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The Monniaux Problem in abstract interpretation asks, roughly speaking, whether the following question
is decidable: Given a program P , a safety (e.g., non-reachability) specification φ, and an abstract domain
of invariants D, does there exist an inductive invariant I in D guaranteeing that program P meets its
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1 Introduction

Invariants are one of the most fundamental and useful notions in the quantitative sciences, ap-
pearing in a wide range of contexts, from gauge theory, dynamical systems, and control theory
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11:2 N. Fijalkow et al.

in physics, mathematics, and engineering to program verification, static analysis, abstract inter-
pretation, and programming language semantics (among others) in computer science. In spite of
decades of scientific work and progress, automated invariant synthesis remains a topic of active
research, especially in the fields of program analysis and abstract interpretation, and plays a cen-
tral role in methods and tools seeking to establish correctness properties of computer programs;
see, e.g., Reference [23], and particularly Section 8 therein.

The focus of the present article is the Monniaux Problem on the decidability of the existence of
separating invariants, which was formulated by David Monniaux in Reference [28] and also raised
by him in a series of personal communications with various members of the theoretical computer
science community over the past five years or so. There are in fact a multitude of versions of the
Monniaux Problem—indeed, it would be more appropriate to speak of a class of problems rather
than a single question—but at a high level the formulation below is one of the most general:

Consider a program P operating over some numerical domain (such as the integers or
rationals), and assume that P has an underlying finite control-flow graph over the set of
nodes Q = {q1, . . . ,qr }. Let us assume that P makes use of d numerical variables, and

each transition q
t−→ q′ comprises a function ft : Rd → Rd as well as a guard дt ⊆ Rd .

Let x ,y ∈ Qd be two points in the ambient space. By way of intuition and motivation,
we are interested in the reachability problem as to whether, starting in locationq1 with
variables having valuation x , it is possible to reach location qr with variables having
valuationy, by following the available transitions and under the obvious interpretation
of the various functions and guards. Unfortunately, in most settings this problem is
well-known to be undecidable.
A collection

{
Iq | q ∈ Q

}
is called an (inductive1) invariant if for each transition q

t−→
q′, we have that ft (Iq ∩ дt ) ⊆ Iq′ . If it additionally satisfies that x ∈ Iq1 and y � Iqr

,
then it is a separating invariant for program P . Clearly, the existence of a separating
invariant constitutes a proof of non-reachability for P with the given x and y.

Let D ⊆ 2R
d

be an “abstract domain” for P , i.e., a collection of subsets of Rd . For
example, D could be the collection of all convex polyhedra in Rd , or the collection of
all closed semi-algebraic sets in Rd , and so on.
The Monniaux Problem can now be formulated as a decision question: Is it possible
to adorn each control location q with an element Iq ∈ D such that the collection{
Iq | q ∈ Q

}
forms a separating invariant?

Associated with this decision problem, in positive instances, one is also potentially
interested in the synthesis problem, i.e., the matter of algorithmically producing a
suitable separating invariant {Iq : q ∈ Q}.

The Monniaux Problem is therefore parameterised by a number of items, key of which are
(i) the abstract domain D under consideration and (ii) the kind of functions and guards allowed
in transitions.

Our main interest in this article lies in the decidability of the existence of separating invariants
for various instances of the Monniaux Problem. We give below a cursory cross-sectional survey
of existing work and results in this direction.

Arguably the earliest positive result in this area is due to Karr, who showed that strongest affine
invariants (conjunctions of affine equalities) for affine programs (no guards, and all transition func-
tions are given by affine expressions) could be computed algorithmically [22]. Note that the ability
to synthesise strongest (i.e., smallest with respect to set inclusion) invariants immediately entails

1In the remainder of this article, the term “invariant” shall always refer to the inductive kind.
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On the Monniaux Problem in Abstract Interpretation 11:3

the decidability of the Monniaux Problem instance, since the existence of some separating invari-
ant is clearly equivalent to whether the strongest invariant is separating. Müller-Olm and Seidl
later extended this work on affine programs to include the computation of strongest polynomial
invariants of fixed degree [30], and a randomised algorithm for discovering affine relations was
proposed by Gulwani and Necula [31]. In Reference [15], the least inductive invariant is computed
by policy iteration for some families of abstract domains. More recently, Hrushovski et al. showed
how to compute a basis for all polynomial relations at every location of a given affine program [19].

The approaches described above all compute invariants consisting exclusively of conjunctions
of equality relations. By contrast, an early and highly influential paper by Cousot and Halbwachs
considers the domain of convex closed polyhedra [9] for programs having polynomial transition
functions and guards. While no decidability results appear in that paper, much further work was
devoted to the development of restricted polyhedral domains for which theoretical guarantees
could be obtained, leading (among others) to the octagon domain of Miné [27], the octahedron
domain of Clarisó and Cortadella [6], and the template polyhedra of Sankaranarayanan et al. [33].
In fact, as observed by Monniaux [28], if one considers a domain of convex polynomial templates
having a uniformly bounded number of faces (therefore subsuming in particular the domains just
described), then for any class of programs with polynomial transition relations and guards, the
existence of separating invariants becomes decidable, as the problem can equivalently be phrased
in the first-order theory of the reals.

One of the central motivating questions for the Monniaux Problem is whether one can always
compute separating invariants for the full domain of polyhedra. Unfortunately, on this matter
very little is known at present. In recent work, Monniaux showed undecidability for the domain
of convex polyhedra and the class of programs having affine transition functions and polynomial
guards [28]. One of the main results of the present article is to show undecidability for the domain
of semilinear sets2 and the class of affine programs (without any guards)—in fact, affine programs
with only a single control location and two transitions:

Theorem 1.1. Let A,B ∈ Qd×d be two rational square matrices of dimension d , and let x ,y be two

points in Qd . Then, the existence of a semilinear set I ⊆ Rd having the following properties:

(1) x ∈ I;
(2) AI ⊆ I and BI ⊆ I; and
(3) y � I

is an undecidable problem.

It is worth pointing out that the theorem remains valid even for a fixed d (our proof shows
undecidability for d = 96, but this value could be improved). If, moreover, one requires I to be
topologically closed, one can lower d to having fixed value 24. Finally, an examination of the
proof reveals that the theorem also holds for the domain of semi-algebraic sets, and in fact for any
domain of o-minimal sets in the sense of Reference [1]. The proof also carries through whether
one considers the domain of semilinear sets having rational, algebraic, or real coordinates.

Although the above is a negative (undecidability) result, it should be viewed in a positive light;
as Monniaux writes in Reference [28], “We started this work hoping to vindicate forty years of re-
search on heuristics by showing that the existence of polyhedral inductive separating invariants in a
system with transitions in linear arithmetic (integer or rational) is undecidable.” Theorem 1.1 shows
that, at least as regards non-convex invariants, the development and use of heuristics is indeed

2A semilinear set consists of a finite union of polyhedra or equivalently is defined as the solution set of a Boolean
combination of linear inequalities.
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11:4 N. Fijalkow et al.

vindicated and will continue to remain essential. Related questions of completeness of given ab-
straction scheme have also been examined by Giacobazzi et al. in References [17, 18]. We refer to
Reference [29] for a recent and personal point of view on the Monniaux problem, by Monniaux
himself.

It is important to note that our undecidability result requires at least two transitions. In fact,
much research work has been expended on the class of simple affine loops, i.e., one-location
programs equipped with a single self-transition. In terms of invariants, Fijalkow et al. establish
in References [13, 14] the decidability of the existence of semi-algebraic separating invariants
and specifically state the question of the existence of separating semilinear invariants as an open
problem. Almagor et al. extend this line of work in Reference [1] to more complex targets (in lieu
of the point y) and richer classes of invariants. The second main result of the present article is to
settle the open question of References [13, 14] in the affirmative:

Theorem 1.2. Let A ∈ Qd×d be a rational square matrix of dimension d , and let x ,y ∈ Qd be

two points in Qd . It is decidable whether there exists a closed semilinear set I ⊆ Rd having algebraic
coordinates such that:

(1) x ∈ I;
(2) AI ⊆ I; and
(3) y � I.

The proof shows that, in fixed dimension d , the decision procedure runs in polynomial time. It
is worth noting that one also has decidability if A, x , and y are taken to have real-algebraic (rather
than rational) entries.

Let us conclude this section by briefly commenting on the important issue of convexity. At its
inception, abstract interpretation had a marked preference for domains of convex invariants, of
which the interval domain, the octagon domain, and of course the domain of convex polyhedra
are prime examples. Convexity confers several distinct advantages, including simplicity of repre-
sentation, algorithmic tractability and scalability, ease of implementation, and better termination
heuristics (such as the use of widening). The central drawback of convexity, however, is its poor
expressive power. This has been noted time and again: “convex polyhedra [. . . ] are insufficient for
expressing certain invariants, and what is often needed is a disjunction of convex polyhedra.” [2]; “the
ability to express non-convex properties is sometimes required in order to achieve a precise analysis of
some numerical properties” [16]. Abstract interpretation can accommodate non-convexity either
by introducing disjunctions (see, e.g., Reference [2] and references therein) or via the development
of special-purpose domains of non-convex invariants such as donut domains [16]. The technology,
data structures, algorithms, and heuristics supporting the use of disjunctions in the leading
abstract-interpretation tool Astrée are presented in great detail in Reference [8]. In the world of
software verification, where predicate abstraction is the dominant paradigm, disjunctions—and
hence non-convexity—are nowadays native features of the landscape.

It is important to note that the two main results presented in this article, Theorems 1.1 and 1.2,
have only been proven for families of invariants that are not necessarily convex. The Monniaux
Problem restricted to families of convex invariants remains open and challenging.

2 Preliminaries

We start with necessary definitions and notations.

2.1 Real and Complex Numbers

We will mostly work in the field A ⊆ C of algebraic numbers, that is, roots of polynomials
with coefficients in Z. It is possible to represent and manipulate algebraic numbers effectively,
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On the Monniaux Problem in Abstract Interpretation 11:5

by storing their minimal polynomial and a sufficiently precise numerical approximation. An
excellent reference in computational algebraic number theory is Reference [7]. All standard
algebraic operations such as sums, products, root-finding of polynomials, or computing Jordan
normal forms of matrices with algebraic entries can be performed effectively.

The set of complex numbers is C, and for a complex number z its modulus is |z |, its real part is
Re (z), its imaginary part is Im (z) and its conjugate is z∗. LetC∗ denote the set of non-zero complex
numbers. We write S1 for the complex unit circle, i.e., the set of complex numbers of modulus 1.
We let U denote the set of roots of unity, i.e., complex numbers z ∈ S1 such that zn = 1 for some
n ∈ N. We write Diag(λ1, . . . , λd ) for ⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

. . .

λd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

When working in Cd , the norm of a vector z is | |z | |, defined as the maximum of the modulus of
each complex component zi for i in {1, . . . ,d}, where zi is the ith component of vector z. For ε > 0
and z in Cd , we write B(z, ε) for the open ball centered in z of radius ε . The topological closure of

a set I ⊆ Cd is I, its interior Io, and its boundary ∂I, defined as I ∩ Cd \ I.
For semilinear sets, defined below, we will need to view complex sets as real sets in twice the

dimension. We introduce some notations to clarify this part. For any d ∈ N, we introduce the
mapping

(·)R :
Cd → R2d

(x1, . . . ,xd ) �→ (Re (x1) , Im (x1) , . . . ,Re (xd ) , Im (xd )).

We naturally extend this mapping to matrices so if A ∈ Cd×d , then AR ∈ R2d×2d is such that for all
x ∈ Cd , ARxR = (Ax)R. Furthermore, the following relation exists between the determinant of A
and AR:

Lemma 2.1. For any A ∈ Cd×d , det(AR) = det(A)det(A)∗.

Proof. Recall that the determinant is invariant when corresponding rows and columns undergo
permutation. It is not hard to check that AR is the block matrix (R(Ai j ))i, j where

R(z) =
[
Re (z) −Im (z)
Im (z) Re (z)

]
for all z ∈ C. Therefore, by permuting rows, we can write

AR = P−1

[
Re (A) −Im (A)
Im (A) Re (A)

]
P ,

where P has determinant 1 and Re (A) (respectively, Im (A)) is the matrix whose entries are the real
(respectively, imaginary) parts of the entries of A. Now, note that for any matrices X ,Y ∈ Rd×d ,[

X −Y
Y X

]
=

[
−iId iId
Id Id

] [
X − iY 0

0 X + iY

] [
i
2 Id

1
2 Id

− i
2 Id

1
2 Id

]
,

where Id is the identity matrix of dimension d .
Therefore, det(AR) = det(Re (A)−iIm (A)) det(Re (A)+iIm (A)) = det(A∗) det(A) = det(A)∗ det(A).

�
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11:6 N. Fijalkow et al.

2.2 Linear Dynamical Systems

A dynamical system is given by a set of functions ft : Rd → Rd for t ∈ [1,k]. Let x be an initial
vector, the set of reachable points from x is the smallest subset R of Rd containing x and closed
under the functions ft : if z ∈ R, then ft (z) ∈ R. If there is a single function (k = 1), then the set of
reachable points fromx is called the orbit ofx under f . We say thaty is reachable fromx ify belongs
to the set of reachable points from x . The reachability problem is the following decision problem:
Given a (dynamical) system S = (x , { ft : t ∈ [1,k]} ,y), determine whether y is reachable from x .

We are in this article interested in linear dynamical systems, where the functions ft are lin-
ear: ft is induced by a square matrix At ∈ Ad×d with ft (z) = Atz. We simply write S =
(x , {At : t ∈ [1,k]} ,y) for a linear dynamical system. The special case of a single matrix (k = 1) is
called “simple linear loops.”

2.3 Invariants

Natural certificates that y is not reachable from x are separating invariants: An invariant is a set
I ⊆ Cd such that ft (I) ⊆ I for all t ∈ [1,k]. It is separating for (x ,y) if additionally x ∈ I and
y � I.

Note that for a linear function ft (z) = Atz, the property ft (I) ⊆ I is equivalent to AtI ⊆ I,
and in that case, we say that I is invariant under A.

The following are equivalent:

— there exists a separating invariant.
—y is not reachable from x .

It is clear that the existence of a separating invariant implies that y is not reachable from x . A
stronger statement is: The set R of reachable points from x is a separating invariant for (x ,y) if
and only if y does not belong to R. However, the set R may be very complicated, making it not so
useful as a separating invariant. We therefore consider restrictions on the class of invariants.

2.4 Semilinear Sets

A set I ⊆ Rd is semilinear if it is the set of (real) solutions of some finite Boolean combination
of linear inequalities with algebraic coefficients. We give an equivalent definition now using half-
spaces and polyhedra. A half-spaceH is a subset of Rd of the form

H = {z ∈ Rd : z · u 	 a},
for some u in Ad , a in A ∩ R and 	 ∈ {≥, >}. A polyhedron is a finite intersection of half-spaces,
and a semilinear set a finite union of polyhedra.

If I is a semilinear set, then Io, I and ∂I are also semilinear sets. A classical (and non-trivial)
result about semilinear sets is their closure under projections as stated below. We will also need
some effective bounds on sections of semilinear sets.

Lemma 2.2 (Projections of Semilinear Sets). Let I be a semilinear set in Rd+d ′ . Then, the
projection of I on the first d coordinates defined by

{
z ∈ Rd : ∃t ∈ Rd ′, (z, t) ∈ I

}
is a semilinear set.

Lemma 2.3 (Sections of Semilinear Sets). Let I be a semilinear set in Rd+d ′ and t in Rd ′ . Then,
the section of I along t defined by

{
z ∈ Rd : (z, t) ∈ I

}
is a semilinear set. Furthermore, there exists

a bound B in R such that for all t in Rd ′ of norm at most 1, if the section is non-empty, then it contains

some z in Rd of norm at most B.

Proofs for Lemmas 2.2 and 2.3. Lemma 2.2 is a reformulation of Fourier-Motzkin elimination,
from which the first part of Lemma 2.3 also follows. We now prove existence of the bound B. Let
us first assume that I is closed and write I = P1 ∪ · · · ∪ Pn where the Pi ’s are closed polyhedra.

J. ACM, Vol. 72, No. 2, Article 11. Publication date: March 2025.



On the Monniaux Problem in Abstract Interpretation 11:7

For each i , Ti =
{
t ∈ Rd ′ | | |t | | ≤ 1 and ∃z, (z, t) ∈ Pi

}
is a compact polyhedron, and the map

fi : Ti → R assigning min{| |z | |, (z, t) ∈ Pi } to t in Ti is continuous. Now, since Ti is compact, fi
admits a maximum Bi over Ti . Then, we simply let B be the maximal Bi .

If I is not closed, then apply the above to I′ = I, which yields a bound B′. Then, for each t ,
the section of I along t contains the interior of the section of I′ along t ; therefore, the bound
B = B′ + 1 applies to I. �

For the reader’s intuitions, note that the last part of this lemma does not hold for more
expressive domains. For instance, consider the hyperbola defined by I =

{
(x ,y) ∈ R2 : xy = 1

}
.

Choosing a small x forces to choose a largey, hence there exists no bound B as stated in the lemma
for I.

It will be convenient for the proofs to consider semilinear sets in Cd by identifying Cd with
R2d . Formally, I ⊆ Cd is a complex semilinear set if IR is a (real) semilinear set. Note that this
definition is consistent: I ⊆ Rd is semilinear if and only if IR is semilinear. We will refer to
complex semilinear sets as simply semilinear sets when it is clear from the context.

2.5 The Semilinear Invariant Problem

The problem we study in this article is the semilinear invariant problem, which asks whether given
a linear dynamical system there exists a semilinear separating invariant. The next section gives
high-level overviews of the proofs for our two main results, namely, Theorems 1.1 and 1.2.

3 Main Results and Proof Overviews

3.1 Undecidability for Two Matrices

We sketch the proofs of two undecidability results; as an intermediate step and towards the (compli-
cated) proof of Theorem 1.1, we provide a simpler undecidability result regarding closed semilinear
invariants. We will only sketch proofs in this section and defer the full proofs to Section 4. As it
will appear below, it is more convenient here to write matrix-multiplication from the left, and vec-
tors in row convention. We adopt this convention locally to this proof overview (Section 3.1), as
well as in the full proof (Section 4).

We will construct reductions from the ω-Post Correspondence Problem (in short: ω-PCP), an
extension of the well-known Post Correspondence Problem to infinite words. For a word w , we
let |w | denote its length, and for i ∈ [1, |w |], we write wi for the letter of w in position i , so
w = w1w2 . . . . We write w1...n for the prefix of w of length n.

An instance of the ω-PCP is given by a set of pairs of non-empty words (ui ,vi )i ∈[1,p] over some
alphabet Σ. The objective is to determine whether there exists an infinite word w = w1w2 . . .
over the alphabet [1,p] such that the following equality over infinite words holds: uw1uw2 · · · =
vw1vw2 . . . , and in that case, we say that w is a solution of (ui ,vi )i ∈[1,p]. A pair (ui ,vi ) is called a
tile (see Figure 1 for a graphical representation).

This problem is known to be undecidable [10] even for a fixedp and an alphabet of size 2. For the
remainder of this section, we let p denote the smallest number such that the ω-PCP is undecidable
with a fixed number of tiles p. The latest improvement on this result shows that p ≤ 8 [10].

A First Undecidability Result for Closed Semilinear Invariants

The first undecidability result we prove is for (topologically) closed invariants: It does not yet imply
Theorem 1.1; the reduction will be further refined later on.

Theorem 3.1. The semilinear invariant problem is undecidable for closed invariants with p
matrices of dimension 3.

J. ACM, Vol. 72, No. 2, Article 11. Publication date: March 2025.



11:8 N. Fijalkow et al.

