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Abstract. A 1-period is a complex number given by the integral of a univariate algebraic
function, where all data involved — the integrand and the domain of integration — are
defined over algebraic numbers. We give an algorithm that, given a finite collection of
1-periods, computes the space of Q-linear relations among them. In particular, the algorithm
decides whether a given 1-period is transcendental, and whether two 1-periods are equal.
This resolves, in the case of 1-periods, a problem posed by Kontsevich and Zagier, asking
for an algorithm to decide equality of periods. The algorithm builds on the work of Huber
and Wüstholz, who showed that all linear relations among 1-periods arise from 1-motives;
we make this perspective effective by reducing the problem to divisor arithmetic on curves
and providing the theoretical foundations for a practical and fully explicit algorithm. To
illustrate the broader applicability of our methods, we also give an algorithmic classification
of autonomous first-order (non-linear) differential equations.

Contents

1. Introduction 3
1.1. Connections to foundational work 5
1.2. Acknowledgements 6
2. The algorithm 7
3. Relative algebraic de Rham cohomology of a punctured curve 9
3.1. Representing irreducible curves and their differentials 9
3.2. Representing reducible curves and their differentials 9
3.3. Poles of forms and definition of algebraic de Rham cohomology 10
3.4. Algebraic de Rham cohomology in terms of second type differentials 11
3.5. An effective basis for cohomology 13
3.6. Computing a basis for algebraic de Rham cohomology 15
3.7. Reduction algorithms 16
3.8. Cohomological pullback and the transfer map 17
4. Betti homology and the mixed Hodge structure of a punctured marked curve 19
4.1. Representing the mixed Hodge structure 19
4.2. Rectilinear chains 20
4.3. Rectilinear embedded graphs in curves 21
4.4. Constructing a representation of the homology of a curve 21
4.5. Reduction, pushforward, and transfer maps in homology 23
5. Relations between the periods of 1-motives 25
5.1. Definition of a 1-motive 25
5.2. The mixed Hodge structure associated to a 1-motive 26
5.3. Subgroup theorem for 1-motives 26
5.4. Cartier duality 27
5.5. Endomorphism types of motives 28
5.6. Expected period relations 29

1



5.7. Filtrations and period matrices 30
5.8. Period relations of Baker motives 30
5.9. Independence statements for periods of saturated motives 31
5.10. Period relations of a power of a simple motive 32
5.11. Period relations for saturated motives 33
6. Push-pull Jacobian motives 35
6.1. Jacobian motive of a punctured relative curve 35
6.2. Push-pull constructions 36
6.3. Points of a push-pull Jacobian motive 37
6.4. A moving lemma 38
6.5. Homology and cohomology of a push-pull Jacobian motive 39
6.6. Pushing and pulling period relations 40
7. Correspondences 43
7.1. Correspondences on Jacobian varieties 43
7.2. Computing a representation of the endomorphism algebra of a Jacobian 44
7.3. Induced morphisms between Jacobian motives 45
7.4. Correspondences on Jacobian motives 46
8. Explicit morphisms and decompositions of push-pull Jacobian motives 48
8.1. Explicit representations of morphisms 48
8.2. Isogenies, direct sum decompositions, and making lattice maps injective 49
8.3. Computing the kernel of an Abel–Jacobi map 50
8.4. Splitting Baker components, part I 51
8.5. Splitting Baker components, part II 53
8.6. Splitting Baker components, part III 53
8.7. Splitting Baker components, part IV 54
8.8. Period relations of a Baker motive 55
9. Supersaturation 57
9.1. Supersaturation of Jacobian motives of the second kind 57
9.2. Supersaturation of Jacobian motives of the third kind 59
9.3. The general case 61
10. Classifying first-order autonomous differential equations 64
References 66

2



1. Introduction

(1.0.1) Periods are the values of integrals of algebraic forms over semi-algebraic domains, both
defined over algebraic numbers. These numbers appear broadly in the sciences and connect
arithmetic algebraic geometry to transcendental number theory. The Kontsevich–Zagier [KZ01]
and Grothendieck [Gro66; And89; Ayo14] period conjectures predict that equality between
periods should be decidable by algebro-geometric means. Yet these conjectures remain far
out of reach in this generality.

(1.0.2) Kontsevich and Zagier ask for an algorithm [KZ01, Problem 1, p.7] to decide equality
of two periods. In this paper, we resolve this problem in the case of 1-periods: integrals
of univariate algebraic forms. We construct an algorithm that can decide equality among
1-periods and even decide transcendence. Beyond mere decidability statements, we have
devised an algorithm grounded in divisor arithmetic on curves allowing us to rely entirely on
well-established, practical methods.

(1.0.3) The theoretical bedrock for our algorithm is the work of Huber and Wüstholz [HW22],
who proved that all Q-linear relations among 1-periods arise from morphisms of 1-motives.
While their results are not algorithmic, the algebro-geometric nature of the statement suggests
that an effective version should be possible. Rather than attempting to translate their
methods — which would require working with semi-abelian varieties embedded in high-
dimensional projective spaces — we focus instead on generalised Jacobians and the mixed
Hodge structures H1(C \ D,E) of punctured and marked curves. In doing so, we develop
a range of computational techniques that may be of independent interest for the study of
algebraic curves and their periods; see for instance (1.0.16).

(1.0.4) To give an emblematic example of a 1-period, consider the identity

(1.0.4.1) π =

∫ 1

−1

2
√
1− x2 dx,

which expresses the area of the unit circle as the integral of an algebraic function over an
interval with algebraic endpoints.

(1.0.5) In general, a 1-period may be defined as an integral
∫ b
a
f(x) dx, where a, b are real

algebraic numbers and the integrand f(x): [a, b] → C is continuous and algebraic over Q;
that is, it satisfies a nonzero polynomial relation P (x, f(x)) = 0 for some P ∈ Q[x, y]. This
definition recognisably includes classical examples such as elliptic integrals and special values
of the Gauss hypergeometric function.

(1.0.6) While this formulation offers a concrete and familiar perspective, it is not the one
we will adopt. For our purposes, a more flexible definition — better suited to the geometric
and computational framework developed here — will be preferable. The two formulations are
equivalent, though we will not need this fact.

(1.0.7) A 1-period is a complex number that can be realised as the value of an integral
∫
γ
ω,

where C/Q is a smooth projective curve, ω is a rational differential on C, and γ is a smooth
1-chain on C(C) \ poles(ω) with boundary ∂γ supported on C(Q). We refer to the data
(γ, ω)C as a representation of the 1-period.

(1.0.8) To work with 1-periods effectively, we must specify how the tuple (γ, ω)C is represented.
The curve C/Q is given by specifying a birational plane model for each irreducible component;
equivalently, each component is represented by an irreducible polynomial P (x, y) ∈ Q[x, y].
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The rational differential ω is likewise represented, per component, by a polynomial Q(x, y) ∈
Q[x, y] such that the form is given by the restriction of Q(x, y) dx to C. We turn next to the
representation of the chain γ.

(1.0.9) For the smooth 1-chain γ, the value of the integral depends only on its homology
class. Any representation of γ from which this class can be recovered is therefore acceptable
— for instance, one that allows the integrals of rational forms over γ to be approximated to
arbitrary precision (4.5.56). For the basis of homology, we use 1-chains that are rectilinear in
the x-coordinate; see §4.

(1.0.10) We fix an embedding Q ⊂ C, and assume that algebraic numbers are represented by
their minimal polynomial over Q together with data isolating the intended complex root (e.g.,
a complex ball with rational center and radius).

(1.0.11) Main Theorem. Given representations (γ1, ω1)C1 , . . . , (γk, ωk)Ck of 1-periods αi =∫
γi
ωi, Algorithm (2.0.1) in Section 2 computes a Q-basis for the space of Q-linear relations

(1.0.11.1) relQ(α1, . . . , αk) :=

{
(β1, . . . , βk) ∈ Qk

:
k∑
i=1

βiαi = 0

}
.

(1.0.12) Corollary. Given a representation of a 1-period α, Algorithm (2.0.1) decides whether
α is transcendental, and when it is algebraic, produces a standard representation of α as an
algebraic number.

Proof. Indeed, 1 =
∫
[0,1]

dx is a 1-period, so we may compute relQ(α, 1), which is the 0 vector
space precisely when α /∈ Q. (The basis for the 0 vector space is the empty set.) If α ∈ Q,
then relQ(α, 1) is a 1-dimensional subspace of Q2, and the algorithm will return a generator
(β1, β2) such that α = −β2/β1. □

(1.0.13) Corollary. Given representations of two 1-periods α1 and α2, Algorithm (2.0.1)
decides whether α1 = α2.

Proof. Equality holds precisely when (1,−1) ∈ relQ(α1, α2), which can be tested using a
Q-basis. □

(1.0.14) Corollary. The Q-vector space of 1-periods is effective.

Proof. This means that the operations of addition, scalar multiplication, and equality are
computable. The Q-scaling of a representative is achieved by scaling the form: β · (γ, ω)C =
(γ, β · ω)C . To add two representatives (γ1, ω1)C1 and (γ2, ω2)C2 , take the disjoint union of
the underlying curves, and add the 1-chains and 1-forms there. Equality is checked as in
Corollary (1.0.13).

(1.0.15) Technical framework. We construct a complete computational model for the mixed
Hodge structure H1(C \ D,E): the de Rham realisation via rational differentials over the
base field §3; the Betti realisation via embedded graphs §4; and the comparison isomorphism
via certified precision integration. To circumvent arithmetic on periods, we augment this
structure with the Jacobian motive of (C \D,E), see §6. This is a toric extension JDC of the
Jacobian JC of C, marked by divisors supported on E. Divisor arithmetic on C enables exact
computation with the points of JDC , which compensates for the inability to test identities
among periods directly.

To obtain the flexibility needed for “symmetrizing” the motive while remaining within the
domain of curves, as required in §9, we generalise slightly to push-pull Jacobian motives and
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their mixed Hodge structures. On the theoretical side, we give an effective description of the
period relations of “sufficiently symmetric” 1-motives; see §5. These developments require
a full-stack construction: even classical components must be extended to accommodate the
generality of (C \D,E), and functoriality and effectivity must be engineered to work together
as a computable theory of 1-periods.

(1.0.16) Classification problem. We expect the computational model for H1(C \ D,E),
together with the subroutines developed, will be of independent interest. To illustrate the
point, we resolve the problem of algorithmically classifying first-order autonomous (non-linear)
differential equations posed by Noordman, van der Put, and Top [NvdPT22, p.1655]. See §10
for the precise statement and the algorithm.

1.1. Connections to foundational work

(1.1.17) Another approach to deciding equality of 1-periods is to determine effective separation
bounds. Hirata-Kohno [Hir91] and Gaudron [Gau05] prove that for any given 1-period α,
there exists a constant c > 0 — effective in terms of the data defining α — such that |α|< c
implies α = 0. These results ultimately rely on Wüstholz’s analytic subgroup theorem [Wüs89]
and its quantitative refinements by Masser–Wüstholz [MW93b; MW93a]. In the classical
setting of Baker periods (i.e., underlying curves have genus zero), the bound is completely
explicit [WB93]. For periods of elliptic curves, explicit bounds have been obtained [Dav95;
DH09], and more recently, also in the case of abelian varieties [BG19], corresponding to the
situation in (1.0.7) where the 1-form has no poles. In general, however, the constant c remains
only effective in principle: computing it explicitly would require navigating a long chain of
intermediate constants as well as determening subtle arithmetic constants; see [Gau05, p.145]
and the discussion after [BW08, Theorem 7.2] for more on this point.

(1.1.18) Separation bounds permit, in principle, effective tests for equality of 1-periods. But
deciding transcendence requires exhaustive knowledge of all Q-linear relations. In this sense,
our algorithm provides the first effective method for determining transcendence of 1-periods.

