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ABSTRACT
In discrete-time linear dynamical systems (LDSs), a linear map is

repeatedly applied to an initial vector yielding a sequence of vectors

called the orbit of the system. A weight function assigning weights

to the points in the orbit can be used to model quantitative aspects,

such as resource consumption, of a systemmodelled by an LDS. This

paper addresses the problems to compute the mean payoff, the total

accumulated weight, and the discounted accumulated weight of the

orbit under continuous weight functions and polynomial weight

functions as a special case. Besides general LDSs, the special cases

of stochastic LDSs and of LDSs with bounded orbits are considered.

Furthermore, the problem of deciding whether an energy constraint

is satisfied by the weighted orbit, i.e., whether the accumulated

weight never drops below a given bound, is analysed.
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1 INTRODUCTION
Dynamical systems describing how the state of a system changes

over time constitute a prominent modelling paradigm in a wide

variety of fields. A discrete-time linear dynamical system (LDS) in

ambient space R𝑑 starts at some initial point 𝑞 ∈ R𝑑 . The dynamics

of the system are given by a linear update function in form of a

matrix𝑀 ∈ R𝑑×𝑑 that is applied to the current state of the system

at each time step. This gives rise to the orbit (𝑞,𝑀𝑞,𝑀2𝑞, . . . ).
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The investigation of LDSs is particularly important as they are

arguably the simplest form of dynamical systems, but nevertheless

exhibit many challenging problems. Further, the linearisation of

more complex systems is ubiquitous in control theory and engineer-

ing (see, e.g., [5, 18]) and so many real world problems are solved

via the use of linearisations.

Algorithmic problems concerning LDSs form a lively area of re-

search in computer science. Surprisingly, several seemingly simple

decidability questions about the orbit of a given LDS have been

open for many decades (for an overview, see [12]). For example, two

prominent problems about linear recurrence sequences, the Positivity
Problem and the Skolem Problem, are subsumed by the following

problem: given (𝑀,𝑞) and a target set 𝐻 , decide whether there

exists 𝑛 ∈ N such that𝑀𝑛𝑞 ∈ 𝐻 . Deep results establish the decid-

ability of special cases of the Skolem [23, 25] and Positivity [21, 22]

problems in low dimensions. In general, the decidability status of

these two problems has, however, been open for many decades.

Furthermore, in order to verify that a system modelled as an LDS

satisfies desirable properties, typical formal verification problems

such as model-checking problems asking whether the orbit of an

LDSs satisfies certain temporal properties have been studied [4, 13].

In this paper, we address quantitative verification questions aris-

ing when systems are equipped with a weight function. To the best

of our knowledge, such quantitative verification tasks on weighted

LDSs have not been investigated in the literature. The work [16]

on computing the density of the visits of an orbit to a semialgebraic

set, however, has direct consequences for weighted LDSs with non-
continuous weight functions that we explain in more detail in the

section on related work below.

We consider continuousweight functions𝑤 : R𝑑 → R assigning a
weight to each state in the ambient space. Suchweight functions can

be used to model various quantitative aspects of a system, such as

resource or energy consumption, rewards or utilities, or execution

time for example. Given a weight function𝑤 , we obtain a sequence

of weights of the states in the orbit (𝑤 (𝑞),𝑤 (𝑀𝑞),𝑤 (𝑀2𝑞), . . . ).
The goal of this paper is to provide algorithmic answers to the

following typical questions arising for weighted systems:

a) What is the mean payoff, i.e., the average weight collected
per step?

b) What is the total accumulated weight of the orbit and what is
the so-called discounted accumulated weight, where weights
obtained after 𝑘 time steps are discounted with a factor 𝜆𝑘

for a given 𝜆 ∈ (0, 1)?

https://doi.org/10.1145/3641513.3650173
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Table 1: Overview of the results.

LDS type weight function algorithmic results

mean payoff arbitrary polynomial computable (Thm. 3.4)

bounded orbit continuous integral representation computable (Thm. 3.8)

stochastic, irreducible continuous computable with polynomially many

evaluations of the weight function.

(Thm. 3.10)

stochastic, reducible continuous computable with exponentially many

evaluations of the weight function.

(Thm. 3.12)

total/discounted weight arbitrary polynomial computable (Thm. 4.1)

satisfaction of energy

constraints

arbitrary polynomial decidable in dimension 3 (Thm. 4.7)

stochastic linear Positivity-hard (Thm. 4.8)

dimension 4 polynomial Diophantine-hard (Thm. 4.9)

c) Is there an 𝑛 ∈ N such that the sum of weights obtained in

the first 𝑛 steps lies below a given bound? This problem is

referred to as satisfaction of an energy constraint because it
corresponds to determining whether a system ever runs out

of energy when weights model the energy used or gained

per step.

Example 1.1. Assume a scheduler assigns tasks to 𝑑 different

processors 𝑃1, . . . , 𝑃𝑑 and that the load of the processors at different

time steps can be modeled as an LDS with matrix𝑀 ∈ Q𝑑×𝑑 and

orbit (𝑀𝑘𝑞)𝑘∈N for a 𝑞 ∈ Q𝑑 . Further, assume for each processor 𝑃𝑖
there is an optimal load 𝜇𝑖 under which it works most efficiently. To

evaluate the scheduler, we want to know how closely the real loads

in the long-run match the ideal loads. As a measure for how well

a vector 𝑥 matches the vector 𝜇 of ideal loads, we use the average

squared distance

𝛿𝜇 (𝑥) =
1

𝑑

𝑑∑︁
𝑖=1

(𝑥𝑖 − 𝜇𝑖 )2 .

To see how well the scheduler manages to get close to optimal loads

in the long-run after a possible intialization phase, we consider the

mean payoff of the orbit with respect to the weight function 𝛿𝜇 , i.e.,

lim

ℓ→∞
1

ℓ + 1

ℓ∑︁
𝑘=0

𝛿𝜇 (𝑀𝑘𝑞) .

If, on the other hand, we know that the orbit will tend to the optimal

loads for 𝑘 → ∞, we might instead also want to measure the total

deviation

∑∞
𝑘=0

𝛿𝜇 (𝑀𝑘𝑞). If this value is small, the orbit converges

to the optimal loads rather quickly without large deviations initially.

In order to obtain algorithmic results, we consider different com-

binations of restricted classes of LDSs and restricted classes of

continuous weight functions. Namely, besides arbitrary rational

LDSs, we consider also LDSs with bounded orbit and stochastic
LDSs. Stochastic LDSs occur in the context of the verification of

probabilistic systems: For a finite-state Markov chain, the sequence

of distributions over the state space naturally forms an LDS. The

initial distribution can be written as a vector 𝜄init ∈ [0, 1]𝑑 . After-
wards, the transition probability matrix 𝑃 can be repeatedly applied

to obtain the distribution 𝑃𝑘 𝜄init over states after 𝑘 steps. In contrast

to the path semantics where a probability measure over infinite

paths in a Markov chain is defined, the view of a Markov chain

as an LDS is also called the distribution transformer semantics of
Markov chains (see, e.g., [1]).

For the weight functions, we consider general continuous func-

tions. Of course, for algorithmic results, we have to make additional

assumptions on the computability or approximability of these func-

tions. Furthermore, we consider the subclass of polynomial weight

functions with rational coefficients.

Contribution. We address the problems mentioned above for

weighted LDSs with rational entries under continuous weight func-
tions. Our contributions are as follows (see also Table 1).

a) Mean payoff: For rational LDSs equipped with a polynomial

weight function, we show that it is decidable whether the

mean payoff exists, in which case it is rational and com-

putable. We then show how to decide whether the orbit of

a rational LDS is bounded. If the orbit of a rational LDS

is bounded, we show how to compute the set of accumu-

lation points of the orbit and prove that the mean payoff

of the orbit can be expressed as an integral of the weight

function over a computable parametrisation of this set. As

the parametrisation can be computed explicitly, the integral

can be approximated to arbitrary precision for any weight

function𝑤 that is sufficiently well-behaved.

Next, we consider stochastic LDSs, which constitute a special

case of LDSs with bounded orbits. Here, the orbit only has

finitely many accumulation points. We show that in case the

transition matrix is irreducible, one can compute polynomi-

ally many rational points in polynomial time such that the

mean payoff is the arithmetic mean of the weight function

evaluated at these points. In the reducible case, on the other

hand, exponentially many such rational points have to be

computed.

b) Total and discounted accumulated weights: For rational LDSs

and polynomial weight functions, we prove that the total

as well as the discounted accumulated weight of the orbit is

computable and rational if finite.

c) Satisfaction of energy constraints: First we prove that it is

decidable whether an energy constraint is satisfied by an

orbit under a polynomial weight function for LDSs of dimen-

sion 𝑑 = 3. We furthermore provide two different hardness

results regarding possible extensions of this decidability re-

sult: At 𝑑 = 4, the problem is hard with respect to certain

open decision problems in Diophantine approximation that
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are at the moment wide open. Further, also restricting to

stochastic LDSs and linear weight functions, does not lead

to decidability in general: we show that the energy satisfac-

tion problem is at least as hard as the Positivity Problem

for linear recurrence sequences in this case. The decidability

status of the Positivity Problem is open, and it is known from

[21] that its resolution would amount to major mathematical

breakthroughs.

Related work. Verification problems for linear dynamical sys-

tems have been extensively studied for decades, starting with the

question about the decidability of the Skolem [23, 25] and Positiv-

ity [21, 22] problems at low orders, which are special cases of the

reachability problem for LDSs. Decidable cases of the more general

Model-Checking Problem for LDSs have been studied in [4, 13].

In addition, decidability results for parametric LDSs [6] as well as

various notions of robust verification [3, 10] have been obtained.

See [12] for a survey of what is decidable about discrete-time linear

dynamical systems.

There is very little related work on LDSs with weight functions.

