorem 3.3. Let us consider the case that 𝑘 = 1. As

previously noted, we can assume there is an ℓ ≤ 𝑐 and 𝑣ℓ ≠ 0

(otherwise 𝑢0 = 0). Suppose that 𝑢ℓ𝑝 = 0. Then, by Lemma 3.4, 𝑣
𝑝

ℓ
∈

𝑝𝔒 and so 𝑝𝔒 | 𝑣𝑝
ℓ
𝔒. Thus 𝑝 | 𝑁 (𝑣𝑝

ℓ
𝔒). Since𝔒 is a commutative

ring and the ideal norm is multiplicative, we have that 𝑝 | 𝑁 (𝑣ℓ𝔒).
By Lemma 3.2, we obtain an effective bound on the divisors of

𝑣ℓ𝔒 of the form 𝑝𝔒 and hence a bound on the rational primes for

which 𝑢ℓ𝑝 = 0 is possible. Mutatis mutandis the proof holds for

prime powers 𝑝𝑘 with 𝑘 > 1. Clearly the case 𝑘 = 0 is decided by

determining whether 𝑢ℓ = 0. □

3.2 Complexity upper bound
Given a simple linear recurrence sequence (𝑢𝑛), we establish a

quantitative bound on the magnitude of any prime 𝑝 such that

𝑢𝑝 = 0. The bound is in terms of the size of the problem instance.

In the case that (𝑢𝑛) is a simple linear recurrence sequence, we

know that 𝑢𝑛 = 𝐴1𝜆
𝑛
1
+ · · · +𝐴𝑚𝜆𝑛𝑚 and so the size of the problem

instance is the bit length 𝑆 = ∥⟨𝜆1, 𝜆2, . . . , 𝜆𝑚, 𝐴1, 𝐴2, . . . , 𝐴𝑚⟩∥.
We give the following rudimentary bounds in terms of 𝑆 . First,

we bound log
2
|𝐴𝑖 |+1, bit length of the integer𝐴𝑖 , from above by 2

𝑆
.

Second, |𝜆𝑖 | is bounded from above by𝐻 (𝜆𝑖 ) ≤ 2
𝑆
where the height

𝐻 (𝜆𝑖 ) is the maximum absolute value of the coefficients in 𝜇𝜆𝑖 .

Finally, we have deg(𝜆𝑖 ) ≤ 𝑆 , from which it follows that [𝐾 : Q] =
[Q(𝜆1, . . . , 𝜆𝑚) : Q] ≤ 𝑚𝑆 ≤ 𝑆𝑆 . Because 𝑢1 = 𝐴1𝜆1 + · · ·𝐴𝑚𝜆𝑚 we

have the following elementary bound

𝑁 (𝑢1𝔒) ≤
[𝐾 : Q]∏
ℓ=1

𝑚∑
𝑘=1

|𝜎ℓ (𝐴𝑘 )𝜎ℓ (𝜆𝑘 ) | ≤
[𝐾 : Q]∏
ℓ=1

𝑆23𝑆 ≤
(
𝑆23𝑆

)𝑆𝑆
.

From the above calculations it follows that if 𝑢𝑝 = 0 for some

prime 𝑝 then 𝑝 is at most (𝑆23𝑆 )𝑆𝑆 , i.e., double exponential in 𝑆 ,
the size of the problem instance.

4 COEFFICIENTS IN𝔒[𝑥]
Let us first recall some background material on the decomposition

of prime ideals in the ring of integers𝔒 of a Galois number field

𝐾 . Such decompositions (as products of powers of prime ideals)

are particularly well-behaved in this setting— a comprehensive

presentation of this material can be found in [4]. Let 𝑝 ∈ N be

prime. Then 𝑝𝔒 =
∏𝑔

𝑖=1
𝔭𝑒
𝑖
where the 𝔭𝑖 are the prime ideals lying

above 𝑝Z. Here the integer 𝑒 (𝑝) ≥ 1 is the ramification index of

𝑝 . The degree of the field extension 𝑓 (𝑝) = [𝔒/𝔭𝑖 : Z/𝑝Z], the
inertial degree of 𝔭𝑖 over 𝑝Z, is independent of the prime ideal 𝔭𝑖 .