(1.1.19) Our algorithm ultimately relies on one of the main theorems of Huber and Wüstholz
— the “Dimension estimate” [HW22, Theorem 15.3] — or rather on a reassembly of its
proof, which gives a description of the space of period relations associated to a saturated 1-
motive. Their arguments, which build around Wüstholz’s analytic subgroup theorem [Wüs89],
determine the Q-dimension for the space of 1-periods of a saturated 1-motive. Explicitly
relating the period relations of an arbitrary motive to those of a saturated motive involves
substantial additional work. An important part of our contribution is an effective method to
perform the saturation step, see §9, using only arithmetic on algebraic curves — a task that
turns out to be technically intricate and requires the full machinery developed here.

(1.1.20) Recall that one of our key contributions is to base our computations on the divisor
arithmetic on curves. To put this into context, we compare it to Chapter 14 of [HW22], where
the vanishing of periods (the case k = 1 for our algorithm) is studied from a curve-theoretic
point of view. There, it is assumed that the underlying curve has a simple Jacobian, to
eliminate the need for supersaturation — the most challenging part of our algorithm, see §9.
Nevertheless, a full translation to arithmetic on curves is not attained there: even in the
first nontrivial case, one ends up with a check involving the condition “(14.3)” of [HW22,
p.137] involving the vanishing of a differential under a motivic pullback map. We are able
to replace motivic abstractions with explicit, curve-theoretic computations by methodically
building up subroutines to compute with the H1 of punctured marked curves and building
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correspondences as the cornerstone of our morphisms. To demonstrate the effect, we unwind
what our algorithm does in the aforementioned case (8.4.37).

(1.1.21) A crucial computational input to our algorithm is the endomorphism algebra of a
Jacobian, represented explicitly in terms of algebraic correspondences. This plays a central role
in the supersaturation step, where correspondences are used to generate additional relations.
For this, we rely on the practical semi-algorithm of Costa–Mascot–Sijsling–Voight [CMSV18],
which computes the endomorphism algebra as a space of correspondences and has been
successfully implemented. Its correctness is unconditional, and its termination is guaranteed
under the Mumford–Tate conjecture, as shown by Costa–Lombardo–Voight [CLV21]. To ensure
unconditional termination in theory, we cite the effective construction of Lombardo [Lom18],
though it is not intended for practical use. See §7 for more details.

(1.1.22) We rely on many other subroutines, often implicitly. However, the computation of
the Riemann–Roch space
(1.1.22.1) L(D) = {f ∈ κ(C)× | D + div(f) ≥ 0} ∪ {0} ⊂ κ(C)

for a divisor D on an irreducible curve C/Q with function field κ(C) lies at the heart of our
approach. See [Hes02] for an efficient algorithm to compute L(D) and a historical overview of
its development.
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Matthias Schütt, and others.
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2. The algorithm

(2.0.1) Algorithm. The following is the main algorithm of the paper, which computes all
Q-linear relations between a given finite collection of 1-periods. Intermediate steps refer to
constructions developed in the rest of the paper.

(2.0.2) Input. A tuple of representatives, (γi, ωi)Ci , i = 1, . . . , k, for 1-periods α1, . . . , αk.

(2.0.3) Output. A basis for the space of Q-linear relations between α1, . . . , αk, i.e., the kernel
of the map Qk → C : (β1, . . . , βk) 7→

∑k
i=1 αiβi

(2.0.4) For each i = 1, . . . , k, compute a finite set Di ⊂ Ci(Q) supporting the residual
divisor of ωi and compute a finite set Ei ⊂ Ci(Q) supporting the boundary divisor of γi, such
that Di and Ei are disjoint. Let C =

∐k
i=1Ci, D =

∐k
i=1Di, E =

∐k
i=1Ei where we view

D,E ⊂ C(Q).

(2.0.5) Compute (4.1.7) a representative of the mixed Hodge structure

(2.0.5.1) H1(C \D,E) = (HB
1 (C \D,E)),H1

AdR(C \D,E)∨, cB,AdR).

That means, we compute a basis of differentials for the algebraic de Rham cohomology
H1

AdR(C \ D,E) ≃ Qm, a basis of 1-chains for the Betti homology HB
1 (C \ D,E) ≃ Qm,

and the representatives allow for an arbitrary precision approximation of the comparison
isomorphism.

(2.0.6) Let γ = γ1 + · · ·+ γk be the 1-chain on C obtained by summing the given 1-chains.
Determine (4.5.56) the coordinates of the homology class [γ] in HB

1 (C \D,E) with respect to
our basis of 1-chains. View ωi as a 1-form on C extended by 0 to components Cj, j ̸= i, and
compute (3.7.52) the coordinates of the cohomology class [ωi] in H1

AdR(C \D,E). We now
have the matrix representation of the following map:

(2.0.6.1) I:Qk → HB
1 (C \D,E)⊗ H1

AdR(C \D,E) ≃ Qm×m
: β 7→

k∑
i=1

βi[γ]⊗ [ωi].

(2.0.7) Compute (7.2.27) a representation of the endomorphism algebra E = End(JC) of the
Jacobian of C.

(2.0.8) Let M = JDC,E denote the Jacobian motive of (C \ D,E). Compute (9.0.1), the
supersaturation M ss of M together with an explicit isogeny direct sum decomposition of
M ss into a Baker motive MB and a saturated push-pull Jacobian M1 = JχC,ψ. The process is
period effective, meaning that the period relations of M can be determined from those of M ss,
see (9.0.2). The motive M1 is computed together with the explicit E-action E ⊗ H1(M1) →
H1(M1).

(2.0.9) Since M1 is saturated, we can compute the period relations R(M1) ⊂ HB
1 (M1) ⊗

H1
AdR(M1) of M1: this space is equal (5.6.50) to the expected period relations Re(M1), which

we can determined from the E-action on H1 above and from the trivial relations which are
readily computed (5.6.47).

(2.0.10) Compute (8.8.61) the period relations R(MB) of the Baker motive MB.

(2.0.11) We now compute R(M ss), the space of period relations of the supersaturated motive.
This space decomposes as follows (5.6.52), and each summand is now computable:
(2.0.11.1)
R(M ss) = Rtriv(M

ss) +R(MB)⊕Re(M1) + HB
1 (MB)⊗ H1

AdR(M1) + HB
1 (M1)⊗ H1

AdR(MB).
7



(2.0.12) Since the construction of M ss from M was period effective (9.0.2), we can determine
R(M) ⊂ HB

1 (M)⊗ H1
AdR(M) by a simple procedure from that of R(M ss). Compute R(M).

(2.0.13) From the very start we work with the identification H1(J
D
C,E) = H1(C \ D,E).

Therefore R(M) lives in the codomain of I. Output a basis for the pullback I−1R(M) ⊂ Qk.

(2.0.14) Remark. We suspect that the most time consuming step will be (2.0.7), but we can
rely on the streamlined implementation in [CMSV18]. The step (2.0.8) is terribly involved
and could present another computational bottleneck.
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3. Relative algebraic de Rham cohomology of a punctured curve

(3.0.1) Let C be a smooth, proper curve defined over Q, and let D,E ⊂ C(Q) be two finite,
disjoint sets. The pair (C \D,E) will be called a punctured marked curve. Topologically, this
is to be viewed as C \D relative to E.

(3.0.2) This section describes how to compute and effectively work with the algebraic de Rham
cohomology H1

AdR(C \D,E) of the punctured marked curve (C \D,E). Since (co)homology is
additive over components of C, we will assume without loss of generality that C is irreducible,
unless stated otherwise.

(3.0.3) The case D = E = ∅ is well-known to the experts [Kat68; CG89]. Nevertheless,
we spell-out the proof of the fact that H1

AdR(C) is isomorphic (as a Q-vector space) to the
space of second kind differentials on C modulo exact forms (over Q). The pairing with
singular homology is via integration (3.4.33). This is classical over C and applicable in greater
generality [Ros53; HA55; Mes75]. This allows for the practical identity

(3.0.3.1) H1
AdR(C) ≃ H0(C,Ω1

C((g + 1)p))

where p ∈ C(Q) is any non-Weierstrass point and g is the genus of C, see (3.5.37). We also give
two different “reduction algorithms” to find the unique representative in H0(C,Ω1

C((g + 1)p))
of any given second type differential (see §3.7).

(3.0.4) For the general case when D,E are non-empty, we could not find a reference to a result
analogous to (3.0.3.1). We therefore prove Proposition (3.4.27) and Corollary (3.5.41) which
allows us to effectively compute a basis for H1

AdR(C \ D,E) (3.6.48). The aforementioned
reduction algorithms in §3.7 are applicable in this generality.

3.1. Representing irreducible curves and their differentials

(3.1.5) In this subsection, C/Q is an irreducible, smooth, proper curve.

(3.1.6) A representation of the curve C is a (reduced, irreducible) polynomial P (x, y) ∈ Q[x, y]
defining an affine plane curve Z(P ) ⊂ A2 birational to C. Without loss of generality, we will
assume that the y-derivative Py of P is non-zero. By default, our curves come with a finite
map x:C → P1, the projection to the x-axis.

(3.1.7) Giving a plane model of C is equivalent to representing the function field κ(C) of C by
exhibiting an element x ∈ κ(C), transcendental over Q, and an element y ∈ κ(C) algebraic
over Q(x) and generating κ(C). Thus, κ(C) = Q(x)[y]/P (x, y).

(3.1.8) The transcendental element x ∈ κ(C) realizes C as a finite cover x:C → P1 of degree
equal to the y-degree of P . The corresponding map x:C(C) → P1(C) between the underlying
Riemann surfaces realizes C(C) as a branced cover of P1(C).
(3.1.9) The rational differentials on C are the Kähler differentials Ω1

κ(C)/Q of κ(C) over Q.
The relation dP = Pxdx+ Pydy = 0 and our assumption Py ̸= 0 allows us to eliminate dy,

(3.1.9.1) Ω1
κ(C)/Q = κ(C)dx =

(
Q(x)[y]/P (x, y)

)
dx,

(3.1.10) We will represent a rational differential ω ∈ Ω1
κ(C)/Q by writing it as ω = f(x, y)dx

where f(x, y) ∈ κ(C) = Q(x)[y]/P (x, y).

3.2. Representing reducible curves and their differentials

(3.2.11) Assume C/Q is a smooth proper curve with irreducible components C1, . . . , Ck.
9



(3.2.12) We will represent C by representing the tuple C1, . . . , Ck of its components, i.e.,
by exhibiting a tuple of polynomials Pi ∈ Q[x, y], for i = 1, . . . , k, each with non-vanishing
y-derivatives. Let xi be the image of x in κ(Ci) = Q(x)[y]/Pi(x, y).

(3.2.13) We define the algebra κ(C) := κ(C1)⊕ . . .⊕ κ(Ck) of rational functions on C. Let
x = (x1, . . . , xk) ∈ κ(C) be the tuple of transcendental generators. This is equivalent to
identifying the codomains of the maps xi:Ci → P1 to form a finite map x:C → P1.

(3.2.14) The space of rational differentials Ω1
κ(C)/Q on C is identified with κ(C)dx. Equivalently,

a rational differential ω on C is a tuple of rational differentials (ω1, . . . , ωk) with ωi ∈ Ω1
κ(Ci)/Q

.

3.3. Poles of forms and definition of algebraic de Rham cohomology

(3.3.15) Throughout this section, C is an irreducible smooth proper curve over Q.

(3.3.16) Let OC be the sheaf of rational functions on C and Ω1
C the sheaf of Kähler differentials

of C/Q. For any divisor ξ on C and any open set U ⊂ C we have OC(ξ)(U) ⊂ κ(C) and
Ω1
C(ξ)(U) ⊂ Ω1

κ(C)/Q. In particular, we will view local regular sections as global rational
sections. The Q-dimension of the global sections of a sheaf on C will be denoted by h0.

(3.3.17) For a rational differential ω on C, the polar locus of ω is the set of poles of ω. A
pole of order one is called a simple pole. The polar locus is a finite subset of C(Q) and is
readily to computed.

(3.3.18) For any point p ∈ C(Q) we will write resp ω ∈ Q for the residue of ω at p. Note that
the residue resp ω can be computed by making a Laurent series expansion of ω with respect
to a local coordinate zp at p and taking the coefficient of dzp/zp. If resp ω ̸= 0 then p is a
residual pole of ω.