Closest to our work is the work by Kelmendi [16]. There, it is shown

that the natural density (which is a notion of frequency) of visits of

a rational LDS in a semialgebraic set always exists and is approx-

imable to arbitrary precision. A consequence of this result is that

the mean payoff of a rational LDS with respect to a “semialgebraic

step function”, which takes a partition of the ambient space R𝑑 into

finitely many semialgebraic sets 𝑆1, . . . , 𝑆𝑘 and assigns a rational

weight 𝑤𝑖 to the points in 𝑆𝑖 , can be approximated to arbitrary

precision. As these step functions are not continuous, this result is

orthogonal to our results.

When it comes to Markov chains viewed as LDSs under the

distribution transformer semantics, it is known that Skolem and

Positivity-hardness results for general LDSs persist [2]. Vahanwala

has recently shown [24] that this is the case even for ergodicMarkov

chains. In [1], Markov chains under the distribution transformer

semantics are treated approximatively–in contrast to our work–by

discretising the probability value space [0, 1] into a finite set of

intervals and the problem to decide whether an approximation of

the trajectory obtained in this way satisfies a property is studied.

2 PRELIMINARIES
We briefly present our notation and introduce the concepts used in

the subsequent sections.

2.1 Linear dynamical systems
A (discrete-time) linear dynamical system (LDS) (𝑀,𝑞) of dimension

𝑑 > 0 consists of an update matrix𝑀 ∈ R𝑑×𝑑 and an initial vector

𝑞 ∈ R𝑑 . If the entries of𝑀 and 𝑞 are rational, we say that the LDS

is rational. The orbit O(𝑀,𝑞) of (𝑀,𝑞) is the sequence (𝑀𝑘𝑞)𝑘∈N.
We say that the orbit of (𝑀,𝑞) is bounded if there exists 𝑐 ∈ R
such that the Euclidean length | |𝑀𝑘𝑞 | | < 𝑐 for all 𝑘 ∈ N. An LDS is

called stochastic if the matrix𝑀 and the initial vector 𝑞 have only

non-negative entries and the entries of each column of𝑀 as well

as the entries of 𝑞 sum up to 1. In this case we refer to the matrix

𝑀 as stochastic too.
1

2.2 Algebraic numbers
A number 𝛼 ∈ C is algebraic if there exists a polynomial 𝑝 ∈ Q[𝑥]
such that 𝑝 (𝛼) = 0. Algebraic numbers form a subfield of C de-

noted byQ. The minimal polynomial of 𝛼 ∈ Q is the (unique) monic

polynomial 𝑝 ∈ Q[𝑋 ] of the smallest degree such that 𝑝 (𝛼) = 0.

The degree of 𝛼 , denoted by deg(𝛼), is the degree of the minimal

polynomial of 𝛼 . For each 𝛼 ∈ Q there exists a unique polynomial

𝑃𝛼 =
∑𝑑
𝑖=0

𝑎𝑖𝑥
𝑖 ∈ Z[𝑥] with 𝑑 = deg(𝛼), called the defining poly-

nomial of 𝛼 , such that 𝑃𝛼 (𝛼) = 0 and gcd(𝑎0, . . . , 𝑎𝑑 ) = 1. The

polynomial 𝑃𝛼 and the minimal polynomial of 𝛼 have identical

roots, and are square-free, i.e., all of their roots appear with multi-

plicity one. The (naive) height of 𝛼 , denoted by 𝐻 (𝛼), is equal to
max

0≤𝑖≤𝑑 |𝑎𝑖 |. We represent an algebraic number 𝛼 in computer

memory by its defining polynomial 𝑃𝛼 and sufficiently precise ra-

tional approximations of Re(𝛼), Im(𝛼) to distinguish 𝛼 from other

roots of 𝑃𝛼 . We denote by | |𝛼 | | the bit length of a representation of

𝛼 ∈ Q. We can perform arithmetic effectively on algebraic numbers

represented in this way.

2.3 Linear recurrence sequences
A sequence (𝑢𝑛)𝑛∈N is a linear recurrence sequence over a ring

𝑅 ⊆ C if there exists a positive integer 𝑑 and a recurrence relation
(𝑎0, . . . , 𝑎𝑑−1

) ∈ 𝑅𝑑 such that 𝑢𝑛+𝑑 =
∑𝑑−1

𝑖=0
𝑎𝑖𝑢𝑛+𝑖 for all 𝑛. The

order of (𝑢𝑛)𝑛∈N is the smallest positive integer𝑑 such that (𝑢𝑛)𝑛∈N
satisfies a recurrence relation in 𝑅𝑑 . In this work we will mostly

encounter LRSs over Q, called rational LRSs. Examples of rational

LRSs include the Fibonacci sequence, 𝑢𝑛 = 𝑝 (𝑛) for 𝑝 ∈ Q[𝑥], and
𝑢𝑛 = cos(𝑛𝜃 ) where 𝜃 ∈ {arg(𝜆) : 𝜆 ∈ Q(𝑖)}. We refer the reader

to the books by Everest et al. [11] and Kauers & Paule [15] for a

detailed discussion of linear recurrence sequences.

An LRS (𝑢𝑛)𝑛∈N that is not eventually zero satisfies a uniquemin-

imal recurrence relation 𝑢𝑛+𝑑 =
∑𝑑−1

𝑖=0
𝑎𝑖𝑢𝑛+𝑖 such that 𝑑 > 0 and

𝑎0 ≠ 0.Writing𝐴 =
[
𝑎1 · · · 𝑎𝑑−1

]
and𝑞 =

[
𝑢0 · · · 𝑢𝑑−1

]⊤
,

the matrix

𝐶 B

[
0 𝐼𝑑−1

𝑎0 𝐴

]
=


0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1

𝑎0 𝑎1 · · · 𝑎𝑑−1


∈ 𝑅𝑑×𝑑

is called the companion matrix of (𝑢𝑛)𝑛∈N. We have that

𝐶𝑛𝑞 =
[
𝑢𝑛 · · · 𝑢𝑛−𝑑+1

]⊤
and 𝑢𝑛 = 𝑒1𝐶

𝑛𝑞 for all 𝑛 ∈ N, where 𝑒𝑖 denotes the 𝑖th standard

basis vector. As 𝑎0 ≠ 0, the matrix𝐶 is invertible and does not have

zero as an eigenvalue.

The characteristic polynomial of (𝑢𝑛)𝑛∈N is𝑝 (𝑥) = 𝑥𝑑−∑𝑑−1

𝑖=0
𝑎𝑖𝑥

𝑖
.

Note that 𝑝 is identical to the characteristic polynomial det(𝑥𝐼 −𝐶)
of the companion matrix 𝐶 . The eigenvalues (also called the roots)
of (𝑢𝑛)𝑛∈N are the 𝑑 (possibly non-distinct) roots 𝜆1, . . . , 𝜆𝑑 of the

characteristic polynomial 𝑝 . An LRS is

1
In order to keep the notation in line with the notation for general LDSs, we deviate

from the standard convention that rows of stochastic matrices sum up to 1 and that

stochastic matrices are applied to distributions by multiplication from the right.
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• simple (or diagonalisable) if its characteristic polynomial does

not have a repeated root, and

• non-degenerate if (i) all real eigenvalues are non-negative,
and (ii) for every pair of distinct eigenvalues 𝜆1, 𝜆2, the ratio

𝜆1/𝜆2 is not a root of unity.

For each LRS (𝑢𝑛)𝑛∈N there exists effectively computable 𝐿 such

that the sequences 𝑢
(𝑘 )
𝑛 = 𝑢𝑛𝐿+𝑘 for 0 ≤ 𝑘 < 𝐿 are all non-

degenerate [11, Section 1.1.9]. If (𝑢𝑛)𝑛∈N, (𝑣𝑛)𝑛∈N are LRSs over

a field 𝑅, and ◦ ∈ {+,−, ·}, then 𝑤𝑛 = 𝑢𝑛 ◦ 𝑣𝑛 also defines an LRS

over 𝑅 [15, Theorem 4.2]. Moreover, if (𝑢𝑛)𝑛∈N and (𝑣𝑛)𝑛∈N are

both simple, then so is (𝑤𝑛)𝑛∈N.

The exponential polynomial representation of an LRS. Every LRS

(𝑢𝑛)𝑛∈N of order 𝑑 > 0 over Q can be written in the form

𝑢𝑛 =

𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑛)𝜆𝑛𝑗 (1)

where 𝑚 ≥ 1, 𝜆1, . . . , 𝜆𝑚 are the distinct non-zero eigenvalues

of (𝑢𝑛)𝑛∈N, and each 𝑝𝑖 is a non-zero polynomial with algebraic

coefficients; see [11, Chapter 1].Whenever these conditions on𝑚, 𝜆𝑖
and 𝑝𝑖 are met, we say that the right-hand side is in the exponential
polynomial form. Every LRS (𝑢𝑛)𝑛∈N that is not eventually zero has

a unique representation as in (1) where the right-hand side is in

the exponential polynomial form. Moreover, the right-hand side of

(1) is never identically zero. This is a folklore result, but we provide

a proof in the extended version of the paper for completeness.

Lemma 2.1. Let 𝑢𝑛 =
∑𝑚
𝑖=1

𝑝𝑖 (𝑛)𝜆𝑛𝑖 where𝑚 ≥ 1, 𝜆1, . . . , 𝜆𝑚 ∈ Q
are non-zero and pairwise distinct, and each 𝑝𝑖 ∈ Q[𝑥] is non-zero.
Then, the sequence (𝑢𝑛)𝑛∈N is not identically zero. Specifically, there
exists 0 ≤ 𝑛 < 𝑑 , where 𝑑 =

∑𝑚
𝑖=1

(deg(𝑝𝑖 ) + 1), such that 𝑢𝑛 ≠ 0.

We can also characterise the exponential polynomial representa-

tions of real-valued LRS.

Lemma 2.2. Let (𝑢𝑛)𝑛∈N be as in the statement of Lemma 2.1. If
𝑢𝑛 ∈ R for all 𝑛 ∈ N, then for every 1 ≤ 𝑖 ≤ 𝑚 there exists 𝑗 with
1 ≤ 𝑗 ≤ 𝑚 such that 𝑝 𝑗 (𝑛) = 𝑝𝑖 (𝑛) and 𝜆 𝑗 = 𝜆𝑖 .

