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Abstract

In discrete-time linear dynamical systems (LDSs), a linear map is repeatedly
applied to an initial vector yielding a sequence of vectors called the orbit of
the system. A weight function assigning weights to the points in the orbit
can be used to model quantitative aspects, such as resource consumption, of
a system modelled by an LDS. This paper addresses the problems of how to
compute the mean payoff, the total accumulated weight, and the discounted
accumulated weight of the orbit under continuous weight functions as well as
polynomial weight functions as a special case. Additionally, weight functions
that are definable in an o-minimal extension of the theory of the reals with
exponentiation, which can be shown to be piecewise continuous, are consid-
ered. In particular, good ergodic properties of o-minimal weight functions,
instrumental to the computation of the mean payoff, are established. Besides
general LDSs, the special cases of stochastic LDSs and LDSs with bounded
orbits are addressed. Finally, the problem of deciding whether an energy
constraint is satisfied by the weighted orbit, i.e., whether the accumulated
weight never drops below a given bound, is analysed.
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1. Introduction

Dynamical systems, which describe how a system’s state evolves over
time, serve as a fundamental modeling framework across numerous disci-
plines. A discrete-time linear dynamical system (LDS) in an ambient space
Rd begins at an initial point q ∈ Rd. Its evolution follows a linear update
rule governed by a matrix M ∈ Rd×d, which is applied iteratively to the
system’s current state at each time step. This process generates the orbit
(q,Mq,M2q, . . . ). The study of LDSs is particularly significant because they
represent one of the simplest classes of dynamical systems while still present-
ing numerous intricate challenges. Moreover, linearization plays a crucial
role in control theory and engineering, where complex systems are frequently
approximated using linear models (see, e.g., [6, 7]), making it an essential
tool for solving many real-world problems.

Algorithmic problems concerning LDSs form a lively area of research in
computer science. Reachability problems of LDSs are formidably hard: the
Skolem Problem (hyperplane reachability) has been open for a hundred years,
and the Positivity Problem (halfspace reachability) is at least as hard as
certain long-standing open problems in Diophantine approximation whose
solution would amount to a mathematical earthquake. Decidability is known
in low dimensions only, and is obtained through a combination of arguments
from number theory and Diophantine approximation [9, 10, 11, 12]. However,
it has recently been discovered that “robust” versions of many classical open
problems of linear dynamical systems are decidable [1, 2]. For example, for
arbitrary M ∈ Qd×d, q ∈ Qd, and semialgebraic T , it is decidable whether
for every ε > 0 there exists q′ in the ε-ball around q such that the orbit of q′
under M reaches T .

The key new tool is o-minimality, which is a concept originating in logic
and model theory, that is defined by the following property: Any subset
of Rd that is definable over an o-minimal extension of the real field with
exponentiation has finitely many connected components. Although it can
be seen as a simple property at first, the consequences of o-minimality are
drastic: for example, o-minimality has recently been applied in a spectacular
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Table 1: Overview of the results.

LDS type weight function algorithmic result

mean payoff arbitrary polynomial computable (Thm. 10)
bounded continuous integral representation (Thm. 14)
orbit computable
arbitrary o-minimal integral representation (Thm. 15)

computable
stochastic, continuous computable with

poly-many evaluations of
the weight function

(Thm. 19)
irreducible

stochastic, continuous computable with exp-many
evaluations of the weight
function

(Thm. 21)
reducible

total/discounted
weight

arbitrary polynomial computable (Thm. 23)

satisfaction of
energy
constraints

arbitrary polynomial decidable in dimension 3 (Thm. 29)
stochastic linear Positivity-hard (Thm. 30)
dimension 4 polynomial Diophantine-hard (Thm. 31)

fashion to the the problem of counting rational points in a variety, which is
the cornerstone problem of Diophantine geometry [3].

In this paper, we address quantitative verification questions arising when
dynamical systems are equipped with a weight function. To the best of our
knowledge, such quantitative verification tasks on weighted LDSs have not
been investigated in the literature. We consider continuous weight func-
tions w : Rd → R assigning a weight to each state in the ambient space.
Such weight functions can be used to model various quantitative aspects of a
system, such as resource or energy consumption, rewards or utilities, or ex-
ecution time for example. Given a weight function w, we obtain a sequence
of weights of the states in the orbit (w(q), w(Mq), w(M2q), . . . ). The goal of
this paper is to provide algorithmic answers to the following typical questions
arising for weighted systems:

a) What is the mean payoff, i.e., the average weight collected per step?

b) What is the total accumulated weight of the orbit and what is the so-
called discounted accumulated weight, where weights obtained after k
time steps are discounted with a factor λk for a given λ ∈ (0, 1)?

c) Is there an n ∈ N such that the sum of weights obtained in the first n
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steps lies below a given bound? This problem is referred to as satis-
faction of an energy constraint because it corresponds to determining
whether a system ever runs out of energy when weights model the en-
ergy used or gained per step.

Example 1. A scheduler assigns tasks to d different processors P1, . . . , Pd

and that the load of the processors at different time steps can be modeled as
an LDS with matrix M ∈ Qd×d and orbit (Mkq)k∈N for a q ∈ Qd. Further,
assume for each processor Pi there is an optimal load µi under which it works
most efficiently. To evaluate the scheduler, we want to know how closely the
real loads in the long-run match the ideal loads. As a measure for how well
a vector x matches the vector µ of ideal loads, we use the average squared
distance

δµ(x) =
1

d

d∑
i=1

(xi − µi)
2.

To see how well the scheduler manages to get close to optimal loads in the
long-run after a possible intialization phase, we consider the mean payoff of
the orbit with respect to the weight function δµ, i.e.,

lim
ℓ→∞

1

ℓ

ℓ−1∑
k=0

δµ(M
kq).

If, on the other hand, we know that the orbit will tend to the optimal loads
for k → ∞, we might instead also want to measure the total deviation∑∞

k=0 δµ(M
kq). If this value is small, the orbit converges to the optimal

loads rather quickly without large deviations initially.

In order to obtain algorithmic results, we consider different combinations
of classes of LDSs and classes of weight functions. Namely, besides arbitrary
rational LDSs, we consider also LDSs with bounded orbit and stochastic
LDSs. Stochastic LDSs occur in the context of the verification of probabilis-
tic systems: For a finite-state Markov chain, the sequence of distributions
over the state space naturally forms an LDS. The initial distribution can be
written as a vector ιinit ∈ [0, 1]d. Afterwards, the transition probability ma-
trix P can be repeatedly applied to obtain the distribution P kιinit over states
after k steps. In contrast to the path semantics where a probability measure
over infinite paths in a Markov chain is defined, the view of a Markov chain
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as an LDS is also called the distribution transformer semantics of Markov
chains (see, e.g., [16]).

For the weight functions, on the one hand, we consider general continu-
ous functions. Of course, for algorithmic results, we have to make additional
assumptions on the computability or approximability of these functions. Fur-
thermore, we consider the subclass of polynomial weight functions with ra-
tional coefficients. On the other hand, we consider weight functions that are
definable in an o-minimal structure. These functions can be shown to be
piecewise continuous, and include the vast family of weight functions that
can be defined using arithmetic and exponentiation in the sense of first-order
logic. We show that the use of such weight functions results in a good lim-
iting behavior of the weights of the orbit of an LDS allowing us to treat the
mean payoff for arbitrary LDSs with such weight functions.

Contribution. Our contributions are as follows (see also Table 1).

a) Mean payoff: For rational LDSs equipped with a polynomial weight
function, we show that it is decidable whether the mean payoff exists,
in which case it is rational and computable (section 3.1).

We then show how to decide whether the orbit of a rational LDS is
bounded. If the orbit of a rational LDS is bounded, we show how
to compute the set of accumulation points of the orbit and how to
obtain a representation of the mean payoff as an integral using this set.
This integral can be approximated to arbitrary precision for any weight
function w that is sufficiently well-behaved (section 3.2).

Next, we consider LDSs with o-minimal weight functions. We show
that the orbits of linear dynamical systems equipped with an o-minimal
weight function–under some mild restrictions–is ergodic in the sense of
time average being equal to space average (section 3.3).

Finally, we consider stochastic LDSs, which constitute a special case
of LDSs with bounded orbits. Here, the orbit only has finitely many
accumulation points. We show that in case the transition matrix is ir-
reducible, one can compute polynomially many rational points in poly-
nomial time such that the mean payoff is the arithmetic mean of the
weight function evaluated at these points. In the reducible case, on
the other hand, exponentially many such rational points have to be
computed (section 3.4).
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b) Total and discounted accumulated weights: For rational LDSs and
polynomial weight functions, we prove that the total as well as the
discounted accumulated weight of the orbit is computable and rational
if finite (section 4.1).

c) Satisfaction of energy constraints: First we prove that it is decidable
whether an energy constraint is satisfied by an orbit under a polyno-
mial weight function for LDSs of dimension d = 3. We furthermore
provide two different hardness results regarding possible extensions of
this decidability result: At d = 4, the problem is hard with respect
to certain open decision problems in Diophantine approximation that
are at the moment wide open. Further, also restricting to stochas-
tic LDSs and linear weight functions, does not lead to decidability in
general: we show that the energy satisfaction problem is at least as
hard as the Positivity Problem for linear recurrence sequences in this
case. The decidability status of the Positivity Problem is open, and it
is known from [11] that its resolution would amount to major mathe-
matical breakthroughs (sections 4.2 – 4.4).