(3.3.19) We define the residual divisor of ω to be Res(ω) :=
∑

p∈C(Q)(resp ω)p. The support
of Res(ω) is the residual polar locus of ω. Since the polar locus is finite, the residual divisor is
readily computed.

(3.3.20) If ω has no poles, it is regular ; classically called a differential of the first kind. If
ω has no residual poles, Res(ω) = 0, then ω is a differential of the second kind. If all poles
of ω are simple, then ω is a differential of the third kind. Every rational differential is the
sum of a differential of the second and third kind, and this decomposition is unique modulo
differentials of the first kind.

(3.3.21) A rational differential ω is of second kind if and only if it is Zariski locally equivalent
to a section of Ω1

C modulo an exact form. The latter condition means: ∀p ∈ C(Q) there is an
open neighborhood U of p and an exact form df such that ω + df is regular on U .

(3.3.22) Let D ⊂ C(Q) be a finite set. If ω is a differential of the third kind with poles
supported on D then we will call ω a log(D)-regular differential. For an open set U ⊂ C, we
will say ω is log(D)-regular on U if all poles of ω|U are simple and supported on D ∩U . Note
that Ω1

C(D) is the sheaf of log(D)-regular differentials.

(3.3.23) Remark. In the case of curves, the sheaf Ω1
C(D) coincides with the sheaf Ω1

C(log(D))
of logarithmic differentials at D. The latter is needed for algebraic de Rham cohomology in
arbitrary dimensions but the former is standard when discussing linear systems on curves.
We will stick to curves and use the former notation throughout.
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(3.3.24) Let D,E ⊂ C(Q) be finite disjoint sets. We recall ([Gro66], [PS08, §5.5], [GF, §2.2.6])
that the algebraic de Rham complex on (C \D,E) is

(3.3.24.1) Ω•
(C\D,E) : 0 → OC → Ω1

C(D)⊕OE → 0

where the non-zero map is f 7→ (df,−f |E). The hyper cohomology of (3.3.24.1) is the
algebraic de Rham cohomology of (C \D,E). Our focus is on the first cohomology:

(3.3.24.2) H1
AdR(C \D,E) := H1(C,Ω•

(C\D,E)).

3.4. Algebraic de Rham cohomology in terms of second type differentials

(3.4.25) Fix D,E ⊂ C(Q) finite and disjoint.

(3.4.26) A rational differential ω on C will be called log(D)-second kind if ω is Zariski locally
equivalent to a section of Ω1

C(D) modulo exact forms (compare with (3.3.21)).

(3.4.27) Proposition. We have a canonical isomorphism

(3.4.27.1) H1
AdR(C \D) ≃ {log(D)-second kind differentials on C}

{exact forms on C}
,

with the nontrivial parts of the Hodge and weight filtration given by

F 1H1
AdR(C \D) = H0(C,Ω1

C(D)) = {log(D)-regular differentials on C},(3.4.27.2)

W1H
1
AdR(C \D) = H1

AdR(C) =
{second kind differentials on C}

{exact forms on C}
.(3.4.27.3)

Proof. We continue to assume C is irreducible without loss of generality. Let U = {Ui}
be an affine open cover of C. As usual we let Uij = Ui ∩ Uj, etc. With respect to U , the
Čech-to-de-Rham double complex of (3.3.24.1) where E = ∅ is

(3.4.27.4)

⊕
iOC(Ui)

⊕
iΩ

1
C(D)(Ui) . . .

⊕
ij OC(Uij)

⊕
ij Ω

1
C(D)(Uij) . . .

...
...

from which we form the single complex E0
d0→ E1

d1→ . . . , which is explicitly

(3.4.27.5)
⊕

iOC(Ui)
d0→
(⊕

ijOC(Uij)
⊕

kΩ
1
C(D)(Uk)

)
d1→ . . .

Then, we find

ker d1 = {(aij; bk) ∈ E1 : (aij) is a Čech cocycle, bi − bj = daij}(3.4.27.6)
im d0 = {(ai − aj; dak) ∈ E1 : ai is a regular function on Ui}.(3.4.27.7)

The quotient ker d1/im d0 computes H1
AdR(C \D). We will take the limit over U to account

for all possible covers.
If ω is a log(D)-second kind differential, let U = {Ui} be an open affine cover for which

ω|Ui= ηi + dfi, where ηi ∈ Ω1
C(Ui), fi ∈ κ(C). Then ηi − ηj = d(fi − fj) implies that

fi−fj ∈ OC(Uij). We may thus consider the tuple (fi−fj ; ηk) ∈ ker d1. Another representation
ω|Ui= µi+dgi will give rise to a tuple (gi−gj ;µk) where the difference ((fi−gi)−(fj−gj); ηk−µk)
lies in im d0 since ηi−µi = d(fi− gi). Furthermore, ω lands in ker d0 only if it is locally exact,

11



ω|Ui= dfi, but then ω is exact since C is connected. This proves that the map from right to
left of (3.4.27.1) is well defined and injective.

To prove surjectivity, take the class of (aij ; bk) ∈ E1, fix an index 0 and observe that ω := b0
viewed as a global rational differential is of the second kind: ω|Uj= bj + da0j.

The statements about the filtrations are straightforward to prove. For (3.4.27.2) we simply
note that a log(D)-regular differential is never exact. As for (3.4.27.3), the first identity can
be deduced from the long exact sequence for the inclusion C \ D → C and the second is
deduced from (3.4.27.1) for D = ∅. □

(3.4.28) Let E ⊂ C(Q) be a finite set. There is a restriction map

(3.4.28.1) H0
AdR(C) → H0

AdR(E)

whose cokernel H0
AdR(E)0 is the primitive cohomology of E. This notation is also used when

C is reducible.

(3.4.29) Let QE
:= Hom(Set)(E,Q) be the Q-valued functions on E. Thus H0

AdR(E) = QE.
Let QE

0 := QE
/H1

AdR(C) where we mod out by restriction of locally constant functions on C.
When C is irreducible H1

AdR(C) = Q and the quotient is via the diagonal action of Q, i.e., by
functions globally constant on E. For a tuple a ∈ QE write [a] ∈ QE

0 for the class of a. The
primitive cohomology H0

AdR(E)0 coincides with QE

0 .

(3.4.30) We map κ(C) on to the direct sum

(3.4.30.1) {log(D)-second kind differentials on C} ⊕QE

by f 7→ (df,−f |E). We will refer to the image as exact forms on (C,E).

(3.4.31) Using the identification in Proposition (3.4.27) and the one in (3.4.28), the obvious
maps give an exact sequence
(3.4.31.1)

0 → H0
AdR(E)0 →

{log(D)-second kind differentials on C} ⊕QE

{exact forms on (C,E)}
→ H1

AdR(C \D) → 0.

(3.4.32) Lemma. We have a canonical isomorphism

(3.4.32.1) H1
AdR(C \D,E) ≃ {log(D)-second kind differentials on C} ⊕QE

{exact forms on (C,E)}
.

Proof. Both sides of (3.4.32.1) fit into the center of the short exact sequence (3.4.31.1). To
deduce the isomorphism, it will be sufficient to prove there is an isomorphism from right to
left of (3.4.32.1) respecting the extension (3.4.31.1).

We continue with the notation of the proof of (3.4.27) and make minor modifications to
compute the Čech-to-de-Rham double complex of (3.3.24.1). If U = {Ui} is an affine open
cover of C, let Ei = E ∩ Ui. Then the associated single complex is of the form

(3.4.32.2)
⊕

iOC(Ui)
d0→
(⊕

ijOC(Uij)
⊕

kΩ
1
C(D)(Uk)⊕QEk

)
d1→ . . .

Once again we write

ker d1 = {(aij; bk, ck) : (aij) is a Čech cocycle, bi − bj = daij, (ci − cj)|Eij= −aij|Eij},
im d0 = {(ai − aj; dak) : ai is a regular function on Ui}.

The quotient ker d1/im d0 computes H1
AdR(C \D,E). We will take the limit over U to account

for all possible covers.
12



Let (ω, c) mod dκ(C) be an element in the right hand side of (3.4.32.1). As in the proof
of Proposition (3.4.27), ω defines an affine open cover U = {Ui}, sections ηi ∈ Ω1

C(D)(Ui),
and fi ∈ κ(C), with ω|Ui= ηi + dfi. The element c ∈ QE can be restricted to ci := c|Ei . As
in Proposition (3.4.27), this gives an element (fi − fj; ηk, ck) ∈ ker d1 which is well defined
modulo im d0. Compatibility of this map with both sides of (3.4.31.1) is clear. □

(3.4.33) Let ω be a log(D)-second type differential on C and a ∈ QE. Let γ be a smooth
1-chain on C(C), avoiding the poles of ω, and with boundary ∂γ supported on E. Extend
a linearly to divisors supported on E, a(

∑
nipi) :=

∑
nia(pi). It is easy to check that the

integration pairing

(3.4.33.1)
∫
γ

(ω, a) :=

∫
γ

ω + a(∂γ),

is well-defined on the singular homology class [γ] ∈ HB
1 (C \D,E) and on the class of (ω, a)

modulo (C,E)-exact forms. Via the isomorphism in Lemma (3.4.32), we can describe the
“period pairing”

HB
1 (C \D,E)⊗ H1

AdR(C \D,E) → C(3.4.33.2)

[γ]⊗ [ω, a] 7→
∫
γ

(ω, a).(3.4.33.3)

This pairing agrees with the usual comparison isomorphism between H1
AdR⊗C and H1

B⊗C, as
can be checked by expanding the proof of the comparison isomorphism [GF, Theorem 2.150].

3.5. An effective basis for cohomology

(3.5.34) Definition. A tuple (ω1, a1), . . . , (ωm, am) is called an differential basis for the
cohomology H1

AdR(C \D,E) if ωi’s are log(D)-second type differentials, ai ∈ QE are functions
on E, and the (ωi, ai)’s map to a basis via the identification (3.4.32). We will refer to a
differential basis as a representation of H1

AdR(C \D,E).
(3.5.35) In this subsection and the next we will show how to compute a differential basis
together with the Hodge and weight filtrations on cohomology. See (3.6.48) for a summary.

(3.5.36) A point p ∈ C(Q) is a Weierstrass point if h0(gp) > 1 where g is the genus of C. There
are at most g(g2 − 1) Weierstrass points on a curve [GH94, p.274], hence a non-Weierstrass
point can be found in finite time by trial-and-error.

(3.5.37) Proposition. Let C be an irreducible curve of genus g and p ∈ C(Q) a non-Weierstrass
point. Then, there is a natural isomorphism

(3.5.37.1) H1
AdR(C) ≃ H0(C,Ω1

C((g + 1)p)).

If p ∈ C(Q) is arbitrary, then there exists an integer d0, g < d0 ≤ 2g, such that for every
d ≥ d0 we have h0((d− 1)p) = d− g. Then, for all d ≥ d0, we have a natural isomorphism

(3.5.37.2) H1
AdR(C) ≃

H0(C,Ω1
C(dp))

dH0(C,OC((d− 1)p))
.

Proof. All cohomology classes can be represented by a differential of the second kind with poles
only on p. To see this repeat the proof of Proposition (3.4.27) with the cover U = {U0, U1}
where U0 = C \ p and U1 an affine neighbourhood of p.

All global sections of Ω1
C(dp) for d ≥ 0 are of the second kind since, by the residue theorem,

a rational form with poles supported at a single point can not have any residue.
13



Thus, we have a natural isomorphism

(3.5.37.3) H1
AdR(C) ≃

H0(C,Ω1
C(dp))

dH0(C,OC((d− 1)p))
, d≫ 0.

Since dimH1
AdR(C) = 2g, we can pick any d for which the right hand side is of dimension 2g.

By Riemann–Roch we have

(3.5.37.4) h0(Ω1
C((g + 1)p)) = 2g.

If p is non-Weierstrass, then h0(gp) = 1 and the space H0(C,OC(gp)) consists only of constants,
which are killed by derivation d. Thus we may take d = g + 1 and this proves (3.5.37.1).