Suppose that 𝔭 lies above 𝑝Z. We have 𝑁 (𝔭) = 𝑁 (𝑝Z) 𝑓 (𝑝) = 𝑝 𝑓 (𝑝) .
A prime 𝑝Z is ramified in𝔒 if 𝑒 > 1 and unramified otherwise. In

particular, only finitely many primes ramify in𝔒 since 𝑝Z ramifies

in𝔒 if, and only if, 𝑝 divides the discriminant of 𝐾 (see e.g. [4]).

Suppose that 𝐾 is Galois over Q and let𝔒 be the algebraic inte-

gers in 𝐾 . In this section we shall prove decidability results locating

the zeroes of sequences (𝑢𝑛) whose terms are given by an expo-

nential polynomial of the form 𝑢𝑛 = 𝐴1 (𝑛)𝜆𝑛
1
+ · · · + 𝐴𝑚 (𝑛)𝜆𝑛𝑚

with coefficients 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥] and 𝜆1, . . . , 𝜆𝑚 ∈ 𝔒. For such

a sequence, fix 𝑐 ∈ N and let L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}
where (𝑣𝑛) is the simple recurrence sequence with terms given by

𝑣𝑛 = 𝐴1 (0)𝜆𝑛
1
+ · · · + 𝐴𝑚 (0)𝜆𝑛𝑚 . Let 𝑓 (𝑝) be the inertial degree of

𝑝Z in𝔒. Then define the set N𝑐 (𝐾) as the union

N𝑐 (𝐾) =
⋃
ℓ∈L𝑐

{ℓ𝑝𝑘 𝑓 (𝑝) : 𝑝 prime, 𝑘 ≤ 𝑐}.

Here our choice of notation is meant to draw comparison with our

previous definition for the set N𝑐 . Without loss of generality we

assume that given 𝑐 ∈ N there is an 𝑙 ≤ 𝑐 such that 𝑣ℓ ≠ 0 for

otherwise the sequence (𝑢𝑛) vanishes at 𝑢0 = 𝑣0 = 0. We denote by

Q𝑐 (𝐾) the subset
Q𝑐 (𝐾) =

⋃
ℓ∈L𝑐

{ℓ𝑝𝑘 𝑓 (𝑝) : 𝑝Z unramified, 𝑘 ≤ 𝑐}.

Similarly, let R𝑐 (𝐾) ⊂ N𝑐 (𝐾) be the corresponding set of elements

where 𝑝Z is ramified in𝔒. Since there are only finitely many prime

ideals 𝑝Z that are ramified in𝔒, the cardinality of the set R𝑐 (𝐾) is
finite. By definition, N𝑐 (𝐾) = Q𝑐 (𝐾) ∪ R𝑐 (𝐾).

Our main result is the following theorem.

Theorem 4.1. Fix 𝑐 ∈ N. Given (𝑢𝑛) as above, one can decide
whether there is an 𝑛 ∈ N𝑐 (𝐾) such that 𝑢𝑛 = 0.

Since the set R𝑐 (𝐾) is finite, locating zero terms 𝑢𝑛 = 0 for 𝑛 ∈
R𝑐 (𝐾) is clearly decidable. So to prove Theorem 4.1 it is sufficient

to prove the next theorem.

Theorem 4.2. Fix 𝑐 ∈ N. Given (𝑢𝑛) as above, one can decide
whether there is an 𝑛 ∈ Q𝑐 (𝐾) such that 𝑢𝑛 = 0.

In order to prove Theorem 4.2, we first prove two technical

results. The first, Lemma 4.3, concerns elements of cosets of 𝑝𝔒

in 𝔒. The second, Lemma 4.4, plays an analogous rôle to that of

Lemma 3.4 in Section 3.