Proof. We have 𝑢𝑛 =
∑𝑚

𝑗=1
𝑝 𝑗 (𝑛)𝜆 𝑗

𝑛
. Moreover, 𝑢𝑛 = 𝑢𝑛 since

𝑢𝑛 ∈ R for all 𝑛. The result then follows from the uniqueness of the

exponential polynomial representation. □

Throughout this work we will encounter sequences of the form

𝑢𝑛 = 𝑝 (𝑀𝑛𝑞) where 𝑝 is a polynomial with rational coefficients

and 𝑞 is a vector with rational entries. Since

𝑝 (𝑀𝑛𝑞) = 𝑝 (𝑒1𝑀
𝑛𝑞, . . . , 𝑒𝑑𝑀

𝑛𝑞),

each 𝑢
(𝑘 )
𝑛 = 𝑒𝑘𝑀

𝑛𝑞 is an LRS over Q (this can be seen, e.g., by

applying the Cayley-Hamilton theorem), and LRS over Q are closed

under addition and multiplication, the sequence (𝑝 (𝑀𝑛𝑞))𝑛∈N is

itself an LRS over Q.

Decision problems about LRS. Sign patterns of LRS have been

studied for a long time. Two prominent open problems in this area

are the Skolem Problem and the Positivity Problem. The Skolem

Problem is to find an algorithm that, given an LRS 𝑢𝑛 , decides if

the set 𝑍 = {𝑛 : 𝑢𝑛 = 0} is non-empty. The most well-known result

in this direction is the celebrated Skolem-Mahler-Lech theorem,

which (non-constructively) shows that 𝑍 is semilinear. In particular,

it shows that a non-degenerate (𝑢𝑛)𝑛∈N can have only finitely many

zeros. The Positivity Problem, on the other hand, asks to find an

algorithm that determines if 𝑢𝑛 ≥ 0 for all 𝑛.

2.4 Markov Chains
A finite-state discrete-time Markov chain (DTMC) 𝑀 is a tuple

(𝑆, 𝑃, 𝜄init ), where 𝑆 is a finite set of states, 𝑃 : 𝑆 × 𝑆 → [0, 1] is
the transition probability function where we require

∑
𝑠′∈𝑆 𝑃𝑠𝑠′ = 1

for all 𝑠 ∈ 𝑆 and 𝜄𝑖𝑛𝑖𝑡 : 𝑆 → [0, 1] is the initial distribution, such
that

∑
𝑠∈𝑆 𝜄𝑖𝑛𝑖𝑡 (𝑠) = 1. For algorithmic problems, all transition

probabilities are assumed to be rational. A finite path 𝜌 in 𝑀 is a

finite sequence 𝑠0𝑠1 . . . 𝑠𝑛 of states such that 𝑃 (𝑠𝑖 , 𝑠𝑖+1) > 0 for all

0 ≤ 𝑖 ≤ 𝑛 − 1. We say that a state 𝑡 is reachable from 𝑠 if there is a

finite path from 𝑠 to 𝑡 . If all states are reachable from all other states,

we say that𝑀 is irreducible; otherwise, we say it is reducible. A set

𝐵 ⊆ 𝑆 of states is called a bottom strongly connected component

(BSCC) if it is strongly connected, i.e., all states in 𝐵 are reachable

form all other states in 𝐵 and if there are no outgoing transitions,

i.e., 𝑃 (𝑠, 𝑡) > 0 and 𝑠 ∈ 𝐵 implies 𝑡 ∈ 𝐵.

W.l.o.g., we identify 𝑆 with {1, . . . , 𝑑} for 𝑑 = |𝑆 |. Then, overload-
ing notation, we consider 𝑃 ∈ R𝑑×𝑑 as amatrixwith 𝑃𝑖 𝑗 = 𝑃 ( 𝑗, 𝑖) for
𝑖, 𝑗 ≤ 𝑑 .2 Likewise, we consider 𝜄init to be a (column

3
) vector in R𝑑

with (𝜄init )𝑖 = 𝜄init (𝑖) for 𝑖 ≤ 𝑑 . Then, the sequence of distributions

over states after 𝑘 steps is given by 𝑃𝑘 𝜄init , which forms a stochastic

LDS. We also write 𝑃
(𝑘 )
𝑖 𝑗

for (𝑃𝑘 )𝑖 𝑗 , which is the probability to move

from state 𝑗 to 𝑖 in exactly 𝑘 steps. Further, we say that the matrix

𝑃 is irreducible if the underlying Markov chain is irreducible. The

period 𝑑𝑖 of a state 𝑖 is given by: 𝑑𝑖 = gcd{𝑚 ≥ 1 : 𝑃
(𝑚)
𝑖𝑖

> 0}. If
𝑑𝑖 = 1, then we call the state 𝑖 aperiodic. A Markov chain (and its

matrix) are aperiodic if and only if all its states are aperiodic. The

period of a Markov chain𝑀 and of its transition probability matrix

𝑃 is the least common multiple of the periods of the states of𝑀 .

A vector 𝜋 ∈ R𝑑 is called a stationary distribution of the Markov

chain if: a) 𝜋 is a distribution, i.e., 𝜋 𝑗 ≥ 0 for all 𝑗 with 1 ≤ 𝑗 ≤ 𝑑 ,

and

∑𝑑
𝑗=1

𝜋 𝑗 = 1; b) 𝜋 is stationary, i.e., 𝜋 = 𝑃𝜋 , which is to say that

𝜋𝑖 =
∑
𝑖∈𝑆 𝑃𝑖 𝑗𝜋 𝑗 for all 𝑗 ∈ 𝑆 . For aperiodic Markov chains, it is

known that the sequence of distributions over states (𝑃𝑘 𝜄init )𝑘∈N
converges to a stationary distribution 𝜋 , which can be computed in

polynomial time (see [7, 17]).

3 MEAN PAYOFF
In this section, we address the computation of the mean payoff of

an orbit. The mean payoff is the average weight collected per step

in the long-run. For an LDS given by 𝑀 ∈ Q𝑑×𝑑 and 𝑞 ∈ Q𝑑 and

a weight function 𝑤 : R𝑑 → R, we define the mean payoff of the

orbit as

MP𝑤 (𝑀,𝑞) B lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑤 (𝑀𝑖𝑞).

In the sequel, we address the problem to compute the mean

payoff of the orbit of an LDS with respect to continuous weight

2
This is the transpose of the transition matrix usually defined so that we are in line

with our notation for LDSs.

3
Also here, usually, this is defined as a row vector.
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functions. To this end, we restrict either the class of weight func-

tions or the class of LDSs. In Section 3.1, we address the problem

for polynomial weight functions. In Sections 3.2 and 3.3 , we con-

sider continuous weight functions on LDSs with bounded orbit and

stochastic LDSs, respectively.

3.1 Polynomial weight-functions
In order to compute the mean payoff of the orbit of a rational LDS

(𝑀,𝑞) with respect to a polynomial weight function 𝑝 with rational

coefficients, we first recall that the sequence (𝑝 (𝑀𝑛𝑞))𝑛∈N is an

LRS. The following lemma states that the sequence of partial sums

of the weights is also an LRS.

Lemma 3.1. Let (𝑀,𝑞) be an LDS with 𝑀 ∈ Q𝑑×𝑑 and 𝑞 ∈ Q𝑑 ,
and let 𝑝 ∈ Q[𝑋1, . . . , 𝑋𝑑 ] be a polynomial weight function with
rational coefficients. The sequence

𝑢𝑛 =

𝑛∑︁
𝑖=0

𝑝 (𝑀𝑖𝑞)

is a rational LRS.

Proof. As discussed in subsection 2.3, 𝑤𝑛 = 𝑝 (𝑀𝑖𝑞) is a ratio-
nal LRS. Suppose (𝑤𝑛)𝑛∈N satisfies a recurrence relation 𝑤𝑛+𝑘 =

𝑎0𝑤𝑛 + . . . + 𝑎𝑘−1
𝑤𝑛+𝑘01

, where 𝑎0, . . . , 𝑎𝑘−1
∈ Q. Then 𝑢𝑛+𝑘+1

=

𝑢𝑛+𝑘 +𝑎𝑘−1
(𝑤𝑛+𝑘 −𝑤𝑛+𝑘−1

) + . . .+𝑎0 (𝑤𝑛+1 −𝑤𝑛). Hence (𝑢𝑛)𝑛∈N
itself is an LRS of order at most 𝑘 + 1. □

Computing MP𝑤 (𝑀,𝑞) therefore boils down to determining

whether the limit lim𝑛→∞ 𝑢𝑛/𝑛 exists for an LRS (𝑢𝑛)𝑛∈N and com-

puting the limit in case it exists (See the extended version of the

paper for the proof).

Lemma 3.2. Let (𝑢𝑛)𝑛∈N be an LRS over Q. It is decidable whether
lim𝑛→∞ 𝑢𝑛/𝑛 exists, in which case the limit is rational and effectively
computable.

Corollary 3.3. For a rational LRS (𝑢𝑛)𝑛∈N, it is decidable whether
lim𝑛→∞ 𝑢𝑛 exists, in which case the limit is rational and effectively
computable.

Proof. The sequence (𝑛)𝑛∈N is an LRS overQ, and since rational
LRS are closed under multiplication, 𝑣𝑛 = 𝑛𝑢𝑛 also defines a rational

LRS. It remains to observe that lim𝑛→∞ 𝑢𝑛 = lim𝑛→∞ 𝑣𝑛/𝑛 and

apply Lemma 3.2. □

From the lemma and the corollary above, for both (𝑢𝑛)𝑛∈N and

(𝑢𝑛/𝑛)𝑛∈N, if the limit exists it is equal to a coefficient of some

𝑝𝑖 appearing in the exponential polynomial solution of (𝑢𝑛)𝑛∈N.
Hence the complexity of computing the limit is bounded by the

complexity of computing the exponential polynomial; The latter

is known to be in polynomial time if we assume the order of the

LRS is fixed [21]; in general, if the description length of (𝑢𝑛)𝑛∈N
is I and its order is 𝑑 , the time required to compute the exponen-

tial polynomial representation of 𝑢𝑛 is polynomial in I𝑑
. Lemma

3.2 puts us into the position to prove the first main result on the

computation of the mean payoff:

Theorem 3.4. Let (𝑀,𝑞) be an LDS with𝑀 ∈ Q𝑑×𝑑 and 𝑞 ∈ Q𝑑 ,
and 𝑝 ∈ Q[𝑋1, . . . , 𝑋𝑑 ] be a polynomial weight function with rational

coefficients. It is decidable whether the mean payoff

MP𝑝 (𝑀,𝑞) = lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑝 (𝑀𝑖𝑞)

exists, in which case it is rational and computable.