We now consider the case when p is arbitrary. The space in the denominator of (3.5.37.3)
is of dimension h0((d− 1)p)− 1 since derivation kills constants. The space in the numerator
is of dimension h0(Ω1

C(dp)) = g + d− 1 for d > 0 by Riemann–Roch. We want to solve for
d > 0 such that

(3.5.37.5) 2g = h0(Ω1
C(dp))− h0((d− 1)p) + 1,

or equivalently h0((d− 1)p) = d− g. By Riemann–Roch this holds precisely when

(3.5.37.6) h0(Ω1
C((−d+ 1)p) = 0.

This is true whenever d ≥ 2g but it can never hold unless g < d since h0(Ω1
C) = g. Hence the

minimal d will satisfy g < d ≤ 2g. □

(3.5.38) Remark. A restatement of Proposition (3.5.37), in light of Proposition (3.4.27), is
that a differential of the second kind on C is equivalent, modulo exact forms, to a unique
differential with poles only at p, provided p is non-Weierstrass. This is analogous to the
situation with forms of the first kind where regular differentials uniquely represent their
cohomology classes.

(3.5.39) For a non-Weierstrass point p ∈ C(Q) \D, define

(3.5.39.1) WD,p := ker
(
resp: H

0(C,Ω1
C(D + (g + 1)p)) → Q

)
.

By construction, any element of WD,p is regular on C \ (D ∪ {p}), has at most a simple poles
on D and any pole on p is non-residual. In particular, WD,p consists of differentials of the
log(D)-second kind.

(3.5.40) Proposition. For p ∈ C(Q) \D non-Weierstrass, the identification (3.4.27) gives a
natural isomorphism,

(3.5.40.1) WD,p → H1
AdR(C \D) : η 7→ η modulo exact forms.

Proof. Let s := #D − 1. Using Riemann–Roch and the residue theorem we find

(3.5.40.2) dimWD,p =

{
2g D = ∅
2g + s s ≥ 0

.

This agrees with the dimension of H1
AdR(C \D) since it fits into the exact sequence

(3.5.40.3) 0 → H1
AdR(C) → H1

AdR(C \D)
Res→ 0Q

D → 0,

where 0Q
D ⊂ QD is the space of functions on D whose value on D sum to 0 (the dual of QD

0 ).
Therefore, to show that (3.5.40.1) is an isomorphism, it will be sufficient to show that it is

surjective.
We proved in Proposition (3.5.37) that the subspace

(3.5.40.4) H0(C,Ω1
C((g + 1)p)) ⊂ WD,p

14



surjects onto H1(C). And when s > 0, h1(Ω1
C(D)) = 0 implies H0(C,Ω1

C(D)) ⊂ WD,p surjects
onto 0Q

D. □

(3.5.41) Corollary. For p ∈ C(Q) \D non-Weierstrass, we have a natural isomorphism

(3.5.41.1) H1
AdR(C \D,E) ≃ WD,p ⊕QE

0 ,

which gives a splitting of the short exact sequence

(3.5.41.2) 0 → H0
AdR(E)0 → H1

AdR(C \D,E) → H1
AdR(C \D) → 0

that depends only on p (but it does depend on p).

Proof. Since (3.5.40.1) is an isomorphism, there are no exact forms in WD,p. Thus the map
WD,p → H1

AdR(C \D,E) : η 7→ [η, 0], using the identification (3.4.32.1), is injective. This gives
the splitting in question, in light of Proposition (3.5.40). The identification H0

AdR(E)0 ≃ QE

0

is definitional (3.4.28). □

(3.5.42) Using the splitting in (3.5.41.1), we can make the weight and Hodge filtrations on
H1

AdR(C \D,E) explicit. The non-trivial pieces are thus:

(3.5.42.1) W0 = 0⊕QE

0 , W1 = W∅,p ⊕QE

0 , F 1 = H0(C,Ω1
C(D))⊕ 0.

3.6. Computing a basis for algebraic de Rham cohomology

(3.6.43) In this subsection, we will give references to algorithms that allow us to work effectively
with linear systems on curves. We wish to emphasize that a basis for WD,p (3.5.39.1) can be
computed effectively as a result.

(3.6.44) For f ∈ κ(C) let div(f) be the associated divisor of zeros and poles of f . For any
divisor D′ on C, we write

(3.6.44.1) L(D′) := {f ∈ κ(C) | div(f) +D′ ≥ 0} ⊂ κ(C),

and note that L(D′) = H0(C,OC(D
′)).

(3.6.45) We can algorithmically [Hes02] evaluate the map

(3.6.45.1) D′ 7→ L(D′),

which takes a divisor supported on Q points of C and outputs (a basis for) the linear system
L(D′).

(3.6.46) Given C (or, rather, a birational plane model P (x, y) = 0) we can determine a basis
for the global sections of the canonical bundle as lying in the space of rational differentials:

(3.6.46.1) H0(C,Ω1
C) ⊂ Ω1

κ(C)/Q = κ(C)dx,

this is explained in [ACGH85, Appendix A, §2].

(3.6.47) For any divisor D1 we can compute a basis for the global sections of Ω1
C(D1) as follows.

Find (3.6.46) a non-zero section ω0 ∈ H0(C,Ω1
C) and determine its divisor of zeros D0. The

space H0(C,Ω1
C(D1)) is identified with L(D0 +D1) ⊂ κ(C) through multiplication with ω0,

i.e.,

(3.6.47.1) H0(C,Ω1
C(D1)) = L(D0 +D1) · ω0 ⊂ Ω1

κ(C)/Q.

Now use (3.6.45).

(3.6.48) Proposition. Given disjoint finite sets D,E ⊂ C(Q), we can effectively compute a
differential basis for H1

AdR(C \D,E) together with the Hodge and weight filtrations.
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Proof. Find a non-Weierstrass point p ∈ C(Q)\D (3.5.36). Compute a basis for H0(C,Ω1
C(D+

(g + 1)p)) (3.6.47). Compute the residue at p for each basis element (3.3.18) and compute
the kernel WD,p. Now use the identity (3.5.41.1) to get a differential basis. The Hodge and
weight filtrations are (3.5.42). □

3.7. Reduction algorithms

(3.7.49) A crucial point for our algorithms is to represent a rational differential in terms of a
basis for an algebraic de Rham cohomology. We will call this a reduction algorithm.

(3.7.50) The curve C is irreducible smooth projective and defined by a plane model P (x, y) = 0.
Fix D,E ⊂ C(Q), disjoint finite sets. Let p ∈ C(Q) \D be non-Weierstrass.

(3.7.51) Any rational differential µ ∈ Ω1
κ(C)/Q with Res(µ) supported onD defines a cohomology

class [µ, 0] ∈ H1
AdR(C \D,E) via (3.4.32). By Corollary (3.5.41), there exists a unique element

η ∈ WD,p and a rational function f ∈ κ(C) such that η ≡ µ+ df . Thus (µ, 0) ≡ (η,−f |E) in
H1

AdR(C \D,E). A reduction algorithm takes µ as input and returns the pair η ∈ WD,p and
[−f |E] ∈ QE

0 .

(3.7.52) A symbolic reduction algorithm. Express µ = hdx and write df = f ′dx (for
unknown f and f ′, where f ′ = fx−fyPx/Py). We recall that WD,p ⊂ H0(C,Ω1

C(D+(g+1)p)).
We have η = µ+ df = (h+ f ′)dx. Here f ′ is uniquely determined by the property that

div(η) +D + (g + 1)p ≥ 0, that is

(3.7.52.1) div(h+ f ′) +D′ ≥ 0, where D′ := div(dx) +D + (g + 1)p.

But div(f ′) ≥ min(div(h), div(h+ f ′)), where minimum is applied pointwise. Let

(3.7.52.2) D′′ := min(div(h),−D′).

Therefore, f ′ ∈ L(D′′) is the unique element (up to scaling) such that div(h+ f ′) +D′ ≥ 0.
Note that the residue at p is automatically 0.

We can compute the Laurent tails of h and of a basis for L(D′′) along the negative part
of D′′. Since f ′ is the element whose Laurent tail kills the offending poles of h, we can now
determine the correct multiple of f ′.

Given the log(D)-second kind differential µ = hdx, the output of this computation will be
df = f ′dx such that η := µ+ df ∈ WD,p.

From the poles of f ′, we can determine a finite dimensional linear system containing f ,
and thus determine f up to additive constants. Restricting f gives the well-defined class
[f |E] ∈ QE

0 .

(3.7.53) A numerical reduction algorithm. This time, we will reconstruct η from numerical
approximations. Despite the heuristic intermediate steps, the output certifies itself.

Find a basis {ωi}ki=1 for WD,p ⊂ H0(C,Ω1
C(D + (g + 1)p)) and a basis of rectilinear chains

for {γi}ki=1 for HB
1 (C \ D,E) avoiding p (4.4.33). Compute (a numerical approximation

of) the period matrix
(∫

γj
ωi

)
i,j=1,...,k

and (a numerical approximation of) the row vector(∫
γj
µ
)
j=1,...,k

. Let a = (ai) ∈ Qk be the row vector satisfying

(3.7.53.1) a =

(∫
γj

µ

)
j=1,...,k

(∫
γj

ωi

)−1

i,j=1,...,k

.

Then η =
∑

i aiωi.
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In practice, we will reconstruct, i.e., guess, a from a numerical approximation. To prove
our guess, we make the following observations. If η = µ+ df then

(3.7.53.2) div(f ′) = div(η − µ)− div(dx) =: D′′′

Therefore, D′′′ is a principal divisor and f ′ ∈ L(D′′′) ≃ Q. We can recover the correct multiple
of f ′ in L(D′′′) by making sure the identity f ′dx = η − µ holds at a general point q ∈ C(Q).

For η that is merely formulated as a guess, we can construct the linear system L(D′′′) and
try to find f ′ such that η = ω + f ′dx. Failure to find f ′ means the guess is incorrect. We
must go back and try to reconstruct a using higher precision and try to find f ′ again. Since η
with desired properties exists, this process must terminate.

3.8. Cohomological pullback and the transfer map

(3.8.54) Let C1 and C2 be two irreducible smooth proper curves over Q. Let f :C1 → C2 be a
non-constant map between the curves. The curves are represented by their function fields
κ(Ci) (3.1.7) and so we define a representation of f to be the inclusion of function fields
f ∗:κ(C2) → κ(C1) in terms of the generators. The effective pullback map on functions gives
an effective pullback map on differential forms f ∗: Ω1

κ(C1)/Q
→ Ω1

κ(C2)/Q
via f ∗(r(x, y)dx) =

f ∗(r(x, y))df ∗(x).

(3.8.55) For each i = 1, 2 let Di, Ei ⊂ Ci(Q) be disjoint sets. Suppose f−1(D2) ⊂ D1 and
f(E1) ⊂ E2. Then, f can be viewed as a map f : (C1 \D1, E1) → (C2 \D2, E2). Thus, we
have the pullback map on cohomology f ∗

AdR: H
1
AdR(C2 \D2, E2) → H1

AdR(C1 \D1, E1).

(3.8.56) Proposition. Given f as in (3.8.55) and bases for the cohomology groups Hi
AdR(Ci \

Di, Ei) as in (3.5.41), we can determine the matrix representing the cohomological pullback
f ∗
AdR with respect to the given bases.

Proof. Using the representation of f (3.8.54), compute the pullback f ∗:WD2,p2 → Ω1
κ(C1)/Q

.
Now apply a reduction algorithm (3.7.52) to express a basis for WD2,p2 in terms of the basis
for WD1,p1 ⊕QE1

0 . The map QE2

0 → QE1

0 descends from the pullback map of f |E1 :E1 → E2.
□

(3.8.57) Given non-constant f :C1 → C2, the field extension f ∗:κ(C2) → κ(C1) is finite and
hence we have the trace map trf :κ(C1) → κ(C2). The trace is effective on individual elements:
given a representation of f and an element a ∈ κ(C1) we can compute the trace trf (a).