Lemma 4.3. Suppose that 𝜑 ∈ 𝔒 and 𝑝Z is non-zero prime ideal.
If 𝑝Z is unramified with inertial degree 𝑓 (𝑝) then 𝜑𝑝 𝑓 (𝑝 ) − 𝜑 ∈ 𝑝𝔒.

Proof. Write 𝑝𝔒 = 𝔭1 · · ·𝔭𝑔 for the unique factorisation of

𝑝𝔒 as a product of the distinct prime ideals 𝔭𝑖 lying above 𝑝Z.
Here the ramification index is unity because 𝑝Z is unramified. By

Theorem 2.1, for each 𝑖 ∈ {1, . . . , 𝑔} and𝜑 ∈ 𝔒we have𝜑𝑁 (𝔭𝑖 )−𝜑 ∈
𝔭𝑖 . Since each of the exponents satisfy 𝑁 (𝔭𝑖 ) = 𝑝 𝑓 (𝑝) , we deduce
that 𝜑𝑝

𝑓 (𝑝 ) − 𝜑 ∈ ∩𝑖𝔭𝑖 . Because the distinct prime ideals 𝔭𝑖 are

pairwise co-prime, we have ∩𝑖𝔭𝑖 = 𝔭1 · · ·𝔭𝑔 = 𝑝𝔒 and hence we

have the desired result. □

Lemma 4.4. Let (𝑢𝑛) be a recurrence sequence and (𝑣𝑛) the asso-
ciated simple recurrence sequence as above. Let 𝑝 ∈ N be a rational
prime and 𝑘, ℓ ∈ N. If 𝑝Z ⊂ 𝔒 is unramified with inertial degree
𝑓 (𝑝) then 𝑣ℓ − 𝑢ℓ𝑝𝑘𝑓 (𝑝 ) ∈ 𝑝𝔒.

Proof. The result is a consequence of the next congruences

𝑣ℓ ≡ 𝑣ℓ𝑝𝑘𝑓 (𝑝 ) ≡ 𝑢ℓ𝑝𝑘𝑓 (𝑝 ) (mod 𝑝𝔒) .
The congruences hold trivially when 𝑘 = 0. We shall prove the case

𝑘 = 1 below and omit the case 𝑘 > 1 as it follows similarly. The

first congruence is a simple application of Lemma 4.3:

𝑣ℓ =

𝑚∑
𝑗=1

𝐴 𝑗 (0)𝜆ℓ𝑗 ≡
𝑚∑
𝑗=1

𝐴 𝑗 (0)𝜆ℓ𝑝
𝑓 (𝑝 )

𝑗
= 𝑣ℓ𝑝 𝑓 (𝑝 ) (mod 𝑝𝔒) .

Recall that for 𝐴 ∈ 𝔒[𝑥] we have (𝑥 − 𝑦) | (𝐴(𝑥) − 𝐴(𝑦)). The
second congruence holds since 𝑝𝔒 ∋ ℓ𝑝 𝑓 (𝑝) | (𝐴(ℓ𝑝 𝑓 (𝑝) ) −𝐴(0))
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or equivalently 𝐴(0) ≡ 𝐴(ℓ𝑝 𝑓 (𝑝) ) (mod 𝑝𝔒) for each 𝐴 ∈ 𝔒[𝑥].
Thus

𝑣ℓ𝑝 𝑓 (𝑝 ) ≡
𝑚∑
𝑗=1

𝐴 𝑗

(
ℓ𝑝 𝑓 (𝑝)

)
𝜆
ℓ𝑝 𝑓 (𝑝 )

𝑗
= 𝑢ℓ𝑝 𝑓 (𝑝 ) (mod 𝑝𝔒) .