Related work. Verification problems for linear dynamical systems have been
extensively studied for decades, starting with the question about the decid-
ability of the Skolem [9, 10] and Positivity [11, 12] problems at low orders,
which are special cases of the reachability problem for LDSs. Decidable cases
of the more general Model-Checking Problem for LDSs have been studied in
[13, 14]. In addition, decidability results for parametric LDSs [17] as well as
various notions of robust verification [18, 1] have been obtained. See [8] for
a survey of what is decidable about discrete-time linear dynamical systems.

There is very little related work on LDSs with weight functions. Closest
to our work is the work by Kelmendi [15]. There, it is shown that the natural
density (which is a notion of frequency) of visits of a rational LDS in a
semialgebraic set always exists and is approximable to arbitrary precision.
A consequence of this result is that the mean payoff of a rational LDS with
respect to a “semialgebraic step function”, which takes a partition of the
ambient space Rd into finitely many semialgebraic sets S1, . . . , Sk and assigns
a rational weight wi to the points in Si, can be approximated to arbitrary
precision. This result is orthogonal to our results.

When it comes to Markov chains viewed as LDSs under the distribution
transformer semantics, it is known that Skolem and Positivity-hardness re-
sults for general LDSs persist [19]. Vahanwala has recently shown [20] that
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this is the case even for ergodic Markov chains. In [16], Markov chains un-
der the distribution transformer semantics are treated approximatively – in
contrast to our work – by discretising the probability value space [0, 1] into
a finite set of intervals and the problem to decide whether an approximation
of the trajectory obtained in this way satisfies a property is studied.

Several connections between o-minimality and dynamical (or, more gen-
erally, cyber-physical) systems have been established in the literature. In
[4], Lafferriere et al. show that o-minimal hybrid systems always admit a
finite bisimulation. In [5], Miller gives a dichotomy result concerning tame-
ness of expansions of certain o-minimal structures with trajectories of linear
dynamical systems.

2. Preliminaries

We write T for [0, 1), i for the imaginary number, and 0 for a vector of
all zeros whose dimension will be clear from the context. We then have that
ei2πT = {z ∈ C : |z| = 1}. We denote by {x} the fractional part of x ∈ R,
and by ei the ith standard basis vector of Rd, where d will be clear from the
context.

2.1. Linear dynamical systems
A (discrete-time) linear dynamical system (M, q) of dimension d > 0

consists of an update matrix M ∈ Rd×d and an initial vector q ∈ Rd. If
the entries of M and q are rational, we say that the LDS is rational. The
orbit of (M, q) is the sequence (Mkq)k∈N. We say that the orbit of (M, q)
is bounded if it is bounded as a set under the Euclidean metric. An LDS
is called stochastic if the matrix M and the initial vector q have only non-
negative entries and the entries of each column of M as well as the entries
of q sum up to 1. In this case we refer to the matrix M as stochastic as well.1

2.2. Algebraic numbers
A number α ∈ C is algebraic if there exists a polynomial p ∈ Q[x] such

that p(α) = 0. Algebraic numbers form a subfield of C denoted by Q. The
minimal polynomial of α ∈ Q is the (unique) monic polynomial p ∈ Q[x] of

1In order to keep the notation in line with the notation for general LDSs, we deviate
from the standard convention that rows of stochastic matrices sum up to 1 and that
stochastic matrices are applied to distributions by multiplication from the right.
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the smallest degree such that p(α) = 0. The degree of α, denoted by deg(α),
is the degree of the minimal polynomial of α. For each α ∈ Q there exists
a unique polynomial Pα =

∑d
i=0 aiX

i ∈ Z[x] with d = deg(α), called the
defining polynomial of α, such that Pα(α) = 0 and gcd(a0, . . . , ad) = 1. The
polynomial Pα and the minimal polynomial of α have identical roots, and are
square-free, i.e., all of their roots appear with multiplicity one. The (naive)
height of α, denoted by H(α), is equal to max0≤i≤d |ai|. We represent an
algebraic number α in computer memory by its defining polynomial Pα and
sufficiently precise rational approximations of Re(α), Im(α) to distinguish α
from other roots of Pα. We denote by ||α|| the bit length of a representa-
tion of α ∈ Q. We can perform arithmetic effectively on algebraic numbers
represented in this way [21].

2.3. Linear recurrence sequences
A sequence (un)n∈N is a linear recurrence sequence over a ring R ⊆ C if

there exists a positive integer d and a recurrence relation (a0, . . . , ad−1) ∈ Rd

such that un+d =
∑d−1

i=0 aiun+i for all n. The order of (un)n∈N is the smallest
positive integer d such that (un)n∈N satisfies a recurrence relation in Rd. In
this work, we will mostly encounter linear recurrence sequences over Q, called
rational LRSs. Examples of rational LRSs include the Fibonacci sequence,
un = p(n) for p ∈ Q[x], and un = cos(nθ) where θ ∈ {arg(λ) : λ ∈ Q(i)}. We
refer the reader to the books by Everest et al. [22] and Kauers & Paule [23]
for a detailed discussion of linear recurrence sequences.

An LRS (un)n∈N that is not eventually zero satisfies a unique minimal
recurrence relation un+d =

∑d−1
i=0 aiun+i such that d > 0 and a0 ̸= 0. Writing

A =
[
a1 · · · ad−1

]
and q =

[
u0 · · · ud−1

]⊤, the matrix

C :=

[
0 Id−1

a0 A

]
=


0 1 · · · 0
...

... . . . ...
0 0 · · · 1
a0 a1 · · · ad−1

 ∈ Rd×d

is called the companion matrix of (un)n∈N. We have that

Cnq = (un, . . . , un−d+1)

and un = e⊤1 C
nq for all n ∈ N, where ei denotes the ith standard basis vector.

As a0 ̸= 0, the matrix C is invertible and does not have zero as an eigenvalue.
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The characteristic polynomial of (un)n∈N is p(x) = xd −
∑d−1

i=0 aix
i. Note

that p is identical to the characteristic polynomial det(xI − C) of the com-
panion matrix C. The eigenvalues (also called the characteristic roots) of
(un)n∈N are the d (possibly non-distinct) roots λ1, . . . , λd of the characteristic
polynomial p. An LRS is

• simple (or diagonalisable) if its characteristic polynomial does not have
a repeated root, and

• non-degenerate if (i) all real eigenvalues are non-negative, and (ii) for
every pair of distinct eigenvalues λ1, λ2, the ratio λ1/λ2 is not a root of
unity.

For an LRS (un)n∈N there exists effectively computable R such that for every
0 ≤ r < R, the sequence u(r)

n = unR+r is non-degenerate [22, Section 1.1.9]. If
(un)n∈N, (vn)n∈N are LRSs over a field R, and ◦ ∈ {+,−, ·}, then wn = un◦vn
also defines an LRS over R [23, Theorem 4.2]. Moreover, if (un)n∈N and
(vn)n∈N are both simple, then so is (wn)n∈N.

The exponential polynomial representation of an LRS. Every LRS (un)n∈N
of order d > 0 over Q can be written in the form

un =
m∑
j=1

pj(n)λ
n
j (1)

where (i) m ≥ 1, λ1, . . . , λm are the distinct non-zero characteristic roots of
(un)n∈N, and (ii) each pi is a non-zero polynomial with algebraic coefficients;
see [22, Chapter 1]. Whenever these conditions on m,λi and pi are met, we
say that the right-hand side is in the exponential polynomial form. Every
LRS (un)n∈N that is not eventually zero has a unique representation of the
form (1) where the right-hand side is in the exponential polynomial form.
Moreover, the right-hand side of (1) cannot be identically zero assuming
(i-ii). This is a folklore result, but we provide a proof for completeness.

Lemma 1. Let un =
∑m

i=1 pi(n)λ
n
i where m ≥ 1, λ1, . . . , λm ∈ Q are non-

zero and pairwise distinct, and each pi ∈ Q[x] is non-zero. Then, the sequence
(un)n∈N is not identically zero. Specifically, there exists 0 ≤ n < d, where
d =

∑m
i=1(deg(pi) + 1), such that un ̸= 0.
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Proof. Suppose deg(pk) ≥ 1 for some 1 ≤ k ≤ m. Consider the sequence
vn = un+1 − λkun. It will be of the form

vn =
∑
i∈I

qi(n)λ
n
i

where I ⊆ {1, . . . ,m} with k ∈ I, deg(qk) < deg(pk), and for all i ∈ I, qi
is not identically zero with deg(qi) ≤ deg(pi). Observe that if (un)n∈N is
identically zero, then so is (vn)n∈N. Moreover, if vn is non-zero, then either
un or un+1 is non-zero. Repeating the process of constructing vn from un at
most

∑m
i=1 deg(pi) times, we obtain

wn =
m∑
i=1

ciλ
n
i

that is identically zero if un is identically zero, where each ci is an algebraic
number and at least one ci is non-zero.

It remains to argue that wn cannot be identically zero. Consider the
system of equations

m∑
i=1

xiλ
n
i = 0 for 0 ≤ n < m.