Fig. 1. Encoding using matrices: The partial solution consisting of three tiles on the left is encoded as three
real numbers on the right (here, a and b are digits). For each tile, we construct a matrix such that concate-
nating the tile on the left is equivalent to multiplying this vector by the matrix corresponding to the tile.

Let us consider an ω-PCP instance (ui ,vi )i ∈[1,p]. Without loss of generality the alphabet is Σ =
{0, 2}: This way, a word u = u1 . . .un ∈ Σ∗ is encoded as the digits of some real number in [0, 1]
in base 4 (with least significant digits to the right):

[u] =
n∑

i=1

ui 4
−i .

The choice of base 4 and digits in {0, 2} instead of the more canonical base 2 is for having a sparse
encoding, which will be useful for defining invariants. A finite wordw ∈ [1,p]∗ induces two finite
words uw ,vw ∈ Σ∗:

uw = uw1uw2 . . .uwn ; vw = vw1vw2 . . .vwn .

We say that w is a partial solution if either uw is a prefix of vw or vw a prefix of uw .
We encode w by the vector ([uw ] − [vw ], 4−|uw |, 4−|v

w | ) of dimension 3. Figure 1 illustrates the
encoding of ω-PCP. The remarkable property of this encoding is that adding the tile (ui ,vi ) to w ,
meaning consideringwi , corresponds to multiplying the vector by a fixed matrix Ai . Formally, for
a tile (ui ,vi ), we construct a 3 × 3 matrix Ai such that(

[uw ] − [vw ], 4−|uw |, 4−|v
w |
)
· Ai =

(
[uwi ] − [vwi ], 4−|uwi |, 4−|v

wi |
)
.

For a word w ∈ [1,p]∗, we define Aw : It is obtained by multiplying the matrices Ai follow-
ing w . For instance,3 A13,422 = A1A3A4A2A2. Note that the set of reachable points from x is
{x · Aw : w ∈ [1,p]∗}.

Let x = (0, 1, 1), the equality above implies that

x · Aw =
(
[uw ] − [vw ], 4−|uw |, 4−|v

w |
)
.

Let y = (0, 0, 0). Let us consider the system S = ({Ai }i ∈[1,p] ,x ,y). We now argue the ω-PCP
instance (ui ,vi )i ∈[1,p] does not have a solution if and only if there exists a closed separating
semilinear invariant for S .

We first show that the existence of a solution implies the non-existence of closed separating in-
variants. Considering the prefixes of a solution of the ω-PCP yields a sequence of vectors that con-
verges to the zero vector. In other words, in that case,y is in the topological closure of the reachable
set from x . This implies that there cannot exist a closed separating invariant (semilinear or not).

3Here, it is convenient to use row-vectors and multiply from the left, otherwise, the order would be reversed, e.g., A13,422 =

A2A2A4A3A1. This is the reason why we adopt this convention for undecidability proofs.
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Conversely, if there is no solution to the ω-PCP instance, then an application of König’s lemma
implies that there exists a bound N ∈ N such that there are no partial solutions of length greater
than N . It follows that for anyw ∈ [1,p]+ the first coordinate of x ·Aw , which is [uw ]−[vw ], is lower
bounded in absolute value by 4−N . From this observation, we can construct a closed separating
semilinear invariant (we refer to the full proof for details).

The Main Undecidability Result

The above reduction strongly relies on the fact that if the ω-PCP instance has a solution, then
the target belongs to the closure of the set of reachable points, since this property implies that
there cannot exist a closed separating invariant. To obtain the undecidability for the class of all
semilinear invariants, we refine the reduction above.

Theorem 3.2. The semilinear invariant problem is undecidable with p+4 matrices in dimension 8.

Reducing to Two Matrices

In the reductions above, we used p matrices in dimension 3 × 3 and p + 4 matrices in dimension
8 × 8. A standard transformation reduces the number of matrices by combining all matrices into
one large matrix A and adding a shift matrix Ashift, yielding the following result strengthening of
Theorem 1.1:

Corollary 3.3. The closed semilinear invariant problem is undecidable with 2 matrices of dimen-
sion 3p, and the semilinear invariant problem is undecidable with 2 matrices of dimension 8(p + 4).

3.2 Decidability for Simple Linear Loops

Our positive result concerns the case of a single matrix, classically called “simple linear loops.”
In this case, a system is (x ,A,y) and called an Orbit instance, and the orbit of A under x is
{Anx : n ∈ N}. The objective is to determine whether there exists a semilinear invariant, mean-
ing a semilinear set I such that x ∈ I, AI ⊆ I, and y � I. We say that an Orbit instance (x ,A,y)
is a reach-instance if y = Anx for some n; since it is decidable in polynomial time [20, 21] whether
(x ,A,y) is a reach-instance, we may always assume that the answer is negative. Our decidabil-
ity results are only concerned with closed invariants, which is crucial in several proofs. We might
sometimes omit the adjective “closed,” but it is understood that whenever we consider an invariant
it is closed.

Theorem 1.2. There is an algorithm that decides whether an Orbit instance with real algebraic coef-
ficients admits a closed semilinear invariant. Furthermore, for instances with rational inputs, it runs
in polynomial time assuming the dimension d is fixed.

Before giving an overview of the proof of Theorem 1.2, we highlight some of the difficulties that
occur by discussing a few examples.

Example 3.4. Consider the Orbit instance � = (x ,A,y) in dimension 2 where

A =
1

2

[
1 −2
2 1

]
,

x = (0, 1) and y = (− 3
2 , 0). The orbit is depicted on Figure 2 as the sequence of red dots.

The matrix A is a counterclockwise rotation around the origin with an expanding scaling factor.
A suitable semilinear invariant can be constructed by taking the complement of the convex hull of
a large enough number of points of the orbit and adding the missing points. In this example, we
can take

I = {x ,Ax} ∪ Conv ({Anx : n ≤ 7})c,
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11:10 N. Fijalkow et al.

Fig. 2. An invariant for Example 3.4.

which corresponds to the shaded region in Figure 2.

Example 3.5. Let us remove the expanding factor from the previous example by considering
instead the following matrix:

A1 =
1
√

5

[
1 −2
2 1

]
.

Now, A1 being a rotation of an irrational angle, the orbit of x is dense in the circle of radius 1. It
is not too difficult to prove that there are no closed semilinear invariants (except for the whole
space R2) for this instance, for any value of y. This gives a first instance of non-existence of a
semilinear invariant. Many such examples exist, and we will next describe a more subtle one. Note
that natural (non-semilinear) invariants do exist, such as the unit circle, which is a semi-algebraic
set but not a semilinear one.

Example 3.6. Consider � = (A2,x ,y) in dimension 4 with

A2 =

[
A1 I2
0 A1

]
,

where A1 is the matrix from Example 3.5, x = (0, 0, 1, 0) and y is arbitrary. When repeatedly ap-
plying A1 to x , the last two coordinates describe a circle of radius 1 as in the previous example.
However, the first two coordinates diverge: At each step, they are rotated and the last two coordi-
nates are added. Again, it is the case that there are no semilinear invariants (except again for the
whole space R4), but it is much harder to prove than for Example 3.5.

However, even in instances similar to the one above, it may be the case that some coarse infor-
mation in the input can still be captured by a semilinear invariant; for instance, if two synchronised
blocks have some identical components. Let us illustrate this on an example.

Example 3.7. Consider the Orbit instance � = (x ,A,y) in dimension 8 where

A =

[
A2

A2

]
,

x = (0, 0, 1, 0, 0, 0, 1, 0) and y = (0, 0, 0, 1, 0, 0, 0, 2). We know from the previous example that when
projecting on each block separately, there are only trivial semilinear invariants. However, there is
indeed a semilinear invariant that exploits the synchronous behavior between the two blocks:

I =
{
z ∈ R4 : z1 = z3 and z2 = z4

}
.

This invariant has the property of being “strongly minimal”: It is contained in any semilinear set
J satisfying AJ ⊆ J and Anx ∈ J for some n (this will be defined more formally below).
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Fig. 3. The minimal semilinear invariant for Example 3.8.

Let us discuss two more examples having such strongly minimal semilinear invariants.

Example 3.8. Consider (A,x) in dimension 3 with

A =

[
A1 0
0 −1

]
,

where A1 is the matrix of Example 3.5 and x = (1, 0, 1). As we iterate the matrix A, the two first
coordinates describe a circle, and the third coordinate alternates between 1 and −1: The orbit is
dense in the union of two parallel circles (see Figure 3). In this example, the strongly minimal
semilinear invariant is the union of the two planes containing these circles.

Example 3.9. Consider (A,x) in dimension 8 with

A =

[
A2 0
0 −A2

]
,

whereA2 is the matrix from Example 3.6. This can be seen as two instances of Example 3.6 running
in parallel. Let x = (0, 0, 1, 0, 0, 0,−7, 0), and note that both blocks of x are initially related by
a multiplicative factor, namely, −7(x1,x2,x3,x4) = (x5,x6,x7,x8). Moreover, as the first block is
multiplied by the matrix A2 while the second one is multiplied by −A2, the multiplicative factor
relating the two blocks alternates between 7 and −7. Hence,

I =
{
u ∈ R8 : (u1,u2,u3,u4) = ±7(u5,u6,u7,u8)

}
is a semilinear invariant, which one can prove to be strongly minimal. Note that I has dimension
4. If, however, we let x = (0, 0, 1, 0, 0, 1,−7, 0), then the strongly minimal semilinear invariant
becomes

I =
{
u ∈ R8 : (u3,u4) = ±7(u7,u8)

}
,

which has dimension 6. This shows that the strongly minimal semilinear invariant depends on x .
Intuitively, in the second case no semilinear relation holds between (u1,u2) and (u5,u6).

Proof overview. To prove Theorem 1.2, we proceed in three steps.

(1) Identify positive cases, such as the one in Example 3.4, in which semilinear invariants always
exist. These instances are called “simple instances.”

(2) Reduce a non-simple instance to a so called “core instance.”
(3) Prove that core instances admit only trivial semilinear invariants.

We now provide more details for each step separately.
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11:12 N. Fijalkow et al.

Positive cases. The positive cases we identify fall into three categories:

(i) There is a Jordan block J whose eigenvalue has modulus > 1 and such that x J � 0 (this is
just like Example 3.4).

(ii) There is a Jordan block J whose eigenvalue has modulus < 1 and such that y J � 0.
(iii) There is a non-diagonal Jordan block J whose eigenvalue is a root of unity and such that

x J ,>1 � 0, which means that x has a non-zero coordinate on block J , which is not the first
one.

We say that an instance is simple if it satisfies one of the three cases above and that it is non-
simple otherwise. In each of these cases, we rely on the divergent behavior of the orbit to construct
a semilinear invariant.

Theorem 3.10. Simple instances admit semilinear invariants.

While cases (i) and (iii) are fairly straightforward, (ii) is more involved. Details are presented in
Section 5.2.

Core instances. We now explain the third step, which amounts to identifying a class of core
instances for which no non-trivial semilinear invariant exist. We say that a pair (x ,A) defines a
core pair4 if

—A is in Jordan normal form.
— All eigenvalues of A have modulus 1.
— No eigenvalue of A is a root of unity.
— Two different Jordan blocks of A are associated with different eigenvalues λ � λ′, and such

that neither their product nor their quotient is a root of unity.
— For all Jordan blocks J , we have x J ,d (J ) � 0, meaning the last coordinate of x on each block

is non-zero.

Intuitively, in a core pair, no synchronisation phenomena may occur, so there exist only trivial
invariants.

Theorem 3.11. Let (x ,A) be a core pair of dimension d . The only closed semilinear set stable under

A and containing x is Cd .

The proof of Theorem 3.11 is long and technical, it is the object of Section 6.

Reductions. The second step hence aims at reducing a non-simple orbit instance (x ,A,y) to a core
pair (x ′,A′). Towards this goal, we develop different reductions allowing for instance to remove
Jordan blocks where x is zero, or to identify blocks J and J ′ when the associated eigenvalues
λ and λ′ satisfy some equations of the form (λλ′)n = 1 or λn = λ′n . In essence, this allows to
capture linear relations that may hold for x among Jordan blocks with a synchronised behavior, as
in Examples 3.6, or 3.9. Figure 4 displays our full pipeline of reductions; formal definitions for all
classes of instances we consider appear in Section 5.3.

This allows us to conclude with the implications on the right-hand side of the figure. In the state-
ment below, conjugated instances refer to those instances in Jordan normal form which originate
from real matrices; for formal definition, we refer to Section 5.3.

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a
non-simple conjugated Orbit instance admits a semilinear invariant.

Details about reductions and establishing Theorem 3.12 are given in Section 5.3.

4Here, y is irrelevant, so we speak of pairs (x, A) rather that Orbit instances (x, A, y).
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Fig. 4. The pipeline of reductions, from non-simple real orbit instances to core pairs.

4 Undecidability Proofs

The structure of this section follows the outline given in Section 3; we rely on the explanations
given there but state and prove all technical details here.

4.1 Proof of Theorem 3.1

We start with proving Theorem 3.1: The semilinear invariant problem is undecidable for closed
invariants with p matrices of dimension 3. We refer to Section 3.1 for the definition of ω-PCP, a
sketch of the proofs, and the statements. Recall that p is the smallest number such that the ω-PCP
is undecidable with a fixed number of tiles p for an alphabet of size 2; we know that p ≤ 8 [10].

Let us consider an ω-PCP instance (ui ,vi )i ∈[1,p] over some alphabet Σ of size 2. A finite word
w ∈ [1,p]∗ induces two finite words uw ,vw ∈ Σ∗:

uw = uw1uw2 . . .uwn ; vw = vw1vw2 . . .vwn .

We say that w is a partial solution if either uw is a prefix of vw or vw a prefix of uw . We state (and
prove for the sake of completeness) a classical lemma on ω-PCP.

Lemma 4.1. Let (ui ,vi )i ∈[1,p] be an ω-PCP instance and w ∈ [1,p]ω .

— The infinite word w ∈ [1,p]ω is a solution if and only if all prefixes of w are partial solutions.
— If there are no solutions, then there exists a bound N such that all partial solutions have length

at most N .

Proof. The first item is clear, so we focus on the second. We consider the infinite tree with
branching [1,p]: The set of nodes is [1,p]∗. We remove from the tree a node w if w is not a partial
solution (note that we remove all of the descendants ofw , since they are also not partial solutions).
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11:14 N. Fijalkow et al.

Since the ω-PCP instance (ui ,vi )i ∈[1,p] does not have a solution, there are no infinite paths in this
tree. The tree is finitely branching, so König’s lemma implies that it is finite. Let N be the depth of
this finite tree, then there are no partial solutions of length greater than N . �

Let us write 0 and 2 for the two letters in Σ, meaning Σ = {0, 2}: This way, a wordu = u1 . . .un ∈
Σ∗ is encoded as the digits of some real number in [0, 1] in base 4 (with least significant digit to
the right):

[u] =
n∑

i=1

ui 4
−i .

The choice of base 4 and digits in {0, 2} instead of the more canonical base 2 is for having a “sparse”
encoding as explained later. We encode w ∈ [1,p]∗ by the vector ([uw ] − [vw ], 4−|uw |, 4−|v

w | ) of
dimension 3. The remarkable property of this encoding is that adding the tile (ui ,vi ) tow , meaning
considering wi , corresponds to multiplying the vector by the following matrix Ai :

Ai =

⎡⎢⎢⎢⎢⎣
1 0 0
[ui ] 4−|ui | 0
−[vi ] 0 4−|vi |

⎤⎥⎥⎥⎥⎦ .
For w ∈ [1,p]ω , we write w1...n for the prefix of length n of w . For w ∈ [1,p]∗, we define

Aw as follows: Aw is obtained by multiplying the matrices Ai following w , for instance A13,422 =

A1A3A4A2A2.
Let x = (0, 1, 1). We state in the following lemma the key properties of the encoding:

Lemma 4.2. Let (ui ,vi )i ∈[1,p] be an ω-PCP instance.

(1) Let w ∈ [1,p]∗, we have x · Aw = ([uw ] − [vw ], 4−|uw |, 4−|v
w | ).

(2) Let us write x · Aw = (s, c,d). Then:
— If w is a partial solution, then |s | ≤ 2

3 (c + d).
— If w is not a partial solution, then |s | > 2

3 (c + d).
(3) Let z = (s, c,d) and α ≥ 0. Let us write z ·Ai = (s ′, c ′,d ′) for some i ∈ [1,p]. If |s | ≥ 2

3 (c + d)+α ,

then |s ′ | ≥ 2
3 (c
′ + d ′) + α .

Proof. We prove the three items.

(1) The calculation for x · Aw is done by induction on w , noting that:

([uw ] − [vw ], 4−|uw |, 4−|v
w | · Ai = ([uwui ] − [vwvi ], 4−|u

w ui |, 4−|v
w vi | ),

since [uwui ] = [uw ] + 4−|u
w | [ui ] and [vwvi ] = [vw ] + 4−|v

w | [vi ].
(2) Let x · Aw = (s, c,d).

— Assume that w is a partial solution: Either uw is a prefix of vw or the other way around.
Assume the former holds: We have vw = uwu ′ for some u ′. This implies that [vw ] =
[uw ] + 4−|u

w | [u ′]. Since [u ′] ≤ 1, we obtain

|s | = |[vw ] − [uw ]| ≤ 4−|u
w | = c .

In the other case, the same reasoning yields |s | ≤ d . Thus, |s | ≤ 1
2 (c + d) ≤

2
3 (c + d).

— Assume that w is not a partial solution, and let us write n for the smallest position such
that uw

n � v
w
n . Then,

[uw ] − [vw ] =
(
uw

n −vw
n

) 1

4n
+
∑

j≥n+1

(
uw

j −vw
j

) 1

4j
.
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The choice of base 4 and digits in {0, 2} is all contained in the following calculations. Since
uw

n � vw
n and they are digits in {0, 2}, we have |uw

n − vw
n | = 2. For j ≥ n + 1, we have

|uw
j −vw

j | ≤ 2 so ����� ∑
j≥n+1

(uwi
j −vwi

j )
1

4j

����� < 2

4n+1
·
∑
j≥0

1

4j
=

2

3
· 1

4n
.

It follows that

|s | = |[uw ] − [vw ]| > 2 · 1

4n
− 2

3
· 1

4n

=
4

3
· 1

4n

≥ 2

3
(c + d) .

In the last inequality, we use n ≤ |uw | and n ≤ |vw |.
(3) Let z = (s, c,d) and z · Ai = (s ′, c ′,d ′) for some i ∈ [1,p]. Assume that |s | ≥ 2

3 (c + d) + α .

|s ′ | = |s + c[ui ] − d[vi ]| ≥ |s | − c[ui ] − d[vi ]
≥ 2

3 (c + d) + α − c[u
i ] − d[vi ]

=

(
2

3
− [ui ]

)
︸������︷︷������︸
≥ 2

3 ·4−|u
i |

c +

(
2

3
− [vi ]

)
︸������︷︷������︸
≥ 2

3 ·4−|v
i |

d + α

≥ 2
3 (c
′ + d ′) + α .

We have used the inequality 2
3 − [u] ≥

2
3 · 4

−|u | , valid for |u | ≥ 1. Thus, |s ′| ≥ 2
3 (c
′ + d ′) + α .

�

Let y = (0, 0, 0). We construct the linear dynamical system S = ({Ai }i ∈[1,p] ,x ,y).

Lemma 4.3. The ω-PCP instance (ui ,vi )i ∈[1,p] does not have a solution if and only if there exists a
closed separating semilinear invariant for S .

Proof. We distinguish two cases.