Proof. Immediate by Lemma 3.2 and Lemma 3.1. □

3.2 Bounded LDSs
If the orbit of an LDS is bounded, we can get our hands on the mean

payoff with respect to a continuous weight function. We exploit

that the orbit of an LDS approaches a limiting shape – which is

the set of accumulation points of the orbit – closer and closer in

this case. This allows us to express the mean payoff in terms of

an integral of the weight function over this limiting shape. This

integral computes the “average” value of the weight function on

the limiting shape. Of course, we have to carefully ensure that we

also know how “frequently” the orbit approaches different parts of

the limiting shape. Let us illustrate this idea first:

Example 3.5. Let𝑤 : R3 → R be a continuous weight function

and consider the LDS

𝑀 =


3/5 4/5 0

−4/5 3/5 0

0 0 1/2

 and 𝑞 =


1

0

1

 .
Looking only at the first two coordinates a rotation is repeatedly

applied in this LDS. In the complex plane, this rotation is given

by multiplication with 3/5 − 4/5𝑖 . As 3/5 − 4/5𝑖 is not a root of

unity, the orbit never reaches a point with (1, 0) in the first two

coordinates again. In fact, the first two components of the orbit are

dense in the unit circle. Furthermore, these components visit each

interval of the same length on the circle with the same frequency.

The third component is halved at every step and converges to

0. As the weight function is continuous, we can hence treat the

third coordinate as equal to 0 when determining the mean payoff.

So, the set of accumulation points of the orbit is 𝐿 = {𝑣 ∈ R3 |
𝑣3 = 0, |𝑣 | = 1}, which we can parametrise via 𝑇 : [0, 1) → R3

with𝑇 : 𝛼 ↦→
[
cos(2𝜋𝛼) sin(2𝜋𝛼) 0

]⊤
. As this parametrisation

moves through the circle with constant speed reflecting the fact

that the orbit is “equally distributed” over the circle in the first two

components, we can now express the mean payoff of the orbit with

respect to the weight function𝑤 as

MP𝑤 (𝑀,𝑞) =
∫

1

0

𝑤

( [
cos(2𝜋𝛼) sin(2𝜋𝛼) 0

]⊤)
d𝛼.

In the sequel, we work out all the necessary steps to check

whether the orbit of an LDS is bounded and to obtain such an

expression for the mean payoff as an integral for arbitrary rational

LDSs with bounded orbit.

Jordan normal form and boundedness of the orbit. Throughout
this section, fix a matrix 𝑀 ∈ Q𝑑×𝑑 , an initial vector 𝑞 ∈ Q𝑑 , and
a continuous weight function𝑤 : R𝑑 → R. We first transform the

matrix𝑀 into Jordan normal form by computing matrices 𝐽 and 𝐵

as well as the inverse 𝐵−1
with algebraic entries such that

𝑀 = 𝐵 · 𝐽 · 𝐵−1
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where 𝐽 is in Jordan form with the eigenvalues of𝑀 on the diagonal

and 𝐵 is an invertible matrix with generalized eigenvectors of 𝑀

as columns in polynomial time [8]. Since multiplication with 𝐵 is a

linear bijection, (𝑀𝑘 · 𝑞)𝑘∈N is bounded if and only if the sequence

(𝐽𝑘 · (𝐵−1𝑞))𝑘∈N is bounded. To check whether this is the case, we

first simplify the sequence.

We use the notation 𝐽𝛼,ℓ to denote a Jordan block of size ℓ with 𝛼

on the diagonal. Observe that multiplying a Jordan block to a vector

𝑞 = [𝑞1, . . . , 𝑞𝑘 , 0, . . . , 0, ]⊤ in which the last ℓ − 𝑘 components are

0 results in a vector where this is still the case:

𝐽𝛼,ℓ · 𝑞 =



𝛼 1 0 . . . 0

0

. . .
. . .

. . .
.
.
.

.

.

.
. . . 𝛼 1 0

.

.

.
. . . 𝛼 1

0 . . . . . . 0 𝛼


·



𝑞1

. . .

𝑞𝑘
0

. . .

0


=


𝐽𝛼,𝑘 ·


𝑞1

. . .

𝑞𝑘


0

. . .

0


Looking at the initial vector 𝐵−1𝑞, this allows us to simplify the LDS

by determining the coordinates at which the orbit (𝐽𝑘𝐵−1𝑞)𝑘∈N
always stays 0. Suppose the Jordan blocks in 𝐽 end at coordinates

𝑖1, . . . , 𝑖𝑚 , respectively, with 1 ≤ 𝑖1 < 𝑖2 < 𝑖𝑚 = 𝑑 . Now, let

𝐼 = {𝑖 ∈ {1, . . . , 𝑑} |for some index ℎ,

all 𝑗 with 𝑖 ≤ 𝑗 ≤ 𝑖ℎ satisfy (𝐵−1𝑞) 𝑗 = 0}.

So, 𝐼 contains only dimensions 𝑗 such that (𝐽𝑘 (𝐵−1𝑞)) 𝑗 = 0 for all 𝑘 .

We now set all columns and rows of 𝐽 with an index in 𝐼 to 0. This

does not affect the orbit (𝐵𝐽𝑘𝐵−1𝑞)𝑘∈N. After this simplification,

the following condition, which we can assume w.l.o.g., is satisfied.

Assumption 1. The LDS given by𝑀 ∈ Q𝑑×𝑑 and 𝑞 ∈ Q𝑑 has the

following property: For the Jordan normal form𝑀 = 𝐵 · 𝐽 · 𝐵−1
of

𝑀 and 𝑣
def

= 𝐵−1𝑞, we have that 𝑣𝑖 ≠ 0 for any coordinate 1 ≤ 𝑖 ≤ 𝑑

at which a non-zero Jordan block of 𝐽 ends.

Proposition 3.6. Under Assumption 1, the orbit (𝐽𝑘𝑞)𝑘∈N is
bounded if and only if all eigenvalues on the diagonal of 𝐽 have
modulus at most 1 and the Jordan blocks in 𝐽 with an eigenvalue 𝛼
with |𝛼 | = 1 have size 1.

Wedelegate the proof to the extended version of the paper. Propo-

sition 3.6 allows us to decide whether the orbit of the LDS given by

𝑀 and 𝑣 is bounded. From now on, we assume that it is bounded.

We now further simplify the LDS by removing all eigenvalues with

modulus less than 1: For a Jordan block 𝐽𝛼,ℓ with |𝛼 | < 1, we know

𝐽𝛼,ℓ → 0 for 𝑘 → ∞. As we apply the function 𝐵 viewed as a

linear map and the continuous function𝑤 to the points in the orbit

and as the mean payoff does not depend on a prefix of the orbit,

we can set all such Jordan blocks to 0 without affecting the mean

payoff. So, w.l.o.g. we can work under the following assumption

after this simplification because the Jordan blocks with eigenvalues

with modulus 1 have size 1 in the light of Proposition 3.6:

Assumption 2. The matrix 𝑀 of the rational LDS (𝑀,𝑞) is diago-
nalisable and all non-zero eigenvalues have modulus 1. So, there is

a computable algebraic matrix 𝐵 with computable inverse 𝐵−1
and

a computable algebraic diagonal matrix 𝐷 whose entries all have

modulus 1 or 0 with𝑀 = 𝐵 · 𝐷 · 𝐵−1
.

Multiplicative relations between the eigenvalues. Before we can
parametrise the set of accumulation points of the orbit, we have to

detectmultiplicative relations between the elements on the diagonal

of 𝐷 . Before defining (the group of) multiplicative relations, let us

illustrate this concept in an example:

Example 3.7. Consider the matrix 𝐷 =

[
𝜆 0

0
¯𝜆

]
for an algebraic

number 𝜆 with |𝜆 | = 1 that is not a root of unity. Then, 𝜆 · ¯𝜆 = 1 is a

multiplicative relation between 𝜆 and
¯𝜆. Further, (𝜆𝑘 )𝑘∈N is dense

in the torus T B {𝑥 ∈ C | |𝑥 | = 1}. Now, the sequence
(
𝜆𝑘 , ¯𝜆𝑘

)
𝑘∈N

is dense in 𝐿 B {(𝑥,𝑦) ∈ T2 | 𝑥 · 𝑦 = 1}, but not in T2
. So, for an

initial vector 𝑣 , the set of accumulation points of (𝐷𝑘𝑣)𝑘∈N is 𝐿 · 𝑣
and not T2 · 𝑣 .

We follow an approach also taken in [16] to detect multiplicative

relations between the algebraic numbers 𝜆1, . . . , 𝜆𝑑 ∈ Q. We work

under Assumption 2 and we first reorder the coordinates such that

the entries on the diagonal of 𝐷 are 𝜆1, . . . , 𝜆ℓ , 𝜆ℓ+1, . . . , 𝜆𝑑 where

𝜆𝑖 is not 0 or 1 for 𝑖 ≤ ℓ and the entries 𝜆 𝑗 with 𝑗 > ℓ are all equal

to 0 or 1. The group

𝐺 B 𝐺 (𝜆1, . . . , 𝜆ℓ ) = {(𝑚1, . . . ,𝑚ℓ ) ∈ Zℓ | 𝜆𝑚1

1
· · · 𝜆𝑚ℓ

ℓ
= 1}

is called the group of multiplicative relations between 𝜆1, . . . , 𝜆ℓ .