We can write it as Mx = 0, where x = (x1, . . . , xm) and M is a Vander-
monde matrix with det(M) =

∏
i ̸=j(λi − λj). Since λ1, . . . , λm are distinct

by assumption, M is invertible and Mx = 0 if and only if x = 0. Since
c ̸= 0, it follows that wn ̸= 0 for some 0 ≤ n < m. Hence there exists
n′ ≤ n+

∑m
i=1 deg(pi) = n+ (d−m) < d such that un′ ̸= 0.

We can also characterise the exponential polynomial representations of
real-valued LRS.

Lemma 2. Let (un)n∈N be as in the statement of Lemma 1. If un ∈ R for
all n ∈ N, then for every 1 ≤ i ≤ m there exists j with 1 ≤ j ≤ m such that
pj(n) = pi(n) and λj = λi.

Proof. We have un =
∑m

j=1 pj(n)λj
n. Moreover, un = un since un ∈ R

for all n. The result then follows from the uniqueness of the exponential
polynomial representation.
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Throughout this work we will encounter sequences of the form un =
p(Mnq) where p is a polynomial with rational coefficients and q is a vector
with rational entries. Since

p(Mnq) = p(e⊤1 M
nq, . . . , e⊤d M

nq),

each u
(k)
n = e⊤k M

nq is an LRS over Q (this can be seen, e.g., by applying the
Cayley-Hamilton theorem), and LRS over Q are closed under addition and
multiplication, the sequence (p(Mnq))n∈N is itself an LRS over Q.

The following is one of the most fundamental results about growth of
linear recurrence sequences [24, Theorem 2].

Theorem 3. Let un =
∑ℓ

i=1 pi(n)λ
n
i , where the right-hand side is in the

exponential polynomial form. Further let ρ = maxi |λi|. For every ε > 0, we
have that

un ̸= 0 ⇒ |un| > (ρ− ε)n

for all sufficiently large n.

Decision problems of linear recurrence sequences. Sign patterns of LRSs have
been studied for a long time. Two prominent open problems in this area are
the Skolem Problem and the Positivity Problem. The Skolem Problem is to
find an algorithm that, given an LRS un, decides if the set Z = {n : un = 0}
is non-empty. The most well-known result in this direction is the celebrated
Skolem-Mahler-Lech theorem, which (non-constructively) shows that Z is a
union of a finite set and finitely many arithmetic progressions. In particular,
it shows that a non-degenerate (un)n∈N can have only finitely many zeros.
The Positivity Problem, on the other hand, asks to find an algorithm that
determines if un ≥ 0 for all n. It is known to subsume the Skolem Problem as
well as certain long-standing open problems in Diophantine approximation
[25, Chapter 2].

2.4. Markov Chains
A finite-state discrete-time Markov chain (DTMC) M is a tuple (S, P, ι),

where S is a finite set of states, P : S×S → [0, 1] is the transition probability
function satisfying

∑
s′∈S Pss′ = 1 for all s ∈ S and ι : S → [0, 1] is the

initial distribution, such that
∑

s∈S ιinit(s) = 1. For algorithmic problems,
all transition probabilities are assumed to be rational. A finite path ρ in
M is a finite sequence s0s1 . . . sn of states such that P (si, si+1) > 0 for all
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0 ≤ i ≤ n − 1. We say that a state t is reachable from s if there is a finite
path from s to t. If all states are reachable from all other states, we say that
M is irreducible; otherwise, we say it is reducible. A set B ⊆ S of states
is called a bottom strongly connected component (BSCC) if it is strongly
connected, i.e., all states in B are reachable form all other states in B and if
there are no outgoing transitions, i.e., P (s, t) > 0 and s ∈ B implies t ∈ B.

Without loss of generality we identify S with {1, . . . , d} for d = |S|. Then,
overloading notation, we consider P ∈ Rd×d as a matrix with Pij = P (j, i)
for i, j ≤ d. Likewise, we consider ι to be a (column) vector in Rd. Then,
the sequence of distributions over states after k steps is given by P kι, which
forms a stochastic LDS. We also write P (k)

ij for (P k)ij, which is the probability
to move from state j to i in exactly k steps. Further, we say that the matrix
P is irreducible if the underlying Markov chain is irreducible. The period di
of a state i is di = gcd{m ≥ 1 : P

(m)
ii > 0}. If di = 1, then we call the state

i aperiodic. A Markov chain (and its transition matrix) is aperiodic if and
only if all of its states are aperiodic. The period of a Markov chain M (and,
equivalently, of its transition matrix P ) is the least common multiple of the
periods of the states of M .

A vector π ∈ Rd is called a stationary distribution of the Markov chain if
a) π is a distribution, i.e., πj ≥ 0 for all j with 1 ≤ j ≤ d, and

∑d
j=1 πj = 1,

and b) π is stationary, i.e., π = Pπ. For aperiodic Markov chains, it is known
that the sequence (P kι)k∈N of probability distributions over states converges
to a stationary distribution π, which can be computed in polynomial time
(see [26, 27]).

2.5. Kronecker’s theorem
We write T for the interval [0, 1) and {x} for the fractional part of x ∈ R,

i.e., {x} = x − ⌊x⌋. Let λ1, . . . , λℓ ∈ C with λi = ei2πθi for all i, where
θi ∈ T. A multiplicative relation of λ1, . . . , λℓ is a tuple (k1, . . . , kℓ) ∈ Zℓ such
that λk1

1 · · ·λkℓ
ℓ = 1. We write G(λ1, . . . , λℓ) for the set of all multiplicative

relations of (λ1, . . . , λℓ), which is a free abelian group. If this group is con-
sists only of the neutral element, we say that λ1, . . . , λℓ are multiplicatively
independent. By a deep result of Masser [28], there exists a fixed polyno-
mial p such that G has a basis B of at most ℓ elements such that for each
v ∈ B, ∥v∥∞ < p(∥λ1∥ + . . . + ∥λℓ∥)ℓ. Hence a basis of G can be computed
in polynomial space (given λ1, . . . , λℓ) by simply enumerating all possible
bases satisfying Masser’s bound. Note that λ1, . . . , λℓ are multiplicatively
independent if and only if 1, θ1, . . . , θℓ are linearly independent over Q.
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We are now ready to state Kronecker’s theorem in Diophantine approxi-
mation and its consequences for linear recurrence sequences.

Theorem 4. Let θ1, . . . , θℓ ∈ T, θn = ({nθ1}, . . . , {nθℓ}) for all n, and
G = {(n1, . . . , nℓ) ∈ Zℓ : n1θ1 + · · · + nℓθℓ ∈ Z}. The sequence (θn)n∈N is
dense in

{(x1, . . . , xℓ) ∈ Tℓ | k1x1 + · · ·+ kℓxℓ ∈ Z for all (k1, . . . , kℓ) ∈ G}.

Corollary 5. If 1, θ1, . . . , θℓ are linearly independent over Q, then (θn)n∈N
is dense in Tℓ.

Corollary 6 (See [29, Prop. 3.5]). Let γ1, . . . , γℓ ∈ ei2πT. The sequence
(γn

1 , . . . , γ
n
ℓ )n∈N is dense in

{(z1, . . . , zℓ) ∈ (ei2πT)ℓ | G(γ1, . . . , γℓ) ⊆ G(z1, . . . , zℓ)}.

Corollary 7. Let un =
∑ℓ

i=1 ciλ
n
i be an LRS that is not identically zero,

where λi, ci ∈ C and |λi| = 1 for all i. There exists c > 0 such that |un| > c
for infinitely many c.

Proof. Let k be such that uk ̸= 0. By Corollary 6, there exist infinitely
many n such that |(λn

1 , . . . , λ
n
ℓ ) − (λk

1, . . . , λ
k
ℓ )| < ε. The statement then

follows from the continuity of the function (z1, . . . , zℓ) 7→
∑ℓ

i=1 cizi.

2.6. Logical theories and o-minimality
A structure M consists of a universe U , constants c1, . . . , ck ∈ U , pred-

icates P1, . . . , Pl where each Pi ⊆ Uµ(i) for some µ(i) ≥ 1, and functions
f1, . . . , fm where each fi has the type fi : U

δ(i) → U for some δ(i) ≥ 1. By
the language of the structure M, written LM, we mean the set of all well-
formed first-order formulas constructed from symbols denoting the constants
c1, . . . , ck, predicates P1, . . . , Pl, and functions f1, . . . , fm, as well as variables
and the symbols ∀,∃,∧,∨,¬,=. A theory is simply a set of sentences, i.e. for-
mulas without free variables. The theory of the structure M, written Th(M),
is the set of all sentences in the language of M that are true in M. A theory
T is decidable if there exists an algorithm that takes a sentence φ and decides
whether φ ∈ T . Below is a list of structures relevant to this work.

(a) Let R0 = ⟨R; 0, 1, <,+, ·⟩, which is the ring of real numbers. Observe
that using the constants 0, 1 and the addition, we can obtain any con-
stant c ∈ N. Hence every atomic formula in Lor with k free variables
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is equivalent to p(x1, . . . , xk) ∼ 0, where p is a polynomial with integer
coefficients and ∼ is either > or the equality. By the Tarski-Seidenberg
theorem, Th(R0) admits quantifier elimination and is decidable.

(b) Let Rexp = ⟨R; 0, 1, <,+, ·, exp⟩, the real numbers augmented with the
exponentiation function. The theory of this structure is decidable as-
suming Schanuel’s conjecture, a unifying conjecture in transcendental
number theory.