Hence 𝑣ℓ − 𝑢ℓ𝑝 𝑓 (𝑝 ) ∈ 𝑝𝔒 as desired. □

Proof of Theorem 4.2. Fix 𝑐 ∈ N and assume that 𝑛 ∈ Q𝑐 (𝐾)
such that 𝑢𝑛 = 0. Then 𝑛 is of the form ℓ𝑝𝑘𝑓 (𝑝) where 𝑝 is a prime

and 𝑝Z ⊂ 𝔒 is unramified. By Lemma 4.4, 𝑣ℓ −𝑢ℓ𝑝𝑘𝑓 (𝑝 ) ∈ 𝑝𝔒. Thus

𝑣ℓ ∈ 𝑝𝔒 and therefore 𝑝𝔒 | 𝑣ℓ𝔒. We then apply Lemma 3.2 to

give an effective bound on the primes by a divisibility argument

for 𝑁 (𝑣ℓ𝔒). Hence the result. □

Our approach in the proof of Theorem 4.1 extends in the fol-

lowing way: we can decide whether there exists there is an 𝑛 =∑𝑡
𝑗=1 𝑙 𝑗𝑝

𝑘 𝑗 𝑓 (𝑝)
such that 𝑢𝑛 = 0. Here the constants 𝑘 𝑗 , 𝑙 𝑗 ∈ N are

bounded independently of the rational prime 𝑝 , and 𝑓 (𝑝) is the
inertial degree of 𝑝Z ⊂ 𝔒. For 𝑙1, . . . , 𝑙𝑡 , 𝑘1, . . . , 𝑘𝑡 ∈ N, we define

𝑆𝑚 = 𝑆𝑚 (𝑙 𝑗 ;𝑘 𝑗 ) :=
{∑𝑡

𝑗=1 𝑙 𝑗𝑚
𝑘 𝑗 𝑓 (𝑚)

if𝑚 is prime,∑𝑡
𝑗=1 𝑙 𝑗 if𝑚 = 1.

Fix 𝑐 ∈ N and, as before, let L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}. Define
the set N ′

𝑐 (𝐾) as follows

N ′
𝑐 (𝐾) =

⋃
𝑆1∈L𝑐

{
𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗 ) : 𝑝 prime, 𝑘 𝑗 ≤ 𝑐

}
.

We define the sets Q ′
𝑐 (𝐾), for unramified 𝑝Z in 𝐾 , and R ′

𝑐 (𝐾), for
ramified 𝑝Z in 𝐾 , in an analogous manner to the sets Q𝑐 (𝐾) and
R𝑐 (𝐾) associated to N𝑐 (𝐾). Then, like before, N ′

𝑐 (𝐾) = Q ′
𝑐 (𝐾) ∪

R ′
𝑐 (𝐾) and R ′

𝑐 (𝐾) has finite cardinality.
We have the next decidability result.

Theorem 4.5. Fix 𝑐 ∈ N. Then, given (𝑢𝑛) as above, one can decide
whether there is an 𝑛 ∈ N ′

𝑐 (𝐾) such that 𝑢𝑛 = 0.

The proof of Theorem 4.5 follows the approach in the proof of

Theorem 4.1. Since the cardinality of R ′
𝑐 (𝐾) is finite, we need only

prove the next theorem in order to prove Theorem 4.5.

Theorem 4.6. Fix 𝑐 ∈ N. Then, given (𝑢𝑛) as above, one can decide
whether there is an 𝑛 ∈ Q ′

𝑐 (𝐾) such that 𝑢𝑛 = 0.

Given its similarities to the proof of Theorem 4.2, we omit a

formal proof of Theorem 4.6; instead, we outline the key steps in

the proof. We require the following technical lemma; Lemma 4.7

generalises the result in Lemma 4.4.

Lemma 4.7. Let (𝑢𝑛) be a recurrence sequence and (𝑣𝑛) the asso-
ciated simple recurrence sequence as above. Let 𝑝 ∈ N be a rational
prime and 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗 ) be defined as above. If 𝑝Z ⊂ 𝔒 is unramified
then 𝑢𝑆𝑝 − 𝑣𝑆1 ∈ 𝑝𝔒.