If this group is consists only of the neutral element, we say that

𝜆1, . . . , 𝜆ℓ are multiplicatively independent.
Note that 𝐺 is a free abelian group, and has a basis of at most

ℓ elements from Zℓ . By a deep result of Masser [19], 𝐺 has a basis

𝐵 such that for each 𝑣 ∈ 𝐵, ∥𝑣 ∥∞ < 𝑝 (∥𝜆1∥ + . . . + ∥𝜆ℓ ∥)ℓ , where
𝑝 is an absolute polynomial. Hence a basis of𝐺 can be computed

in polynomial space (given 𝜆1, . . . , 𝜆ℓ ) by simply enumerating all

possible bases satisfying Masser’s bound. As described in detail in

[16], each element (𝑏1, . . . , 𝑏ℓ ) ∈ 𝐵 of the basis allows us to express

one of the eigenvalues in terms of the others: Suppose 𝑏 𝑗 ≠ 0. Then,

the equation 𝜆
𝑏1

1
· · · 𝜆𝑏ℓ

ℓ
= 1, allows us to conclude

𝜆
𝑏 𝑗

𝑗
=

∏
𝑖≠𝑗

𝜆
−𝑏𝑖
𝑖

and hence 𝜆 𝑗 = 𝜌 𝑗

∏
𝑖≠𝑗

𝜆
−𝑏𝑖/𝑏 𝑗

𝑖

where 𝜌 𝑗 is a 𝑏 𝑗 th root of unity. Applying this procedure con-

secutively to all elements of the basis 𝐵, we can divide and re-

order the eigenvalues 𝜆1, . . . , 𝜆ℓ as 𝜆1, . . . , 𝜆𝑚, 𝜆𝑚+1, . . . , 𝜆ℓ such

that 𝜆1, . . . , 𝜆𝑚 are multiplicatively independent and such that each

𝜆 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ ℓ is not 1 and can be written as

𝜆 𝑗 = 𝜌 𝑗 ·
𝑚∏
𝑖=1

𝜆
𝑞 𝑗,𝑖

𝑖

where 𝜌 𝑗 is a root of unity and 𝑞 𝑗,𝑖 ∈ Q for 1 ≤ 𝑖 ≤ 𝑚.

Subsequences without periodicity. The fact that expression for

the eigenvalues 𝜆 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ ℓ contains the 𝑏 𝑗 th root of

unity 𝜌 𝑗 introduces a periodic behavior to the sequence (𝜆𝑘
𝑗
)𝑘∈N.

In order to eliminate this periodic behavior, we divide the orbit into

subsequences as follows: We let 𝑃 be the least common multiple of

the values 𝑏 𝑗 for𝑚 + 1 ≤ 𝑗 ≤ ℓ . As 𝜌 𝑗 is a 𝑏 𝑗 th root of unity, 𝜌𝑃
𝑗
= 1

for all 𝑗 with𝑚+1 ≤ 𝑗 ≤ ℓ . We now split the sequence (𝐷𝑘 )𝑘∈N into
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the 𝑃 subsequences of the form (𝐷𝑃𝑘+𝑟 )𝑘∈N for 𝑟 ∈ {0, . . . , 𝑃 − 1}.
The diagonal entries of 𝐷𝑘𝑃

are

𝜆𝑃𝑘
1

, . . . , 𝜆𝑃𝑘𝑚 ,

𝑚∏
𝑖=1

(𝜆𝑃𝑘𝑖 )𝑞𝑚+1,𝑖 , . . . ,

𝑚∏
𝑖=1

(𝜆𝑃𝑘𝑖 )𝑞ℓ,𝑖 , 𝜆ℓ+1, . . . , 𝜆𝑑 .

Recall here that 𝜆ℓ+1, . . . , 𝜆𝑑 are all 0 or 1.

We can now express any point in the orbit 𝐵𝐷𝑃𝑘+𝑟𝐵−1𝑞 in terms

of 𝜆𝑘
1
, . . . , 𝜆𝑘𝑚 and 𝐷𝑟

. To this end, we define the map𝑇𝑟 : T𝑚 → R𝑑
by setting

Δ = diag

(
𝜇𝑃

1
, . . . , 𝜇𝑃𝑚,

𝑚∏
𝑖=1

(𝜇𝑃𝑖 )
𝑞𝑚+1,𝑖 , . . . ,

𝑚∏
𝑖=1

(𝜇𝑃𝑖 )
𝑞ℓ,𝑖 , 𝜆ℓ+1, . . . , 𝜆𝑑

)
,

where diag(𝑥1, . . . , 𝑥𝑑 ) denotes a diagonal matrix with 𝑥1, . . . , 𝑥𝑑
on the diagonal, and

𝑇𝑟 (𝜇1, . . . , 𝜇𝑚) = 𝐵𝐷𝑟Δ𝐵−1𝑞.

The map 𝑇 is chosen such that

𝑇𝑟 (𝜆𝑘1 , . . . , 𝜆
𝑘
𝑚) = 𝐵𝐷𝑃𝑘+𝑟𝐵−1𝑞.

This is also the reason why 𝑇𝑟 maps into R𝑑 .

Parametrising the set of accumulation points. For a real 𝑥 , we

define 𝑥 mod 1 := 𝑥 − ⌊𝑥⌋. For 1 ≤ 𝑗 ≤ 𝑚, we define the number

𝛼 𝑗 ∈ [0, 1) as the unique numberwith 𝜆 𝑗 = 𝑒2𝜋𝑖𝛼 𝑗
. Let 𝑆 : [0, 1)𝑚 →

T𝑚 (recall that T B {𝑥 ∈ C | |𝑥 | = 1}) be the map

(𝛽1, . . . , 𝛽𝑚) ↦→ (𝑒2𝜋𝑖𝛽1 , . . . , 𝑒2𝜋𝑖𝛽𝑚 ).

So, we get (𝜆𝑘
1
, . . . , 𝜆𝑘𝑚) = 𝑆 (𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚 mod 1) and

hence

𝐵𝐷𝑃𝑘+𝑟𝐵−1𝑞 = 𝑇𝑟 (𝑆 (𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚 mod 1)).
Following the exposition in [16], we can now apply an equidis-

tribution theorem by Weyl [26]. First, observe that the fact that

𝜆1, . . . , 𝜆𝑚 are multiplicatively independent means that the values

1, 𝛼1, . . . , 𝛼𝑚 are linearly independent over Q: If there were a non-
zero vector 𝑐0, 𝑐1, . . . , 𝑐𝑚 with 𝑐0 +

∑𝑚
𝑗=1

𝑐 𝑗𝛼 𝑗 = 0, this vector would

witness a multiplicative relation between 𝜆1, . . . , 𝜆𝑚 . In [26], it is

now shown that for any measurable set𝑈 ⊆ [0, 1)𝑚 , we have

lim

𝑛→∞
|{0 ≤ 𝑘 ≤ 𝑛 | (𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚 mod 1) ∈ 𝑈 }|

𝑛 + 1

= L(𝑈 )
(∗)

where L is the Lebesgue measure. For more details, we also refer

to the exposition of this argument in [16].

Thismeans that the sequence of arguments ((𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚
mod 1))𝑘∈N is dense and “equally distributed” in the cube [0, 1)𝑚 ,

and hence the sequence ((𝜆𝑘
1
, . . . , 𝜆𝑘𝑚))𝑘∈N is dense and “equally

distributed” in the 𝑚-dimensional torus T𝑚 where “equally dis-

tributed” means that every subset of the same size is hit equally

often in the sense of Equation (∗).

Mean payoff as integral. Now, we are in the position to prove the

main result of this subsection: The mean payoff of a bounded orbit

wrt a continuous weight function can be expressed as an integral.

Theorem 3.8. Let𝑀 ∈ Q𝑑×𝑑 be a matrix and 𝑞 ∈ Q𝑑 an initial
vector satisfying Assumption 2. Let 𝑤 : R𝑑 → R be a continuous
weight function. Let 𝑃 ∈ N and 𝑇𝑟 : T𝑚 → R𝑑 for 𝑟 < 𝑃 , and
𝑆 : [0, 1)𝑚 → T𝑚 be as above. Then, for each 𝑟 with 0 ≤ 𝑟 < 𝑃 , the

mean payoff of the sub-orbit (𝑀𝑘𝑃+𝑟𝑞)𝑘∈N wrt𝑤 exists and can be
expressed as

MP𝑤 (𝑀𝑃 , 𝑀𝑟𝑞) = lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑤 (𝑀𝑘𝑃+𝑟𝑞) =
∫
[0,1)𝑚

𝑤◦𝑇𝑟 ◦𝑆 dL

where L is the Lebesgue measure on [0, 1)𝑚 . The mean payoff of the
original orbit is then the arithmetic mean

MP𝑤 (𝑀,𝑞) =
∑𝑃−1

𝑟=0
MP𝑤 (𝑀𝑃 , 𝑀𝑟𝑞)

𝑃
.

Proof. Let 𝛼1, . . . , 𝛼𝑚 ∈ [0, 1) be such that 𝜆 𝑗 = 𝑒2𝜋𝑖𝛼 𝑗
as above.

For 𝑟 < 𝑃 , we have constructed 𝑆 and 𝑇𝑟 such that

𝑀𝑘𝑃+𝑟𝑞 = 𝑇𝑟 (𝑆 (𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚 mod 1))
for all 𝑘 . As𝑤 is continuous, it can be written as sum of Lebesgue

measurable step functions 𝑤 =
∑∞

𝑗=0
𝑓𝑗 · 1𝐴 𝑗

where, for all 𝑗 , the

coefficient 𝑓𝑗 is in R, the set 𝐴 𝑗 ⊆ R𝑑 is measurable, and 1𝐴 𝑗
is 1

on points in 𝐴 𝑗 and 0 otherwise. For 1𝐴 𝑗
, we now observe

lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

1𝐴 𝑗
(𝑀𝑘𝑃+𝑟𝑞)

= lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

1𝐴 𝑗
(𝑇𝑟 (𝑆 (𝑘𝛼1 mod 1, . . . , 𝑘𝛼𝑚 mod 1)))

= lim

𝑘→∞

|{𝑖 ≤ 𝑘 | 𝑇𝑟 (𝑆 (𝑖𝛼1 mod 1, . . . , 𝑖𝛼𝑚 mod 1)) ∈ 𝐴 𝑗 }|
𝑘 + 1

= L((𝑇𝑟 ◦ 𝑆)−1 (𝐴 𝑗 ))
where the last equality follows from equation (∗) that is stated above
and shown in [26]. But, we also have∫

[0,1)𝑚
1𝐴 𝑗

◦𝑇𝑟 ◦ 𝑆 dL = L((𝑇𝑟 ◦ 𝑆)−1 (𝐴 𝑗 )).