— Either the ω-PCP instance (ui ,vi )i ∈[1,p] has a solutionw ∈ [1,p]ω . Thanks to Lemma 4.2, we
have that for all n ∈ N,

x · Aw1. . .n =
(
[uw1. . .n ] − [vw1. . .n ], 4−|uw1. . .n |, 4−|v

w1. . .n |
)
.

Since w is a solution, w1...n is a partial solution, so, again, thanks to Lemma 4.2:

|[uw1. . .n ] − [vw1. . .n ]| ≤ 2

3

(
4−|u

w1. . .n | + 4−|v
w1. . .n |

)
,

implying that limn x · Aw1. . .n = (0, 0, 0) = y. In other words, y ∈ {x · Aw : w ∈ [1,p]∗}, the
topological closure of the set of reachable points from x .
Note that an invariant set I for S containing x also contains the set of reachable points from
x . If additionally I is closed, then it contains its closure, hence it contains y. Thus, there are
no closed semilinear invariants for S (note that we did not use semilinearity here).
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— Or the ω-PCP instance (ui ,vi )i ∈[1,p] does not have a solution. Thanks to Lemma 4.1, there
exists a bound N such that all partial solutions have length less than N . Let

α = min

{
|s | − 2

3
(c + d) : x · Aw = (s, c,d) and |w | = N

}
,

thanks to Lemma 4.2, we have α > 0.
Let us define the sets

I1 = {x · Aw : |w | < N } ,
I2 =

{
(s, c,d) : |s | ≥ 2

3 (c + d) + α
}
,

I = I1 ∪ I2.
We argue that I is a separating closed semilinear invariant. It is easy to see that I is closed,
semilinear, contains x , and does not contain y. We show that I is indeed an invariant: Let
z ∈ I, we show that z · Ai ∈ I. We distinguish two cases.
— Either z ∈ I1, meaning z = x ·Aw for |w | < N . Then, z ·Ai = x ·Awi . If |w | < N − 1, then
|wi | < N , so z · Ai = x · Awi ∈ I1. Otherwise, |wi | = N , let us write z · Ai = (s, c,d). Since
there are no partial solutions of length N , thanks to Lemma 4.2 and the definition of α , we
have |s | ≥ 2

3 (c + d) + α . This shows that z · Ai ∈ I2.
— Or z ∈ I2. Thanks to Lemma 4.2, we have z · Ai ∈ I2. �

4.2 Proof of Theorem 3.2

For technical convenience, it will be useful to use affine transitions instead of linear ones; an affine
transition is of the form z ← z·A+a for a matrixA and a vectora. A classical transformation reduces
affine transitions to linear ones by adding a single dimension, as stated in the following lemma:

Lemma 4.4. Let S be a dynamical system with affine transitions in dimension d , we can construct a
linear dynamical system S ′ in dimensiond+1 such that there exists a (semilinear) separating invariant
for S if and only if there exists a (semilinear) separating invariant for S ′.

We work in dimension 7 and divide a vector z = (s, c,d,n,u,v,m) in two blocks: (s, c,d,n) and
(u,v,m). Let us define operations on each block:

— Resetting (s, c,d,n) is to perform the following operations, abbreviated Reset(s, c,d,n):
s ← 0 ; c ← 1 ; d ← 1 ; n ← 0.

We say that (s, c,d,n) is “reset” if (s, c,d,n) = (0, 1, 1, 0).
— Simulating i on (s, c,d,n) is to perform the following operations, abbreviated

Simulationi (s, c,d,n), wherem = max(|ui |, |vi |):
s ← 4m (s + [ui ]c − [vi ]d) ; c ← 4m−|ui |c ; d ← 4m−|vi |d ; n ← n + 2.

— Resetting (u,v,m) is to perform the following operations, abbreviated Reset(u,v,m):
u ← 0 ; v ← 0 ; m ← 0.

We say that (u,v,m) is “reset” if (u,v,m) = (0, 0, 0).
We can now define the transitions.

— For each i ∈ [1,p], the transition ti does the following: Simulationi (s, c,d,n) ; Reset(u,v,m).
— The transition ttransfer does the following: u ← 3s − 2c − 2d ; v ← −3s − 2c − 2d ; m ←
n ; Reset(s, c,d,n).

— The transition tincrease(u) does the following: Reset(s, c,d,n) ; u ← u + 1.
— The transition tincrease(v) does the following: Reset(s, c,d,n) ; v ← v + 1.
— The transition tdecrease(m) does the following: Reset(s, c,d,n) ; m ←m − 2.
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For a word w ∈ [1,p]∗, we write tw for the composition of the transitions ti following w : for
instance, t1423 = t1t4t2t3.

Let x̂ = (0, 1, 1, 0, 0, 0, 0) and ŷ = (0, 1, 1, 0, 0, 0, 1). We consider the system

Ŝ =
(
{ti : i ∈ [1,p]} ∪

{
ttransfer, tincrease(u), tincrease(v), tdecrease(m)

}
, x̂ , ŷ

)
.

Lemma 4.5. The ω-PCP instance (ui ,vi )i ∈[1,p] does not have a solution if and only if there exists a

separating semilinear invariant for Ŝ .

Since Ŝ uses affine transitions in dimension 7, we obtain an equivalent system using linear tran-
sitions in dimension 8 using Lemma 4.4.

Proof. We distinguish two cases.

— Either the ω-PCP instance (ui ,vi )i ∈[1,p] has a solutionw ∈ [1,p]ω . Let us consider a semilin-

ear invariant I for Ŝ containing x̂ , and show that it necessarily contains ŷ.
Let us consider the set I′ = {m ∈ R : (0, 1, 1, 0, 0, 0,m) ∈ I}. It is semilinear by closure

under sections (Lemma 2.3). We argue that it contains all even natural numbers.
Let n ∈ N. Starting from x̂ and applying the transitions tw1 , tw2 , . . . , twn

, we reach
(sn , cn ,dn , 2n, 0, 0, 0) with sn , cn ,dn ∈ Z satisfying |sn | ≤ 2

3 (cn + dn). Then, applying the
transition ttransfer, we obtain (0, 1, 1, 0,un ,vn , 2n) with un ,vn ∈ Z satisfying un ≤ 0 and
vn ≤ 0. From there, applying the transitions tincrease(u) exactly −un times and tincrease(v) ex-
actly −vn times yields (0, 1, 1, 0, 0, 0, 2n). Since I is invariant and contains x this implies that
(0, 1, 1, 0, 0, 0, 2n) ∈ I, so 2n ∈ I′.

Since any infinite semilinear set in dimension 1 over the reals must contain an odd natural
number, it follows thatI contains (0, 1, 1, 0, 0, 0, 2m+1) for somem ∈ N. Indeed, a semilinear
set in dimension 1 is a finite union of intervals, so if it contains all even natural numbers,
then it must contain at least one odd number. Applying the transition tdecrease(m) exactly
m times, we conclude that I contains ŷ = (0, 1, 1, 0, 0, 0, 1). Thus, there are no separating
semilinear invariants for Ŝ .

— Or the ω-PCP instance (ui ,vi )i ∈[1,p] does not have a solution. Thanks to Lemma 4.1, there
exists a bound N such that all partial solutions have length less than N . Let us define

I1 = {tw (x̂) : w ∈ [1,p]∗ with |w | < N , and (u,v,m) is reset} ,
I2 =

{
z : |s | > 2

3 (c + d) and (u,v,m) is reset
}
,

I3 = {z : (m ≤ 0 orm ∈ 2 · [0,N ] or u > 0 or v > 0) , and (s, c,d,n) is reset} ,
I = I1 ∪ I2 ∪ I3.

We argue that I is a separating semilinear invariant for Ŝ . First I is semilinear, contains x̂
(because I1 does) and not ŷ.

We show that I is invariant. Let z = (s, c,d,n,u,v,m) ∈ I, in the following case dis-
tinction, we write t(z) = (s ′, c ′,d ′,n′,u ′,v ′,m′). We distinguish three cases, and for each
consider all types of transitions:
— If z ∈ I1, then z = tw (x̂) for some w ∈ [1,p]∗ with |w | < N .
∗ For i ∈ [1,p], we have ti (z) ∈ I1 or ti (z) ∈ I2: if |w | < N − 1, then ti (z) = twi (x̂) ∈ I1,

since |wi | < N , otherwise, |wi | = N and, since there are no partial solutions of length N ,
wi is not a partial solution, so, thanks to Lemma 4.2, we have |s ′ | > 2

3 (c
′ + d ′), implying

that ti (z) ∈ I2.
∗ We have ttransfer(z) ∈ I3: since n ∈ 2 · [0,N ], we havem′ = n ∈ 2 · [0,N ].
∗ We have tincrease(u)(z) ∈ I3: we havem = 0 som′ = 0.
∗ We have tincrease(v)(z) ∈ I3: we havem = 0 som′ = 0.
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∗ We have tdecrease(m)(z) ∈ I3: we havem = 0 som′ = −2.
— If z ∈ I2, then |s | > 2

3 (c + d).
∗ For i ∈ [1,p], we have ti (z) ∈ I2: thanks to Lemma 4.2, because (u,v,m) is reset.
∗ We have ttransfer(z) ∈ I3: either u ′ > 0 or v ′ > 0.
∗ We have tincrease(u)(z) ∈ I3: we havem = 0 som′ = 0.
∗ We have tincrease(v)(z) ∈ I3: we havem = 0 som′ = 0.
∗ We have tdecrease(m)(z) ∈ I3: we havem = 0 som′ = −2.

— If z ∈ I3, thenm ≤ 0 or (m ∈ 2 · [0,N ]) or u > 0 or v > 0.
∗ For i ∈ [1,p], we have ti (z) ∈ I1: indeed, ti (z) = ti (x̂).
∗ We have ttransfer(z) ∈ I3: indeed, n = 0 som′ = 0.
∗ We have tincrease(u)(z) ∈ I3: indeed, m ≤ 0 orm ∈ 2 · [0,N ] or u > 0 or v > 0, so
m′ ≤ 0 orm′ ∈ 2 · [0,N ] or u ′ > 0 or v ′ > 0.
∗ We have tincrease(v)(z) ∈ I3: indeed, m ≤ 0 orm ∈ 2 · [0,N ] or u > 0 or v > 0, so
m′ ≤ 0 orm′ ∈ 2 · [0,N ] or u ′ > 0 or v ′ > 0.
∗ We have tdecrease(m)(z) ∈ I3: indeed,m ≤ 0 orm ∈ 2 · [0,N ], som′ ≤ 0 orm ∈ 2 · [0,N −1].

It follows that I is a semilinear invariant for Ŝ . �

4.3 Proof of Corollary 3.3

Consider a linear dynamical system Sd = ({Ai }i ∈[1,p] ,x ,y) in dimension d , we construct a second
linear dynamical system Spd = ({A,Ashift} ,x ′,y ′) in dimension pd using only two matrices such
that there exists a (closed, semilinear) separating invariant for Sd if and only if there exists a (closed,
semilinear) separating invariant for Spd .

We let Id denote the identity matrix of size d × d , 0d,d ′ the zero matrix of size d × d ′, and 0d the
zero vector of size d . In particular, for d ′ = 1, we write 0d for the zero vector of size d . We now
define A and Ashift:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A1 · · · 0

A2
...

...
. . .

0 · · · Ap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ashift =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0d,d Id 0d,d

. . .

Id
Id 0d,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For z ∈ Rd and i ∈ [1,p], the ith shift z↓i ∈ Rpd of z is

z↓i =

⎡⎢⎢⎢⎢⎣
0d (i−1)

z
0d (p−i)

⎤⎥⎥⎥⎥⎦ .
Note that z↓i · Ashift = z↓(i mod p)+1, justifying the name “shift.”

We let x ′ = x ↓1 and y ′ = y↓1.

Lemma 4.6. Let Sd be a linear dynamical system using p matrices, the linear dynamical system
Spd constructed above satisfies the following: There exists a (closed, semilinear) separating invariant
for Sd if and only if there exists a (closed, semilinear) separating invariant for Spd .

Proof. Let I be a separating invariant for Sd . Let

J =
p⋃

i=1

{
z↓i ∈ Rpd : z ∈ I

}
.

We argue that J is a separating invariant for Spd Clearly, x ′ ∈ J and y ′ � J . Let z↓i ∈ J for
i ∈ [1,p], then z↓i · Ashift = z↓(i mod p)+1, which is in J , and z↓i · A = (z · Ai )↓i ∈ J is also in
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J . Thus, J is a separating invariant for Spd , and it is closed and semilinear if I is closed and
semilinear.

Conversely, let J be a separating invariant for Spd . Let

I =
{
z ∈ Rd : z↓1 ∈ J

}
.

We argue that I is a separating invariant for Sd . Clearly, x ∈ I and y � I. Let z ∈ I and i ∈ [1,p],
we show that z · Ai ∈ J , i.e., (z · Ai )↓1 ∈ I. We have

(z · Ai )↓1 = z↓1 · Ai−1
shift · A · A

d−i+1
shift ∈ J ,

since z↓1 and I is invariant under A and Ashift. Thus, I is a separating invariant for Sd , and it is
closed and semilinear if J is closed and semilinear. �

Corollary 3.3 directly follows:

— Theorem 3.1 yields undecidability for p matrices of dimension 3, and using Lemma 4.6 this
implies undecidability for 2 matrices of dimension 3p.

— Theorem 3.2 yields undecidability for closed invariants for p + 4 matrices of dimension 8,
and using Lemma 4.6 this implies undecidability for 2 matrices of dimension 8(p + 4).

5 Decidability Proof: Reducing to Core Instances

This section details the two first steps in our proof of Theorem 1.2. Section 5.1 introduces some
terminology about reductions and Jordan normal form. Then, in Section 5.2, we eliminates simple
instances, thereby proving Theorem 3.10. Last, in Section 5.3, we proceed to reduce from real non-
simple instances to core pairs, establishing Theorem 3.12.

5.1 Reductions and Jordan Normal Form

Reductions between Orbit instances. Recall that an Orbit instance is (x ,A,y),where x is the initial
vector, A is a matrix, and y the target vector.

A reduction from a class of Orbit instances C to another class of Orbit instances C ′ consists of
the following:

— A function R mapping an Orbit instance � ∈ C to an Orbit instance R(�) ∈ C ′.
— For each Orbit instance � ∈ C , a function ϕ mapping any semilinear invariant I of � into a

semilinear invariant ϕ(I) of R(�).
— A functionψ mapping any semilinear invariant I′ of R(�) into a semilinear invariantψ (I′)

of �.

We say that the reduction is polynomial time if all involved functions are computable in poly-
nomial time. Clearly, if C reduces to C ′, then for all � ∈ C , we have that � and R(�) are equivalent:
One admits a semilinear invariant if and only if the other one does.

We will also consider reductions where we construct many Orbit instances instead of a single
one; the definitions above are easily adapted to this scenario.

From real to complex Orbit instances. It is crucial in our proof to reduce a matrix to its Jordan
normal (recalled below). This requires working with complex semilinear invariants, which is not
an issue, thanks to the following Lemma:

Lemma 5.1. There exists a polynomial time reduction from real Orbit instances to complex Orbit
instances using complex semilinear invariants.

Proof. Let � = (x ,A,y) be a real Orbit instance. We show that � admits a real semilinear in-
variant if and only if it admits a complex one. Let I be a real semilinear invariant for � and let
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I′ =
{
z ∈ Cd : Re (z) ∈ I and Im (z) = 0

}
. Then, I′ is a complex semilinear set, x ∈ I ′, y � I ′ and

AI′ ⊆ I′, so it is complex invariant for �. Conversely, let I be a complex semilinear invariant for
� and let I′ be the section of I along the real numbers:

I′ = {v ∈ Rd : ∃z ∈ I,v = Re (z) and Im (z) = 0}.

Then, I′ is a (real) semilinear set by Lemma 2.3, x ∈ I′, since x is real, y � I′ for the same
reason and AI′ ⊆ I′, since A has real coefficients. Therefore, I′ is a (real) semilinear invariant
for �. �

Jordan normal form. Recall that every matrix A can be written in the form A = Q−1 JQ , where
Q is invertible and J is in Jordan normal form (JNF), meaning that J is a diagonal block matrix
where the blocks (called Jordan blocks) are of the form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ
. . .

. . . 1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The complex number λ is an eigenvalue ofA. We will sometimes use notation Jd (λ) for the Jordan
block of size d with eigenvalue λ. A Jordan block of dimension one is called diagonal, and A is
diagonalisable if and only if all Jordan blocks are diagonal. Note that the transformation into the
Jordan normal form can be performed in polynomial time [3, 4].

The following convenient lemma states that changes of bases define structured reductions.

Lemma 5.2. Consider a class of Orbit instances C along with a fixed invertible matrix Q� for each
� = (x ,A,y) ∈ C , computable in polynomial time. There is a polynomial time reduction from C to
C ′ = {(Q−1

�
x ,Q−1

�
AQ�,Q

−1
�
y) | � = (x ,A,y) ∈ C}.

Proof. Fix � = (x ,A,y) ∈ C and let Q denote Q� and �′ = (Q−1x ,Q−1AQ,Q−1y) = (x ′,A′,y ′).
Let I be an semilinear invariant for �: x ∈ I,AI ⊆ I and y � I. Let I′ = Q−1I. Then, x ′ =

Q−1x ∈ Q−1I = I′, likewise, y ′ = Q−1y ∈ I′ and A′I′ = Q−1AQQ−1I = Q−1AI ⊆ Q−1I = I′.
Therefore, I′ is a semilinear invariant for �′. Conversely, given a semilinear invariant I′ for �′,
the proof that I = QI′ is a semilinear invariant for � follows exactly the same lines. �

Notations regarding coordinates and Jordan blocks. WhenA is in JNF, we index the d coordinates
in the matrix A by pairs (J ,k), where J ranges over the Jordan blocks of A and k ∈ {1, . . . ,d(J )},
with d(J ) being the dimension of the Jordan block J . For instance, if the matrix A has two Jordan
blocks, J1 of dimension 1 and J2 of dimension 2, then the three dimensions of A are (J1, 1) and
(J2, 1), (J2, 2).

For z ∈ Cd and a subset S of dimensions, we let zS be the projection of z on the dimensions in
S , and extend this notation to matrices. For instance, z J ∈ CJ is the vector corresponding to the
dimensions of the Jordan block J , and z J ,>k is its projection on the coordinates of the Jordan block
J whose indices are greater than k . We write Sc for the dimensions that are not in S . We also write
πS : Cd → CS , where S is a set of coordinates, for the projection z �→ zS .

Conjugated instances. We say that a matrix A is conjugated if it is in JNF and there is an invo-
lution J �→ J ∗ between its Jordan blocks such that for all blocks, AJ ∗ = A∗J . We say that an orbit
instance (x ,A,y) is conjugated if A is conjugated and, moreover, for all blocks J , we have x J ∗ = x∗J
and y J ∗ = y

∗
J .
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The generalized eigenspace theorem states that for real matrices A, there is an invertible matrix
Q such that

Q−1AQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jd1(λ1)
. . .

Jdr
(λr )

Jd ′1
(λ′1)

Jd ′1
(λ′1
∗)
. . .

Jd ′s (λ′s )
Jd ′s (λ′s

∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the λi ’s are real and the λ′i ’s are non-real. Moreover, Q and Q−1 are of the form

Q =
[
Q1 . . . Qr Q ′1 Q ′1

∗ . . . Q ′s Q ′s
∗] , Q−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1
...
Tr

T ′1
T ′1
∗

...
T ′s
T ′S
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the Qi ,Ti ’s are matrices and all above matrices can be computed in in polynomial time
[3, 4]. We give a more detailed proof of this fact in Appendix D. Now, if x and y are taken to be
real vectors, then it follows that the Orbit instance (Q−1x ,Q−1AQ,Q−1y) is conjugated. Combining
this observation with Lemma 5.1 and 5.2, we obtain the following:

Corollary 5.3. There is a polynomial time reduction from real Orbit instances to complex conju-
gated instances in JNF.