(3.8.58) The trace map extends to Kähler differentials trf : Ω1
κ(C1)/Q

→ Ω1
κ(C2)/Q

where we have
trf (rdx) = trf (r)d trf (x).

(3.8.59) For each i = 1, 2 let Di, Ei ⊂ Ci(Q) be disjoint sets. This time, suppose f−1(E2) ⊂ E1

and f(D1) ⊂ D2. The trace map on differentials induces the transfer map

(3.8.59.1) fAdR
! : H1

AdR(C1 \D1, E1) → H1
AdR(C2 \D2, E2).

(3.8.60) Remark. The transfer map fAdR
! is also known as the “integration over fibers” or the

“Gysin” map.

(3.8.61) Remark. Observe that our hypotheses give a map f : (C1 \ E1, D1) → (C2 \ E2, D2).
The Poincaré–Lefschetz duality takes the form H1

AdR(Ci\Ei, Di) ≃ H1
AdR(Ci\Di, Ei)

∨. Taking
the dual of cohomological pullback f ∗

AdR and composing with the Poincaré–Lefschetz dualities
gives the transfer map.
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(3.8.62) Proposition. As in (3.8.56), we can compute the matrix representing the transfer
map fAdR

! in given bases.

Proof. The precise statement and the proof is similar to that of (3.8.56). On WC1,p1 → Ω1
κ(C2)/Q

we use the trace map and then apply the reduction algorithm. Write f ∗: Div(C2) → Div(C1)

for the pullback on divisors and extend the action of QE1 additively to divisors supported on
E1. Then the restriction QE1

0 → QE2

0 of the trace map descends from
(3.8.62.1) a 7→ (e 7→ a(f ∗(e)) ,

which is clearly effective. □
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4. Betti homology and the mixed Hodge structure of a punctured marked
curve

(4.0.1) Let (C \D,E) be a punctured marked curve over Q. In this section, we complete the
effective construction of the mixed Hodge structure

(4.0.1.1) H1(C \D,E) = (HB
1 (C \D,E),H1

AdR(C \D,E)∨, cB,AdR)

by giving an algorithm to compute a basis for the Betti (singular) homology (4.4.33) so that
the comparison isomorphism can be approximated to arbitrary precision (4.1.9). We also
give an algorithm to compute the coordinates of the homology class of a smooth 1-chain in
the given basis of homology (4.5.56). Furthermore, for a map p between punctured marked
curves, we will describe how to compute the pushforward p∗ and transfer p! maps in homology,
see (4.5.52) and (4.5.55). Combined with the corresponding results for H1

AdR, we get effective
pushforward and transfer maps on the mixed Hodge structure H1 of a punctured marked
curve. In §7, we will use these to determine the action of correspondances on H1.

(4.0.2) The idea to compute the Betti homology is to embed a graph Γ in C \ D with
“rectilinear edges” (4.3.29) and containing E such that cycles on (Γ, E) generate the integral
Betti homology HB

1 (C \ D,E;Z). We construct the graph so that the bounding cycles on
C \ D are evident (4.4.37). The graph can be constructed to avoid a given finite set S
of points in C(Q) \ E. We pick S to support the poles of a differential basis (3.5.34) for
H1

AdR(C \ D,E). Thus, we may pair the cycles on (Γ, E) against the differential basis via
integration to determine the period pairing (3.4.33).

(4.0.3) The problem of computing the singular homology of an algebraic curve from its
defining equation, and pairing it with algebraic de Rham cohomology, has a long history, even
algorithmically. Foundational work by Tretkoff–Tretkoff [TT84] introduced combinatorial
methods via monodromy representations; later, Deconinck–van Hoeij [DvH01] developed a
general symbolic-numeric algorithm for computing homology bases and period matrices. More
recent work use embedded graphs and certified analytic continuation to construct homology
bases, particularly for superelliptic or general plane curves, enabling high-precision period
computations [BSZ19; MN18].

(4.0.4) Our construction of HB
1 (C \ D,E) generalizes and streamlines several of the ideas

outlined above. The strategy is inspired by the work of Bruin and Molin [BSZ19], who embed
a graph on the curve to facilitate homology computations. We depart from their method by
explicitly constructing bounding cycles supported on the graph, rather than computing the
radical of an intersection pairing. Our formulation is also slightly more abstract, and we refer
to their work for implementation-level details.

4.1. Representing the mixed Hodge structure

(4.1.5) The k-th Betti homology group HB
k (C \ D,E;Z) denotes the singular homology

of C(C) \ D relative to E, with integral coefficients. We will describe how to compute a
representation of this homology group later in the section. We write H1

B for the dual (HB
1 )

∨.
The tuple H1 := ((H1

B,W ), (H1
AdR,W, F ), φAdR,B) is a (Q,Q)-mixed Hodge structure. Here,

we explain how to represent the mixed Hodge structure.

(4.1.6) We represent the mixed Hodge structure

(4.1.6.1) H1(C \D,E) :=
(
HB

1 (C \D,E), H1
AdR(C \D,E)∨, cB,AdR

)
by representing H1

AdR(C \D,E) (3.5.34) and HB
1 (C \D,E) (4.4.45).
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(4.1.7) We can compute a representation of H1(C \D,E). Compute (3.6.48) a differential
basis (ω1, a1), . . . , (ωm, am) for H1

AdR(C \ D,E). Let S ⊂ C(Q) \ (D ∪ E) be a finite set
supporting the poles of ωi’s, e.g., S consists of one non-Weierstrass point per component.
Compute (4.4.33) a rectilinear basis γ1, . . . , γm for HB

1 (C \D,E;Z) avoiding S.

(4.1.8) A representation of H1(C \D,E) allow us to determine the comparison isomorphism
cB,AdR up to desired precision. If the given rectilinear basis γi’s do not avoid the poles S of
the differential basis, we can compute a rectilinear basis that does, and then compute (4.5.52)
the change of coordinates between the two rectilinear bases. Therefore, we will now assume
our rectilinear avoids the poles of the differential basis.

(4.1.9) The period pairing (3.4.33) is represented by the matrix

(4.1.9.1)
(∫

γj
(ωi, ai)

)
i,j=1,...,N

The integrals
∫
γj
ωi are readily approximated to desired degree of precision from the repre-

sentations of γj and ωi, see for instance [BSZ19]. In fact, we can compute the integrals with
rigorous error bounds, i.e., as complex balls containing the true value [Mez16; LMS19].

(4.1.10) The period matrix represents the comparison isomorphism

(4.1.10.1) cB,AdR: H
B
1 (C \D,E;Z)⊗Z C ∼→ H1

AdR(C \D,E)∨ ⊗Q C.

(4.1.11) In theory, we typically work with the rational vector space HB
1 (C \ D,E) :=

HB
1 (C \D,E;Z)⊗Z Q, but the integral structure is crucial for algorithms involving lattices.

4.2. Rectilinear chains

(4.2.12) Definition. Consider the interval [0, 1] ⊂ R embedded into P1(C) via t 7→ [t : 1].
Composing by a linear map A:P1

Q
∼→ P1

Q defines a smooth path ℓA: [0, 1] → P1(C), which we
will call a line segment on P1.

(4.2.13) The end points ℓA(0) = A([0 : 1]), ℓA(1) = A([1 : 1]) ∈ P1(Q) of a line segment are
necessarily algebraic.

(4.2.14) We will represent a line segment ℓA on P1 by a 2× 2 matrix of algebraic numbers
inducing the linear map A.

(4.2.15) Let C/Q be a smooth proper curve and x:C → P1 a finite map. Let d = deg x and
B ⊂ P1(Q) be the branch locus of x.

(4.2.16) Let ℓA be a line segment on P1(C) with the interior ℓA(0, 1) disjoint from B. Then
x−1(ℓA(0, 1)) has d disjoint components. The choice of a point r ∈ x−1(ℓA(1/2)) identifies the
unique component of x−1(ℓA(0, 1)) passing through r. Let ℓA,r: [0, 1] → C(C) be the analytic
continuation of x−1 ◦ ℓA passing through r. The map ℓA,r is smooth on (0, 1) and continuous
at the boundary.

(4.2.17) Definition. Any map of the form ℓA,r is a line segment on C with respect to x. We
will not mention x when it is clear from context. The tuple (A, r) represents ℓA,r.

(4.2.18) Observe that ℓA(1/2) ∈ P1(Q) and thus r ∈ C(Q). Therefore, the tuple (A, r) is
finitely presented.

(4.2.19) Let ω be a rational differential on C and suppose that the line segment ℓA,r avoids
the poles of ω. Then ℓ∗A,rω is continuous on [0, 1] because the x-coordinate of ℓA,r is smooth
at the boundary and ω = f(x, y)dx. In particular, the integral of ω over ℓA,r is well-defined.
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(4.2.20) Definition. A rectilinear chain γ =
∑

i aiℓAi,ri on C with respect to x is a formal
Z-linear combination of line segments on C with respect to x. We will not mention x when it
is clear from context. The representation of γ is the formal Z-linear combination

∑
i ai(Ai, ri)

of the representations of the line segments.

(4.2.21) All “corners,” and in particular the end points, of a rectilinear chain are alge-
braic (4.2.13).

4.3. Rectilinear embedded graphs in curves

(4.3.22) Definition. A rectilinear basis for HB
1 (C \D,E) is a tuple γ1, . . . , γm of rectilinear

chains (4.2.20) whose homology classes form a basis. We will say that a rectilinear basis
avoids a set S ⊂ C(C) if the support of the chains are disjoint from S.

(4.3.23) In this subsection, we will reformulate the problem of finding a rectilinear basis (4.3.31).
In the next subsection, we will show how to compute a rectilinear basis (4.4.33).

(4.3.24) A finite oriented graph Γ = (s, t: ΓE → ΓV ) is an ordered pair of maps between two
finite sets, from the “edge set” ΓE to the “vertex set” ΓV , with the maps s, t assigning the two
“ends” of an edge.

(4.3.25) Let Z[ΓE],Z[ΓV ] be the formal Z-linear combinations of the edges and vertices of Γ.
The simplicial homology of the associated topological space |Γ| is computed via the homology
of the complex

(4.3.25.1) 0 → Z[ΓE]
t−s−→ Z[ΓV ] → 0.

Thus HB
1 (|Γ|;Z) ≃ ker(t− s) and HB

0 (|Γ|;Z) ≃ coker(t− s). Evidently, given Γ, the homology
groups are computable.

(4.3.26) Let A ⊂ ΓV be a subset. The relative homology of the pair (|Γ|, A) is computed by
the complex attained by replacing Z[ΓV ] with Z[ΓV ]/Z[A] in (4.3.25.1).

(4.3.27) An embedded graph of the punctured marked curve (C \D,E) is a finite oriented
graph Γ, a subset A ⊂ ΓV , and a topological embedding ι: (|Γ|, A) → (C \D,E).
(4.3.28) For each edge e ∈ ΓE of Γ, denote the corresponding 1-simplex by ϕe: [0, 1] → |Γ|.
(4.3.29) Let x:C → P1 be a finite map. An embedded graph (Γ, A, ι) is rectilinear with respect
to x if each parametrized edge ι◦ϕe: [0, 1] → C(C) is a line segment with respect to x (4.2.17).

(4.3.30) Definition. A representation of HB
1 (C \D,E;Z) is a rectilinear embedded graph

ι: (Γ, A) ↪→ (C \D,E) and a subgroup K ⊂ HB
1 (|Γ|, A;Z) such that the pushforward map

(4.3.30.1) ι∗: H
B
1 (|Γ|, A;Z) → HB

1 (C \D,E;Z)
induces an isomorphism

(4.3.30.2) HB
1 (|Γ|, A;Z)/K ≃ HB

1 (C \D,E;Z).

(4.3.31) Given a representation of homology, we can immediately determine a rectilinear basis
for homology. Indeed, using the notation from (4.3.30), find a basis for HB

1 (|Γ|, A;Z)/K, split
the surjection HB

1 (|Γ|, A;Z) → HB
1 (|Γ|, A;Z)/K, and embed the generators to C(C) via ι.