Putting this together, we obtain

MP𝑤 (𝑀𝑃 , 𝑀𝑟𝑞) = lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑤 (𝑀𝑘𝑃+𝑟𝑞)

=

∞∑︁
𝑗=0

𝑓𝑗 · lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

1𝐴 𝑗
(𝑀𝑘𝑃+𝑟𝑞)

=

∞∑︁
𝑗=0

𝑓𝑗 ·
∫
[0,1)𝑚

1𝐴 𝑗
◦𝑇𝑟 ◦ 𝑆 dL

=

∫
[0,1)𝑚

𝑤 ◦𝑇𝑟 ◦ 𝑆 dL .

This finishes the proof of the first claim. The claim that the mean

payoff𝑀𝑃𝑤 (𝑀,𝑞) can now be expressed as the arithmetic mean is

obvious. □

Approximation of the mean payoff. Although we can compute

explicit representations of the functions 𝑇𝑟 and 𝑆 , it remains un-

clear – even for simple functions𝑤 – how to compute the integrals∫
[0,1)𝑚 𝑤 ◦ 𝑇𝑟 ◦ 𝑆 dL whose arithmetic mean is the mean payoff

of the original LDS. Nevertheless, the numerical approximation of

integrals is an extensively studied area (see, e.g., [9]). The function

𝑆 is a simple parametrisation of the 𝑑-dimensional torus and the

function 𝑇𝑟 is a polynomial with algebraic coefficients that we can
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explicitly compute. In particular, both functions are differentiable

and we can bound the modulus of the gradient of 𝑇𝑟 ◦ 𝑆 on [0, 1]𝑚 .

So, if the function 𝑤 can be approximated and is well-behaved,

e.g., if𝑤 is Lipschitz continuous with known upper bound for its

Lipschitz constant, also the integrals that we obtained can be ap-

proximated to arbitrary precision. In particular, for a polynomial

weight function 𝑤 , the mean payoff can be approximated to ar-

bitrary precision as polynomials are Lipschitz continuous on the

compact set 𝑇𝑟 ◦ 𝑆 ( [0, 1]𝑚) and a bound for the Lipschitz constant

can be computed from the gradient of𝑤 . For more details on con-

ditions under which the integral can be approximated to arbitrary

precision, we refer the reader to [9].

3.3 Stochastic LDSs
Stochastic LDSs are a special case of LDSs with a bounded orbit.

In this section, we will show that in the case of stochastic LDSs,

we can compute the mean payoff of the orbit under a continuous

weight function by evaluating the weight function on finitely many

points. In the aperiodic case, the orbit even converges to a single

point so that it suffices to evaluate the weight function once:

Lemma 3.9. Let 𝑃 ∈ Q𝑑×𝑑 be a stochastic, aperiodic matrix and
𝜄init ∈ Q𝑑 an initial distribution. Furthermore, let 𝑤 : R𝑑 → R be a
continuous weight function. Then, MP𝑤 (𝑃, 𝜄init ) = 𝑤 (𝜋) where 𝜋 is
the stationary distribution lim𝑘→∞ 𝑃𝑘 𝜄init of 𝑃 , which is computable
in polynomial time.

Proof. As described in Section 2.4, we know that the orbit

(𝑃𝑘 𝜄init )𝑘∈N converges to a stationary distribution 𝜋 in this case,

which can be computed in polynomial time [7, 17]. So, lim𝑘→∞ 𝑃𝑘 𝜄init
exists and, as𝑤 is continuous, we know lim𝑘→∞𝑤 (𝑃𝑘 𝜄init ) = 𝑤 (𝜋).
It is straightforward to observe that

MP𝑤 (𝑃, 𝜄init )
def

= lim

𝑘→∞
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑤 (𝑃𝑖 𝜄init ) = 𝑤 ( lim

𝑘→∞
𝑃𝑘 𝜄init ) = 𝑤 (𝜋) .

□

Hence the computation of the mean payoff boils down to evalu-

ating the function𝑤 once on a rational point computable in polyno-

mial time in this case. We next address the periodic case by splitting

up the orbit into subsequences.

For an irreducible and periodic Markov chain with period 𝐿, we

have that 𝑃𝐿 is aperiodic and 𝐿 ≤ 𝑑 by [20, Theorem 1.8.4]. Together

with Lemma 3.9, this allows us to characterize MP𝑤 (𝑃𝐿, 𝑃𝑟 𝜄init ),
which is the mean payoff of (𝑃𝐿𝑘+𝑟 𝜄init )𝑘∈N. We conclude

MP𝑤 (𝑃, 𝜄init ) =
1

𝐿

𝐿−1∑︁
𝑟=0

MP𝑤 (𝑃𝐿, 𝑃𝑟 𝜄init ).

So, for irreducible stochastic LDSs, we can divide (𝑃𝐿𝑘+𝑟 𝜄init )𝑘∈N
into 𝐿 equally spaced subsequences and compute the mean payoff

MP𝑤 (𝑃, 𝜄init ) as the arithmetic mean of the mean payoffs of these

subsequences.

Theorem 3.10. Let 𝑃 ∈ Q𝑑×𝑑 be a stochastic, irreducible matrix
and 𝜄init ∈ Q𝑑 an initial distribution. Let 𝑤 : R𝑑 → R be a contin-
uous weight function. Then, we can compute points 𝜋0, . . . , 𝜋𝐿−1 ∈
Q𝑑 in polynomial time for some 𝐿 ≤ 𝑑 such that MP𝑤 (𝑃, 𝜄init ) =
1

𝐿

∑𝐿−1

𝑖=0
𝑤 (𝜋𝑖 ).

As the points 𝜋0, . . . , 𝜋𝐿−1 can be computed in polynomial time

and are hence of length at most polynomial in the length of the

original input, we can conclude the following statement about the

approximation of the mean payoff:

Corollary 3.11. Assume that the value 𝑤 (𝑎) can be approxi-
mated in time 𝑓𝑤 (∥𝑎∥, 𝜖) up to some precision 𝜖 ≥ 0 (where 𝜖 = 0

corresponds to exact computation) for all rational inputs 𝑎 ∈ Q𝑑 ,
where ∥𝑎∥ is the bitlength of 𝑎. There is a fixed polynomial 𝑝 such
that the mean payoff MP𝑤 (𝑃, 𝜄init ) can be approximated up to preci-
sion 𝜖 in time at most 𝑑 · 𝑓𝑤 (𝑝 (∥(𝑃, 𝜄init )∥, 𝜖) + 𝑝 (∥(𝑃, 𝜄init )∥) where
∥(𝑃, 𝜄init )∥ is the bit length of the original input.

When a Markov chain is reducible, the states can be renamed

in a way such that, the matrix representation of the Markov chain

will contain distinct blocks corresponding to the bottom strongly

connected components (BSCCs) on the diagonal along with addi-

tional columns at the right representing states that do not belong

to any BSCC: 

□ 0...0 0...0 ∗ ∗

0...0 □ 0...0 ∗ ∗

0...0 0...0 □ ∗ ∗
0...0 0...0 0....0 ∗ ∗


Each block representing a BSCC constitutes an irreducible Markov

chain. Assume we have 𝑘 blocks with periods 𝐿1, 𝐿2, ..., 𝐿𝑘 corre-

spondingly. Let 𝑙 be the least common multiple of the periods. Now

we will have 𝑙 subsequences of the orbit each of which will con-

verge. The convergence of the rows in the bottom is a result of the

fact that Markov chain will enter a BSCC with probability 1. So, in

general, we have 𝑙 subsequences of the orbit, all of which converge.

We observe that 𝑙 ≤ 𝑑𝑑 , from which the following result follows:

Theorem 3.12. Let 𝑃 ∈ Q𝑑×𝑑 be a stochastic matrix and 𝜄init ∈
Q𝑑 an initial distribution. Let 𝑤 : R𝑛 → R be a continuous weight
function. Then, we can compute points 𝜋0, . . . , 𝜋𝑙−1

∈ Q𝑑 in exponen-
tial time for some 𝑙 ≤ 𝑑𝑑 such that MP𝑤 (𝑃, 𝜄init ) = 1

𝑙

∑𝑙−1

𝑖=0
𝑤 (𝜋𝑖 ).

As the transition matrix 𝑃𝑙 of the 𝑙 subsequences as well as

the initial values 𝑃𝑟 𝜄init with 0 ≤ 𝑟 < 𝑙 can be computed in

polynomial time by repeated squaring, each of the points 𝜋𝑖 with

0 ≤ 𝑖 < 𝑙 can be computed in polynomial time. Assuming that

the value 𝑤 (𝑎) can be approximated in time 𝑓𝑤 (∥𝑎∥, 𝜖) for all ra-
tional inputs 𝑎 ∈ Q𝑑 , we can hence conclude that there is again a

fixed polynomial 𝑞 such that the mean payoff of reducible stochas-

tic LDSs can be approximated to precision 𝜖 in time bounded by

𝑑𝑑 · 𝑓𝑤 (𝑞(∥(𝑃, 𝜄init )∥, 𝜖) + 𝑑𝑑 · 𝑞(∥(𝑃, 𝜄init )∥) analogously to Theo-

rem 3.11.