5.2 Positive Cases

We now eliminate some positive cases. Recall that an Orbit instance � = (x ,A,y) is simple if either

— there is a Jordan block J whose eigenvalue has modulus > 1 and such that x J � 0; or
— there is a Jordan block J whose eigenvalue has modulus < 1 and such that y J � 0; or
— there is a non-diagonal Jordan block J whose eigenvalue is a root of unity and such that
x J ,>1 � 0.

The goal of this section is to establish the following result:

Theorem 3.10. Simple instances admit semilinear invariants.

It is naturally broken into three parts, which correspond to the three cases above.

5.2.1 Some Eigenvalue Has Modulus Greater than 1. We start with a simple technical lemma.

Lemma 5.4. Let x1, . . . ,xn ∈ C and ρ1, . . . , ρn ∈ (0,∞). If Conv ({x1, . . . ,xn}) contains an open
ball centered at 0, then Conv ({ρ1x1, . . . , ρnxn}) contains an open ball centered at 0.

Proof. LetC = Conv ({x1, . . . ,xn}) andC ′ = Conv ({ρ1x1, . . . , ρnxn}). Assume that B(0, ε) ⊆ C
and let z ∈ B(0, ε). Then, there exists α1, . . . ,αn ∈ [0, 1], such that

∑n
i=1 αixi = z and

∑n
i=1 αi = 1.
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Let γi =
αi

ρi
and Γ =

∑n
i=1 γi . Let α ′i =

γi

Γ , then α ′i ∈ [0, 1] and
∑n

i=1 α
′
i = 1 by definition. Therefore,∑n

i=1 α
′
i ρixi ∈ C ′ but

∑n
i=1 α

′
i ρixi =

1
Γ

∑n
i=1 αixi =

z
Γ . This shows that B(0, ε

Γ ) =
1
ΓB(0, ε) ⊆ C ′. �

Lemma 5.5. Let λ be a complex non-real number and x be a non-zero complex number. Then, there
exists n ∈ N such that Conv

({
λix : i ∈ [0,n]

})
contains an open ball centered at 0.

Proof. Let α = λ
|λ | , which is also non-real. We claim that there exists n such that Cn :=

Conv
({
α i : i ∈ [0,n]

})
contains an open ball B(0, ε) for some ε > 0. Indeed, let θ = Arg (α) where

Arg (·) ∈ (−π ,π ] denotes the principal argument. Then, θ � {0,π }, since α is not real.

— If θ � πQ, then
{
α i : i ∈ N

}
is dense in the unit circle. Therefore, for sufficiently large n, Cn

contains four points at distance at most 1
2 from 1, i , −1 and −i . The resulting four points will

then form a polygon that contains the open ball B(0, 1√
2
).

— Otherwise, the set
{
α i : i ∈ N

}
is finite and equal to the group of the nth roots of unity for

some n � 3 (n � 1, 2 for otherwise θ ∈ {0,π }). Therefore, Cn is a regular polygon with n
faces, centered at the origin, so it contains an open ball of radius 1/2, centered at the origin.

It follows by Lemma 5.4, for ρi = |λi | > 0, thatC ′n := Conv
({
λi : i ∈ [0,n]

})
contains an open ball

B(0, ε ′) for some ε ′ > 0. But then, Conv
({
λix : i ∈ [0,n]

})
= C ′nx ⊃ B(0, ε ′)x = B(0, ε ′|x |), which

is open, since x � 0. �

Lemma 5.6. Let λ be a complex non-real number of modulus greater than 1 and x be a non-zero
complex number. Then, the sequence of polyhedra

(
Conv

({
λix : i ∈ [0,n]

}) )
n∈N is strictly increasing

and its union is C.

Proof. Let Cn = Conv
({
λix : i ∈ [0,n]

})
for all n ∈ N. To see that the sequence is strictly

increasing, observe that for all n in N, we have Cn ⊆ B(0, |λ |n · |x |). It follows that λn+1x is not in
Cn . To see that its union is C, apply Lemma 5.5 to get n0 such thatCn0 contains an open ball B(0, ε)
for some ε > 0. Then, note that for any n ∈ N,

Cn0+n ⊇ Conv
({
λn0+ix : i ∈ [0,n]

})
= λkCn0 ⊃ λkB(0, ε) = B(0, |λ |kε).

This concludes because the union of all such balls for n ∈ N is C, since |λ | > 1. �

Theorem 5.7. Let � = (x ,A,y) be a non-reach Orbit instance in JNF. If there exists a Jordan block
J associated with an eigenvalue whose modulus is greater than 1 and such that x J � 0, then there
exists a semilinear invariant for �.

On an intuitive level first: Some coordinate of (Anx)n∈N diverges to infinity, so eventually gets
larger in absolute value than the corresponding coordinate in y. This allows us to construct an
invariant for � by taking the first points and then all points having a large coordinate in the di-
verging dimension. For the invariant to be semilinear, we consider the complement of the convex
envelope of an initial segment of points.

Proof. We distinguish two cases. Let (J , s) denote the last coordinate of the Jordan block J such
that x J ,s � 0; observe that (Anx)J ,s = λnx J ,s .

— Suppose that λ is a real number.
For all n ∈ N, we have (Anx)J ,s = λnx J ,s , so it diverges to infinity in modulus. It follows

that there exists n0 in N such that |(An0x)J ,s | ≥ 2
√

2 · |y J ,s |. Let

I =
{
x ,Ax , . . . ,An0−1x

}
∪
{
z ∈ Cd : |Re

(
z J ,s

)
| + |Im

(
z J ,s

)
| ≥ 2|y J ,s |

}
.
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We argue that I is a semilinear invariant for �. The non-trivial point is that I is invariant
under A. First, An0x is in I because��Re

(
(An0x)J ,s

) �� + ��Im ((An0x)J ,s
) �� ≥ 1
√

2
· |(An0x)J ,s | ≥ 2|y J ,s |.

Then, let z ∈ Cd such that
��Re
(
z J ,s

) �� + ��Im (z J ,s

) �� ≥ 2|y J ,s |, we have that (Az)J ,s = λz J ,s , so,
since λ is real,��Re

(
(Az)J ,s

) �� + ��Im ((Az)J ,s ) �� = |λ | (��Re
(
z J ,s

) �� + ��Im (z J ,s

) ��) ≥ 2|y J ,s |,

thus Az is in I.
— Suppose that λ is not a real number.

For any n ∈ N, let Cn = Conv
({
λix J ,s : i ∈ [1,n]

})
. By Lemma 5.6, the sequence (Cn)n∈N

of polyhedra in C is strictly increasing and its union is C. Let n0 in N be such that y J ,s is in
the interior of Cn0 . Finally, let

I = {x ,Ax , . . . ,An0x} ∪ P , where P =
{
z ∈ Cd : z J ,s � Cn0

}
.

Note that I is a closed semilinear set. We argue that I is a semilinear invariant for �. The
non-trivial point is that I is invariant under A.

We first need to prove that An0+1x is in I. We have (An0+1x)J ,s = λn0+1x J ,s , which is not
in Cn0 , because Cn0+1 = Conv

({
λn0+1x J ,s

}
∪Cn0

)
and we have argued that the sequence

(Cn)n∈N is strictly increasing. Thus, An0+1x ∈ P ⊆ P ⊆ I.
Second, we will show that AP ⊆ P ; by continuity of matrix multiplication, it is sufficient

to show thatAP ⊆ P . Let z ∈ P , i.e., z J ,s � Cn0 and assume towards contradiction thatAz � P ,
i.e., (Az)J ,s ∈ Cn0 . But note that (Az)J ,s = λz J ,s so z J ,s ⊆ λ−1Cn0 . However,

λ−1Cn0 = Conv
({
λix J ,s : i ∈ [0,n0]

})
= Conv

({
x J ,s

}
∪Cn0−1

)
⊆ Cn0

by convexity, since x J ,s ∈ Cn0 and the sequence (Cn)n is increasing. Hence, z J ,s ∈ Cn0 , a
contradiction. �

5.2.2 Some Eigenvalue Has Modulus Less than 1. We now move on to the second case, which is
the most involved of the three. We start with a simple lemma.

Lemma 5.8. Let λ be a complex non-real number of modulus less than 1 and x be a non-zero complex
number. Then, the sequence

(
Conv

({
λix : i ∈ [0,n]

}) )
n∈N of polyhedra in C is ultimately constant,

and its union contains an open neighbourhood of 0.

Proof. Let Cn = Conv
({
λix : i ∈ [0,n]

})
for all n ∈ N. Apply Lemma 5.5 to get n0 such that

Cn0 contains an open ball B(0, ε) for some ε > 0. Since |λ | < 1, there exists n1 ≥ n0 such that
|λ |n1 · |x | < ε . Note that Cn ⊆ B(0, |x |) for all n, since |λ | < 1. Therefore,

λn1Cn ⊆ λn1B(0, |x |) = B(0, |λn1 | · |x |) ⊆ B(0, ε) ⊆ Cn0 .

It follows that for any n ≥ n1,

Cn1 ⊆ Cn = Conv
(
Cn1 ∪ λn1Cn−n1

)
⊆ Conv

(
Cn1 ∪Cn0

)
= Cn1 . �

The following lemma is the cornerstone for this section:

Lemma 5.9. Let ε > 0 and λ ∈ C with |λ | < 1. There exists a convex closed semilinear set
I ⊆ B(0, ε) ⊆ Cd that is invariant under the Jordan block Jd (λ) and contains B(0, ε ′) for some
0 < ε ′ < ε .
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Proof. We let J denote Jd (λ). Note that |z | ≤ |Re (z) | + |Im (z) | ≤
√

2|z | for any z ∈ C. We first
treat the case where λ ∈ R. Let

I = {z ∈ Cd : ∀i ∈ [1,d], |Re (zi ) | + |Im (zi ) | ≤ ε(1 − |λ |)i } ⊆ B(0, ε).

Then, B(0, ε(1 − |λ |)d/
√

2) ⊆ I. We show that JI ⊆ I. Let z ∈ I. Then, (Jz)d = λzd , so, since
λ is real, |Re ((Jz)d ) | + |Im ((Jz)d ) | ≤ |λ |(|Re (zd ) | + |Im (zd ) |) ≤ ε(1 − |λ |)d . Now, if i < d , then
(Jz)i = λzi + zi+1, so

|Re ((Jz)i ) | + |Im ((Jz)i ) | = |λRe (zi ) + Re (zi+1) | + |λIm (zi ) + Im (zi+1) |
≤ |λ |(|Re (zi ) | + |Im (zi ) |) + (|Re (zi+1) | + |Im (zi+1) |)
≤ |λ |ε(1 − |λ |)i + ε(1 − |λ |)i+1 = ε(1 − |λ |)i .

Hence, I is invariant under J , which concludes this first case.
We now assume that λ � R and prove the result by induction on d . We start with the base

case d = 1. Fix u ∈ C of modulus ε ; for instance, u = ε . By Lemma 5.8, there exists n such that
I := Conv

({
λiu : i ∈ [0,n]

})
contains an open ball centered at 0 and Conv

({
λiu : i ∈ [0,m]

})
= I

for allm ≥ n. Since the extremal points of I are of the form λiu, of modulus |λ |iε < ε , it holds that
I ⊆ B(0, ε). Finally,

JI = Conv
({
λiu : i ∈ [1,n + 1]

})
⊆ Conv

({
λiu : i ∈ [0,n + 1]

})
= I.

For d > 1, let ε ′ > 0 to be fixed later on. By induction, there exists a convex closed semilinear
subset I′ of Cd−1, invariant under Jd−1(λ), and such that

B(0, ε ′′) ⊆ I′ ⊆ B(0, ε ′) ⊆ Cd−1, (1)

for some ε ′′ > 0. Intuitively, we want to define I of the form I = C × I′ for some semilinear set
C ⊆ C. Note that the action of J on such a set satisfies

J (C × I′) ⊆ (λC + π1(I′)) × Jd−1(λ)I′ ⊆ (λC + π1(I′)) × I′.

Therefore, we want to find C such that C ⊆ λC + π1(I′). The idea to find C is to start from an
arbitrary point u and then add what we need until the set is stable. We will then see that this
process converges (after infinitely many steps), so, eventually (after n steps), all those sets are
contained in a small ball. We then define C to be the convex hull of the first n sets: The first n − 1
sets will be stable by construction, and the last element will be contained in the small ball, itself
contained in Conv

({
λiu : i ∈ [0,n]

})
, thanks to Lemma 5.8.

Formally, let u be a complex number of modulus ε/2, for instance, u = ε/2 ∈ C. By Lemma 5.8,
there exists n0 such that Conv

({
λiu : i ∈ [0,n0]

})
contains an open ball B(0,δ ) for some δ > 0. Let

ε ′ = |1 − λ |δ/4 and I′ defined as in Equation (1). Note that B(0,δ ) ⊆ Conv
({
λiu : i ∈ [0,n0]

})
⊆

B(0, |u |) = B(0, ε/2) so δ ≤ ε/2, and ε ′ ≤ δ/2 ≤ ε . We then let

C0 = {u} , and Cn+1 = λCn + π1(I′)

for all n ∈ N. Since for convex sets S and reals a,b it holds that aS + bS = (a + b)S , it follows from
convexity of π1(I′) that for all n ∈ N,

Cn = λnC0 +
1 − λn

1 − λ π1(I′).

Recall that I′ ⊆ B(0, ε ′) so π1(I′) ⊆ B(0, ε ′) and therefore,

Cn ⊆ |λ |nB(0, |u |) +
����1 − λn

1 − λ

����B(0, ε ′) ⊆ B

(
0, |λ |n |u | +

����1 − λn

1 − λ

���� ε ′) . (2)
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Since |λ |n |u | + | 1−λn

1−λ
|ε ′ → ε ′

|1−λ | as n → ∞, there exists n1 ≥ n0 such that Cn ⊆ B(0, 2ε ′

|1−λ | ) =
B(0,δ/2) for all n ≥ n1. We now define

I = C × I′, where C = Conv
(
C0 ∪ · · · ∪Cn1

)
.

It is clear that I is a convex closed semilinear set. We now claim that:

— I ⊆ B(0, ε): We have that I′ ⊆ B(0, ε ′) ⊆ B(0, ε) by construction, and C ⊆ B(0, ε) by
Equation (2), since for all n ∈ N,

|λ |n |u | +
����1 − λn

1 − λ

���� ε ′ ≤ |u | + 2
ε ′

|1 − λ | ≤
ε

2
+
δ

2
≤ ε,

since δ ≤ ε/2, as argued above. This concludes because B(0, ε) × B(0, ε) = B(0, ε) for the
infinity norm.

— I contains the open ball B(0,δ ): We have that B(0,δ ) ⊆ Conv
({
λiu : i ∈ [0,n0]

})
by con-

struction. Furthermore, λnu ∈ Cn , because 0 ∈ I′, hence 0 ∈ π (I ′), therefore, Cn+1 =

λCn + π (I′) ⊇ λCn for all n. It follows that C contains
{
λju : j ∈ [0,n1]

}
and this concludes

because n1 ≥ n0 and C is convex.
— I is stable under J : Recall that

JI = J (C × I′) ⊆ (λC + π1(I′)) × Jd−1(λ)I′ ⊆ (λC + π1(I′)) × I′,

since I′ is stable under Jd−1(λ). Therefore, it suffices to show that λC + π1(I′) ⊆ C . We
first claim that λCn + π1(I′) ⊆ C for all n ∈ [0,n1]. Indeed, for n ∈ [0,n1 − 1], we have
λCn + π1(I′) = Cn+1 ⊆ C , since n + 1 ≤ n1. And for Cn1 , we have

λCn1 + π1(I′) ⊆ B(0, |λ |δ/2) + B(0, ε ′) ⊆ B(0,δ/2 + ε ′) ⊆ B(0,δ ) ⊆ Conv
({
λiu : i ∈ [0,n0]

})
⊆ C

by Equations (1), (2), and the definition of n1, the convexity of C, and the fact that n1 ≥ n0.
Now, let x ∈ λC + π1(I′) and write x = λ

∑n1
i=0 αixi + y where

∑n1
i=0 = 1, xi ∈ C0 ∪ · · · ∪Cn1

and y ∈ π1(I′). We can rewrite x as x =
∑n1

i=1 αi (λxi + y). Observe that for each i , xi ∈ Cj

for some j so λxi + y ∈ λCj + π1(I′) ⊆ C by the above. Therefore, x ∈ Conv (C) = C . �

We may now prove the following theorem:

Theorem 5.10. Let � = (x ,A,y) be a non-reach Orbit instance in JNF. If A has a Jordan block J
associated with an eigenvalue whose modulus is less than 1 and such that y J � 0, then there exists a
semilinear invariant for �.

Proof. Let ε = ‖y J ‖/2. Thanks to Lemma 5.9, there exist ε ′ > 0 and a closed semilinear set
I ⊆ Cd (J ) such that JI ⊆ I and B(0, ε ′) ⊆ I ⊆ B(0, ε). Now, (Anx)J → 0, so there exists n0 such
that (An0x)J ∈ B(0, ε ′) ⊆ I. Hence,

{x ,Ax , . . . ,An0−1x} ∪ {z ∈ Cd : z J ∈ I}

is a semilinear invariant for �. �

5.2.3 Some Non-diagonalisable Eigenvalue Is a Root of Unity. We now move on to the third
positive case.

Theorem 5.11. Let � = (x ,A,y) be a non-reach Orbit instance in JNF. If there exists a non-diagonal
Jordan block J associated with an eigenvalue which is a root of unity and such that x J ,>1 � 0, then
there exists a semilinear invariant for �.
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Proof. Let m be such that λm = 1, and let (J , s) be the maximal coordinate such that x J ,s is
non-zero. We rely on the divergence of the coordinate (J , s − 1) to construct an invariant. For any
n ∈ N, we have (Anx)J ,s−1 = λnx J ,s−1 +nλ

n−1x J ,s and (Anx)J ,s = λnx J ,s . Recall that z∗ denotes the
complex conjugate of z ∈ C. Hence,

Re
(
λ(Anx)J ,s−1(Anx)J ,s ∗

)
= Re

(
λx J ,s−1x J ,s

∗) + n |x J ,s |2,
which goes to infinity when n grows. Note that this condition is quadratic, however, since
(Anx)J ,s = λnx J ,s only takes a finite number of values, we will be able to construct a semilinear
set from it. Let n0 be such that

M := Re
(
λ(An0x)J ,s−1(An0x)J ,s ∗

)
> Re

(
λy J ,s−1y J ,s

∗) .
Finally, let

I =
{
x ,Ax , . . . ,An0−1x

}
∪

m−1⋃
i=0

Ii , whereIi =
{
z ∈ Cd : z J ,s = λix J ,s and Re

(
λz J ,s−1z J ,s

∗) ≥ M
}
.

It is clear that x ∈ I and y � I. Each Ii is semilinear, because the second condition is actually
semilinear assuming z J ,s = λix J ,s . There remains to see that An0x ∈ In0 mod m . Indeed, (An0x)J ,s =
λn0x J ,s = λn0 mod mx J ,s and we have defined M above so Re

(
λz J ,s−1z J ,s

∗) ≥ M for z = An0x . Now,
if z ∈ Ii , then we obtain that (Az)J ,s = λz J ,s = λi+1x J ,s , and

Re
(
λ(Az)J ,s−1(Az)J ,s ∗

)
= Re

(
λz J ,s−1z J ,s

∗) + |z J ,s |2 ≥ M + |z J ,s |2 ≥ M

so Az ∈ Ii+1 if i < m, and Az ∈ I0 if i =m (since λm = 1). Hence, I is invariant under A. �

We conclude with Theorem 3.10 by combining Theorems 5.7, 5.10, and 5.11.