Proof. We avoid repeating the proof of Lemma 4.4 by limit-

ing our presentation to the next two observations. First, for each

polynomial 𝐴 ∈ 𝔒[𝑥] we have 𝐴(𝑆𝑝 ) −𝐴(0) ∈ 𝑝𝔒 since 𝑝𝔒 ∋ 𝑆𝑝
divides𝐴(𝑆𝑝 )−𝐴(0). Second, by repeated application of Lemma 4.3,

we have 𝜆𝑆𝑝 − 𝜆𝑆1 ∈ 𝑝𝔒 for 𝜆 ∈ 𝔒. From these observations, one

can obtain the congruences 𝑣𝑆1 ≡ 𝑣𝑆𝑝 ≡ 𝑢𝑆𝑝 (mod 𝑝𝔒) and hence

the desired result. □

We sketch the key steps in the proof of Theorem 4.6.

Proof of Theorem 4.6. Fix 𝑐 ∈ N. Assume that 𝑢𝑆𝑝 = 0 for

some 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗 ) ∈ N ′
𝑐 (𝐾) where 𝑝Z ⊂ 𝔒 is an unramified prime.

Note that 𝑣𝑆1 ≠ 0 since 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗 ) ∈ N ′
𝑐 (𝐾). Then, by Lemma 4.7,

𝑣𝑆1 ∈ 𝑝𝔒 and so 𝑝𝔒 | 𝑣𝑆1𝔒. By Lemma 3.2, 𝑝 necessarily divides

𝑁 (𝑣𝑆1𝔒). Since 𝑁 (𝑣𝑆1𝔒) is computable, one can derive an effective

bound on the rational primes 𝑝 such that 𝑢𝑆𝑝 = 0. □

5 HARDNESS RESULT
In [3], Blondel and Portier proved that the Skolem Problem is NP-
hard (see also [1]). In this section we show that the prime variant

of the Skolem Problem is likewise NP-hard. Following [1], our

proof is by reduction from the Subset Sum Problem: given a finite

set of integer 𝐴 = {𝑎1, . . . , 𝑎𝑚} and 𝑏 ∈ Z a target, written in

binary, decide whether there is a subset 𝑆 ⊆ {1, . . . ,𝑚} such that∑
𝑘∈𝑆 𝑎𝑘 = 𝑏.

Let us state two well-known theorems in number theory in

order to derive a simple corollary that is fundamental to our proof

of Theorem 5.6.

Theorem 5.1 (Chinese remainder theorem). Let 𝑛1, . . . , 𝑛𝑚
be positive integers that are pairwise co-prime. Then the system of𝑚
equations 𝑟 ≡ 𝑎𝑘 (mod 𝑛𝑘 ) with each 𝑎𝑘 ∈ Z has a unique solution
modulo 𝑁 where 𝑁 = 𝑛1𝑛2 · · ·𝑛𝑚 .

Dirichlet proved the following theorem on primes in arithmetic

progressions. We use the notation (𝑚,𝑛) to indicate the greatest

common divisor of𝑚,𝑛 ∈ Z.

Theorem 5.2. Suppose that 𝑞 and 𝑟 are co-prime positive integers.
Then there are infinitely many primes of the form ℓ𝑞 + 𝑟 with ℓ ∈ N.

The next corollary is immediate.

Corollary 5.3. Let 𝑝1, . . . , 𝑝𝑚 be a finite set of distinct primes.
Then the system of𝑚 equations 𝑟 ≡ 𝑎𝑘 (mod 𝑝𝑘 ) with each 𝑎𝑘 ∈ Z
has a unique solution 𝑟 ∈ {0, 1, . . . , 𝑃 − 1} where 𝑃 = 𝑝1𝑝2 · · · 𝑝𝑚 .
Additionally, if (𝑟, 𝑃) = 1 then there are infinitely many ℓ ∈ N for
which ℓ𝑃 + 𝑟 is prime.

Recall that the 𝑛th cyclotomic polynomial given by

Φ𝑛 (𝑥) =
∏

𝑘∈{1,...,𝑛}
(𝑘,𝑛)=1

(
𝑥 − e

2𝜋 i𝑘/𝑛
)

is the minimal polynomial over Q of a primitive 𝑛th root of unity.