4.4. Constructing a representation of the homology of a curve

(4.4.32) Let C be a smooth proper curve and D,E ⊂ C(Q) disjoint sets. Fix a finite map
x:C → P1 and a finite set S ⊂ C(Q) \ E. Let B ⊂ P1(Q) be the branch locus of x. This
subsection is dedicated to proving the following statement.
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(4.4.33) Proposition. Given (C \D,E) we can effectively compute a rectilinear basis (4.3.22)
for HB

1 (C \D,E;Z) avoiding S. The weight filtration (4.4.47) on homology is effective.

(4.4.34) In light of (4.3.31), it suffices to construct a representation of homology. We will
first perform this construction when D = E = ∅.
(4.4.35) If B = ∅ then C is a disjoint union of P1’s and x is an isomorphism on each component.
In this case, HB

1 (C) = 0 and we may take the empty graph to represent the homology. We
will exclude this case below by assuming B ̸= ∅.
(4.4.36) Let Γ ⊂ P1 \B be a rectilinear embedded graph and a deformation retract of P1 \B.
This is effective, e.g., take the boundary of a Voronoi diagram around B ̸= ∅. For each b ∈ B,
there is a unique component Rb of P1(C) \ Γ containing b. Each Rb is homeomorphic to a
disk with boundary ∂Rb on Γ. We thus realize P1(C) as a 2-dimensional CW-complex.

(4.4.37) The preimage Γ̃ := x−1Γ in C(C) is a rectilinear embedded graph of C. Define
K ⊂ Z[Γ̃E] to be the subgroup generated by the boundary components of x−1Rb for each
b ∈ B.

(4.4.38) Remark. Lifting the edges constituting ∂Rb and describing how they connect is part
of the computation required in constructing Γ̃, thus obtaining K is essentially free.

(4.4.39) Proposition. Then, Γ̃ ↪→ C together with K as constructed in (4.4.37) is a
representation (4.3.30) of HB

1 (C;Z).
Proof. For each b ∈ B, the map x−1Rb → Rb is a finite cover of a disk branched only over b.
The Galois theory of a punctured disk implies that x−1Rb is a union of disks (with boundary
on Γ̃). The graph Γ̃ together with the components of x−1Rb for each b give C the structure of
a CW-complex. The 1-cells are Z[Γ̃E] and the boundary 1-cells K are precisely those coming
from the boundaries of x−1Rb’s. □

(4.4.40) Remark. In [BSZ19], the kernel K is computed by finding a lift of the intersection
product on HB

1 (C;Z) to HB
1 (|Γ|;Z) and then taking K to be the radical of this intersection

pairing.

(4.4.41) Remark. There is another strategy for constructing a graph Γ in C to determine its
homology, which has proven exceptionally efficient for “superelliptic” covers of P1. Instead of
the pullback of a Voronoi diagram in P1 around branch points, this construction takes a tree
with vertices on the branch locus. The complement of the tree is homeomorphic to a disk and
its preimage in C will be (unbranched) copies of that disk. The boundaries of those disks will
give the kernel K.

(4.4.42) Now we fix two finite disjoint sets D,E ⊂ C(Q).

(4.4.43) Start with a rectilinear graph Γ in P1 which is a deformation retract of P1(C) \
(B ∪ x(D)). Enlarge Γ by adding, for each point q in x(E), a new vertex at q and a line
segment connecting q to the nearest vertex of Γ (if q is not already on an edge, otherwise
split the edge at q). Let Γ′ be this new graph. Once again, for each b ∈ B ∪ x(D) there is a
unique component Rb of P1(C) \ Γ′ containing b and homeomorphic to a disk.

(4.4.44) Let Γ̃′ := x−1Γ′ be the preimage of Γ′. The pair (Γ̃′, E) is a rectilinear embedded
graph of (C \ D,E). Let K ⊂ Z[Γ̃′

E] be spanned by the boundaries of the components of
x−1Rb for b ∈ (B ∪ x(D)) except when the component contains a point of D, in which case
we do not add its boundary to K.
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(4.4.45) Proposition. The embedded graph (Γ̃′, E) of (C \D,E) together with the kernel K
constructed above is a representation of the homology HB

1 (C \D,E;Z).
Proof. The proof is analogous to that of Proposition (4.4.39). This time, we realized a
deformation retract of C \D as a CW complex (by omitting the disks containing points of
D). This completes the proof when E = ∅.

In general, on (C \D,E) we will have a relative cycle connecting any two points of E lying
on the same component of C.

We only need to show that the same is true on (Γ̃′, E). Which follows if Γ̃′ is connected
whenever C is connected. But the HB

0 of both Γ̃′ and C agree as the 2-cells of C do not change
H0. □

(4.4.46) Remark. Clearly, we can choose Γ′ so that it avoids the images of a given finite set
S ⊂ C(Q)\E of points. For instance, start with a Voronoi diagram Γ around B∪x(D)∪x(S),
form Γ′ by adding edges ending in E as before (4.4.43). Then Γ̃′ is obtained by deleting from
x−1Γ′ any leaves ending in S. These leaves appear only when x(S) and x(E) intersect. The
preimages of the 2-cells in P1 provide us with the generators for K as before.

(4.4.47) The weight filtration on HB
1 (C \D,E;Z) is as follows

(4.4.47.1)
W−2 W−1 W0

HB
0 (D)0 HB

1 (C \D) HB
1 (C \D,E)

where HB
0 (D)0 := HB

0 (D)/HB
0 (C) denotes the primitive homology of D in C, and its image in

the homology of C \D is generated by the loops around D.

(4.4.48) Our graph (Γ̃′, E) can be used to determine the weight filtration on HB
1 (Γ̃

′, E)/K,
simply take W−2 to be generated by the loops around D and W−1 to be generated by cycles
without boundary.

(4.4.49) This concludes the proof of Proposition (4.4.33).

4.5. Reduction, pushforward, and transfer maps in homology

(4.5.50) Let f :C1 → C2 be a morphism of smooth proper curves over Q. For each i = 1, 2,
let Di, Ei ⊂ Ci(Q) be finite disjoint sets. Recall that f is represented by giving the inclusion
of the function fields of respective components.

(4.5.51) If f−1(D2) ⊂ D1 and f(E1) ⊂ E2 then we have a map f : (C1\D1, E1) → (C2\D2, E2)
which induces the homological pushforward map

(4.5.51.1) fB
∗ : H

B
1 (C1 \D1, E1) → HB

1 (C2 \D2, E2).

(4.5.52) Proposition. Suppose that for each i = 1, 2, we are given a rectilinear basis (4.3.22)
for the homology of (Ci \Di, Ei) with respect to a map xi:Ci → P1. Given a representation of
f : (C1 \D1, E1) → (C2 \D2, E2), we can effectively compute the integer matrix representing
the homological pushforward fB

∗ in the given rectilinear bases. In particular, when f is the
identity map, we can compute the change of coordinates between two bases for the homology.

Proof. Compute (3.6.48) a basis for the cohomology groups H1
AdR(Ci \ Di, Ei) and com-

pute (3.8.56) the matrix representing the cohomological pullback f ∗
AdR.

Integrating the cohomology basis against the rectilinear bases, compute (4.1.9) a complex
ball matrix representing the comparison isomorphisms

(4.5.52.1) ci: H
1
AdR(Ci \Di, Ei)⊗ C ∼→ H1

B(Ci \Di, Ei)⊗ C.
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Compatibility between the pullback maps in cohomology gives the identity
(4.5.52.2) f ∗

B = c1 ◦ f ∗
AdR ◦ c−1

2 .

Our approximation of the ci’s will give a complex ball matrix representing the right hand side
of (4.5.52.2) in the basis dual to the rectilinear bases. Increasing the precision of integration
if necessary, we may assume the radius of the complex balls are less than 1/2. The unique
integers contained in each of these complex balls recovers the integer matrix representing f ∗

B,
with transpose fB

∗ . □

(4.5.53) Remark. Even when C := C1 = C2 and f = id, if x1, x2:C → P1 are different maps,
it would be extremely cumbersome to try and find a homological equivalence between two
rectilinear bases with respect to x1 and x2. This would involve constructing 2-chains bounded
by “semi-algebraic” 1-chains. The path through cohomology is cleaner.

(4.5.54) Suppose f :C1 → C2 is such that f−1(E2) ⊂ E1 and f(D1) ⊂ D2. Then we get the
pushforward map
(4.5.54.1) f ∗

B: H
B
1 (C1 \ E1, D1) → HB

1 (C2 \ E2, D2).

Take duals and use the Poincaré–Lefschetz duality HB
1 (Ci \ Ei, Di)

∨ ≃ HB
1 (Ci \Di, Ei) to get

the homological transfer map

(4.5.54.2) f !
B: H

B
1 (C2 \D2, E2) → HB

1 (C1 \D1, E1).

Unwinding the definition, this map can be described by taking the total preimage of chains
from C2 to C1. The dual of this map is called the cohomological transfer map fB

! .

(4.5.55) Proposition. We can effectively compute the integer matrix representing the
homological transfer map with respect to given rectilinear homology bases.

Proof. Use the same outline of proof as (4.5.52). Except, we evoke the compatibility of the
transfer maps fAdR

! and fB
! . □

(4.5.56) Reduction algorithm for 1-chains. Let γ be a smooth 1-chain on C(C) \D with
boundary on E. Given a rectilinear basis for HB

1 (C \D,E), we can effectively compute the
integer coordinates of the homology class [γ] in the given basis. The only assumption on the
representation of γ is that we should be able to approximate integrals of rational differentials
along γ to arbitrary precision.

Proof. We may assume C is irreducible. Find a non-Weierstrass p ∈ C(Q) not lying on γ and
not on the given rectilinear basis (3.5.36). Compute a basis for H1

AdR(C \D,E) with poles only
on p (3.5.41.1), (3.6.47). By integration (4.1.9), approximate the comparison isomorphism
cB,AdR with respect to the bases at hand. Integrate the cohomology basis against γ to get
a complex ball vector

∫
γ
∈ (H1

AdR ⊗C)∨. Now apply the inverse of cB,AdR to
∫
γ
. The unique

integer vector in the resulting complex ball vector containing c−1
B,AdR(

∫
γ
) gives the desired

coordinates. If the integer vector in the complex ball vector is not unique, increase the
precision with which cB,AdR is approximated and repeat. □
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5. Relations between the periods of 1-motives

(5.0.1) This section first introduces the notation we will use when working with 1-motives.
It then proves Theorem (5.6.50), which states that, roughly speaking, if a 1-motive M is at
least as symmetric as the underlying abelian variety, then all relations between the periods of
M arise from endomorphisms of M and from “expected relations” (5.6.49).

(5.0.2) The focus of this section is theoretical: we do not concern ourselves with effectivity
problems here. Our main result, Theorem (5.6.50), is a reinterpretation of parts of the
arguments used in the proof of the “Dimension estimate” [HW22, Theorem 15.3], one of the
main theorems of loc.cit. Instead of estimating the dimension of the space of periods, we give
a direct and explicit description of the space of period relations.

(5.0.3) The focus of this section is purely theoretical: we do not concern ourselves with
effectivity problems here. Our main result, Theorem (5.6.50), is a reinterpretation of parts of
the arguments used in the proof of the “Dimension estimate” [HW22, Theorem 15.3], one of
the main theorems of loc.cit. Instead of estimating the dimension of the space of periods, we
give a direct and explicit description of the space of period relations. We will later use this
theoretical description to compute period relations explicitly, see Remark 5.6.53.

5.1. Definition of a 1-motive

(5.1.4) Throughout this section, all varieties are defined over Q. We set up the basic notions
needed to define 1-motives.

(5.1.5) A lattice L ≃ ZrkL is a free, finitely generated abelian group. An algebraic torus T is an
algebraic group such that T ≃ GdimT

m , where Gm = Spec(Q[t, t−1]) denotes the multiplicative
group.

(5.1.6) A semi-abelian variety G is an algebraic group that is an extension of an abelian
variety A by an algebraic torus T , that is, 0 → T → G→ A→ 0 is exact.