(c) Finally, let Rexp, bt denote the structure ⟨R; 0, 1, <,+, ·, exp, c̃os, s̃in⟩,
which is Rexp augmented with bounded trigonometric functions : For
x ∈ [0, 2π], c̃os(x) = cos(x) and s̃in(x) = sin(x). For all other values of
x, we have c̃os(x) = s̃in(x) = 0.

We say that a structure S expands M if S and M have the same uni-
verse and every constant, function, and relation of M is also present in S.
We will only need structures expanding R0. A set X ⊆ Ud is definable
in a structure M if there exist k ≥ 0, a formula φ in the language of M
with d+ k free variables, and a1, . . . , ak ∈ U such that for all x1, . . . , xd ∈ U ,
φ(x1, . . . , xd, a1, . . . , ak) is true if and only if (x1, . . . , xd) ∈ X. We say that X
is definable in M without parameters if we can take k = 0 above. Similarly,
a function is definable (without parameters) in M if its graph is definable
(without parameters) in M.

A structure M expanding R0 is o-minimal if every set definable in M has
finitely many connected components. The structures R0, Rexp, and Rexp, bt

are all o-minimal [30]. All o-minimal structures admit cell decomposition
[31, §4.2]. In particular, every function definable in an o-minimal structure
is piecewise continuous and every subset of [0, 1]m definable in an o-minimal
structure is Jordan-measurable.

3. Mean payoff

In this section we study the mean payoff of an orbit, which is the average
weight collected per step in the long run. For an LDS given by M ∈ Qd×d

and q ∈ Qd, and a weight function w : Rd → R, we define the mean payoff of
the orbit as

MPw(M, q) := lim
n→∞

1

n

n−1∑
k=0

w(Mkq).
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We show how to compute MPw(M, q) in three cases: when w is polynomial
(section 3.1), when the orbit is bounded and w is continuous (section 3.2),
and when w is bounded and o-minimal (section 3.3). Let us now establish
some of the key tools that we will need.

Recall that we denote the interval [0, 1) by T and the fractional part of x
by {x}. For x = (x1, . . . , xm) ∈ Tm, let

σ(x) = (ei2πx1 , e−i2πx1 , . . . , ei2πxm , e−i2πxm).

We will link mean payoff to certain integrals using Weyl’s equidistribution
theorem from ergodic theory.

Theorem 8 ([32], see [15] for an exposition). Let θ1, . . . , θm ∈ T be such that
1, θ1, . . . , θm are linearly independent over Q, and U be a Lebesgue measurable
subset of Tm. Writing θn = ({nθ1}, . . . , {nθm}), we have that

lim
n→∞

|{0 ≤ k < n | θk ∈ U}|
n

= L(U).

Consequently, for every (piecewise) continuous g : Tm → R,

lim
n→∞

1

n

n−1∑
k=0

g(θk) =

∫
x∈Tm

g(x)dx

where dx = dx1 · · · dxm.

We will apply this theorem to orbits of linear dynamical systems in Sec-
tions 3.2 and 3.3 via the following lemma.

Lemma 9. Let λ1, . . . , λℓ ∈ Q where λi = ρiγi with ρi > 0, |γi| = 1 and
γi = ei2πθi ∈ Q. We can compute R,m > 0 for 1 ≤ i ≤ m such that
1, θ1, . . . , θm ∈ T are linearly independent over Q, and polynomials pi,r for
1 ≤ i ≤ ℓ and 0 ≤ r < R such that

λnR+r
i = ρnR+r

i · pi,r(σ(θn))

for all i, n, where θn = ({nθ1}, . . . , {nθm}).

Proof. The first step is to compute a basis of the group of multiplicative
relations G(γ1, . . . , γℓ) as described in section 2.5. Next, select a largest mul-
tiplicatively independent subset of {γ1, . . . , γℓ}. Without loss of generality
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we can take this to be {γ1, . . . , γm} for some m ≤ l. Then for every i > m,
we have that γ1, . . . , γm, γi are multiplicatively independent, i.e.

γ
ki,1
1 · · · γki,m

m = γki
i

for some positive integer ki and ki,j ∈ Z for 1 ≤ j ≤ m. Choose R =
km+1 · · · kℓ. Then for 1 ≤ i ≤ m, λnR+r

i = ρnR+r
i (γr

i · γnR
i ), and for i > m,

λnR+r
i = ρnR+r

i · γnR+r
i = ρnR+r

i · γr
i ·

(
γ

R·ki,1
ki

1 · · · γ
R·ki,m

ki
m

)n

.

By construction of R, we have that R·ki,1
ki

is an integer for all i > m.

3.1. Polynomial weight-functions
In this section fix M ∈ Qd×d, q ∈ Qd, and a polynomial p ∈ Q[X1, . . . , Xd].

We prove the following in this section.

Theorem 10. It is decidable whether the mean payoff MPw(M, q) exists, in
which case it is rational and effectively computable.

In order to analyse the mean payoff of the orbit, first recall from sec-
tion 2.3 that the sequence (p(Mnq))n∈N is an LRS over Q. The following
lemma states that the sequence of partial sums of the weights is also a ratio-
nal LRS.

Lemma 11. The sequence un =
∑n

k=0 p(M
kq) is an LRS over Q.

Proof. As discussed in section 2.3, wn = p(Mnq) defines a rational LRS.
Suppose (wn)n∈N satisfies a recurrence relation

wn+d = a0wn + . . .+ ad−1wn+d−1

where a0, . . . , ad−1 ∈ Q. Then

un+d+1 = un+d + ad−1(un+d − un+d−1) + · · ·+ a0(un+1 − un)

and hence (un)n∈N itself is a rational LRS of order at most d+ 1.

Computing MPw(M, q) therefore boils down to computing limn→∞ un/n
for a rational LRS (un)n∈N.
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Lemma 12. Given a rational LRS (un)n∈N, it is decidable whether limn→∞
un

n

exists. When the limit exists, it is rational and effectively computable.

Proof. Suppose (un)n∈N is not eventually zero and write un =
∑m

i=1 pi(n)λ
n
i

where m > 0, λ1, . . . , λm are pairwise distinct, |λ1| ≥ . . . ≥ |λm| > 0,
and each pi is not identically zero. By Theorem 3, for ϵ > 0 we have
that |un| > (|λ1| − ϵ)n for infinitely many n. Hence if |λ1| > 1, then the
limit does not exist. Similarly, if |λ1| < 1, then the limit is zero. Suppose
therefore |λ1| = 1. Let k be the largest integer such that |λi| = 1 for all
i ≤ k, and define vn =

∑k
i=1 pi(n)λ

n
i . It suffices to consider limn→∞ vn/n as

limn→∞
∑m

i=k+1 pi(n)λ
n
i = 0.

Write vn =
∑l

i=0 n
i
∑ki

j=1 ci,jλ
n
i,j where

∑ki
j=1 ci,jλ

n
i,j is in the exponen-

tial polynomial form for all i. If l = 0, then (vn)n∈N is bounded and
limn→∞ vn/n = 0. Assume therefore l ≥ 1. Let

wn =

kl∑
j=1

cl,jλ
n
l,j.

By construction, kl ≥ 1, and by Lemma 1, (wn)n∈N is not identically zero.
It is shown in [33, Lemma 4] that if λl,j ̸= 1 for some j (which is implied
by kl > 1), then there exist a, b ∈ R such that a < b, wn < a for infinitely
many n, and wn > b for infinitely many n. Hence limn→∞ vn/n can exist
only if kl = 1 and λl,1 = 1. Suppose indeed that kl = 1 and λl,1 = 1. Then
limn→∞ vn/n, when it exists, is equal to limn→∞

nlcl,1
n

. Since l ≥ 1, the latter
limit exists if and only if l = 1, in which case it is equal to cl,1 .

To prove rationality of the limit, suppose limn→∞ vn/n exists, in which
case it is equal to cl,1. There must exists 1 ≤ i ≤ k such that λi = 1 and
pi(n) is equal to either cl,1 or ncl,1. Recall that α ∈ C is rational if and only if
it is fixed by every automorphism of C. Since (un)n∈N takes rational values,
σ(un) = un for all n ∈ N and σ an automorphism of C. Moreover, σ(un) =∑m

i=1 σ(pi(n))σ(λi)
n and σ(λl,1) = λl,1 = 1 for every automorphism σ. By the

uniqueness of the exponential polynomial representation, σ(cl,1λn
l,1) = cl,1λ

n
l,1

for all n and σ, which implies that cl,1 is rational.

Our main result (Theorem 15) now follows immediately from Lemma 12
and Lemma 11.
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Complexity of computing the mean payoff. Recall that if the limit of (un

n
)n∈N

exists then it is equal to a coefficient of some pi appearing in the exponential
polynomial solution of (un)n∈N. Hence the complexity of computing the limit
is bounded by the complexity of computing the exponential polynomial. If
the description length of (un)n∈N is I and its order is d, the time required
to compute the exponential polynomial representation of un is polynomial
in Id [25, Chapter 2.2]. In particular, computing the mean payoff requires
polynomial time if we assume the dimension d of the LDS to be fixed.