We call an integer linear recurrence sequence cyclotomic if its
characteristic roots are all roots of unity. The next theorem, con-

cerning Skolem’s Problem in the restricted setting of cyclotomic

sequences, follows from work in [1]. We reproduce the proof as a

lead into our original work on the Skolem Problem restricted to

prime numbers.

Theorem 5.4. The cyclotomic Skolem Problem is NP-hard.

The proof of Theorem 5.4 is by reduction from the Subset Sum

Problem and follows directly from the technical lemma, Lemma 5.5,

below. Before we present the proof, we introduce some notation.

Let {𝑝1, . . . , 𝑝𝑚} be the set of the first𝑚 prime numbers. We de-

fine the linear recurrence sequence (𝑠𝑘 (𝑛))∞𝑛=0 with 𝑘 ∈ {1, . . . ,𝑚}
as follows. Let 𝑠𝑘 (𝑛) = 𝑠𝑘 (𝑛−𝑝𝑘 ) for 𝑛 ≥ 𝑝𝑘 with initial conditions
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𝑠𝑘 (0) = 1, 𝑠𝑘 (1) = · · · = 𝑠𝑘 (𝑝𝑘 −1) = 0. Then each sequence (𝑠𝑘 (𝑛))
is periodic with period 𝑝𝑘 . The characteristic polynomial associated

to (𝑠𝑘 (𝑛)) is given by

𝑥𝑝𝑘 − 1 =

𝑝𝑘−1∏
ℓ=0

(
𝑥 − e

2𝜋 iℓ/𝑝𝑘
)
.

Thus (𝑠𝑘 (𝑛)) is a cyclotomic sequence.

In order to reduce the Subset Sum Problem to the cyclotomic

Skolem Problem, we consider the inhomogeneous linear recurrence

sequence (𝑡 (𝑛))∞
𝑛=0

with terms given by 𝑡 (𝑛) = 𝑏 −∑𝑚
𝑘=1

𝑎𝑘𝑠𝑘 (𝑛).
The characteristic polynomial associated to (𝑡 (𝑛)) is given by the

least common multiple of

(𝑥𝑝1 − 1) (𝑥 − 1), 𝑥𝑝2 − 1, . . . , 𝑥𝑝𝑚 − 1

(see [6]), from which it follows that each of the characteristic roots

of (𝑡 (𝑛)) are themselves roots of unity, i.e., (𝑡 (𝑛)) is a cyclotomic

sequence.

Lemma 5.5. For (𝑡 (𝑛)) given as above, there exists 𝑁 ∈ N such
that 𝑡 (𝑁 ) = 0 if and only if the Subset Sum Problem with inputs
{𝑎1, . . . , 𝑎𝑚 ;𝑏} has a solution.

Proof. Suppose that there exists an 𝑁 ∈ N such that 𝑡 (𝑁 ) = 0,

then the Subset Sum Problem has a solution because the selectors

𝑠𝑘 (𝑛) are {0, 1}-valued. Conversely, suppose that there is a subset
𝑆 ⊆ {1, . . . ,𝑚} such that

∑
𝑘∈𝑆 𝑎𝑘 = 𝑏 and define 𝑁 =

∏
𝑘∈𝑆 𝑝𝑘 .

We have 𝑠𝑘 (𝑁 ) = 1 for each 𝑘 ∈ 𝑆 since 𝑝𝑘 | 𝑁 , and 𝑠𝑘 (𝑁 ) = 0

otherwise. Thus

𝑡 (𝑁 ) = 𝑏 −
𝑚∑
𝑘=1

𝑎𝑘𝑠𝑘 (𝑁 ) = 𝑏 −
∑
𝑘∈𝑆

𝑎𝑘 = 0,

as required. □

Weprove the following complexity result for the Skolem Problem

for primes.

Theorem 5.6. Suppose that (𝑢𝑛) is a cyclotomic integer linear
recurrence sequence. The problem of deciding whether there is a prime
𝑝 ∈ N such that 𝑢𝑝 = 0 is NP-hard.