(5.1.7) A marking on a semi-abelian variety G is a group homomorphism φ:L→ G(Q) from
a lattice L to the group of Q-points of G.

(5.1.8) A 1-motive M is a two-term complex [L
φ→ G], where L is a lattice, G is a semi-abelian

variety, and φ is a marking.

(5.1.9) A morphism of 1-motives is a morphism of complexes, i.e., a pair of morphisms
between the underlying semi-abelian varieties and lattices that commute with the markings.
We denote the category of 1-motives by 1-MotZ. Morphisms in 1-MotZ are denoted HomZ
(“integral morphisms”), and endomorphisms by EndZ.

(5.1.10) The underlying lattice L, the semi-abelian variety G, the toric part T , and the
abelian core A are all functorially assigned to a 1-motive. When discussing a 1-motive M , we
will refer to these pieces by the corresponding letters L, T, A.

(5.1.11) To work up to isogeny, we pass to the category 1-Mot, the isogeny category of 1-MotZ,
which is an abelian category [Del74]. Unless specified otherwise, we work with 1-motives
up to isogeny, i.e., in 1-Mot. In particular, Hom = HomZ⊗Q and End = EndZ⊗Q refer to
morphisms and endomorphisms in 1-Mot as opposed to 1-MotZ. If we want to emphasize that
we are in 1-Mot, we will write HomQ and EndQ, in particular for abelian varieties considered
up to isogeny.
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5.2. The mixed Hodge structure associated to a 1-motive

(5.2.12) Let (Z,Q)-MHS denote the category of (Z,Q)-mixed Hodge structures. Its isogeny
category is (Q,Q)-MHS, the (abelian) category of (Q,Q)-mixed Hodge structures. There is a
duality functor •∨ = Hom(Q,Q)-MHS(•,Q(0)), which commutes with the duality functors on
(bi)filtered vector spaces.

(5.2.13) There is an “integral homology” functor

(5.2.13.1) H1(•;Z): 1-MotZ → (Z,Q)-MHS,

which induces a fully faithful functor

(5.2.13.2) H1: 1-Mot → (Q,Q)-MHS,

and which restricts to the usual homology functor on semi-abelian varieties. The construction
of H1 over the complex numbers is due to [Del74, (10.1.3)]; the generalization to arbitrary
characteristic zero fields appears in [And19]. See also [HW22, Prop. 8.17] for a proof over Q.

(5.2.14) Composing H1 with the duality functor yields a cohomology functor, which we denote
by

(5.2.14.1) H1(•) := H1(•)∨.

(5.2.15) We denote by HB
1 (M) the filtered Q-vector space underlying H1(M), and by HB

1 (M ;Z)
the underlying filtered lattice. The bifiltered Q-vector space underlying H1(M) is denoted by
HAdR

1 (M). Dually, we use H1
B and H1

AdR for the corresponding components of H1.

(5.2.16) Relation to curves. Let (C\D,E) be a relative curve. There is a functorial 1-motive
JDC,E associated to (C \D,E), whose abelian core is the Jacobian JC of C; see (6.1.10). There
is a natural isomorphism

(5.2.16.1) H1(JDC,E;Z) ≃ H1(C \D,E;Z),
see the proof of Lemma 12.9 in [HW22]. In practice, we will use the identification (5.2.16.1) and
pushout/pullback constructions to represent the cohomology of motives via the cohomology
of curves; see §6.

5.3. Subgroup theorem for 1-motives

(5.3.17) For a 1-motive M , let F(M) = HB
1 (M) ⊗ H1

AdR(M) denote the tensor product of
Betti and algebraic de Rham realizations, called the space of formal periods of M . We define
F1(M) ⊂ F(M) to be the cone of rank-1 tensors:

(5.3.17.1) F1(M) = {γ ⊗ ω : γ ∈ HB
1 (M), ω ∈ H1

AdR(M)}.

(5.3.18) Space of period relations. The comparison isomorphism between Betti and de
Rham realizations induces a period pairing

(5.3.18.1) ℘M :F(M) → C.
The kernel of ℘M , denoted R(M), is the space of period relations of M . We define the cone
of rank-1 relations as R1(M) = R(M) ∩ F1(M).

(5.3.19) Functoriality of the period map. The period pairing is compatible with morphisms
of 1-motives. If f :M1 →M2 is a Q-morphism, then for γ ∈ HB

1 (M1) and ω ∈ H1
AdR(M2) we

have

(5.3.19.1) ℘M2(f∗γ ⊗ ω) = ℘M1(γ ⊗ f ∗ω),
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where f∗ and f ∗ denote the induced maps on Betti and de Rham realizations, respectively.

(5.3.20) Consider a short exact sequence

(5.3.20.1) 0 →M ′ ι→M
ȷ→M ′′ → 0,

and elements γ′ ∈ HB
1 (M

′), ω′′ ∈ H1
AdR(M

′′). Then we have

(5.3.20.2) ℘M(ι∗γ
′ ⊗ ȷ∗ω′′) = ℘M ′′(ȷ∗ι∗γ

′ ⊗ ω′′) = ℘M ′′(0⊗ ω′′) = 0.

Therefore, ι∗γ′ ⊗ ȷ∗ω′′ belongs to R1(M).

(5.3.21) Let us denote by Rses(M) ⊂ R1(M) the cone of all relations ι∗(γ′)⊗ ȷ∗(ω′′) arising
from short exact sequences as in (5.3.20). The following is one of the key results of [HW22].

(5.3.22) Theorem. ([HW22, Theorem 9.7]) There is an equality Rses(M) = R1(M). □

(5.3.23) The case of abelian varieties. When M = [0 → A] is an abelian variety, all
short exact sequences with M in the middle split up to isogeny. Consequently, short exact
sequences involving A in 1-Mot are parametrized by the endomorphism algebra End(A), a
finite-dimensional Q-algebra. By Theorem (5.3.22), the space R1(A) can be computed using
End(A) and its action on homology and cohomology.

(5.3.24) In contrast to abelian varieties, not every short exact sequence of 1-motives splits up
to isogeny. Therefore, the computation of period relations will be more involved. We turn to
this problem next.

5.4. Cartier duality

(5.4.25) Cartier duality is a contravariant duality functor M 7→M∨ on 1-MotZ, satisfying a
natural equivalence M ≃ (M∨)∨ [Del74, (10.2.11)].

(5.4.26) Cartier duality on 1-motives agrees with a Tate twist of duality on mixed Hodge
structures. More precisely, there is a natural equivalence

(5.4.26.1) H1(M
∨;Z) ≃ Hom(Z,Q)-MHS(M,Z(1)),

see [Del74, (10.2.10)].

(5.4.27) The Cartier dual of an algebraic torus T is the motive [Ξ(T ) → 0], where Ξ(T ) =
Hom(T,Gm) ≃ ZdimT is the character lattice of T .

(5.4.28) The Cartier dual of a lattice motive [L→ 0] is the algebraic torus GL
m = Hom(L,Gm) ≃

GrkL
m .

(5.4.29) If G is a semi-abelian variety with toric part T ≃ Gm and abelian core A, then G can
be viewed as a torsor under Gm over A, defining an element of H1(A,O×

A), and hence a point
pG on A∨ = Pic0(A). The Cartier dual of G is the 1-motive

(5.4.29.1) G∨ = [Z 17→pG→ A∨].

(5.4.30) In general, the Cartier dual of a semi-abelian variety G, extending A by a torus T , is
the 1-motive

(5.4.30.1) G∨ = [Ξ(T ) → A∨],

where the marking Ξ(T ) → A∨(Q) is defined as follows: for each ℓ ∈ Ξ(T ), the pushout ℓ∗G
is an extension of A by Gm, and the associated point pℓ∗G ∈ A∨(Q) defines the image of ℓ.

(5.4.31) By (5.4.30), and the fact that Cartier duality is an equivalence, we see that it
establishes a contravariant equivalence between 1-motives of the second and third kind.
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(5.4.32) If M = [L→ G] is a 1-motive with toric part T and abelian core A, then the Cartier
dual is a 1-motive of the form

(5.4.32.1) M∨ = [Ξ(T ) → [L→ A]∨],

where [L → A]∨ is the Cartier dual of [L → A]. Moreover, the quotient of M∨ by its toric
part GL

m recovers G∨ = [Ξ(T ) → A∨].

(5.4.33) Explicit Cartier duality for curves. Combining (5.4.26), Poincaré–Lefschetz
duality (3.8.61), and the fact that H1 is fully faithful (5.2.13), we see that the 1-motive JDC,E
associated to (C \D,E) is Cartier dual to the motive JEC,D associated to (C \ E,D). This
will allow us to represent duals explicitly.

5.5. Endomorphism types of motives

(5.5.34) An abelian variety is called a 1-motive of the first kind (T = 0 and L = 0). An
abelian variety with a marking is a 1-motive of the second kind (T = 0). A semi-abelian
variety is a 1-motive of the third kind (L = 0).

(5.5.35) Definition. A 1-motive M of the second or third kind is reduced if and only if the
natural map End(M) → End(A) is injective, where A is the abelian core of M . A general
1-motive M = [L→ G] is reduced if and only if its underlying second and third type motives,
M/T = [L→ A] and G, are reduced.

(5.5.36) Definition. A 1-motive M with abelian core A is super-saturated if the natural
map End(M) → End(A) is surjective. If M is reduced and super-saturated, then it is called
saturated.

(5.5.37) Definition. A motive is a Baker motive if its abelian core is trivial, A = 0.

(5.5.38) Definition. A motive is composite if it is a direct sum of a Baker motive and a
saturated motive.

(5.5.39) Remark. Our definition of reduced agrees with that of Huber and Wüstholz (5.5.40).
It is clear that our definition of saturated agrees with theirs.

(5.5.40) Lemma. A 1-motive of the second kind M = [L→ A] is reduced if and only if the
induced map

(5.5.40.1) L⊗Z Q → A(Q)⊗Z Q

is injective. A 1-motive of the third kind G is reduced if and only if its Cartier dual
G∨ = [Ξ(T ) → A∨] is reduced.

Proof. If (5.5.40.1) is injective, then any Q-endomorphism of A that lifts, lifts uniquely to
L⊗Q. Therefore, injectivity of the Q-marking implies injectivity of End(M) → End(A) for a
second kind motive. Conversely, if there is a nontrivial kernel in the Q-marking, then nonzero
Q-endomorphisms of the kernel can be extended to M in a way that maps to zero on A. For
a third kind motive, apply the same argument to the Cartier dual. □

(5.5.41) Remark. A motive M can satisfy End(M) ≃ End(A) and still be non-reduced if
M is not of the second or third kind. For instance, consider a simple abelian variety A with
End(A) ≃ Q, and the motive [Z → Gm ⊕ A] where we mark a non-torsion point in each
component. This motive has no nontrivial endomorphisms, but the underlying semi-abelian
variety Gm ⊕ A is non-reduced.
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5.6. Expected period relations

(5.6.42) Let M = [L→ G] be a 1-motive with toric part T and abelian core A.

(5.6.43) Definition. Consider the short exact sequence T ↪→ M ↠ [L → A], and identify
HB

1 (T ) with its image in HB
1 (M). We define the toric relations as

(5.6.43.1) RT (M) := ker
(
HB

1 (T )⊗ H1
AdR(M) ↠ HB

1 (T )⊗ H1
AdR(T )

℘T→ C
)
.

(5.6.44) Note that HB
1 (T )⊗ H1

AdR([L→ A]) is contained in RT (M), as it is the kernel of the
projection onto F(T ). The period map ℘M restricted to HB

1 (T )⊗ H1
AdR(M) factors through

℘T by functoriality (5.3.19) applied to T ↪→M .

(5.6.45) Definition. Consider the short exact sequence G ↪→M ↠ L, and identify H1
AdR(L)

with its image in H1
AdR(M). We define the lattice relations as

(5.6.45.1) RL(M) := ker
(
HB

1 (M)⊗ H1
AdR(L) ↠ HB

1 (L)⊗ H1
AdR(L)

℘L→ C
)
.

Observe that HB
1 (G)⊗ H1

AdR(L) is contained in RL(M).