5.3 From Non-simple Real Instances to Core Pairs

We now present our sequence of reductions moving from non-simple real Orbit instances to core
pairs. The goal of this section is to establish the following result, which assumes that the only
semilinear invariant for a core instances of dimension d is Cd :

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a
non-simple conjugated Orbit instance admits a semilinear invariant.

Figure 5 recalls our pipeline of reductions; we now include detailed definitions of the classes of
instances (and pairs) that we consider.

This section is broken into four parts that correspond to the four downwards arrows in Figure 5.

Ensuring aperiodicity. We say that two complex numbers are equivalent if their quotient or their
product is a root of unity. We say that a matrixA is aperiodic if any two equivalent eigenvalues are
in fact equal and if any eigenvalue that is a root of unity is in fact 1. Note that choosingm to be a
common multiple to all orders of roots of unity that occur as eigenvalues or quotients or products
of eigenvalues, we get that Am is aperiodic.

We obtain the following reduction:

Lemma 5.12. There is a polynomial time reduction from a non-simple conjugated Orbit instance to
many non-simple conjugated Orbit instances that are aperiodic.

Proof. Let (x ,A,y) be a non-simple conjugated Orbit instance, and let m be such that Am is
aperiodic. For each k ∈ {0, . . . ,m − 1}, set (x ′

k
,A′

k
,y ′

k
) = (Akx ,Am ,y). By Lemma A.2, proved in

Appendix A, m is indeed polynomial. We now prove that (x ,A,y) admits a semilinear invariant if
and only if for all k , (x ′

k
,A′

k
,y ′

k
) does.
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Fig. 5. Pipeline of reductions with detailed definitions.

Let I be a semilinear invariant for (x ,A,y). Then, by an easy induction, AmI ⊆ I, and clearly
Akx ∈ I for all k and y � I by assumption. Hence, for all 0 ≤ k ≤ m − 1, it holds that I defines a
semilinear invariant for (x ′

k
,A′

k
,y ′

k
).

Conversely, consider a family of respective semilinear invariants (I′
k
)0≤k≤m−1 for

(x ′
k
,A′

k
,y ′

k
)0≤k≤m−1. Then, for all k , let

Ĩk = {z | Akz ∈ I′k }.

Note that for any element z ∈ Ĩk , we have Akz ∈ I′
k

, thus Am+kz ∈ AmI′
k
⊆ I′k and therefore,

Amz ∈ Ĩk . Hence, Ĩk is stable under Am , and so the same holds for

Ĩ =
m−1⋂
k=0

Ĩk .

Finally, we let

I =
m−1⋃
k=0

Ak Ĩ,

which we claim to be a semilinear invariant for �. First, we have x ∈ Ĩk for each k and thus x ∈ I.
Second, the fact that I is invariant under A follows directly from the fact that Ĩ is invariant under
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Am . Third, assume for contradiction that y ∈ I: There is k such that y ∈ Ak Ĩ ⊆ Ak Ĩk . Then,
y = Akz for some z such that Akz ∈ I′

k
and thus y ∈ I′

k
, a contradiction.

To conclude the proof of the lemma, we should argue that the resulting instances (Akx ,Am ,y)
are non-simple and conjugated. This requires an additional base change, since Am is no longer
in JNF; however, this base change preserves respective Jordan blocks and does not affect being
non-simple or conjugated. We conclude by applying Lemma 5.2. �

5.3.1 From Aperiodic Conjugated to Pre-normalized. We say that an orbit instance is pre-
normalized if it is non-simple, equivalent eigenvalues are in fact equal, and eigenvalues that are
roots of unity are in fact 1.

We proceed with the following reduction, which identifies synchronised conjugated Jordan
blocks:

Lemma 5.13. There exists a polynomial time reduction from non-simple aperiodic conjugated Orbit
instances to pre-normalized ones.

Proof. Consider a non-simple aperiodic conjugated Orbit instance � = (x ,A,y). Let S be the
union of all Jordan blocks whose eigenvalues are either real or have positive imaginary part, and
put �′ = (x ′,A′,y ′) = (xS ,AS ,yS ). Note that �′ is non-simple, aperiodic, and such that no two
different eigenvalues are conjugate; it is thus pre-normalized.

Let I be a semilinear invariant for �. Consider the semilinear set

I′ =
{
z ′ ∈ CS | z ∈ I where z is such that for all block J ,π J ∗ (z) = π J (z)∗

}
.

Since (x ,A,y) is conjugated, we have x ′ ∈ I′, and y ′ � I′ otherwise, we would have y ∈ I. Now,
if z ′ ∈ I′, then the vector z as in the definition belongs to I, therefore, Az ∈ I, and, since A is
conjugated it follows that (Az)S = A′z ′ belongs to I′.

Conversely, let I′ be a semilinear invariant for �′ and consider the semilinear set

I = {z ∈ Cd | zS ∈ I′ and for all block J ,π J ∗ (z) = π J (z)∗}.
Since � is conjugated, we have x ∈ I, y � I and AI ⊆ I. �

From pre-normalized instances to normalized pairs. We say that a pair (x ,A) is normalized if

— all eigenvalues have modulus ≥ 1;
— blocks J such that |λ J | > 1 satisfy x J = 0;
— blocks J such that λ J is a root of unity satisfy x J ,>1 = 0;
— equivalent eigenvalues are equal; and
— eigenvalues that are roots of unity are in fact 1.

Thus, turning a pre-normalized Orbit instance (x ,A,y) to a normalized pair (x ′,A′) amounts to
removing blocks whose eigenvalues have modulus < 1; we call these blocks shrinking. It turns out
that normalized pairs admit strongly minimal invariants, which we now define.

Say that J is a weak invariant for a pair � = (x ,A) if AJ ⊆ J and there exists n such that
Anx ∈ J . A strongly minimal invariant I for a pair � = (x ,A) is a semilinear invariant for � (that
is, x ∈ I and AI ⊆ I), which is contained in any semilinear weak invariants J for �. Note that
strongly minimal invariants are always assumed to be semilinear. Note also that when such an
invariant exists, it is unique.

The following lemma states the existence of a weak kind of reductions, which will turn out to
be sufficient for our needs:

Lemma 5.14. Let (x ,A,y) be a pre-normalized Orbit instance in JNF. There exists a normalized pair
(x ′,A′), computable in polynomial time from (x ,A,y), such that given a strongly minimal invariant
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I′ for (x ′,A′), one may decide whether (x ,A,y) has a semilinear invariant in polynomial time, and
in this case, compute one in polynomial time.

Note that Lemma 5.14 does not assert existence of strongly minimal invariants for normalized
pairs; this will, however, follow from the rest of the proof. The proof makes use of Lemma 5.9 from
the previous section.

Proof. Let S be the union of all coordinates from shrinking blocks of A. Since (x ,A,y) is non-
simple, it holds that yS = 0. We distinguish two cases. First, if An

S cx = y for infinitely many n’s,

then, sinceyS = 0, it follows thaty belongs to the topological closure of the orbit {Anx ,n ∈ N} and
therefore there exists no closed semilinear invariant. Note that this can be tested in polynomial
time: First test if y belongs to the orbit of xS c under AS c , and then test if some power of AS c is the
identity matrix, which amounts to testing whether all eigenvalues of AS c are roots of unity.

So, we now assume that there is n0 such that yS c � {An
S cxS c ,n ≥ n0}. First, we claim that An0

S cxS c ,
for some n0 as above, can be computed in polynomial time. Indeed, if yS c does not belong to the
orbit of xS c under AS c , then we may pick n0 = 0, and if yS c = An

S cxS c , then we take n0 = n + 1 and
compute An0

S cxS c = AS cy.
We let (x ′,A′) = (An0

S cxS c ,AS c ); it is a pre-normalized pair. Let I′ be a strongly minimal invariant
for (x ′,A′).

If yS c � I′, it is a direct check that {x ,Ax , . . . ,An0−1x} ∪ π−1
S c (I′) is a semilinear invariant for

(x ,A,y).
Otherwise, yS c ∈ I′, and we claim that in this case there exist no semilinear invariant for
(x ,A,y). Towards a contradiction, consider such an invariant I: x ∈ I, y � I and AI ⊆ I. Let
ϵ = 1

2 dist(y,I) (recall that we compute distances with respect to the infinity norm).
For each shrinking block J , apply Lemma 5.9 to obtain a closed semilinear P J satisfying AJP J ⊆

P J and B(0, ϵ
2 ) ⊆ P J ⊆ B(0, ϵ) ⊆ CJ . Let PS be the Cartesian product of the P J ’s over shrinking

blocks; we have ASPS ⊆ PS and B(0, ϵ
2 ) ⊆ PS ⊆ B(0, ϵ). Take n ≥ n0 large enough so | |An

S
xS | | ≤ ϵ

2 ,
and hence An

S
xS ∈ PS .

Let
J = {s ∈ I | zS ∈ PS }.

By construction, Anx ∈ J , AJ ⊆ J and y � J . Now, let J′ = πS c (J). It holds that An
S cxS c ∈ J ′

and AS cJ′ ⊆ J ′: J′ is a weak invariant for (x ′,A′). Hence, since I′ is strongly minimal, it holds
that I′ ⊆ J ′, and thus yS c ∈ J ′.

By definition, this means that there exists zS ∈ CS such that z = (zS ,yS c) ∈ J , meaning that
z ∈ I and zS ∈ P , which implies | |zS | | ≤ ϵ . But then, since yS = 0, we get

2ϵ = dist(I ,y) ≤ ||z − y | | = | |zS | | ≤ ϵ,

a contradiction. �

Before reducing normalized pairs to core instances, we introduce structured reductions.

Structured reductions. Define complex affine maps to be function f : Cd → Cd ′ of the form
f : z �→ Az + u, where A ∈ Cd ′×d and u ∈ Cd ′ . Let C be a class of pairs (x ,A) in dimension d and
C ′ be a class of pairs (x ′,A′) in dimension d ′. A structured reduction from C to C ′ is given by a
function R : C → C ′ mapping a pair (x ,A) to a pair R(x ,A) = (x ′,A′), and for each pair (x ,A) ∈ C ,
two complex affine maps f : Cd ′ → Cd and д : Cd → Cd ′ satisfying that

— f (x ′) = x ;
— for all z ′ ∈ Cd ′ , it holds that д(f (z ′)) = z ′;
— for all z ′ ∈ Cd ′ , it holds that f (A′z ′) = Af (z ′).
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It is easy to see that the compositions of structured reductions are structured reductions.
Note that for a complex affine map f and a semilinear I, both f (I) and f −1(I) are semilinear.

We now prove that structured reductions indeed give rise to reductions (as defined in Section 5.1),
and that, moreover, they reflect strongly minimal invariants.

Lemma 5.15. Consider a structured reduction between classes of pairsC andC ′. Then, the following
properties hold for all pair (x ,A) ∈ C :

— For all semilinear invariants I for (x ,A), it holds that f −1(I) is a semilinear invariant for
R(x ,A).

— For all semilinear invariants I′ for R(x ,A), it holds that f (I′) is a semilinear invariant for
(x ,A).

— If I′ is a strongly minimal invariant for R(x ,A), then f (I′) is a strongly minimal invariant
for (x ,A).

Stated differently, if there is a structured reduction from C to C ′, then for all (x ,A) ∈ C , (x ,A)
admits a semilinear invariant if and only if R(x ,A) does. Moreover, if R(x ,A) admits a strongly
minimal invariant, then so does (x ,A). We now prove Lemma 5.15.

Proof. Let us consider a pair (x ,A) ∈ C and let us write (x ′,A′) = R(x ,A) ∈ C ′.
Let I be a semilinear invariant for (x ,A), we show that f −1(I) is a semilinear invariant for
(x ′,A′). First, f (x ′) = x ∈ I so x ′ ∈ f −1(I). Second, let z ′ ∈ f −1(I), meaning f (z ′) ∈ I. We want
to show thatA′z ′ ∈ f −1(I). By assumption f (A′z ′) = Af (z ′), and because I is stable underA, this
implies that f (A′z ′) ∈ I, thus A′z ′ ∈ f −1(I ).

Let I′ be a semilinear invariant for (x ′,A′), we show that f (I′) is a semilinear invariant for
(x ,A). First, f (x ′) = x and x ′ ∈ I′, so x ∈ f (I′). Second, let z ∈ f (I′), meaning f (z ′) = z for
some z ′ ∈ I′. We want to show that Az ∈ f (I′). By assumption, f (A′z ′) = Af (z ′) = Az, and
because I′ is stable under A′, we have A′z ′ ∈ I′, implying that Az ∈ f (I′).

Let I′ be a strongly minimal semilinear invariant for (x ′,A′), we claim that f (I′) is a strongly
minimal semilinear invariant for (x ,A). Let J be a semilinear weak invariant for (x ,A). As we
proved above f −1(J) is stable under A′, and we obtain by an easy induction on n that f (A′nx ′) =
Anx . Thus, since Anx ∈ J for some n, it holds that A′nx ′ ∈ f −1(J) for the same n. Hence, f −1(J)
is a semilinear weak invariant for (x ′,A′). By minimality of I′, we have I′ ⊆ f −1(J). This implies
that f (I′) ⊆ f (f −1(J)) = J , as required. �

From normalized to core pairs. Recall that (x ,A) is a core pair if:

— all eigenvalues have modulus 1;
— no eigenvalue is a root of unity;
— two different blocks have non-equivalent eigenvalues;
— the last coordinate x J ,d (J ) of x on each block is � 0.

To reduce from normalized pairs to core pairs, we will use three structured reductions:

(1) removal of the last coordinate (J ,d(J )) of a block J assuming x J ,d (J ) = 0;
(2) removal of diagonal blocks with eigenvalue one (called identity blocks);
(3) removal of a coordinate assuming there exists two different block J1, J2 associated with the

same eigenvalue and x J2,d (J2) � 0.

These reductions are detailed below. To obtain a core pair, we proceed as follows:

— We start by applying the first reduction repeatedly to remove all blocks J associated with
eigenvalues of modulus > 1; this is possible, since in normalized pairs, such blocks satisfy
x J = 0.
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— Then, for each non-diagonal block with eigenvalue 1, we apply the first reduction repeat-
edly to remove the last dimension until obtaining an identity block; this is possible, since in
normalized pairs, blocks with eigenvalue one satisfy x J ,>1 = 0. We then apply the second
reduction to remove the identity block.

— At this stage, all blocks have eigenvalue � 1 and with modulus 1, and equivalent eigenvalues
are in fact equal: We say that an instance (x ,A) with this property is strongly normalized.
Now, while there exist two blocks J1, J2 with the same eigenvalue, we apply either the first
reduction (if x J2,d (J2) = 0) or the third one (if x J2,d (J2) � 0) to reduce the dimension.

This process terminates (after applying reductions at most d times) with a core pair. We now
detail the three structured reductions.

Lemma 5.16. There exists a structured reduction mapping pairs (x ,A) where x J ,d (J ) = 0 to
(x(J ,d (J ))c ,A(J ,d (J ))c).

Proof. Write p for the dimension (J ,d(J )). Define the affine maps f : Cpc → Cd by f (z) = (z, 0)
and д : Cd → Cpc

by д(z) = zpc . Then, we have f (xpc) = x , and for all z ′ ∈ Cpc
, д(f (z ′)) = z and

f (Apcz ′) = Af (z ′), as required. �

Lemma 5.17. There exists a structured reduction mapping pairs (x ,A) where J is an identity block
to (x J c ,AJ c).

Proof. Define the affine maps f : CJ c → Cd by f (z) = (z,x J ) and д : Cd → CJ c
by д(z) = z J c .

Then, we have f (x J c) = x , and for all z ′ ∈ CJ c
, д(f (z ′)) = z and f (AJ cz ′) = Af (z ′), as required. �

The third reduction is a bit more involved technically but the intuition is simple: The last coor-
dinates of block J1 and J2 stay proportional throughout the iteration and can thus be compressed
in a single dimension.

Lemma 5.18. There exists a structured reduction mapping strongly normalized pairs (x ,A) with
blocks J1, J2 associated to the same eigenvalue and x J2,d (J2) � 0, to strongly normalized pairs of di-
mension 1 less.

Proof. Write d1 = d(J1) and d2 = d(J2) and let p = (J1,d1). Let A′ be obtained from Apc by
adding a 1 in position ((J1, (d1 − 1)), (J2,d2)). For example, if

A =

[
J1

J2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ 1

λ 1
λ

λ 1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then A′ =

⎡⎢⎢⎢⎢⎢⎢⎣
λ 1

λ 1
λ 1

λ

⎤⎥⎥⎥⎥⎥⎥⎦ .
Let x ′ = xpc and μ =

x J1,d1
x J2,d2

∈ C. We define a structured reduction from (x ,A) to (x ′,A′) by letting

f : Cpc → Cd be given by f (z ′)p = μz ′
J2,d2

and f (z ′)pc = z ′pc and д : Cd → Cpc
by д(z) = zpc .

Clearly, f (x ′) = x and for all z ′ ∈ Cpc
, we have д(f (z ′)) = z ′. We now prove that f (A′z ′) =

Af (z ′). For coordinates out of J1 or J2, the equality is clear. Armed with patience, we verify that
for z ′ ∈ Cpc

:
for i < d1 − 1, (A′z ′)J1,i = λz ′J1,i

+ z ′J1,i+1,

(A′z ′)J1,d1−1 = λz ′
J1,d1−1 + z

′
J2,d2
,

for i < d2, (A′z ′)J2,i = λz ′J2,i
+ z ′J2,i+1,

(A′z ′)J2,d2 = λz ′
J2,d2
.
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Calculating Af (z ′), we obtain the same results as for f (A′z ′):
for i < d1 − 1 (f (A′z ′))J1,i = λz ′J1,i

+ z ′J1,i+1 = (Af (z ′))J1,i ,

(f (A′z ′))J1,d1−1 = λz ′
J1,d1−1 + z

′
J2,d2

= (Af (z ′))J1,d1−1,

(f (A′z ′))J1,d1 = μλz ′
J2,d2

= (Af (z ′))J1,d1 ,

for i < d2 (f (A′z ′))J2,i = λz ′J2,i
+ z ′J2,i+1 = (Af (z ′))J2,i ,

(f (A′z ′))J2,d2 = λz ′
J2,d2

= (Af (z ′))J2,d2 .

Note that the obtained matrix A′ is indeed one dimension lower, but it is not in JNF. To prove the
lemma, there remains to apply a base change and reduce once more, to (x ′′,A′′) = (Q−1x ′,Q−1A′Q).
It is a direct check that this defines a structural reduction, with affine maps f : z �→ Qz and
д : z �→ Q−1z. Last, we should argue that (x ′′,A′′) is strongly normalized: This simply follows from
the facts that strong normality depends only on the set of eigenvalues of A (without multiplicity)
and that A, A′, and A′′ have the same set of eigenvalues. �

Combining Lemmas 5.16, 5.17, and 5.18, as explained above, we obtain the following result:

Lemma 5.19. There exists a structured reduction from normalized pairs to core pairs.

5.3.2 Proof of Theorem 3.12. We are finally ready to prove Theorem 3.12, which we first recall
for convenience.

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a
non-simple conjugated Orbit instance admits a semilinear invariant.

Proof. Consider given a non-simple conjugate Orbit instance (x ,A,y). Apply the following
reductions:

(x ,A,y) Lemma 5.12−−−−−−−−−→ (x1,A1,y1)
Lemma 5.13−−−−−−−−−→ (x2,A2,y2)

Lemma 5.14−−−−−−−−−→ (x3,A3)
Lemma 5.19−−−−−−−−−→ (x4,A4).