4 TOTAL (DISCOUNTED) REWARD AND
SATISFACTION OF ENERGY CONSTRAINTS

In this section, again let 𝑀 ∈ Q𝑑×𝑑 be a matrix, 𝑞 ∈ Q𝑑 be an

initial vector, and 𝑤 : R𝑑 → R be a polynomial weight function

with rational coefficients. We define the total reward as

tr(𝑀,𝑞,𝑤) :=

∞∑︁
𝑘=0

𝑤 (𝑀𝑘𝑞) .
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Likewise, for a rational discount factor 𝛿 ∈ (0, 1) we define the total
discounted reward as

dr(𝑀,𝑞,𝑤, 𝛿) :=

∞∑︁
𝑘=0

𝛿𝑘𝑤 (𝑀𝑘𝑞) .

Both of these quantities, when they exist, can be determined effec-

tively.

Theorem 4.1. It is decidable whether the series
∑∞
𝑘=0

𝑤 (𝑀𝑘𝑞) and∑∞
𝑘=0

𝛿𝑘𝑤 (𝑀𝑘𝑞) converge, in which case their values are rational
and can be computed.

Proof. Let 𝑢𝑛 =
∑𝑛
𝑘=0

𝑤 (𝑀𝑘𝑞). As discussed in subsection 3.1,

(𝑢𝑛)𝑛∈N is a rational LRS, and we can apply Corollary 3.3. Similarly,

let 𝑣𝑛 =
∑∞
𝑘=0

𝛿𝑘𝑤 (𝑀𝑘𝑞). As (𝛿𝑛)𝑛∈N is itself a (rational) LRS and

such LRS are closed under pointwise multiplication, 𝑣𝑛 is also a

rational LRS. We again apply Corollary 3.3. □

We next discuss energy constraints. We say that a series of real

weights (𝑤𝑖 )𝑖∈N satisfies the energy constraint with budget 𝐵 if

𝑘∑︁
𝑖=0

𝑤𝑖 ≥ −𝐵

for all 𝑘 ∈ N. We will prove that for LDS (𝑀,𝑞) of dimension at

most 3, satisfaction of energy constraints is decidable. The proof

is based on the fact that three-dimensional systems are tractable

thanks to Baker’s theorem [14]. For higher-dimensional systems,

no such tractability result is known. We will show that deciding

satisfaction of energy constraints is, in general, at least as hard as

the Positivity Problem, already with linear weight functions.

4.1 Baker’s theorem and its applications
A linear form in logarithms is an expression of the form Λ =

𝑏1 Log𝛼1 + . . . + 𝑏𝑚 Log𝛼𝑚 where 𝑏𝑖 ∈ Z and 𝛼𝑖 ∈ Q for all

1 ≤ 𝑖 ≤ 𝑚. Here Log denotes the principal branch of the complex

logarithm. The celebrated theorem of Baker places a lower bound

on |Λ| in case Λ ≠ 0. Baker’s theorem, as well as its 𝑝-adic analogue,

play a critical role in the proof of [23] that the Skolem Problem is

decidable for LRS of order at most 4, as well as decidability of the

Positivity Problem for low-order LRS.

Theorem 4.2 (Special case of the main theorem in [27]). Let
Λ = 𝑏1 Log𝛼1 + . . . + 𝑏𝑚 Log𝛼𝑚 be as above, 𝐷 = [Q(𝛼1, . . . , 𝛼𝑚) :

Q], and suppose 𝐴, 𝐵 ≥ 𝑒 are such that 𝐴 > 𝐻 (𝛼𝑖 ) and 𝐵 > |𝑏𝑖 | for
all 1 ≤ 𝑖 ≤ 𝑚. If Λ ≠ 0, then

log |Λ| > −(16𝑚𝐷)2(𝑚+2) (log𝐴)𝑚 log𝐵.

A direct consequence of Baker’s theorem is the following [22,

Corollary 8]. Recall that T denotes {𝑧 ∈ C : |𝑧 | = 1}.

Lemma 4.3. Let 𝛼 ∈ T ∩ Q and 𝛽 ∈ Q. For all 𝑛 ≥ 2, if 𝛼𝑛 ≠ 𝛽

then |𝛼𝑛 − 𝛽 | > 𝑛−𝐶 where𝐶 is an effective constant that depends on
𝛼 and 𝛽 .

If 𝛼 is not a root of unity, 𝛼𝑛 = 𝛽 holds for at most one 𝑛 and 𝑛

can be effectively bounded.

Lemma 4.4. Let 𝛼, 𝛽 ∈ Q be non-zero, and suppose 𝛼 is not a root
of unity. There exists effectively computable 𝑁 ∈ N such that 𝛼𝑛 ≠ 𝛽

for all 𝑛 ∈ N with 𝑛 > 𝑁 .

Combining the two lemmas above, we obtain the following.

Theorem 4.5. Let 𝛼 ∈ T, 𝛽 ∈ Q, and suppose 𝛼 is not a root of
unity. There exists effectively computable 𝑁,𝐶 ∈ N such that for
𝑛 > 𝑁 , |𝛼𝑛 − 𝛽 | > 𝑛−𝐶 .

The next lemma summarises the family of linear recurrence

sequences to which we can apply Baker’s theorem. For reasons of

space we delegate the proof to the extended version of the paper.

Lemma 4.6. Let 𝛾 ∈ T be not a root of unity, 𝑟1, . . . , 𝑟ℓ ∈ R be non-
zero, and 𝑢𝑛 =

∑𝑚
𝑖=1

𝑐𝑖Λ
𝑛
𝑖
be an LRS over R where𝑚 ≥ 1, 𝑐𝑖 ,Λ𝑖 ∈ Q

are non-zero for all 𝑖 , and Λ1, . . . ,Λ𝑚 are pairwise distinct. Suppose
each Λ𝑖 is in the multiplicative group generated by {𝛾, 𝑟1, . . . , 𝑟ℓ }.

(a) There exists effectively computable 𝑁1 such that 𝑢𝑛 ≠ 0 for all
𝑛 > 𝑁1.

(b) For 𝑛 > 𝑁1, |𝑢𝑛 | > 𝐿𝑛𝑛−𝐶 , where 𝐿 = max𝑖 |Λ𝑖 | and 𝐶 is an
effectively computable constant.

(c) It is decidable whether 𝑢𝑛 ≥ 0 for all 𝑛.

4.2 Satisfaction of energy constraints
Before giving our decidability result, we need one final ingredient

about partial sums of LRS. Let𝑤𝑛 = 𝑛𝑙𝜆𝑛 for some 𝑙 ≥ 0 and 𝜆 ∈ Q,
and𝑢𝑛 =

∑𝑛
𝑘=0

𝑤𝑘 . If 𝜆 = 1, then𝑢𝑛 = 𝑝 (𝑛), where 𝑝 is a polynomial

of degree 𝑙 + 1. If 𝜆 ≠ 1, then 𝑢𝑛 = 𝑞(𝑛)𝜆𝑛 , where 𝑞 is a polynomial

of degree at most 𝑙 with algebraic coefficients. In particular, 𝑞(𝑛)
is a solution of the functional equation 𝜆𝑓 (𝑛) − 𝑓 (𝑛 − 1) = 𝑛𝑙 . It

follows that if the LRS (𝑤𝑛)𝑛∈N has only real eigenvalues, then so

does the sequence given by 𝑢𝑛 =
∑𝑛
𝑘=0

𝑤𝑘 . Similarly, if (𝑤𝑛)𝑛∈N
is diagonalisable and does not have 1 as an eigenvalue, then the

same applies to (𝑢𝑛)𝑛∈N. In fact, the eigenvalues of (𝑢𝑛)𝑛∈N form

a subset of the eigenvalues of (𝑤𝑛)𝑛∈N.

Theorem 4.7. Let 𝑀 ∈ Q3×3, 𝑞 ∈ Q3, 𝛿 ≤ 1 be a discount
factor, and 𝑤 : R3 → R be a polynomial weight function with ra-
tional coefficients. For 𝐵 ∈ Q≥0, it is decidable whether the weights
(𝛿𝑛𝑤 (𝑀𝑛𝑞))𝑛∈N satisfy the energy constraint with budget 𝐵.

Proof. Let 𝑤𝑛 = 𝛿𝑛𝑤 (𝑀𝑛𝑞) and 𝑢𝑛 = 𝐵 + ∑𝑛
𝑖=0

𝑤 (𝑀𝑖𝑞). We

have to decide if 𝑢𝑛 ≥ 0 for all 𝑛. First suppose 𝑀 has only real

eigenvalues. Then𝑤𝑛 and 𝑢𝑛 are both LRSs with only real eigenval-

ues. By taking subsequences if necessary, we can assume (𝑢𝑛)𝑛∈N
is non-degenerate. Write 𝑢𝑛 =

∑𝑚
𝑖=1

𝑝𝑖 (𝑛)𝜌𝑛𝑖 where the right-hand

side is in the exponential-polynomial form. In particular, for all 𝑖 ,

𝑝𝑖 is not the zero polynomial. Since (𝑢𝑛)𝑛∈N is non-degenerate,

wlog we can assume 𝜌1 > . . . > 𝜌𝑚 > 0. If 𝑝1 (𝑛) is negative
for sufficiently large 𝑛, then the energy constraint is not satisfied.

Otherwise, we can compute 𝑁 such that for all 𝑛 > 𝑁 , 𝑢𝑛 > 0. It

remains to check whether 𝑢𝑛 ≥ 0 for 0 ≤ 𝑛 ≤ 𝑁 . Next, suppose

𝑀 has non-real eigenvalues 𝜆, 𝜆, and a real eigenvalue 𝜌 . Write

𝛾 = 𝜆/|𝜆 | and 𝑟 = |𝜆 |. Then 𝑢𝑛 is of the form

𝑢𝑛 = 𝑐𝑛 +
𝑚∑︁
𝑖=1

𝑐𝑖Λ
𝑛
𝑖 B 𝑐𝑛 + 𝑣𝑛

where Λ1, . . . ,Λ𝑚 are pairwise distinct and in the multiplicative

group generated by 𝑟, 𝜌, 𝛿,𝛾 . Wlog we can assume 𝑐𝑖 ≠ 0 for all 𝑖 ,

but 𝑐 may be zero. If 𝛾 is a root of unity of order 𝑘 > 0 (i.e. 𝛾𝑘 = 1),

then we can take subsequences (𝑢 (0)
𝑛 )𝑛∈N, . . . , (𝑢 (𝑘−1)

𝑛 )𝑛∈N, where



HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Rajab Aghamov, Christel Baier, Toghrul Karimov, Joël Ouaknine, and Jakob Piribauer

𝑢
( 𝑗 )
𝑛 = 𝑢𝑛𝑘+𝑗 for 𝑛 ∈ N and 0 ≤ 𝑗 < 𝑘 , and each (𝑢 ( 𝑗 )

𝑛 )𝑛∈N has only

real eigenvalues. We can then apply the analysis above. Hereafter

we assume 𝛾 is not a root of unity.