3.2. Bounded orbits
In this section, fix a continuous weight function w : Rd → R, as well

as M ∈ Qd×d and q ∈ Qd such that (Mnq)n∈N is bounded. We will show
that MPw(M, q) has a simple integral representation. Our approach can be
explained geometrically as follows. A bounded orbit of an LDS approaches
a “limit shape”–which is the set of accumulation points of the orbit– closer
and closer. This allows us to express the mean payoff in terms of an integral
of the weight function over this limit shape. This integral computes the
“average” value of the weight function on the limiting shape. Of course,
we have to carefully ensure that we also know how “frequently” the orbit
approaches different parts of the limiting shape. Let us look at an example
that illustrates our approach.

Example 2. Let w : R3 → R be a continuous weight function and consider
the LDS

M =

 3/5 4/5 0
−4/5 3/5 0
0 0 1/2

 and q =

10
1

 .

The first two coordinates evolve under a repeated application of a rotation.
In the complex plane, this rotation is given by multiplication with 3/5−4/5i.
As 3/5 − 4/5i is not a root of unity, the orbit never reaches a point with
(1, 0) in the first two coordinates again. In fact, the first two components of
the orbit are dense in the unit circle in R2. Furthermore, by, for example,
Weyl’s equidistribution theorem, each sub-interval of the unit circle is visited
with frequency proportional to its length. The third component is halved at
every step and converges to 0. As the weight function is continuous, we can
hence treat the third coordinate as equal to 0 when determining the mean
payoff. More formally, the set of accumulation points of the orbit is

L = {v = (v1, v2, v3) ∈ R3 | v3 = 0, |v| = 1}
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which can be parametrised via g(θ) = (cos(2πθ), sin(2πθ), 0), g : T → R3. As
this parametrisation moves through the circle with constant speed reflecting
the fact that the orbit is “equally distributed” over the circle in the first two
components, we can now express the mean payoff of the orbit with respect to
the weight function w as

MPw(M, q) =

∫ 1

0

w(cos(2πθ), sin(2πθ), 0) dθ.

We now move on to the proof. For 1 ≤ i ≤ d, let u
(i)
n = eiM

nq, where ei
is the ith standard basis vector. We will need the following lemma.

Lemma 13. For all 1 ≤ i ≤ d,

u(i)
n = v(i)n + w(i)

n

where (v
(i)
n )n∈N is a simple LRS over R ∩Q whose characteristic roots all lie

on T, and (w
(i)
n )n∈N is an LRS over R∩Q whose characteristic roots all have

magnitude less than one, i.e. limn→∞w
(i)
n = 0.

Proof. Fix 2 ≤ i ≤ d, and write

u(i)
n =

ℓ∑
j=1

pj(n)λ
n
j

where the right-hand side is in the exponential polynomial form. If |λj| > 1

for some j, then by Theorem 3, |u(i)
n | diverges to infinity, contradicting

boundedness. Therefore, |λj| ≤ 1 for all j. Let J = {j : λj ∈ T} and
m = max1≤j≤ℓ deg(pj). We will show that m = 0. Write

u(i)
n = nm

∑
j∈J1

cjλ
n
j +

ℓ∑
j=1

qj(n)λ
n
j

where J1 = {j : deg(pj) = m} and deg(qj) < m for all j ∈ J . By Corollary 7,
there exists c > 0 such that |

∑
j∈J1 cjλ

n
j | > c for infinitely many n ∈ N. It

follows that if m > 0, then the first summand determines the sign of u
(i)
n

and hence lim infn→∞ u
(i)
n = ∞, which again contradicts the boundedness

assumption.
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Let v
(i)
n , w

(i)
n be as above. We have that for all N ∈ N,

MPw(M, q) = lim
n→∞

1

n

N+n−1∑
k=N

w(Mkq).

From the continuity of w and the fact that limn→∞ w
(i)
n = 0 we deduce that

MPw(M, q) = lim
n→∞

1

n

n−1∑
k=0

w(v
(1)
k , . . . , v

(d)
k ).

Next, let Λ = {λ1, . . . , λℓ} ⊂ Q be such that |λi| = 1 for all i and the char-
acteristic roots of every (v

(i)
n )n∈N belong to Λ. Invoking Lemma 9 compute

θ1, . . . , θm ∈ T that are linearly independent over Q, R > 0, and the polyno-
mials pi,r for 1 ≤ i ≤ ℓ and 0 ≤ r < R. Write θn for ({nθ1}, . . . , {nθm}) as
usual. We now prove the main result of this section.

Theorem 14. We can compute a function f : Rm → R such that

MPw(M, q) =

∫
x∈Tm

f(x)dx

where dx = dx1 · · · dxm.

Proof. Write vi,rn = v
(i)
nR+r for 1 ≤ i ≤ d and 0 ≤ r < R. We have that

MPw(M, q) = lim
n→∞

1

n

n−1∑
k=0

w(v
(1)
k , . . . , v

(d)
k ) (2)

=
1

R

R−1∑
r=0

lim
n→∞

1

n

n−1∑
k=0

w(v1,rk , . . . , vd,rk ). (3)

Applying Lemma 9, because |λi| = 1 for all λi ∈ Λ, we have that λnR+r
i =

pi,r(σ(θn)). Since each (v1,rn )n∈N is simple and v1,rn is a Q-linear combination
of λnR+r

1 , . . . , λnR+r
ℓ , we have that

w(v1,rk , . . . , vd,rk ) = w(q1,r ◦ σ(θk), . . . , qd,r ◦ σ(θk))

where each qi,r : R2m → R is a polynomial with algebraic coefficients. Thus
for each r there exists an entrywise polynomial function qr such that

w(v1,rk , . . . , vd,rk ) = w ◦ qr ◦ σ(θk)

20



for all k. Note that qr ◦σ and thus w ◦qr ◦σ are continuous. Since the weight
function w is continuous by assumption, we can apply Theorem 8 to each
summand of (3) to obtain

MPw(M, q) =
1

R

R−1∑
r=0

∫
x∈Tm

w ◦ qr ◦ σ(x)dx

=

∫
x∈Tm

w ◦ q0 ◦ σ(x) + · · ·+ w ◦ qR−1 ◦ σ(x)
R

dx.

Approximation of the mean payoff. Although the functions q0, . . . , qR−1, σ are
simple and explicit, there is no general way to evaluate the m-fold multiple
integral computed above. Nevertheless, the numerical approximation of in-
tegrals is an extensively studied area (see, e.g., [34]). The functions qr, σ are
differentiable and we can bound the modulus of the gradient of qr ◦σ on Tm.
Consequently, if the function w can be approximated and is well-behaved,
e.g., if w is Lipschitz continuous with known upper bound for its Lipschitz
constant, also the integrals that we obtained can be approximated to arbi-
trary precision. For more details on conditions under which the integral can
be approximated to arbitrary precision, we refer the reader to [34].

3.3. O-minimal weight functions
In this section, fix M ∈ Qd×d and q ∈ Qd, as well as a bounded weight

function w : Rd → [−b, b] that is definable in some o-minimal expansion M
of Rexp, bt. Let λ1, . . . , λd be the eigenvalues of M . Compute R, θ1, . . . , θm
as in Lemma 9 and write θn = ({nθ1}, . . . , {nθm}). Our main result is the
following, which shows that o-minimality implies good ergodic properties.

Theorem 15. We can compute a function f : Tm → R definable in M such
that

MPw(M, q) =

∫
x∈Tm

f(x)dx

where dx = dx1 · · · dxm.

We prove Theorem 15 in the remainder of this section. For n ∈ N and
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1 ≤ i ≤ r, let u
(i)
n = e⊤i M

nq and ui,r
n = u

(i)
nR+r. Recall that

MPw(M, q) = lim
n→∞

1

n

n−1∑
k=0

w(u
(1)
k , . . . , u

(d)
k )

=
1

R

R−1∑
r=0

lim
n→∞

1

n

n−1∑
k=0

w(u1,r
k , . . . , ud,r

k ).

Applying Lemma 9, for all i, r we can compute a function fi,r that is definable
in Rexp, bt such that ui,r

n = fi,r(n, {nθ1}, . . . , {nθm}) for all n. Because M
extends Rexp, bt by assumption, we can therefore compute a function gr : R×
Tm → [−b, b] definable in M such that

w(u1,r
n , . . . , ud,r

n ) = gr(n,θn).

We will next show that the sequence of functions (gr,n)n∈N, defined by

gr,n(x1, . . . , xm) = gr(n, x1, . . . , xm)

must converge pointwise for all n.

Lemma 16. Let hn : Tm → [−b, b] for n ∈ N be such that for all x =
(x1, . . . , xm) ∈ Tm and y ∈ [−b, b],

hn(x) = y ⇔ φ(n, x1, . . . , xm, y)

where φ is a fixed formula in the language of M. There exists a function
h : Tm → [−b, b] definable in M, whose representation can be computed effec-
tively, such that for every x ∈ Tm,

lim
n→∞

hn(x) = h(x).