By Theorem 3.11, the only semilinear invariant for the core pair (x4,A4) is Cd4 ; it is a strongly
minimal invariant. Since Lemma 5.19 provides a structured reduction, this gives a strongly min-
imal invariant I3 for the normalized pair (x3,y3). At this point, Lemma 5.14 allows to decide
whether (x2,A2,y2) admits a semilinear invariant, and if it does, construct such an invariant I2.
Then, Lemma 5.13 gives the same conclusion for (x1,A1,y1), and then Lemma 5.12 concludes. �

6 Decidability Proof: Core Instances

A matrix A ∈ Cd×d is a core matrix if it is in Jordan normal form, eigenvalues of A have modulus
1, are not roots of unity, and eigenvalues associated to different Jordan blocks are non-equivalent.
Recall that a pair (x ,A) is a core pair if A is a core matrix and the last coordinate of x on each
Jordan block is non-zero.

Fix a core matrix A. Say that a set is a basic invariant if it is of the form∏
J ∈J
Cp J × {0}d (J )−p J ,

where J stands for the set of Jordan blocks of A, and for each J ∈ J , p J is an integer in [0,d(J )].
Note that basic invariants are indeed invariant under A, closed, and semilinear.

The goal of this section is to prove that they are the only possible invariants.

Theorem 6.1. Let A be a core matrix. Then, all closed semilinear sets that are invariant under A
are unions of basic invariants.

Observe that if (x ,A) is a core pair, then the last coordinate of x on each block is non-zero, hence
the only basic invariant containing x is Cd . Thus, Theorem 3.11 follows from Theorem 6.1.
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6.1 Dimension of Invariants for Core Pairs

We start by establishing that invariants for core pairs have full dimension (Lemma 6.8 below). First,
some definitions and some technical results.

The dimension of a set X of Rd , which we denote by dim(X ), is the minimal k in N such that X
is included in a finite union of affine subspaces of dimension at most k . The dimension of a set X
in Cd , which we denote by dimR(X ), is the dimension of XR. The following lemma is a standard
result about semilinear sets:

Lemma 6.2 (Dimension of Semilinear Sets). Let I be a semilinear set in Rd . If it has empty
interior, meaning Io = ∅, then I has dimension at most d − 1.

Corollary 6.3. For any semilinear set I in Rd , ∂I has dimension at most d − 1.

We will make use of the following powerful theorem about linear recurrence sequences. This
result is due to Skolem [34], and more general versions were subsequently obtained by Mahler
[25, 26] and Lech [24]. This result can also be found in the recent monograph of Everest et al. [11,
Theorem 2.1 and subsequent discussion]. Recall that U denotes the set of roots of unity and S1 the
complex unit circle. Recall that a linear recurrence sequence is degenerate if some quotient of two
distinct roots of its characteristic polynomial is a root of unity.

Theorem 6.4 (Skolem, Mahler, Lech). Let (un)n∈N be a real non-degenerate linear recurrence
sequence. Then, {n ∈ N : un = 0} is either finite or all of N.

We will also require the following technical lemmas:

Lemma 6.5. Let A ∈ Cd×d be in Jordan normal form, J its Jordan blocks, and let λ J denote the

eigenvalue of each Jordan block J ∈ J . Let x ∈ Cd and M = [xR (Ax)R · · · (A2d−1x)R]. If all
the eigenvalues of AR are distinct and x J ,d (J ) � 0 for all J ∈ J , then det(M) � 0.

Proof. See Appendix B. �

Lemma 6.6. LetA ∈ Cd×d be a core matrix andJ range over its Jordan blocks. There exists a change
of basis P that stabilizes any basic invariant, and such that PA−1P−1 = Diag(Jd (J )(λ−1

J ), J ∈ J).

Proof. See Appendix C. �

Lemma 6.7. Let (x ,A) be a core pair. Then, for any vector v ∈ R2d \ {0}, vT (Anx)R is zero for
finitely many n.

Proof. Let un = vT (Anx)R, which is a real linear recurrence sequence. Furthermore, the roots
of the characteristic polynomial of (un)n are the eigenvalues of AR. It is not hard to see that the
eigenvalues ofAR are λ1, . . . , λs , λ1

∗, . . . , λs
∗ so in particular the quotients of any two distinct such

eigenvalues are of the forms

λi

λj
,

λi

λj
∗ = λiλj ,

λi
∗

λj
=

1

λiλj
,

λi
∗

λj
∗ =

λj

λi
∗ ,

none of which are roots of unity by our assumptions (recall that for complex number z of modulus
1, z∗ = z−1). We can now apply Theorem 6.4 to conclude that either un = 0 for all n or there are
only finitely many n such thatun = 0. We will show that the former case implies thatv = 0, which
is excluded.

Assume that un = 0 for all n. In particular, vT (Anx)R = 0 for all n ∈ {0, 1, . . . , 2d − 1}. Hence, v
is in the kernel of M =

[
xR (Ax)R · · · (A2d−1x)R

]
. But, by our assumptions, the eigenvalues

of A and their conjugates are all distinct (if two were equal, then their product or quotient would
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be 1, hence a root of unity). Furthermore, x J ,d (J ) � 0 for all J . It follows by Lemma 6.5 that M is
invertible so v = 0. �

We now prove that invariants for core pairs have full dimension.

Lemma 6.8. Let I be a non-empty closed semilinear invariant for a core pair (x ,A). Then, I has
full-dimension, i.e., IR has dimension 2d .

Proof. Let m = dimR(I) and assume, toward contradiction, that m < 2d . Then, I is contained
into the union of finitely many affine subspaces of dimensionm:

IR ⊆
p⋃

j=1

Fj ,

where for all j, Fj ⊆ R2d is a real affine subspace of dimensionm. For all n ∈ N, (Anx)R ∈ IR, since
I is invariant under A, so there exists jn ∈ [1,p] such that (Anx)R ∈ Fjn

. Hence, there must be
some j∞ such that Fj∞ contains (Anx)R for infinitely many values of n. Since Fj∞ has dimension
m < 2d , it in contained is some hyperplane H = {y ∈ R2d : yTv = 0} of normal v ∈ R2d \ {0}.
Therefore, vT (Anx)R = 0 for infinitely many n’s, contradicting Lemma 6.7. �

6.2 The Diagonal Case

We now deal with the case where the matrix A is diagonal. This case is important for two reasons.
First, it plays the role of the base case in our general induction. Second, it is also used as a technical
tool in the general case to rule out certain scenarios.

Lemma 6.9. Let A be a diagonal core matrix, and let I be a non-empty closed semilinear set in-
variant under A, which, moreover, contains a point x ∈ I that is nonzero on each coordinate. Then,

I = Cd .

Proof. We show a few facts:

(i) I must have full dimension (i.e., real dimension 2d),
(ii) ∂I is invariant under A,

(iii) if ∂I is non-empty (that is, if I � Cd ), then it contains a point that is nonzero on each
coordinate.

This implies the desired result: If towards contradiction we had that I � Cd , then I′ := ∂I would
be a non-empty closed semilinear set invariant underA, thanks to (ii), and it would contain a point
that is nonzero on each coordinate, thanks to (iii). Therefore, we could apply the same reasoning
to I′, which would satisfy the above points as well and have full dimension, thanks to (i), which
contradicts Corollary 6.3.

(i) This is proved by Lemma 6.8.

(ii) Since multiplication is continuous, AIc ⊆ Ic implies AIc ⊆ Ic. Now, since I is closed, we

have ∂I = I ∩ Ic and therefore, since I is invariant under A, it suffices to show that Ic is
invariant under A.
We now show thatIc is invariant underA. This amounts to proving thatI is invariant under
A−1. Let x in I and

LA =
{
v ∈ Zd : λv1

1 · · · λ
vd

d
= 1
}

be the set of all multiplicative relations holding among λ1, . . . , λd . Notice that LA is an addi-
tive subgroup of Zd . Consider the set of diagonal d × d matrices

TA =
{
Diag(μ1, . . . , μd ) : μ ∈ Sd and ∀v ∈ LA (μv1

1 · · · μ
vd

d
= 1)

}
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whose diagonal entries satisfy the multiplicative relations in LA. Using Kronecker’s Theorem
on inhomogeneous simultaneous Diophantine approximation [5], it is shown in Reference
[32, Proposition 3.5] that {An : n ∈ N} is a dense subset of TA. This implies that

{Anx : n ∈ N} = {Mx : M ∈ TA} .

Since x is in I and I is invariant under A, we have that {Anx : n ∈ N} ⊆ I = I. Now,
observe that A−1 = Diag(λ−1

1 , . . . , λ
−1
d
) is in TA, and thus A−1x is in I.

(iii) Assume that ∂I � �. Let Q =
⋃d

i=1 C
i−1 × {0} × Cd−i be the set of points with at least

one zero coordinate. Note that Q is closed. Observe that Qc is path-connected (this follows
from applying coordinate-wise the fact that C \ {0} is path-connected). Note that, since I
is closed, Cd = Io ∪ ∂I ∪ Ic where the union is disjoint. Assume for contradiction that
∂I ⊆ Q. Then,

Qc = Cd \ Q = (Cd \ ∂I) \ Q = (Io ∪ Ic) \ Q = (Io \ Q) ∪ (Ic \ Q).
Now, Io \ Q is open and it is non-empty, because I contains a point x � Q by assumption
so x ∈ I \ Q = Io \ Q, since ∂I ⊆ Q. Similarly, Ic \ Q is open (I is closed) and non-empty,

because otherwise Ic ⊆ Q so Qc ⊆ I, hence Cd = Qc ⊆ I = I, which implies that ∂I = �,
contrary to our assumption. Therefore, Qc is the disjoint union of two non-empty open sets,
hence disconnected, a contradiction. �

We may easily deduce that Theorem 6.1 holds in the diagonal case (which corresponds to having
Jordan blocks of size 1).

Theorem 6.10. Let A ∈ Cd×d be a diagonal core matrix. Closed semilinear invariants sets that are

invariant for A are of the form
∏d

i=1 εi , where εi ∈ {{0},C}.

Proof. We show that for any x ∈ I, I must contain
∏

i εi , with εi =
{
{0} if xi = 0
C otherwise

, which

implies the result. This follows directly from applying Lemma 6.9 to the projection of I ∩
∏

i εi

on coordinates {i ∈ [1,d] : xi � 0}. �

6.3 General Case

We now work with a general (not necessarily diagonal) core matrix A; as usual, we let J range
over the Jordan blocks of A and let s = |J |. The proof of Theorem 6.1 will proceed by induction
on d . Since it involves several nontrivial steps, we explicitly spell out the induction hypothesis.

(HRd ) The only closed semilinear invariants for core matrices of dimension d are unions of
basic invariants.

We let last denote the set of last coordinates of Jordan blocks of A:

last = {(J ,d(J )) | J ∈ J}.
Recall that πS : Cd → CS denotes the projection on a given set of coordinates S .

We start with the intuition. Let I be a semilinear set that is invariant under A. We will project
I on the last coordinate of each block (using πlast). Since A acts diagonally on these coordinates,
this projection is invariant under a diagonal matrix so we may apply Theorem 6.10 and decompose
πlast(I) as above. Assuming that πlast(I) is not the whole set Cs , then some of its components are
identically zero, which allows us to reduce the dimension and conclude by induction.

Lemma 6.11. Let I be a closed semilinear set that is invariant under a core matrix A of dimension
d . If (HRd ′ ) holds for all d ′ < d , then either I is a union of basic invariants or πlast(I) = Cs .
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Note that the only basic invariant that has full dimension is Cd ; therefore, the conclusion of the
lemma implies that if I has full dimension, then πlast(I) = Cs .

Proof. Let λ1, . . . , λs be the eigenvalues of A associated with the Jordan blocks J1, . . . , Js . Let
I be a semilinear set invariant under A and consider I′ = πlast(I) ⊆ Clast, the projection of
I on the last coordinate of each block. We identify Clast with Cs by identifying the coordinate
(Ji ,d(Ji )) with i . Since (Ax)Ji ,d (Ji ) = λix Ji ,d (Ji ) and I is invariant under A, I′ is invariant under
B = Diag(λ1, . . . , λs ).

Observe that B is a core matrix, therefore, we may apply Theorem 6.10 to I′ and B; it follows
that I′ =

⋃k
�=1 I′� for some k , where I′

�
=
∏

J ∈J ε�, J and ε�, J ∈ {{0} ,C}. Therefore, we have I =⋃k
�=1 I� , where I� = I ∩ π−1

last(I
′
�
). Furthermore, it is not hard to check that Aπ−1

last(I
′
�
) = π−1

last(I
′
�
)

given the special form of I′
�

. It follows that I and π−1
last(I

′
�
) are invariant under A so I� is invariant

under A. Also note that, since I′
�
⊆ I′, we have that πlast(I�) = I′� . Therefore, it now suffices to

prove the result for each I� to prove (HRd ). Hence, we now assume that πlast(I) = X for some set
X =

∏
J ∈J ε�, J as above. If X = Cs , then the lemma holds.

Now, assume that X � Cs . This means that there exists J such that ε�, J = {0}. In particular,X ⊆{
z ∈ Cs : z J ,d (J ) = 0

}
and therefore I ⊆ π−1

last(X ) ⊆
{
z ∈ Cd : z J ,d (J ) = 0

}
=: P J . Let p = π(J ,d (J ))c

be the projection on all coordinates but (J ,d(J )). Intuitively, I is identically 0 on the coordinate
(J ,d(J )) so projecting it away (via p) and then pulling-back (via p−1) and setting (J ,d(J )) to zero
(i.e., intersect with P J ) yields the same set. Formally, since I ⊆ P J , we have thatp−1(p(I))∩P J = I.
Furthermore, P J is invariant underA (since (J ,d(J )) is the last coordinate of the block and it is zero)
so for any set X ⊆ P J , p(AX ) = Bp(X ) where B := A(J ,d (J ))c . Hence, Bp(I) = p(AI) = p(I) so p(I)
is invariant under B. But now, B has dimension d − 1, is a core matrix and p(I) is a semilinear set
invariant under B. Hence, by (HRd−1), p(I) is a union of sets of the form

∏
J ′ ∈J′ C

p J ′ × {0}d (J ′)−p J ′ ,
where J′ is the set of Jordan blocks of A and p J are some integers. By pulling back through p−1

as explained above, we get that I is a union of sets of the form

p−1

( ∏
J ′ ∈J′

Cp J ′ × {0}d (J ′)−p J ′

)
∩ P J =

'()
∏

J ′ ∈J\{J }
Cp J ′ × {0}d (J ′)−p J ′*+, ×

(
Cp J × {0}d (J )−1−p J × {0}

)
,

since p−1(·) ∩ P J leaves all Jordan block unchanged except for J where it adds one component,
which is 0. This shows that (HRd ) hold for I. �

Overview of the remainder of the proof. We now focus on the case where πlast(I) = Clast, which
is the difficult case. The remainder of the proof proceeds in two steps, which we now roughly
describe.

— First, we establish that I contains the set Q of points that are zero on the last coordinate
of each block (Lemma 6.11). This goes through a careful examination of the behavior of the
second-to-last coordinate (Lemma 6.12).

— Then, we will describe the structure of I in the close neighborhood of Q. Assuming that

I � Cd and applying the previous point yields that Q ⊆ I and also Q ⊆ Ic. This will allow
us to obtain a precise understanding of the shape of I in the neighborhood of Q, which
eventually leads to a contradiction.

We now proceed with the first step. Lemma 6.12 shows that if each block has size 1 or 2, then
I contains an element that is 0 on the last coordinate of each block but nonzero on the second last
coordinate (of each block of size 2). The intuition is as follows: Let J be a block such that d(J ) = 2
and let λ be its eigenvalue. If z ∈ I is such that z J ,2 � 0, then for all k ∈ N,

(Akz)J ,1 = λkz J ,1 + kλ
k−1z J ,2.
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Now, recall that |λ | = 1 so λkz J ,1 has constant modulus while kλk−1z J ,2 diverges to infinity in
norm, since we took z J ,2 � 0. Essentially, this means that by carefully choosing k , we can ensure
that (Akz)J ,1 belongs to some “donut,” that is, bounded away from 0 but not too far away from the
origin either. In other words, the orbit of z under A (which is contained in I) always intersects
a set K , which is essentially a donut on the second-to-last coordinates of each block. If we now
consider a sequence of points zn as above and make sure zn → 0 with nonzero last coordinates
(which is possible, since πlast(I) contains a ball around 0), then we can make sure that the orbit
of each zn intersects the same set K . Since the donut is compact, this means that we can find a
converging subsequence and, since zn → 0, this limit will be 0 on the last coordinate of each block
but nonzero on the second-to-last of each block because of the definition of the K . The technical
aspects of the proof lies in how we choose zn and how we ensure that the setK is the same for all n.

Lemma 6.12. Let A be a core matrix of dimension d with d(J ) ∈ {1, 2} for all J ∈ J and let I be a
closed semilinear set that is invariant under A and such that πlast(I) = Cs . Then, there exists z ∈ I
such that πlast(z) = 0 and for all J ∈ J , if d(J ) = 2 then z J ,1 � 0.

Proof. Let xn be a sequence of non-zero complex numbers of modulus at most 1, that is, a
decreasing (in modulus) and converges to 0. Let y(n) = (xn , . . . ,xn) ∈ Cs . Since πlast(I) = Cs ,
y(n) ∈ πlast(I) for all n, so the section

{
x ∈ I : πlast(x) = y(n)

}
is non-empty. By Lemma 2.3, since

y(n) has norm less than 1, there is some B such that for all n, there exists z(n) ∈ I of norm at most B
such that πlast(z(n)) = y(n) for all n. Since the z(n) are bounded in norm, without loss of generality,
we can assume that they converge to some z(∞) by extracting a subsequence. Since I is closed, it
is the case that z(∞) ∈ I and by continuity, πlast(z(∞)) = limn→∞ πlast(z(n)) = limn→∞ y

(n) = 0. Let

J2 = {J ∈ J : d(J ) = 2} and J′ =
{
J ∈ J2 : z(∞)

J ,1 � 0
}
. Now, let

δ = min
(
1,min

{���z(∞)J ,1

��� : J ∈ J ′}) > 0.

(In the case where J′ = �, we have δ = 1.)
Let n be large enough so ‖z(n) − z(∞)‖ ≤ δ/4. Since πlast(z(∞)) = 0, we have |xn | = ‖yn ‖ =
‖πlast(z(n))‖ � δ/4. Then, for any J ∈ J , and k ∈ N, using that the eigenvalue λ J of J has
modulus 1, ����(Akz(n)

)
J ,d (J )

���� = ���λk
J z
(n)
J ,d (J )

��� = |xn | �
δ

4
. (3)

Let k ∈ N and J ∈ J2, then(
Akz(n)

)
J ,1
= λk

J

(
z(n)

J ,1 + kλ
−1
J z(n)

J ,2

)
= λk

J

(
z(n)

J ,1 + kλ
−1
J xn

)
.

Let k(n) =
⌈

δ
2 |xn |

⌉
. Then, for all J ∈ J ,����(Ak(n)z(n)
)

J ,1

���� � ���z(n)J ,1

��� + k(n) |xn | �
���z(∞)J ,1

��� + δ

4
+

(
δ

2|xn |
+ 1

)
|xn | � δ +

���z(∞)J ,1

��� . (4)

We now make a case analysis on J ∈ J2:

— If J ∈ J ′, then����(Ak(n)z(n)
)

J, 1

���� � ���z(n)J ,1

��� − k(n) |xn | � δ −
(

δ

2|xn |
+ 1

)
|xn | �

δ

4
(5)

by the definition of δ .