The proof of Theorem 5.6 involves an analysis of theNP-hardness
proof for Skolem’s Problem. Technically we will derive the result

from Lemma 5.7, below.

Let 𝑝1, . . . , 𝑝𝑚 be the first 𝑚 odd primes. We define selector

sequences (𝜎𝑘 (𝑛)) with 𝑘 ∈ {1, . . . ,𝑚} as follows. Let 𝜎𝑘 (𝑛) =

𝜎𝑘 (𝑛 − 𝑝𝑘 ) for 𝑛 ≥ 𝑝𝑘 with initial conditions 𝜎𝑘 (1) = 1, 𝜎𝑘 (0) =
𝜎𝑘 (2) = · · · = 𝜎𝑘 (𝑝𝑘 − 1) = 0. Then each sequence (𝜎𝑘 (𝑛)) is peri-
odic with period 𝑝𝑘 . Let 𝜏 (𝑛) = 𝑏−

∑𝑚
𝑘=1

𝑎𝑘𝜎𝑘 (𝑛). It is easily shown
that (𝜎𝑘 (𝑛)) and (𝜏 (𝑛)) are cyclotomic recurrence sequences.

Lemma 5.7. There exists an odd prime 𝑝 ∈ N such that 𝜏 (𝑝) = 0 if
and only if there exists a subset 𝑆 ⊆ {1, . . . ,𝑚} that is a solution to
the Subset Sum Problem with inputs {𝑎1, . . . , 𝑎𝑚 ;𝑏}.

Proof. Suppose that there is an odd prime 𝑝 ∈ N such that

𝜏 (𝑝) = 0. Then there is a solution to the Subset Sum Problem as

𝜎𝑘 (𝑝) ∈ {0, 1} for each 𝑘 .

Conversely, suppose that there a subset 𝑆 ⊆ {1, . . . ,𝑚} such that∑
𝑘∈𝑆 𝑎𝑘 = 𝑏. Consider the set 𝑄 (𝑆) ⊆ Z of integer solutions to the

set of𝑚 equations{
𝑟 ≡ 1 (mod 𝑝𝑘 ) if 𝑘 ∈ 𝑆, and

𝑟 ≡ 2 (mod 𝑝𝑘 ) if 𝑘 ∈ {1, . . . ,𝑚} \ 𝑆.

The choice of residue ensures that 𝑟 is not divisible by any of the

primes 𝑝1, 𝑝2, . . . , 𝑝𝑚 . By the Chinese Remainder Theorem, 𝑄 (𝑆) is
an infinite arithmetic progression. Suppose that 𝑞 ∈ 𝑄 (𝑆). Then, by
definition of the selector sequences, 𝜎𝑘 (𝑞) = 1 if and only if 𝑞 ≡ 1

(mod 𝑝𝑘 ) if and only if 𝑘 ∈ 𝑆 . Then

𝜏 (𝑞) = 𝑏 −
𝑚∑
𝑘=1

𝑎𝑘𝜎𝑘 (𝑞) = 𝑏 −
∑
𝑘∈𝑆

𝑎𝑘 = 0.

It remains to show that there is a prime number in 𝑄 (𝑆). This
result follows easily from Corollary 5.3, which completes the proof.

□

6 SUMMARY
In this paper we have given decision procedures for finding zeroes

of certain prescribed linear recurrence sequences. Our main result

shows how to decide the existence of a prime 𝑝 such that 𝑢𝑝 = 0 for

a simple linear recurrence sequence (𝑢𝑛). We have noted that this

decision problem is NP-hard and, implicitly, that the magnitude

of the smallest prime 𝑝 such that 𝑢𝑝 = 0 is at least exponential in

the size of the problem instance. On the other hand, our decision

procedure yields a double exponential bound on the magnitude of

the prime 𝑝 . Closing this exponential gap would be an interesting

direction for further work. Another direction for research would

be to locate zeroes 𝑢𝑛 = 0 where the index 𝑛 ∈ N has two prime

factors.
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