Proof. Fix x ∈ Tm, and let z be an accumulation point of (hn(x))n∈N, whose
existence is guaranteed by the Bolzano-Weierstraß theorem. Define the func-
tion f : R → R≥0 by

f(t) = d ⇔ y ∈ [−b, b] : φ(t, x1, . . . , xm, y) ∧ |y − z| = d

which, at t ∈ N, measures the distance from ht(x) to z. Since it is definable
in the o-minimal structure M, it is ultimately monotonic [31, §4.1]. By
construction of z, lim inft→∞ f(t) = 0. It follows that limt→∞ f(t) = 0. The
function h is therefore defined by

h(x1, . . . , xm) = y ⇔
∀ε > 0. ∃t. ∀t′ > t. ∃y′ : φ(t, x1, . . . , xm, y

′) ∧ |y′ − y| < ε.
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Applying the lemma above, for 0 ≤ r < R, let gr : Tm → [−b, b] be
the pointwise limit of (gr,n)n∈N, which is definable in M and hence piecewise
continuous (see section 2.6). We next show that when computing the mean
payoff, we can work with the limit gr rather than the exact sequence (gr,n)n∈N.
This bring us closer to applying the equidistribution theorem, which requires
a fixed function that is applied at all to the orbit of the dynamical system
given by a translation on Tm.

Lemma 17. Let 0 ≤ r < R. We have that

lim
n→∞

1

n

n−1∑
k=0

gr,k(θk) = lim
n→∞

1

n

n−1∑
k=0

gr(θk).

Proof. For ε > 0 and n ∈ N, let Xε,n be the set of all x ∈ Tm such that for all
m ≥ n, |gr,m(x)− gr(x)| < ε. We have that Xε,n is definable in M and thus
(Jordan and Lebesgue) measurable (section 2.6). We denote the Lebesgue
measure of a set X ⊆ Tm by L(X). By construction of gr as the pointwise
limit of (gr,n)n∈N and the definition of Xε,n,

Tm =
⋃
n∈N

Xε,n

for all ε > 0. Moreover, Xε,n ⊆ Xε,m for all ε > 0 and n ≤ m. By a
standard property of measures (“continuity from below”), L(Xε,n) converges
monotonically to 1 as n → ∞ for all ε > 0.

Let ∆ > 0. To prove our result it suffices to show that for all sufficiently
large n, ∣∣∣∣ 1n

n−1∑
k=0

gr,k(θk)−
1

n

n−1∑
k=0

gr(θk)

∣∣∣∣ < ∆

which is equivalent to ∣∣∣∣ n−1∑
k=0

(gr,k(θk)− gr(θk)

∣∣∣∣ < n∆.

Recall that [−b, b] is the image of gr, and choose µ ∈ (0, 1) and ε, δ > 0 such
that (1−µ+δ) ·2b < ∆

2
and (µ+δ) ·ε < ∆

4
. Let N be such that L(Xε,N) > µ,

23



and write X = Xε,N . For all n ∈ N,

n−1∑
k=0

gr,k(θk)− gr(θk) =

n−1∑
k=0

1(θk ∈ X)(gr,k(θk)− gr(θk)) +
n−1∑
k=0

1(θk /∈ X)(gr,k(θk)− gr(θk))

where 1 denotes the indicator function. By the Weyl equidistribution theo-
rem, for all sufficiently large n we have that

1

n

n−1∑
k=0

1(θk ∈ X) ∈ (µ− δ, µ+ δ)

and
1

n

n−1∑
k=0

1(θk /∈ X) ∈ (1− µ− δ, 1− µ+ δ).

Hence for all sufficiently large n,∣∣∣∣ n−1∑
k=0

1(θk /∈ X)(gr,k(θk)− gr(θk))

∣∣∣∣ < (1− µ+ δ)n · 2b < n∆

2
.

Next, recall that for k ≥ N, |gr,k(θk)− gr(θk)| < ε by the construction of X.
For k < N , we have that |gr,k(θk) − gr(θk)| ≤ 2b. Hence for all sufficiently
large n, ∣∣∣∣ n−1∑

k=0

1(θk ∈ X)(gr,k(θk)− gr(θk))

∣∣∣∣ < n(µ+ δ) · 2ε < n∆

2
.

It remains to apply the triangle inequality.

Combining the lemma above with Theorem 8 we deduce that

lim
k→∞

1

n

n−1∑
k=0

gr(θk) =

∫
x∈Tm

gr(x)dx.
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Thus

MPw(M, q) = lim
n→∞

1

n

n−1∑
k=0

w(u
(1)
k , . . . , u

(d)
k )

=
1

R

R−1∑
r=0

lim
n→∞

1

n

n−1∑
k=0

w(u1,r
k , . . . , ud,r

k )

=
1

R

R−1∑
r=0

lim
n→∞

1

n

n−1∑
k=0

gr(θk)

=

∫
x∈Tm

g0(x) + · · ·+ gR−1(x)

R
dx.

which concludes the proof of Theorem 15.

Approximating mean payoff. Recall that each gr : Tm → [−b, b] is definable
in the o-minimal structure M and thus piecewise continuous (section 2.6).
Let us take M = Rexp, bt. The first-order theory of this structure is decid-
able assuming Schanuel’s conjecture. Thus, by verifying truths of carious
formulas (which can be done assuming Scahnuel’s conjecture), we can com-
pute an upper bound on the Lipschitz constant of each gr and approximate
its value on x ∈ Tr with rational coordinates to arbitrary precision. We can
therefore, similarly to section 3.2, apply generic techniques to (conditionally)
approximate mean payoff to arbitrary precision/

3.4. Stochastic linear dynamical systems
Stochastic LDSs are a special case of LDSs with a bounded orbit. We

will now show that for such systems, we can compute the mean payoff of the
orbit under a continuous weight function by evaluating the weight function
on finitely many points. In the aperiodic case, the orbit even converges to
a single point, and consequently it suffices to evaluate the weight function
once.

Theorem 18. Let P ∈ Qd×d be a stochastic, aperiodic matrix and ι ∈ Qd an
initial distribution. Further let w : Rd → R be a continuous weight function.
Then, MPw(P, ι) = w(π) where π is the stationary distribution limn→∞ P nι
of P , which is computable in polynomial time.
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Proof. As described in section 2.4, we know that the orbit (P nι)n∈N con-
verges to a stationary distribution π in this case, which can be computed in
polynomial time [26, 27]. As w is continuous, limn→∞w(P nι) = w(π). It
follows that

MPw(P, ι) = lim
n→∞

1

n

n−1∑
k=0

w(P kι) = w
(
lim
n→∞

P nι
)
= w(π).

Hence in the aperiodic case the computation of the mean payoff reduces
to evaluating the function w once on a rational point computable in polyno-
mial time. We next address the periodic case by splitting up the orbit into
subsequences.

For an irreducible and periodic Markov chain with period L, we have that
PL is aperiodic and L ≤ d by [35, Theorem 1.8.4]. Together with Theorem 18
this allows us to compute MPw(P

L, P rι), which satisfies

MPw(P, ι) =
1

L

L−1∑
r=0

MPw(P
L, P rι).

That is, for an irreducible stochastic LDS we can divide (P nι)n∈N into L
equally spaced subsequences and compute the mean payoff MPw(P, ι) as
the arithmetic mean of the mean payoffs of these subsequences.

Theorem 19. Let P ∈ Qd×d be a stochastic, irreducible matrix and ι ∈ Qd

an initial distribution. Let w : Rd → R be a continuous weight function.
Then, we can compute points π0, . . . , πL−1 ∈ Qd in polynomial time for some
L ≤ d such that MPw(P, ι) =

1
L

∑L−1
i=0 w(πi).

Write ∥x∥ for the bit length of x. Since the points π0, . . . , πL−1 can be
computed in polynomial time, they have bit length at most polynomial in
the length of the original input. Therefore, we have the following.

Corollary 20. Assume that the value w(a) can be approximated in time
fw(∥a∥, ϵ) up to some precision ϵ ≥ 0 (where ϵ = 0 corresponds to exact
computation) for all rational inputs a ∈ Qd. There is a fixed polynomial p
such that the mean payoff MPw(P, ι) can be approximated up to precision ϵ
in time at most d · fw(p(∥(P, ι)∥, ϵ) + p(∥(P, ι)∥).

When a Markov chain is reducible, the states can be renamed in a way
such that, the matrix representation of the Markov chain will contain distinct
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blocks corresponding to the bottom strongly connected components (BSCCs)
on the diagonal along with additional columns at the right representing states
that do not belong to any BSCC:

□ 0...0 0...0 ∗ ∗

0...0 □ 0...0 ∗ ∗

0...0 0...0 □ ∗ ∗
0...0 0...0 0....0 ∗ ∗


Each block representing a BSCC constitutes an irreducible Markov chain.
Assume we have k blocks with periods L1, L2, ..., Lk correspondingly. Let l
be the least common multiple of the periods. Now we will have l subsequences
of the orbit each of which will converge. The convergence of the rows in the
bottom is a result of the fact that Markov chain will enter a BSCC with
probability 1. So, in general, we have l subsequences of the orbit, all of
which converge. We observe that l ≤ dd, from which the following result
follows:

Theorem 21. Let P ∈ Qd×d be a stochastic matrix and ι ∈ Qd an initial
distribution. Let w : Rn → R be a continuous weight function. Then, we can
compute points π0, . . . , πl−1 ∈ Qd in exponential time for some l ≤ dd such
that MPw(P, ι) =

1
l

∑l−1
i=0w(πi).

As the transition matrix P l of the l subsequences as well as the initial
values P rι with 0 ≤ r < l can be computed in polynomial time by repeated
squaring, each of the points πi with 0 ≤ i < l can be computed in polynomial
time. Assuming that the value w(a) can be approximated in time fw(∥a∥, ϵ)
for all rational inputs a ∈ Qd, we can hence conclude that there is again a
fixed polynomial q such that the mean payoff of reducible stochastic LDSs
can be approximated to precision ϵ in time bounded by dd ·fw(q(∥(P, ι)∥, ϵ)+
dd · q(∥(P, ι)∥) analogously to Corollary 20.