J. ACM, Vol. 72, No. 2, Article 11. Publication date: March 2025.



11:38 N. Fijalkow et al.

— If J ∈ J2 \ J ′, then z(∞)
J ,1 = 0 so

���z(n)J ,1

��� � δ/4 and����(Ak(n)z(n)
)

J, 1

���� � k(n) |xn | −
���z(n)J ,1

��� � δ

2|xn |
|xn | −

δ

4
�

δ

2
. (6)

Now, I being invariant under A, the sequence (Ak(n)z(n))n has its elements in I, and ultimately
lies in the compact set

K =

{
u ∈ Cd : ∀J ∈ J , ��u J ,d (J )

�� � δ

4
and ∀J ∈ J2,

δ

4
� |u J ,1 | �

���z(∞)J ,1

��� + δ} ,
thanks to Equations (3),(4), (5), and (6). We may then extract a converging subsequence in K , with
its limit u(∞) in I ∩ K . Clearly, πlast(u(∞)) = 0, since limn→∞ πlast(z(n)) = 0. Furthermore, for all

J ∈ J2, δ
4 � |u

(∞)
J ,1 | so u(∞)

J ,1 � 0. This shows the result. �

We now extend this result to the case where the blocks do not necessarily have size 2. We first
project the invariant I on the last two coordinates of each block to obtain I′. It is easy to see that
I′ is invariant under the suitable restriction of A to those coordinates. Hence, by Lemma 6.12, we
can find a point that is zero on the last coordinate but nonzero on the second-to-last coordinate
of each block. We can then pull back this point through the projection and obtain a point x ∈ I
with the same property. We next argue that the existence of x implies that I must contain Q :=
π−1

last({0}) =
∏

J ∈J C
d (J )−1 × {0}. Indeed, if we project I ∩ Q on all coordinates except the last one

of each block, then we obtain an invariant set again and so by applying (HRd−s ), we conclude that
it is a union of basic invariants. Now, since x ∈ I ∩ Q, it follows that I ∩ Q = Cd−s . We now
formalize this proof.

Lemma 6.13. LetA ∈ Cd×d be a core matrix and I be a closed semilinear set that is invariant under
A and such that πlast(I) = Cs . If (HRd ′ ) holds for all d ′ < d , then Q ⊆ I where Q := π−1

last
({0}) =∏

J ∈J C
d (J )−1 × {0}.

Proof. In this proof, we will need to refer to coordinates with respect to both the original matrix
A and some sub-matrices AS with S a subset of the coordinates. To avoid confusing notations, we
view the coordinates of AS as a subset of that of A, so d(J ) still refers to the size of the Jordan
block J in A. We will also write projection πX with different domains, i.e., πX : Cd → CX and
πX : CS → CX , it should be clear from the context what the domain of each projection is.

First note that if lastc = � (which corresponds to the diagonal case), then I = πlast(I) = Cs so
the result is trivially true. Hence, we now assume that lastc � �. In particular, A has at least one
Jordan block of size at least 2.

Note that Q ⊆ I is equivalent to πlastc (I) = Cd−s . Let p = πlastc , let I′ = p(I ∩ Q), and let
A′ = Alastc . The last coordinate on each block in I∩Q is zero, therefore, I∩Q = p−1(p(I∩Q))∩Q
and p(A(I ∩Q)) = A′p(I ∩Q). It follows that I′ is invariant under A′ and of dimension d − s < d .
By (HRd−s ), it holds that I′ is a union of basic invariants. If I′ = Cd−s , then the lemma holds.
Therefore, we assume, toward a contradiction that I′ � Cd−s .

Basic invariants corresponding to A′ are those of the form∏
J ∈J≥2

Cp J × {0}d (J )−1−p J ,

where J≥2 = {J ∈ J | d(J ) ≥ 2}, and note that each such set that is not Cd−s is identically zero
on at least one coordinate (J ,d(J ) − 1) for some J ∈ J≥2. It follows that

I′ ⊆
⋃

J ∈J�2

π−1
(J ,d (J )−1)({0});
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in words, for each z ′ ∈ I′, there is a block J ∈ J≥2 such that the last coordinate of z ′ on J is zero.
But, since I ∩ Q = p−1(I′) ∩ Q, we have

I ∩ Q ⊆
⋃

J ∈J�2

(
π−1
(J ,d (J )−1)({0}) ∩ Q

)
=
⋃

J ∈J�2

π−1
last ∪ {(J ,d (J )−1)}({0}); (7)

in words, all vectors of I ∩Q have a second-to-last coordinate that is zero on some block. We will
now project on the last two coordinates of each block. Formally, let

last-two = {(J , 1) : J ∈ J ,d(J ) = 1} ∪
⋃

J ∈J�2

{(J ,d(J ) − 1), (J ,d(J ))}

and consider I′′ = πlast-two(I). We claim that I′′ is invariant under A′′ := Alast-two, since the last
two coordinates of each block do not depend on the other coordinates when applying A. Further-
more, since last ⊆ last-two, we have that πlast(I′′) = πlast(πlast-two(I)) = πlast(I) = Cs . Therefore,
we may apply Lemma 6.12 to I′′ and A′′ and get that there exists z ∈ I′′ such that πlast(z) = 0
and for all J ∈ J , if d(J ) � 2, then z J ,d (J )−1 � 0. But this contradicts Equation (7), because
z ′ = π−1

last-two(z) is now such that z ′ ∈ Q but z ′
J ,d (J )−1 � 0 for all J ∈ J�2. �

At this stage, we may thus assume that the invariant I satisfies πlast(I) = Cs and contains
Q := π−1

last({0}). We now aim to show that this implies that I = Cd , and in particular I is a basic
set.

Lemma 6.14. LetA be a core matrix of dimensiond andI be a closed semilinear set that is invariant

under A and such that πlast(I) = Cs . If (HRd ′ ) holds for all d ′ < d , then I = Cd .

The rest of the section establishes Lemma 6.14; together with Lemma 6.11, this concludes our
inductive proof of Theorem 6.1.

Let A be a core matrix of dimension d and I be a semilinear set invariant under A such that
πlast(I) = Cs , and assume that (HRd ′ ) holds for all d ′ < d . Since I is a closed semilinear set, we
have

I =
⋃
P∈P
P, P =

⋂
H∈HP

H ,

where P is a finite set of polyhedra P, and each P is the intersection of a set HP of finitely many
closed half-spaces. We let H =

⋃
P∈P HP denote the set of all half-spaces that appear in the defi-

nition of I.
We let Pf = {P ∈ P | dimR P = 2d} denote the set of fully dimensional polyhedra appearing in

the definition ofI. By Lemma 6.8,I has full dimension 2d , therefore, Pf is non-empty. We will now
show that we may, without loss of generality, ignore polyhedra that do not have full dimension.

Lemma 6.15. The semilinear set I ′ =
⋃
P∈Pf

P is invariant under A.

Proof. Since all polyhedra in I′ are closed and of full dimension, we have I′o = I′. Thus, it
suffices to prove that A(I′o) ⊆ I′ and conclude by continuity.

Let z ∈ I′o and let ε > 0 such that B(z, ε) ⊆ I′. Then, AB(z, ε) ⊆ AI ⊆ I. Note that for some
small enough ε ′, we have B(Az, ε ′) ⊆ AB(z, ε), thus B(Az, ε ′) ⊆ I. It follows that Az ∈ I′, since
I \ I′ has empty interior. �

Now, by Lemma 6.11, either πlast(I′) = Cs or I′ is a union of basic invariants � Cd . But the
latter case is excluded, since such basic invariants do not have full dimension. Thus, πlast(I′) = Cs .
Therefore, in the remainder of the proof, we now assume without loss of generality that Pf = P :
All polyhedra have full dimension.
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By Lemma 6.13, I contains Q := π−1
last({0}) =

∏
J ∈J C

d (J )−1 × {0}. Let Pfull denote the set of
polyhedra P in P such that P ∩ Q has dimension 2(d − s). Since Q ⊆ I and Q has dimension
2(d − s), we have Pfull � ∅. We now exclude the case where all polyhedra in Pfull are included in Q.

Lemma 6.16. There is P0 ∈ Pfull such that P0 � Q.

Proof. Assume towards a contradiction that for all P ∈ Pfull it holds that P ⊆ Q. Let I′ be the
closed semilinear set defined by

I′ =
⋃

P∈P\Pfull

P .

First, note that I′ is non-empty, otherwise, we would have I ⊆ Q, which implies πlast(I) = {0},
however, πlast(I) = Cs .

We now prove thatI′ is stable underA. Again, since all polyhedra have full dimension, it suffices
to prove that A(I′o) ⊆ I′. Let z ∈ I′o. There exists P � Pfull and ε > 0 such that B(z, ε) ⊆ P ⊆ I′.
But then it cannot be that z ∈ Q , otherwise, it would hold that P ∈ Pfull. Since Qc ⊆ Qc, we get
Az ∈ I ∩Qc, which is contained in I′ by our assumption. Hence, I′ is stable under A.

Now, since I′ is stable under A and full dimension, it contains Q by Lemma 6.11. However, I′
is a finite union of polyhedra whose intersections with Q have dimension < 2(d − s) = dimR Q;
thus I cannot contain Q. �

Therefore, there exists P0 ∈ Pfull, which is not contained in Q. Let Hgeneral be the family of
half-spaces in H that do not contain Q in their boundary. Now, ifH ∈ Hgeneral, then ∂H ∩ Q has
dimension < 2(d − s). It follows that the countable union

X :=
⋃

H∈Hgeneral

⋃
k ∈N

A−k (∂H ∩ Q)

has dimension < 2(d − s), so it may not cover P0 ∩ Q. Let z ∈ (P0 ∩ Q) \ X .

Lemma 6.17. For all H � Hgeneral, it holds that πlast(H) is a closed half-space of Cs satisfying

H = π−1
last
(πlast(H)) and 0 ∈ ∂πlast(H).

Proof. By definition, if H � Hgeneral, then Q ⊆ ∂H ⊆ H . Since Q is a linear subspace of Cd ,
this implies H + Q = H . Now, Q = ker(πlast), therefore, π−1

last(πlast(H)) = H + ker(πlast) = H .
Finally, we have 0 ∈ F ⊆ ∂H and thus 0 ∈ πlast(H). �

We proceed with another technical lemma, which prepares for our final construction.

Lemma 6.18. For all k ∈ N, there exists εk > 0 such that for allH ∈ Hgeneral, the set B(Akz, εk )∩H
is either empty or the whole ball B(Akz, εk ).

Proof. We distinguish three cases.

— If Akz ∈ Ho, then there exists εk,H > 0 such that B(Akz, ε) ∩H = B(Akz, ε) for all ε � εk,H .
— If Akz ∈ ∂H , then z = A−kAkz ∈ A−k∂H and z ∈ Q = A−kQ. But, since H ∈ Hgeneral, this

implies z ∈ X , which is not possible.
— If Akz � H , then there exists εk,H > 0 such that B(Akz, ε) ∩ H = � for all ε � εk,H , since
H is closed.

Since the set Hgeneral is finite, we conclude by taking εk to be the smallest εk,H for allH ∈ Hgeneral.
�

J. ACM, Vol. 72, No. 2, Article 11. Publication date: March 2025.



On the Monniaux Problem in Abstract Interpretation 11:41

We then pick a sequence (εk )k ∈N as above and take it to be non-increasing and converging to 0
without loss of generality. For each P ∈ P , we then have

B
(
Akz, εk

)
∩

⋂
H∈HP∩Hgeneral

H = B
(
Akz, εk

)
∩ Ek,P , (8)

where Ek,P is either empty or Cd . Now that z ∈ I, this implies that for all k , Akz ∈ I, so there
exists P ∈ P such that Akz ∈ P, and then Akz ∈ H for allH ∈ HP , by definition. Hence, for all k ,
there exists P ∈ P such that Ek,P = C

d .
It follows that for all k and P,

B
(
Akz, εk

)
∩ P = B

(
Akz, εk

)
∩ Ek,P ∩

⋂
H∈HP\Hgeneral

H

= B
(
Akz, εk

)
∩ Ek,P ∩

⋂
H∈HP\Hgeneral

π−1
last (πlast(H))

= B
(
Akz, εk

)
∩ Ek,P ∩ π−1

last
'()

⋂
H∈HP\Hgeneral

πlast(H)
*+,

= B
(
Akz, εk

)
∩ π−1

last

(
Ck,P

)
,

where Ck,P =
⋂
H′∈Hk,P H

′ with

Hk,P =

{{
πlast(H) : H ∈ HP \ Hgeneral

}
if Ek,P = C

d

� if Ek,P = �
. (9)

Note that by Lemma 6.17, Hk,P is a finite set of closed half-spacesH′ of Cs such that 0 ∈ ∂H′.
We further let Ck =

⋃
P∈P Ck,P . Since I =

⋃
P∈P P, it follows that for all k ∈ N,

B
(
Akz, εk

)
∩ I = B

(
Akz, εk

)
∩ π−1

last (Ck ) . (10)

We now establish further properties of the Ck ’s.

Lemma 6.19. For all k ∈ N, it holds that Ck has full dimension 2s , that Ck � Cs , and that Ck is a
union of convex cones. Moreover, there are finitely many different sets Ck when k ranges over N.

Proof. We prove the properties one-by-one.

—Ck has full dimension 2s . For this, we argue that B(Akz, εk ) ∩ I has full dimension and
therefore by Equation (10), π−1

last(Ck ) also has full dimension that concludes. To show that

B(Akz, εk ) ∩ I has full dimension, it suffices to observe that Akz ∈ I so Akz ∈ P for some
P ∈ P , all of which are fully dimensional.

—Ck � C2s . For this, let us consider Ic, a closed semilinear set that is invariant under A−1.
Using Lemma 6.6, A−1 rewrites as Diag(Jd (J )(λ−1

J ), J ∈ J) under an appropriate change of

basis that preserves basic invariants. Hence, Lemma 6.11 applies to Ic, which yields that

either Ic is a basic invariant or πlast(Ic) = Cs . But, since I is closed and � Cd , it holds that

I
c

is fully dimensional, hence πlast(Ic) = Cs . It follows from Lemma 6.13 that Q ⊆ I
c
.

Now, recall that Akz ∈ Q so there exists x ∈ Ic ∩ B(Akz, εk ). In particular, it follows
that B(Akz, εk ) ∩ I � B(Akz, εk ). By Equation (10), this implies that B(Akz, εk ) ∩ π−1

last(Ck ) �
B(Akz, εk ) and therefore Ck � Cs .
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—Ck is a union of convex cones: It suffices to show that each Ck,P is a convex cone. To show
this, recall thatCk,P =

⋂
H′∈Hk,P H

′, which are such that 0 ∈ ∂H′ and contain a line, if the
intersection consists of just one half-space.

— There are finitely many different sets Ck for k in N. Indeed, by Equation (9), Hk,P , and thus
Ck , is determined only by whether Ek,P = R

2d or �, so there are only 2 |P | possible values.
Note that, however, εk does depend on k and may take arbitrarily small values if Akz gets
arbitrarily close to someH in H when k ranges over N. �

We are now finally in a position to present the final step of our proof.
As we have seen in the proof of Lemma 6.9, {(λk

1 , . . . , λ
k
s ),k ∈ N} is dense in {(λt

1, . . . , λ
t
s ), t ∈ R}.

Hence, there exists an increasing sequence φ : N → N and εk/2 ≤ μk ≤ εk such that for all k ,

(λφ(k)
1 , . . . , λ

φ(k)
s ) = (λμk

1 , . . . , λ
μk
s ). Let C be such that C = Cφ(k) for infinitely many k . Since C has

full dimension by Lemma 6.19 it contains a point that is nonzero on every coordinate. Therefore,
C cannot be stable under M = Diag(λ1, . . . , λs ), otherwise Lemma 6.9 would conclude thatC = Cs ,
contradicting Lemma 6.19. In particular, there is ũ ∈ C such that Mũ � C .

Let t0 = sup{t ∈ [0, 1] | Mtũ ∈ C} where Mt := Diag(λt
1, . . . , λ

t
s ). Since t �→ Mtũ is continuous

and C is closed, it holds that Mt0ũ ∈ C , hence t0 < 1. Now, let u = Mt0ũ. Then, for all sufficiently
small ε > 0, we have Mεu � C by definition of the supremum.

We let N ∈ N be such that for n ≥ N , εn is small enough in this sense, and N ′ be such that
φ(N ′) − φ(0) ≥ N . Recall that C is a cone, so we may re-scale u so ‖u‖ � 2−φ(N ′)εφ(N ′) and

everything proved above aboutu remains true. Letv = Aφ(0)z+u. Recall that z ∈ Q, that πlast(Q) =
{0}, and Q is stable under A so Aφ(0)z ∈ Q, hence πlast(v) = u. Therefore,

v ∈
[
B
(
Aφ(0)z, 2−φ(N ′)εφ(N ′)

)
∩ π−1

last({u})
]
⊆
[
B
(
Aφ(0)z, εφ(0)

)
∩ π−1

last(C)
]
⊆ I,

where the last inclusion holds by Equation (10). We argue that Aφ(N ′)−φ(0)v ∈ B(Aφ(N ′)z, εφ(N ′)).
Indeed, A is 2-lipschitzian, so Aφ(N ′)−φ(0) is 2φ(N ′)-lipschitzian (for the infinity norm ‖ · ‖), so

‖Aφ(N ′)−φ(0)v −Aφ(N ′)z‖ ≤ 2φ(N ′) ‖v −Aφ(0)z‖ ≤ εφ(N ′).

Hence, since I is stable under A, and by Equation (10),

Aφ(N ′)−φ(0)v ∈ B
(
Aφ(N ′)z, εφ(N ′)

)
∩ I = B

(
Aφ(N ′)z, εφ(N ′)

)
∩ π−1

last(C). (11)

However,

πlast

(
Aφ(N ′)−φ(0)v

)
= Diag

(
λ

φ(N ′)
1 , . . . , λ

φ(N ′)
s

)
u = Diag

(
λ

μN ′
1 , . . . , λ

μN ′
s

)
u = M μN ′u .

Since μN ′ ≤ εN ′ ≤ εN and we chose N such that Mαu � C for any 0 < α � εN , this shows that
πlast(Aφ(N ′)−φ(0)v) � C , contradicting Equation (11) and concluding the proof.

7 Conclusions

In this article, we have proved that the Monniaux problem is undecidable already in a very re-
stricted setting: using semilinear invariants for affine programs (without guards), and in fact using
only a single control location and two transitions. This very foundational undecidability result
shows that there is little hope for decidability for the Monniaux problem, as most natural classes
will include them. What we leave as an open question is whether convex invariants can help re-
cover decidability. This is a very exciting perspective, since, as pointed out in the introduction,
convex invariants appear naturally in many practical scenarios.

Our decidability result considers the case of a single transition. On a technical level, the proof
helps us understand what exactly semilinear invariants can be used for in the context of affine
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programs. This surprising positive result opens several perspectives. First, going beyond semilinear
invariants: It is already known that the Monniaux problem is decidable for semialgebraic invariants
[13, 14], but it remains open for other natural classes of invariants. Second, this decidability result
implies a complexity result, but not yet an efficient algorithm. We leave open whether the problem
can be efficiently solved and what consequences are there for static analysis of programs.
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Appendices

A Upper Bound on Aperiodicity Index

In this section, we give an polynomial (when the dimensiond is fixed) upper bound on the smallest
number n such that An is aperiodic. We start with the following lemma:

Lemma A.1. If λ is an mth root of unity and an algebraic number of degree d , thenm � 2d2.