Suppose 𝑐 = 0. Then Lemma 4.6 (c) applies and we can decide

if 𝑢𝑛 is positive. Next, suppose 𝑐 ≠ 0 and 𝐿 B max𝑖 |Λ𝑖 | ≤ 1.

We can compute 𝑁2 such that |𝑐𝑛 | > |𝑣𝑛 | for all 𝑛 > 𝑁2. Hence

in this case 𝑢𝑛 ≥ 0 for all 𝑛 if and only if 𝑐 > 0 and 𝑢𝑛 > 0

for 0 ≤ 𝑛 ≤ 𝑁2. Finally, suppose 𝑐 ≠ 0 and 𝐿 > 1. Applying

Lemma 4.6 (b), there exists effectively computable 𝑁3 such that

|𝑢𝑛 | > |𝑐𝑛 | for 𝑛 > 𝑁3. Hence 𝑢𝑛 ≥ 0 for all 𝑛 if and only if

𝑢𝑛 ≥ 0 for 0 ≤ 𝑛 ≤ 𝑁3 and

∑𝑚
𝑖=1

𝑐𝑖Λ
𝑛
𝑖

≥ 0 for 𝑛 > 𝑁3. The

latter can be decided by applying Lemma 4.6 (c) to the sequence

𝑣𝑛 =
∑𝑚
𝑖=1

𝑐𝑖Λ
𝑁3+𝑛
𝑖

=
∑𝑚
𝑖=1

(𝑐𝑖Λ𝑁3

𝑖
)Λ𝑛

𝑖
. □

4.3 Positivity and Diophantine hardness
Recall that the energy satisfaction problem is to decide, given a

matrix𝑀 ∈ Q𝑑×𝑑 , 𝑞 ∈ Q𝑑 , 𝐵 ∈ Q, and a polynomial 𝑝 with rational

coefficients, whether there exists 𝑛 such that

∑𝑛
𝑘=0

𝑝 (𝑀𝑘𝑞) < 𝐵.

This problem is at least as hard as the Positivity Problem already

for stochastic LDSs and linear weight functions.

Theorem 4.8. The Positivity Problem can be reduced to the energy
satisfaction problem above restricted to a Markov chain (𝑀,𝑞) and a
linear weight function𝑤 .

Proof. It is known from [2, 24] that the Positivity Problem for

arbitrary LRS over Q can be reduced to the following problem:

given a Markov chain (𝑀,𝑞), decide whether there exists 𝑛 such

that 𝑒1𝑀
𝑛𝑞 ≥ 1/2. We reduce the latter to the energy satisfaction

problem. Given a Markov chain (𝑀,𝑞) ∈ Q𝑑×𝑑 × 𝑑 , let

𝑃 =

[
𝑀 0
0 𝑀

]
and 𝑡 = (1/2𝑞, 1/2𝑀𝑞) ∈ Q2𝑑

. Observe that (𝑃, 𝑡) is also a Markov

chain.Moreover, 𝑃𝑛𝑡 = (1/2𝑀𝑛𝑞, 1/2𝑀𝑛+1𝑞).We choose theweight

function𝑤 (𝑥1, . . . , 𝑥2𝑑 ) = 2(𝑥𝑑+1
− 𝑥1) and 𝐵 = 1/2 − 𝑒1 · 𝑞. Then

𝑤 (𝑃𝑛𝑞) = 𝑒1𝑀
𝑛+1𝑞 − 𝑒1𝑀

𝑛𝑞, and 𝑢𝑛 B
∑𝑛
𝑘=0

𝑤 (𝑃𝑛𝑞) ≥ 𝐵 if and

only if 𝑒1𝑀
𝑛+1𝑞 ≥ 1/2. Hence there does not exist 𝑛 such that

𝑒1𝑀
𝑛𝑞 ≥ 1/2 if and only if 𝑒1 · 𝑞 < 1/2 and there does not exist 𝑛

such that 𝑢𝑛 < 𝐵. □

The Positivity Problem for LRS of order 6 was shown in [21] to

be Diophantine-hard. Specifically, for 𝑟 ∈ Q and 𝜆 ∈ Q(𝑖) (that is,
𝜆 = 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ Q) let

𝑢
𝜆,𝑟
𝑛 = −𝑛 + 𝑛

2

(𝜆𝑛 + 𝜆𝑛) + 𝑟𝑖

2

(𝜆𝑛 − 𝜆𝑛) = 𝑟 Im(𝜆𝑛) − 𝑛 Re(𝜆𝑛) + 𝑛.

If for all 𝑟 and 𝜆 we can decide whether 𝑢
𝜆,𝑟
𝑛 ≥ 0 for all 𝑛 ≥ 0, then

we could compute the Lagrange constants of a large class of numbers,

which would amount to a major mathematical breakthrough in

number theory. The following theorem states that a solution to the

energy satisfaction problem for rational LDS in dimension 4 with

polynomial weight functions would also yield this breakthrough.

Theorem 4.9. The energy satisfaction problem for rational LDSs
in dimension 4 and polynomial weight functions with rational coeffi-
cients is Diophantine-hard.

Proof. We prove the following: If we can decide the energy

satisfaction problem with 𝑑 = 4, then we can decide for every 𝑟, 𝜆

whether 𝑢
𝜆,𝑟
𝑛 ≥ 0 for all 𝑛. Fix 𝑟 ∈ Q and 𝜆 = 𝑎 + 𝑏𝑖 ∈ Q(𝑖). Define

𝑀 =


𝑎 −𝑏 1 0

𝑏 𝑎 0 1

0 0 𝑎 −𝑏
0 0 𝑏 𝑎


and the initial point 𝑞 = (0, 0, 0, 1). We have

𝑀𝑛𝑞 = [−𝑛 Im(𝜆𝑛−1) 𝑛 Re(𝜆𝑛−1) − Im(𝜆𝑛) Re(𝜆𝑛)]⊤ .

Recall that for all 𝑛 ∈ N, (i) Re(𝜆𝑛+1) = 𝑎 Re(𝜆𝑛) − 𝑏 Im(𝜆𝑛) and
(ii) Im(𝜆𝑛+1) = 𝑎 Im(𝜆𝑛) +𝑏 Re(𝜆𝑛). Hence there exist polynomials

𝑝1, . . . , 𝑝4 with rational coefficients such that 𝑝1 (𝑀𝑛𝑞) = 𝑛 Im(𝜆𝑛),
𝑝2 (𝑀𝑛𝑞) = 𝑛 Re(𝜆𝑛), 𝑝3 (𝑀𝑛𝑞) = Re(𝜆𝑛) and 𝑝4 (𝑀𝑛𝑞) = Im(𝜆𝑛)
for all 𝑛. Next, consider

𝑤𝑛 = 𝑢
𝜆,𝑟
𝑛+1

−𝑢𝜆,𝑟𝑛 = 𝑟 Im(𝜆𝑛+1)−𝑛 Re(𝜆𝑛+1)−𝑟 Im(𝜆𝑛)+𝑛 Re(𝜆𝑛)+1.

Since 𝑢
𝜆,𝑟
0

= 0, we have 𝑢
𝜆,𝑟
𝑛+1

=
∑𝑛
𝑘=0

𝑤𝑛 . Moreover, using facts (i),

(ii) and the polynomials 𝑝1, . . . , 𝑝4 we can construct a polynomial

𝑝 with rational coefficients such that𝑤𝑛 = 𝑝 (𝑀𝑛𝑞) for all 𝑛. Hence
𝑢
𝜆,𝑟
𝑛 ≥ 0 for all 𝑛 if and only if the weights (𝑝 (𝑀𝑛𝑞))𝑛∈N satisfy

the energy constraint with budget 𝐵 = 0. □

5 CONCLUSION
We have shown how to compute (or approximate) the mean-payoff

and the total or discounted weight of the orbit of rational LDSs for

several combinations of restricted classes of LDSs and classes of

continuous weight functions (see Table 1). Remarkably, these results

concerning infinite horizon questions do not rely on restrictions of

the dimension – in contrast to decidability results for the Skolem

[23, 25] and the Positivity [21, 22] problems, which can be seen as

special cases of reachability questions about the orbit of an LDS.

For the question whether an orbit of a rational LDS with a poly-

nomial weight function satisfies an energy constraints, on the other

hand, we have shown decidability for dimension 3 by utilising

results about LRSs based on Baker’s theorem and Diophantine-

hardness for dimension 4. Further, the restriction to stochastic

LDSs and linear weight functions turned out to be Positivity-hard.

Instead of continuous weight functions, also functions𝑤 assign-

ing a weight to each semialgebraic set in a collection of semial-

gebraic sets 𝑆1, . . . , 𝑆𝑚 constitute an interesting class of weight

functions. Here, several interesting questions can be asked. E.g.,

given an LDS (𝑀,𝑞) ∈ Q𝑑×𝑑 ×Q𝑑 and𝑤 , compare the (discounted)

total reward/mean-payoff to a given threshold. Here at time𝑛 the re-

ward received is

∑𝑚
𝑖=1

1(𝑀𝑛𝑞 ∈ 𝑆𝑖 )𝑤 (𝑆𝑖 ). This problem appears to

be difficult with deep connections to Diophantine approximation.
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