4. Total (discounted) reward and satisfaction of energy constraints

In this section, we address the computation of total accumulated rewards
and total discounted rewards as well as the problem to decide whether the
accumulated reward ever drops below a given bound – a problem known
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as the satisfaction of energy constraints – for LDSs with polynomial weight
functions. First, we prove that the total as well as the discounted accumu-
lated weight of the orbit is computable and rational if finite. Afterwards,
we discuss Baker’s theorem and its consequences before applying these to
solve the energy constraint problem for low-dimensional LDSs. We further-
more provide two different hardness results showing that, in dimension 4, the
problem is hard with respect to certain open decision problems in Diophan-
tine approximation and that restricting to stochastic LDSs and linear weight
functions also does not lead to decidability in general.

4.1. Total reward
Let M ∈ Qd×d be a matrix, q ∈ Qd be an initial vector, and w : Rd → R

be a polynomial weight function with rational coefficients. We define the
total reward as

tr(M, q, w) :=
∞∑
k=0

w(Mkq).

Likewise, for a discount factor δ ∈ (0, 1) ∩ Q we define the total discounted
reward as

dr(M, q, w, δ) :=
∞∑
k=0

δk · w(Mkq).

Both of these quantities, when they exist, can be determined effectively.

Lemma 22. For a rational LRS (un)n∈N, it is decidable whether limn→∞ un

exists, in which case the limit is rational and effectively computable.

Proof. The sequence vn = nun is also a rational LRS. It remains to observe
that limn→∞ un = limn→∞ vn/n and apply Lemma 12.

Theorem 23. It is decidable whether
∑∞

k=0 w(M
kq) and

∑∞
k=0 δ

k · w(Mkq)
converge, in which case their values are rational and effectively computable.

Proof. Let un =
∑n

k=0w(M
kq). As argued in section 3.1, (un)n∈N is a rational

LRS, and we can apply Lemma 22. Similarly, let vn =
∑∞

k=0 δ
k ·w(Mkq). As

(δn)n∈N is itself a (rational) LRS and such LRS are closed under pointwise
multiplication, vn is also a rational LRS. We again apply Lemma 22.
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4.2. Baker’s theorem and its applications
We now discuss Baker’s theorem, which is the most important tool for

quantitatively analysing growth of low-order linear recurrence sequences. We
will use it in the analysis of energy constraints in the next section. A linear
form in logarithms is an expression of the form

Λ = b1 Logα1 + · · ·+ bm Logαm

where bi ∈ Z and αi ∈ Q for all 1 ≤ i ≤ m. Here Log denotes the principal
branch of the complex logarithm. The celebrated theorem of Baker places
a lower bound on |Λ| in case Λ ̸= 0. Baker’s theorem, as well as its p-adic
analogue, play a critical role in the proof of [9] that the Skolem Problem
is decidable for linear recurrence sequences of order at most 4, as well as
decidability of the Positivity Problem for low-order sequences [11].

Theorem 24 (Special case of the main theorem in [37]). Let Λ be as above,
D be the degree of the field extension Q(α1, . . . , αm)/Q, and suppose A,B ≥ 3
are such that A > H(αi) and B > |bi| for all 1 ≤ i ≤ m. If Λ ̸= 0, then

log |Λ| > −(16mD)2(m+2)(logA)m logB.

A consequence of Baker’s theorem is the following [12, Corollary 8].

Lemma 25. Let α, β ∈ Q with |α| = 1. For all n ≥ 2, if αn ̸= β then
|αn − β| > n−C where C is an effective constant that depends only α and β.

If α is not a root of unity, αn = β holds for at most one n which can be
effectively bounded.

Lemma 26. Let α, β ∈ Q be non-zero, and suppose α is not a root of unity.
There exists effectively computable N ∈ N such that αn ̸= β for all n > N .

Proof. The Weil height [38, Chapter 3.2] of α, denoted by h(α), is non-zero
under the assumption on α and satisfies h(αn) = nh(α). We can therefore
choose N = ⌈h(β)/h(α)⌉.

Combining the two lemmas above, we obtain the following.

Theorem 27. Let α, β ∈ Q, and suppose that |α| = 1 and α is not a root of
unity. There exist effectively computable N,C ∈ N such that for all n > N ,
|αn − β| > n−C.
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The next lemma summarises the family of linear recurrence sequences to
which we can apply Baker’s theorem.

Lemma 28. Let γ ∈ {z ∈ Q : |z| = 1} be not a root of unity, r1, . . . , rℓ ∈ R
be non-zero, and un =

∑m
i=1 ciΛ

n
i be an LRS over R where m ≥ 1, ci,Λi ∈ Q

are non-zero for all i, and Λ1, . . . ,Λm are pairwise distinct. Suppose each Λi

is in the multiplicative group generated by {γ, r1, . . . , rℓ}.

(a) There exists effectively computable N1 such that un ̸= 0 for all n > N1.

(b) For n > N1, |un| > Lnn−C, where L = maxi |Λi| and C is an effectively
computable constant.

(c) It is decidable whether un ≥ 0 for all n.

Proof. Define D = {i : |Λi| = L} and R = {i : |Λi| < L}. The terms ciΛ
n
i

with i ∈ D are called dominant. We have

un =
∑
i∈D

ciΛ
n
i︸ ︷︷ ︸

vn

+
∑
i∈R

ciΛ
n
i︸ ︷︷ ︸

zn

.

We first investigate |vn| as n → ∞. Recall that each Λi is of the form
γm0rm1

1 · · · rmℓ
ℓ , where m0, . . . ,mℓ ∈ Z. That is, for all i, Λi = |Λi|γki for

some ki ∈ Z. Hence we can write

vn = Ln

K∑
i=−K

biγ
in (4)

where each bi is equal to some cj and bK ̸= 0. The values of i range over
{−K, . . . ,K} because vn is real-valued and hence the summands in (4) appear
in conjugate pairs. We have

vn = γ−KnLn

2K∑
i=0

b−K+iγ
in = γ−KnLn

2K∏
i=0

(γn − αi)

where α0, . . . , α2K ∈ Q are the zeros of the polynomial p(z) =
∑2K

i=0 b−K+iz
i.

Since γ is not a root of unity, we can apply Theorem 27 to each factor
(γn−αi) to conclude that there exist effectively computable N1, C such that
|vn| > Lnn−C for al n > N1. Since |Λi| < L for all i ∈ R, there exists
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(effectively computable) N2 such that |vn| > |zn| for n > N2. We have
proven (a) and (b).

Since un is real-valued, by Lemma 2 for each 1 ≤ i ≤ m there exists
1 ≤ j ≤ m such that cjΛj = ciΛi. Hence both vn and zn are real-valued.
By the analysis above sign(un) = sign(vn) for n > N2. Hence to check if un

is positive we have to check whether un ≥ 0 for 0 ≤ n ≤ N2 and vn ≥ 0
for n > N2. We show how to do the latter. Since γ is not a root of unity,
(γn)n∈N is dense in ei2πT. Define f(z) = z−Kp(z), noting that vn = Ln ·f(γn).
Consider Z := f(ei2πT) ⊂ R, which is compact and equal to the closure of
{γ−KnLnp(γn) | n ∈ N}. If Z contains a negative number, then by density
of (γn)n∈N in ei2πT, vn is negative for infinitely many n. Hence un < 0 for
infinitely many n. Otherwise, vn ≥ 0 for all n and hence un ≥ 0 for all
n > N2. This concludes the proof of (c).

4.3. Satisfaction of energy constraints
We next discuss energy constraints. We say that a series of real weights

(wi)i∈N satisfies the energy constraint with budget B if

k∑
i=0

wi ≥ −B

for all k ∈ N. We will prove that for LDS (M, q) of dimension at most 3,
satisfaction of energy constraints is decidable. The proof is based on the fact
that three-dimensional systems are tractable thanks to Baker’s theorem [36].
For higher-dimensional systems, no such tractability result is known. We will
show that deciding satisfaction of energy constraints is, in general, at least as
hard as the Positivity Problem, already with linear weight functions. Before
giving our decidability result, we need one final ingredient about partial sums
of LRS. Let wn = nlλn for some l ≥ 0 and λ ∈ Q, and un =

∑n
k=0wk. If

λ = 1, then un = p(n), where p is a polynomial of degree l + 1 with rational
coefficients. If λ ̸= 1, then un = q(n)λn, where q is a polynomial of degree
at most l with algebraic coefficients satisfying q(n + 1)λ = q(n) + nl. It
follows that if the LRS (wn)n∈N has only real eigenvalues, then so does the
sequence given by un =

∑n
k=0wk. Similarly, if (wn)n∈N is diagonalisable and

does not have 1 as an eigenvalue, then the same applies to (un)n∈N. In fact,
the eigenvalues of (un)n∈N form a subset of the eigenvalues of (wn)n∈N.

Theorem 29. Let M ∈ Q3×3, q ∈ Q3, δ ≤ 1 be a discount factor, and
w : R3 → R be a polynomial weight function with rational coefficients. For
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B ∈ Q≥0, it is decidable whether the weights (δn · w(Mnq))n∈N satisfy the
energy constraint with budget B.