Proof. Let m > 1 be the smallest integer such that λm = 1 and let Φm be the mth cyclotomic
polynomial. Then, Φm is the minimal polynomial of λ by definition of m. Furthermore, recall that
the degree of Φm is ϕ(m) where ϕ is Euler’s totient function. But, since Φm is the minimal polyno-
mial of λ, its degree is exactly d , hence d = ϕ(m). It is well-known that ϕ(m) �

√
m/2, therefore,

m � 2d2. �

Lemma A.2. LetA be a rational matrix whose eigenvalues λ1, . . . , λs have modulus 1. Any number
of the form λi , λi/λj , or λiλj , if it is a root of unity, has order bounded by a polynomial in the dimension
of A.

It follows that An is aperiodic for some n that is at most polynomial.

Proof. We first consider the case where λ is an eigenvalue of A that is a root of unity. Since
A has rational coefficients, its minimal polynomial pA also has rational coefficients. Furthermore,
pA(λ) = 0, since λ is an eigenvalue. Therefore, λ is an algebraic number of degree at most n, the
dimension of A. It follows by Lemma A.1 that the order of λ is polynomial in n. Now, assume
that λ and μ are two eigenvalues of A such that λμ is a root of unity. Since λ and μ are algebraic
numbers of degree at most n, λμ and λ/mu are algebraic of degree at most n2. Therefore, by the
same argument, the order of λμ and λ/mu is polynomial in n2, hence in n. �

B Computing Some Determinants

In this Appendix, we prove Lemma 6.5, which we first restate for convenience.

Lemma 6.5. Let A ∈ Cd×d be in Jordan normal form, J its Jordan blocks, and let λ J denote the

eigenvalue of each Jordan block J ∈ J . Let x ∈ Cd and M = [xR (Ax)R · · · (A2d−1x)R]. If all
the eigenvalues of AR are distinct and x J ,d (J ) � 0 for all J ∈ J , then det(M) � 0.

Towards proving Lemma 6.5, we first compute a similar determinant in a complex setting.

Lemma B.1. Let A ∈ Cd×d be in Jordan normal form, J its Jordan blocks, and let λ J denote the

eigenvalue of each Jordan block J ∈ J . Let x ∈ Cd and M =
[
x A1x · · · Ad−1x

]
. Then,

det(M) =
∏
J ∈J
(−x J ,d (J ))d (J ) ·

∏
J ,H ∈J, J�H

(λ J − λH )d (J )d (H ).
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Proof of Lemma B.1. We let M(A,x ,n) =
[
A0x A1x · · · An−1x

]
for any A ∈ Cd×d , which

is a rectangular matrix, and M(A,x) = M(A,x ,d) which is a square matrix. First check, by an easy
induction, that for any integer n, Jordan block J ∈ J and i ∈ [1,d(J )],

(Anx)J ,i =
d (J )∑
j=i

(
n

j − i

)
λn+i−j

J
x J , j .

We now proceed by induction on the number of blocks. If d = 0, then det(M(A)) = 1 so the
formula is true. LetA ∈ Cd×d with s > 0 blocks. Fix a Jordan block J0 ∈ J . To avoid any confusion,
let μ = λ J0 . By performing linear combination of the columns, we can transform M(A,x) into

B =
[
C0 · · · Cd−1

]
where Cn = Anx +

n−1∑
k=0

(−μ)n−k

(
n

k

)
Akx .

Note that these linear transformations are all of the form “add a multiple of a column to another
one,” hence it does not affect the determinant. Let J ∈ J and i ∈ [1,d(J )], then

Cn
J ,i = (A

nx)J ,i +
n−1∑
k=0

(−μ)n−k

(
n

k

)
(Akx)J ,i

=

d (J )∑
j=i

(
n

j − i

)
λn+i−j

J
x J , j +

n−1∑
k=0

(−μ)n−k

(
n

k

) d (J )∑
j=i

(
k

j − i

)
λk+i−j

J
x J , j

=

d (J )∑
j=i

[(
n

j − i

)
λn+i−j

J
+

n−1∑
k=0

(−μ)n−kλk+i−j
J

(
n

k

) (
k

j − i

)]
x J , j

=

d (J )∑
j=i

[
n∑

k=0

(−μ)n−kλk+i−j
J

(
n

k

) (
k

j − i

)]
x J , j .

Now, observe that

n∑
k=0

(−μ)n−k λ
k+i−j
J

(
n

k

) (
k

j − i

)
=

n∑
k=j−i

(−μ)n−k λ
k+i−j
J

(
n

k

) (
k

j − i

)
since

(
k

j − i

)
= 0 for k � j − i

=

n−j+i∑
k=0

(−μ)n−k−j+i λk
J

(
n

k + j − i

) (
k + j − i

j − i

)
by re-indexing

=

n−j+i∑
k=0

(−μ)n−j+i−k λk
J

(
n

j − i

) (
n − j + i

k

)
by the identity

(
n

k + h

) (
k + h

h

)
=

(
n

h

) (
n − h

k

)
=

(
n

j − i

) n−j+i∑
k=0

(−μ)n−j+i−k λk
J

(
n − j + i

k

)
=

(
n

j − i

)
(λ − μ)n−j+i by the binomial theorem.

Therefore,

Cn
J ,i =

d (J )∑
j=i

(
n

j − i

)
(λ − μ)n−j+ix J ,i .

Note that this is exactly the expression for a Jordan block with eigenvalue λ − μ. In other words,
det(M(A,x)) = det(M(Ã,x)), where Ã = A − μId has the same Jordan blocks as A but different
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eigenvalues. In particular, the block J0 has eigenvalue λ J0 − μ = 0 in Ã so it is a nilpotent block.

Thus, Ãd (J0)
J0
= 0 so

M(Ã,x) =
[
M(ÃJ0 ,x J0 ,d(J0)) Ãd (J0)

J0
M(ÃJ0 ,x J0 ,d − d(J0))

M(ÃJ c
0
,x J c

0
,d(J0)) Ãd (J0)

J c
0

M(ÃJ c
0
,x J c

0
,d − d(J0))

]
=

[
M(ÃJ0 ,x J0 ) 0

∗ Ãd (J0)
J c
0

M(ÃJ c
0
,x J c

0
)

]
.

In particular,

det(M(A,x)) = det(M(Ã,x)) = det
(
M
(
ÃJ0 ,x J0

))
det
(
ÃJ c

0

)d (J0)
det
(
M
(
ÃJ c

0
,x J c

0

))
.

It is not hard to see that

M(ÃJ0 ,x J0 ) =

⎡⎢⎢⎢⎢⎢⎣
x J0,1 · · · x J0,d (J0)
... . .

.

x J0,d (J0)

⎤⎥⎥⎥⎥⎥⎦ ,
so its determinant is (−x J0,d (J0))d (J0). Furthermore, since Ã is in JNF, its determinant is the product

of its eigenvalues (with multiplicities). Now, let J̃ = J \ {J0} denote the Jordan blocks of Ã,
λ̃ J = λ J − λ J0 denote the eigenvalue of the block J in Ã. Then,

det(M(A,x)) = (−x J0,d (J0))d (J0) '()
∏
J ∈J̃

λ̃d (J )
J

*+,
d (J0)

det
(
M
(
ÃJ c

0
,x J c

0

))
=
(
−x J0,d (J0)

)d (J0) ·
∏
J ∈J̃

(
λ J − λ J0

)d (J )d (J0) · det
(
M
(
ÃJ c

0
,x J c

0

))
.

By the induction hypothesis applied to ÃJ c
0

and x J c
0
, we get that (note that (x J c

0
)J ,d (J ) = x J ,d (J ) for

J � J0)

det
(
M
(
ÃJ c

0
,x J c

0

))
=
∏
J ∈J̃

(
−x J ,d (J )

)d (J ) · ∏
J ,H ∈J̃, J�H

(
λ̃ J − λ̃H

)d (J )d (H )
=
∏
J ∈J̃

(
−x J ,d (J )

)d (J ) · ∏
J ,H ∈J̃, J�H

(
λ J − λH

)d (J )d (H )
.

And we get the result by putting everything together. �

We are now ready to show Lemma 6.5.

Proof of Lemma 6.5. It is not hard to check that AR is the block matrix (R(Ai j ))i, j where

R(z) =
[
Re (z) −Im (z)
Im (z) Re (z)

]
for all z ∈ C. Furthermore, there is a change of basis Q (independent of z) such that

Q−1R(z)Q =
[
z 0
0 z∗

]
.

Therefore, by applying Q block-wise and permuting rows and columns, we can build a change of
basis P such that AR = P−1BP and xR = P−1y where

B =

[
A 0
0 A∗

]
, y =

[
x
x∗

]
.
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It follows that PM = [y By · · · B2d−1y]. One can check that Q and P have determinant 1 so
det(M) = det(PM), and we have reduced the problem to computing the determinant of

N =
[
y By · · · B2d−1y

]
,

where B is in Jordan normal form. Specifically, the Jordan blocks of B are the Jordan blocks of A
and their conjugates. By Lemma B.1,

det(N ) =
∏

J ∈JB

(
−y J ,d (J )

)d (J ) · ∏
J ,H ∈JB, J�H

(
λB

J − λ
B
H

)d (J )d (H )
.

Since we assume all the eigenvalues of AR to be distinct, the second product in this expression is
nonzero. The first product is equal to∏

J ∈JB

(
−y J ,d (J )

)d (J )
=
∏

J ∈JA

(
−x J ,d (J )x

∗
J ,d (J )

)d (J )
=
∏

J ∈JA

(
−Re

(
x J ,d (J )

)2 − Im
(
x J ,d (J )

)2)d (J )
and therefore is nonzero if x J ,d (J ) � 0 for all J . �

C Inverse of a Core Matrix

We now prove Lemma 6.6, which we first restate for convenience.

Lemma C.1. Let A ∈ Cd×d be a core matrix and J range over its Jordan blocks. There exists a
change of basis P that stabilizes any basic invariant, and such that PA−1P−1 = Diag(Jd (J )(λ−1

J ), J ∈
J).

Proof. Recall that a core matrix A is a diagonal block matrix, where blocks are of the form

AJ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ 1

λ
. . .

. . . 1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where J ranges over the set of Jordan blocks J . Then, we have

A−1
J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ−1 λ−2 λ−3 . . . λ−d (J )

λ−1 λ−2 λ−d (J )+1

. . .

λ−2

λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, we get P JA
−1
J P−1

J = Jd (J )(λ−1) with P J upper triangular, and the lemma follows. �

D Special JNF for Real Matrices

We now prove the following statement about Jordan normal form of real matrices:
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Lemma D.1. For every real matrix A, there is an invertible matrix Q such that

Q−1AQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jd1(λ1)
. . .

Jdr
(λr )

Jd ′1
(λ′1)

Jd ′1
(λ′1
∗)
. . .

Jd ′s (λ′s )
Jd ′s (λ′s

∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the λi ’s are real and the λ′i ’s are non-real. Moreover, Q and Q−1 are of the form

Q =
[
Q1 . . . Qr Q ′1 Q ′1

∗ . . . Q ′s Q ′s
∗] , Q−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1
...
Tr

T ′1
T ′1
∗

...
T ′s
T ′S
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the Qi ,Ti ’s are matrices and all above matrices can be computed in polynomial time.

Intuition: We start with a high-level description of the proof. Start with the JNF M =

Diag(J1, . . . , Jk ) of a real matrix A. We can always re-order the blocks so the first blocks have
real eigenvalues, followed by the ones with positive imaginary component and finally negative
imaginary component. We write M = Diag(R1, . . . ,Rr , J1, . . . , Js , J

′
1, . . . , J

′
s ). We would like to

argue that there is a relationship between the Ji and J ′i but this is unclear: We do not even
know that s = s ′. The approach is therefore to simply drop the J ′i and replace them by J ∗i :

M̃ = Diag(R1, . . . ,Rr , J1, . . . , Js , J
∗
1 , . . . , J

∗
s ). By using that A is real and that eigenvalues come in

conjugate pairs, we can argue that M̃ is still a JNF for A. We then argue about the particular shape
of the transformation matrices using the fact that ifAP̃ = P̃M̃ for some matrix P̃ , then the columns
of P̃ are generalized eigenvectors of A.

Let A be a real matrix. Recall that we can compute the (complex) JNF in polynomial time [3, 4]
and get a invertible matrix P and a matrix M of Jordan blocks such that P−1AP = M . This means
that M is a block diagonal matrix of Jordan blocks, where each block has an associated eigenvalue.
Without loss of generality, we can re-order the blocks so the blocks R1, . . . ,Rr with correspond-
ing real eigenvalues λ1, . . . , λr come first, followed by the blocks J1, . . . , Js with corresponding
eigenvalues μ1, . . . , μs with positive imaginary component (Im (μi ) > 0), and finally the remaining
blocks J ′1, . . . , J

′
s ′ with corresponding eigenvalues μ ′1, . . . , μ

′
s ′ with negative imaginary component

(Im
(
μ ′i
)
< 0). Note that, at this point, we do not claim that there is any relationship between s and

s ′. With these notations, we have that

M = Diag(R1, . . . ,Rr , J1, . . . , Js , J
′
1, . . . , J

′
s ).

The spectrum ofA is exactly
{
λ1, . . . , λr , μ1, . . . , μs , μ

′
1, . . . , μ

′
s ′
}
. SinceA is real, the non-real eigen-

values come in conjugate pairs, therefore, for all i = 1, . . . , s ′, there exists j such that μ ′i = μ∗j (note,
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however, that this implies no relationship between J ′i and Jj , they could have different sizes). Fur-
thermore, a consequence of the equation AP = MP is that P is of the form

P =
[
S1 · · · Sr T1 · · · Ts T ′1 · · · T ′s ′

]
,

where the columns of each Si , Ti , and T ′i form a Jordan chain, which means that for each i ,

Ti =
[
x i,1 · · · x i,d (Ji )

]
,

where x i,1, . . . ,x i,d (Ji ) are generalized eigenvectors of A that satisfy

Ax i,1 = μix
i,1, Ax i, j = μix

i, j + x i, j−1,

for j = 2, . . . ,d(Ji ). Finally, we introduce a few notations for vector spaces: Given a (not necessarily
square) matrix X , we letVX be the span of the columns of X . A consequence of the JNF (i.e., P is
invertible) is that

Rd = VR ⊕ VI+ ⊕ VI− ,
where

VR = VR1 ⊕ · · · ⊕ VRr
VI+ = VJ1 ⊕ · · · ⊕ VJs

VI− = VJ ′1
⊕ · · · ⊕ VJ ′

s′

are the generalized eigenspaces of the real and complex eigenvalues. We now let

P̃ =
[
S1 · · · Sr T1 · · ·Ts T ∗1 · · ·T ∗s

]
, M̃ = Diag(R1, . . . ,Rr , J1, . . . , Js , J

∗
1 , . . . , J

∗
s ),

which are essentially P and M where we have replaced the T ′i and J ′i (which can be anything and
possibly be unrelated to Ti and Ji ) by T ∗i and J ∗i (the conjugates). Note that at this point, it is not

clear that P̃ and M̃ are square matrices. We claim that

AP̃ = P̃M̃ .

For sub-matrices Si andTi , this follows directly from the equation AP = PM but we need to verify
that it holds for T ∗i . For that, we simply note that A = A∗ (A is real) and AP = PM so

AT ∗i = (A∗Ti )∗ = (ATi )∗ = (Ti Ji )∗ = T ∗i J ∗i ,

which is what we wanted. Therefore, it only remains to see that P̃ is square and invertible. The
submatrix X := [R1 · · · Rr T1 · · · Ts ] has linearly independent columns, since it is a
subset of the columns of P that is invertible. Furthermore, VX = VR ⊕ VI+ . The columns of
Y := [T ∗1 · · · T ∗s ] are also linearly independent, becauseVT ∗i

= V∗Ti
and therefore

VY = VT ∗1
+ · · · +VT ∗s = V

∗
T1
+ · · · +V∗Ts

=
(
VT1 + · · · +VTs

)∗
=
(
VT1 ⊕ · · · ⊕ VTs

)∗
= V∗I+ .

Therefore, we need to show thatVX ⊕ VY = R
d , that is to say Rd = VR ⊕ VI+ ⊕ V∗I+ .

First, we make an observation: For any i , since we have AT ∗i = T
∗
i J
∗
i and J ∗i is a Jordan block for

μ∗i , thenT ∗i is a Jordan chain for μ∗i and thereforeVT ∗i
is included in the generalized eigenspace of

A for μ∗i .
We claim that this implies that VR ⊕ VI+ and V∗I+ are in direct sum. To see that, we need to

show that VJ ∗i
and VR ⊕ VI+ are in direct sum for all i . On the one hand, VJ ∗i

is included in the
generalized eigenspace of A for the eigenvalues μ∗i . On the other hand, VR ⊕ VI+ is the direct
sum of all generalized eigenvalues δ that satisfy Im (δ ) � 0 and therefore are all distinct from μ∗i
because Im

(
μ∗i
)
= −Im (μi ) < 0 (a consequence of Im

(
λj

)
= 0 and Im

(
μ j

)
> 0 for all j), as just

shown. By standard facts, generalized eigenspaces for distinct eigenvalues are in direct sum which
shows the claim.
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Finally, we claim that Rd = VR ⊕VI+ ⊕V∗I+ . To do that, we will show thatVI− ⊆ V∗I+ which

will conclude, since Rd = VR ⊕ VI+ ⊕ VI− . Let 1 � i � s ′, we will show thatVT ′i
⊆ V∗I+ . Recall

that T ′i is a Jordan chain and AT ′i = T
′
i J
′
i , hence

AT ′i
∗
=
(
A∗T ′i

)∗
=
(
AT ′i
)∗
=
(
T ′i J

′
i

)∗
= T ′i

∗ J ′i
∗,

since A is real. Since J ′i
∗ is Jordan block, T ′i

∗ is a Jordan chain for μ ′i
∗ and VT ′i

∗ is included in the

generalized eigenspace of μ ′i
∗. But Im

(
μ ′i
∗) = −Im

(
μ ′i
)
> 0 so μ ′i

∗ = μ j for some j and then VT ′i
∗

is included in the generalized eigensace of μ j and therefore inVI+ . At the same time,VT ′i
∗ = V∗

J ′i
soVT ′i

⊆ V∗I+ .
In summary, we have shown that AP̃ = P̃M̃ , where M̃ is in JNF with conjugated blocks and P̃

has correspondingly “conjugated” columns.
It remains to see that P̃−1 has a similar structure. In what follows, we rename P̃ to P and M̃

to M so AP = PM , and P and M are “conjugated.” Assume for the moment that A is invertible.
We claim that we can compute an invertible matrix Q , with the same conjugation pattern as P ,
such that QA−1 = M−1Q . The details on how to compute such a Q can be found in Reference [3,
Theorem 4.1 and Appendix 1] but, in short, this is exactly the same algorithm used to compute P
but in “row form,” or equivalently, since A−TQT = QTM−T , can be seen as another version of the
JNF applied to A−T where the “ones” are below the diagonal. Intuitively, this works because the
generalized eigenspaces of A−1 have exactly the same structure as that of A. Having found such
a Q , we note that

MQP = M(QA−1)(AP) = M(M−1Q)(PM) = QPM,

so M andQP commute. But M is block-diagonal, so it follows thatQP must also be block-diagonal,
i.e.,QP = X := Diag(X1, . . . ,Xr+2s )with the same block structure as M . Furthermore, since both P
andQ have the same conjugated structure, it follows that X is conjugated with the same structure.
Finally, we observe that P−1 = X−1Q, which preserves again the conjugated structure and shows
the result. In the case where A is not invertible, we instead replace A with A′ = A + δIn for some
very large δ so A′ is invertible. It is then not hard to see that the JNF of A′ is M ′ = M + δIn . We
can then compute P and P−1 with the conjugated structure from A′ as above and those will be
acceptable for A as well.
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