Proof. Let wn = δn · w(Mnq) and un = B +
∑n

i=0w(M
iq). We have to

decide whether un ≥ 0 for all n. First suppose M has only real eigenval-
ues. Then wn and un are both LRSs with only real eigenvalues. By taking
subsequences if necessary, we can assume (un)n∈N is non-degenerate. Write
un =

∑m
i=1 pi(n)ρ

n
i where the right-hand side is in the exponential-polynomial

form. In particular, for all i, pi is not the zero polynomial. Since (un)n∈N is
non-degenerate, without loss of generality we can assume ρ1 > . . . > ρm > 0.
If p1(n) is negative for sufficiently large n, then the energy constraint is not
satisfied. Otherwise, we can compute N such that for all n > N , un > 0. It
remains to check whether un ≥ 0 for 0 ≤ n ≤ N .

Next, suppose M has non-real eigenvalues λ, λ, and a real eigenvalue ρ.
Write γ = λ/|λ| and r = |λ|. Then un is of the form

un = cn+
m∑
i=1

ciΛ
n
i := cn+ vn

where Λ1, . . . ,Λm are pairwise distinct and in the multiplicative group gen-
erated by r, ρ, δ, γ. Without loss of generality we can assume ci ̸= 0 for all i,
but c may be zero. If γ is a root of unity of order k > 0 (i.e. γk = 1), then
we can take subsequences (u

(0)
n )n∈N, . . . , (u

(k−1)
n )n∈N, where u

(j)
n = unk+j for

n ∈ N and 0 ≤ j < k, and each (u
(j)
n )n∈N has only real eigenvalues. We can

then apply the analysis above. Hereafter we assume γ is not a root of unity.
Suppose c = 0. Then Lemma 28 (c) applies and we can decide whether

un ≥ 0for all n. Next, suppose c ̸= 0 and L := maxi |Λi| satisfies L ≤ 1.
We can compute N2 such that |cn| > |vn| for all n > N2. Hence in this
case un ≥ 0 for all n if and only if c > 0 and un > 0 for 0 ≤ n ≤ N2.
Finally, suppose c ̸= 0 and L > 1. Applying Lemma 28 (b), there exists
effectively computable N3 such that |un| > |cn| for n > N3. Hence un ≥ 0
for all n if and only if un ≥ 0 for 0 ≤ n ≤ N3 and

∑m
i=1 ciΛ

n
i ≥ 0 for

n > N3. The latter can be decided by applying Lemma 28 (c) to the sequence
vn =

∑m
i=1 ciΛ

N3+n
i =

∑m
i=1(ciΛ

N3
i )Λn

i .

4.4. Positivity and Diophantine hardness
Recall that the energy satisfaction problem is to decide, given a matrix

M ∈ Qd×d, q ∈ Qd, B ∈ Q, and a polynomial p with rational coefficients,
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whether there exists n such that
∑n

k=0 p(M
kq) < B. This problem is at least

as hard as the Positivity Problem already for stochastic linear dynamical
systems and linear weight functions.

Theorem 30. The Positivity Problem can be reduced to the energy satisfac-
tion problem restricted to a Markov chain (M, q) and a linear function w.

Proof. It is known from [19, 20] that the Positivity Problem for arbitrary
LRS over Q can be reduced to the following problem: given a Markov chain
(M, q), decide whether there exists n such that e⊤1 M

nq ≥ 1/2, where e1 =
(1, 0, . . . , 0) ∈ Rd. We reduce the latter to the energy satisfaction problem.
Given a Markov chain (M, q) ∈ Qd×d ×Qd, let

P =

[
M 0
0 M

]
and t = (1

2
q, 1

2
Mq) ∈ Q2d. Observe that (P, t) is also a Markov chain.

Moreover, P nt = (1
2
Mnq, 1

2
Mn+1q) for all n. We choose the weight function

w(x1, . . . , x2d) = 2(xd+1 − x1) and B = 1
2
− e1 · q. Then

w(P nq) = e⊤1 M
n+1q − e⊤1 M

nq

and un :=
∑n

k=0w(P
nq) ≥ B if and only if e⊤1 Mn+1q ≥ 1

2
. Hence there does

not exist n such that e⊤1 Mnq ≥ 1
2

if and only if e1 · q < 1
2

and there does not
exist n such that un < B.

The Positivity Problem for rational linear recurrence sequences of order
6 was shown in [11] to be Diophantine-hard. Specifically, for r ∈ Q and
λ ∈ Q(i) (that is, λ = a+ bi where a, b ∈ Q) let

uλ,r
n = −n+

n

2
(λn + λn) +

ri

2
(λn − λn) = r Im(λn)− nRe(λn) + n.

If for all r ∈ Q and λ ∈ Q(i) we can decide whether uλ,r
n ≥ 0 for all n ≥ 0, then

we could compute the Lagrange constants of a large class of numbers, which
would amount to a major mathematical breakthrough in number theory. The
following theorem states that a solution to the energy satisfaction problem
for rational LDS in dimension 4 with polynomial weight functions would also
yield the same breakthrough.
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Theorem 31. The energy satisfaction problem for rational linear dynam-
ical systems in dimension 4 and polynomial weight functions with rational
coefficients is Diophantine-hard.

Proof. We prove the following: If we can decide the energy satisfaction prob-
lem with d = 4, then we can decide for every r, λ whether uλ,r

n ≥ 0 for all n.
Fix r ∈ Q and λ = a+ bi ∈ Q(i). Define

M =


a −b 1 0
b a 0 1
0 0 a −b
0 0 b a


and the initial point q = (0, 0, 0, 1). We have

Mnq = (−n Im(λn−1), nRe(λn−1),− Im(λn),Re(λn)).

Recall that for all n ∈ N, (i) Re(λn+1) = aRe(λn) − b Im(λn) and (ii)
Im(λn+1) = a Im(λn) + bRe(λn). Hence there exist polynomials p1, p2, p3, p4
with rational coefficients such that p1(Mnq) = n Im(λn), p2(Mnq) = nRe(λn),
p3(M

nq) = Re(λn) and p4(M
nq) = Im(λn) for all n. Next, consider

wn = uλ,r
n+1 − uλ,r

n = r Im(λn+1)− nRe(λn+1)− r Im(λn) + nRe(λn) + 1.

Since uλ,r
0 = 0, we have uλ,r

n+1 =
∑n

k=0 wn. Moreover, using facts (i), (ii) and
the polynomials p1, . . . , p4 we can construct a polynomial p with rational
coefficients such that wn = p(Mnq) for all n. Hence uλ,r

n ≥ 0 for all n if and
only if the weights (p(Mnq))n∈N satisfy the energy constraint with budget
B = 0.

5. Conclusion

We have shown how to compute (or approximate) the mean-payoff and
the total or discounted weight of the orbit of a rational linear dynamical sys-
tem for various combinations of classes of systems as well as weight functions
(see Table 1). Remarkably, the results concerning infinite horizon questions
(e.g. mean payoff, as opposed to satisfaction of energy constraints) do not
rely on restrictions of the dimension in a stark contrast to decidability results
for the Skolem [9, 10] and the Positivity [11, 12] problems, which themselves
are special cases of reachability questions about the orbit of an LDS. This
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is in line with vast decidability of various robust versions of the reachability
(alternatively, safety) problem of linear dynamical systems, which similarly
does not depend on the dimension and is also proven using o-minimality [2].
Our results in section 3.3 can be seen as a counterpoint to these decidabil-
ity results regarding robust reachability: we show that o-minimality implies
strong ergodic properties.

For the question of whether an orbit of a rational LDS with a polynomial
weight function satisfies an energy constraints, on the other hand, we have
shown decidability for dimension 3 by utilising deep number-theoretic tool
that form the cornerstone of the theory of linear recurrence sequences, most
notable Baker’s theorem on linear forms in logarithms. As it is expected with
all finite (but not a priori bounded) horizon problems of linear dynamical sys-
tems, we obtain and Diophantine-hardness for the full problem, specifically
already for systems in the ambient space Rd. In fact, restricting the dynam-
ical system to be stochastic (i.e. a Markov chain) and the weight function to
be linear still results in a problem that is at least as hard as the Positivity
Problem for linear recurrence sequences. This, again, is unsurprising in light
of [19, 20] results that show that for the Skolem and Positivity problems,
restricting the LDS to be a Markov chain does not change much.

In the future, this work can be extended in at least two ways. Firstly,
one can consider continuous-time linear dynamical systems equipped with a
weight function. For such systems only hyperplane and halfspace reachabil-
ity problems (which are analogues of the Skolem and Positivity problems,
respectively) are well-understood, and the number-theoretic tools used in
their analyses differ significantly from the ones used in this work [39]. How-
ever, continuous-time linear dynamical systems also benefit from applications
of o-minimality [2], and we believe that they also have good ergodic prop-
erties with respect to “tame” (e.g., o-minimal) weight functions. Secondly,
one can partition Rd into a collection of semialgebraic sets S1, . . . , Sm and
assign a fixed reward w(Si) to each Si. Here the reward received at time n
is

∑m
i=1 1(M

nq ∈ Si)w(Si). In this setting, already for M that is a rotation
in R2, comparing the (discounted) total reward as well as the mean payoff
against a given threshold appears to have deep connections to Diophantine
approximation [40].
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