(5.6.46) Definition. We define the trivial relations Rtriv(M) as Rtriv(M) := RL(M)+RT (M).

(5.6.47) Remark. The space of trivial relations is straightforward to compute. For the toric
relations, the pairing ℘T is induced from the duality pairing Ξ(T )∨⊗Ξ(T ) → Z, tensored with
Q⟨2πi⟩ under the canonical identifications (5.8.61). The quotient leading up to ℘T is simply
the quotient by W1H

1
AdR(M). Similarly, for the lattice relations, we consider the Q-tensor of

the duality pairing L⊗ L∨ → Z and the quotient by W−1H
B
1 (M). See also (5.7.59).

(5.6.48) Definition. We define the endo-relations REnd(M) as the subspace

(5.6.48.1) REnd(M) := {ϕ∗γ ⊗ ω − γ ⊗ ϕ∗ω : ϕ ∈ End(M), γ ∈ HB
1 (M), ω ∈ H1

AdR(M)},

which is finite-dimensional and contained in R(M) by (5.3.19).

(5.6.49) Definition. We define the expected relations of M as Re(M) := REnd(M)+Rtriv(M).

(5.6.50) Theorem. If M is a saturated motive, then the space of period relations coincides
with the expected relations, that is, R(M) = Re(M).

(5.6.51) The proof of this theorem will occupy the rest of this section. We also state the
following corollary, which extends the theorem to composite motives; see (5.9.71) for a more
explicit statement.

(5.6.52) Corollary. If M is a composite motive MB ⊕M sat, then R(M) is generated by the
trivial relations, the cross-terms (5.9.70) arising from the direct sum decomposition, the Baker
relations R(MB), and the expected relations of M sat.

Proof. This is the content of (5.9.71), where we substitute Re(M
sat) for R(M sat) in light of

Theorem (5.6.50). □

(5.6.53) Remark. Recall that the determination of Rtriv(M) is straightforward (5.6.47). We
will later show that the period relations of a Baker motive can be computed explicitly (8.8.61).
The expected relations of a saturated motive can also be computed directly, provided that
the action of the endomorphism algebra on (co)homology is known. If, further, one a direct
sum decomposition H1(M) = H1(MB) ⊕ H1(M

sat), then R(M) can be computed using
Corollary (5.6.52).
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5.7. Filtrations and period matrices

(5.7.54) Let M = [L→ G] be a 1-motive with toric part T and abelian core A.

(5.7.55) The motivic weight filtration on M is the ascending filtration

(5.7.55.1) 0 = W−3M ⊂ W−2M = T ⊂ W−1M = G ⊂ W0M =M.

It induces the weight filtration on Betti homology, satisfying HB
1 (WkM) = Wk H

B
1 (M). The

motivic weight cofiltration Q−k−1M :=M/WkM gives

(5.7.55.2) M → [L→ A] → [L→ 0] → 0,

and induces the weight filtration on de Rham cohomology, satisfying H1
AdR(QjM) = Wj H

1
AdR(M).

(5.7.56) A basis v1, . . . , vn for a filtered vector space V with filtration V• is said to respect the
filtration if for each i, the first dimVi elements v1, . . . , vdimVi form a basis of Vi.

(5.7.57) The short exact sequences

(5.7.57.1) 0 → WkM →M → Q−k−1M → 0

induce weight relations in the period relations:

(5.7.57.2) Wk H
B
1 (M)⊗W−k−1H

1
AdR(M) ⊂ R(M).

(5.7.58) Period matrix and block form. Choose bases γ1, . . . , γm for HB
1 (M) and ω1, . . . , ωm

for H1
AdR(M), both respecting the weight filtrations. The period isomorphism is represented

by the period matrix

(5.7.58.1) PM =

(∫
γj

ωi

)
i,j=1,...,m

.

By the weight relations, the matrix PM has block form

(5.7.58.2) PM =

 0 0 PL
0 PA QAL

PT QTA QTL

 ,

where PT , PA, and PL are period matrices for T , A, and L, respectively.

(5.7.59) The only nontrivial weight relations in the period relations induced by the motivic
weight filtration are HB

1 (T )⊗ H1
AdR([L→ A]) and HB

1 (G)⊗ H1
AdR(L), and both are contained

in the trivial relations Rtriv(M). In particular, the vanishing of the three 0 blocks in the
period matrix PM follows from the trivial relations.

(5.7.60) Toric and lattice periods. We refer to the entries of PL as lattice periods and to
the entries of PT as toric periods. The matrix PL consists of algebraic numbers, while PT
consists of algebraic multiples of 2πi.

5.8. Period relations of Baker motives

(5.8.61) If T is an algebraic torus with character lattice Ξ(T ), then there are canonical
isomorphisms

HB
1 (T ) = Ξ(T )∨ ⊗Z H

B
1 (Gm) = Ξ(T )∨ ⊗Z Q,(5.8.61.1)

H1
AdR(T ) = Ξ(T )⊗Z H1

AdR(Gm) = Ξ(T )⊗Z Q.(5.8.61.2)

The isomorphism (5.8.61.2) is obtained by pulling back dz/z from Gm along characters, and
the isomorphism (5.8.61.1) is obtained by pushing forward loops along characters. With
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respect to dual bases for Ξ(T ) and Ξ(T )∨, the period matrix PT is a 2πi-multiple of the
identity matrix.

(5.8.62) If L is a lattice, viewed as the 1-motive M = [L → 0], then there are canonical
isomorphisms

HB
1 (L) = L⊗Z Q, H1

AdR(L) = L∨ ⊗Z Q.
With respect to dual bases for L and L∨, the period matrix PL is the identity matrix.

(5.8.63) If M = [L→ T ] is a Baker motive, then with respect to bases compatible with the
weight filtrations, the period matrix PM has block form

(5.8.63.1) PM =

(
0 PL
PT ∗

)
,

where PL is a matrix of algebraic numbers, PT is a matrix of algebraic multiples of 2πi, and
∗ denotes a matrix whose entries are logarithms of algebraic numbers.

5.9. Independence statements for periods of saturated motives

(5.9.64) If M is saturated and the abelian core A is simple, we say that M is a simple motive.
Then E := End(M) ≃ End(A) is a skew field. The weight filtration and cofiltration on M ,
being functorial, are stable under the action of E. Thus, the weight filtered Q-vector space
HB

1 (M) inherits a weight filtration as an E-vector space. Let γ• be an E-basis for HB
1 (M)

and ω• a Q-basis for H1
AdR(M), both respecting the weight filtrations. We define the reduced

period matrix P̃M as the matrix representing the period pairing with respect to these bases:

(5.9.64.1) P̃M =

(∫
γj

ωi

)
i,j

=

 0 0 P̃L
0 P̃A ∗
P̃T ∗ ∗

 .

(5.9.65) We now recall the key technical ingredient behind the “Dimension estimate” theo-
rem [HW22, Theorem 15.3], adapted to our notation.

(5.9.66) Lemma [HW22, Lemma 15.6]. Except for the trivial relations (5.6.46), there are no
nonzero Q-linear relations among the entries of the reduced period matrices P̃L, P̃A, P̃T , and
the ∗ blocks. Here, the trivial relations refer specifically to the relations among entries of P̃T ,
a matrix with entries in Q⟨2πi⟩, and among entries of P̃L, a matrix with entries in Q. □

(5.9.67) A stronger statement holds, with an analogous proof; both the statement and the
method of proof are indicated in [HW22, Propositions 15.9 and 15.20].

(5.9.68) Lemma. Let M1 and M2 be 1-motives with respective abelian cores A1 and A2.
Assume that M1 is saturated and that HomQ(A1, A2) = 0. Then we have

(5.9.68.1) im℘M1 ∩ im℘M2 ⊂ Q⟨1, 2πi⟩.
Moreover, letting L1 and T1 denote the lattice and toric parts of M1, respectively:

(1) If L1 = 0, then im℘M1 ∩Q = 0.
(2) If T1 = 0, then im℘M1 ∩Q⟨2πi⟩ = 0.

Sketch of proof. By Lemmas 15.22 and 15.24 of [HW22], we may replace M2 by a direct sum of
a saturated motive and a Baker motive without changing its abelian core, and only enlarging
its space of periods. The desired statement follows by adapting the argument of Lemma 15.6
of loc.cit., specifically by examining submotives of a suitably constructed auxiliary motive, as
indicated in Propositions 15.9 and 15.20. □
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(5.9.69) Suppose M is composite, that is, a direct sum M = MB ⊕M sat where MB is a
Baker motive and M sat is a saturated motive. The direct sum decomposition induces a
decomposition of Betti homology and de Rham cohomology:

(5.9.69.1) HB
1 (M) = HB

1 (MB)⊕ HB
1 (M

sat), H1
AdR(M) = H1

AdR(MB)⊕ H1
AdR(M

sat).

Thus, the space of formal periods F(M) = HB
1 (M)⊗ H1

AdR(M) decomposes naturally as the
direct sum of four components:
(5.9.69.2)
F(M) = F(MB)

⊕
F(M sat)

⊕
(HB

1 (MB)⊗ H1
AdR(M

sat))
⊕

(HB
1 (M

sat)⊗ H1
AdR(MB)).

(5.9.70) The period relations R(MB) and R(M sat) are embedded into R(M) via the identi-
fications F(MB) ⊂ F(M) and F(M sat) ⊂ F(M). Furthermore, the cross-terms HB

1 (MB)⊗
H1

AdR(M
sat) and HB

1 (M
sat)⊗ H1

AdR(MB) are contained in R(M): they pair a homology class
from one summand with a cohomology class from the other, and thus vanish under the period
pairing.

(5.9.71) Proposition. We have an equality of period relations:

R(M) = Rtriv(M) +R(MB) +R(M sat) + HB
1 (MB)⊗ H1

AdR(M
sat) + HB

1 (M
sat)⊗ H1

AdR(MB).

Proof. The right-hand side is contained in R(M) by construction. The equality asserts
that there are no further relations among the periods of MB and M sat. This follows from
Lemma (5.9.68), since M sat is saturated and the abelian core of MB is zero. □

5.10. Period relations of a power of a simple motive

(5.10.72) Proposition. If M is a saturated motive with simple abelian core, then the space
of period relations and the expected relations coincide, i.e., R(M) = Re(M).

Proof. In a suitable basis, the period map ℘M :F(M) → C is represented by the vector
of entries of the period matrix PM . Reducing modulo the endo-relations, we can consider
℘̃M :F(M)/REnd(M) → C which is represented by the vector of entries of P̃M as given
in (5.9.64.1). By Lemma (5.9.66), the only remaining relations are coming from the zero
blocks and the relations between P̃T and P̃L. These remaining relations are contained in the
trivial relations. □

(5.10.73) Let A = Bn where B is a simple abelian variety and n ≥ 1. For the skew field
E = End(B), the endomorphism algebra End(A) is isomorphic to the algebra Matn(E) of
n× n matrices over E. Let mij ∈ End(A) denote the n× n matrix with a 1 on the (i, j)-th
entry and zeros everywhere else. Equivalently, let pi be the projection onto the i-th factor, ιi
the identification of B onto the i-th component, so that mij = ιi ◦ pj.
(5.10.74) If M is a saturated 1-motive with abelian core A = Bn as in (5.10.73), the
identification End(M) ≃ End(A) furnishes M with the endomorphisms algebra Matn(E).
Consequently, M must be of the form (M ′)n where M ′ has abelian core B. The operators pi,
ιi, mij lift to M in the natural way.
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(5.10.75) Let M = (M ′)n as in (5.10.74). Then, we can choose bases so that the period
matrix of M is block diagonal,

(5.10.75.1) PM =


PM ′ 0 . . . 0
0 PM ′ . . . 0

. . .
0 0 PM ′

 .

(5.10.76) Proposition. For M as above, the space of period relations coincides with the
space of expected relations.

Proof. We will use the elements mij ∈ End(M) ≃ Matn(E) from (5.10.73). Proposi-
tion (5.10.72) implies that the entries of E ·m11 give all the non-trivial relations amongst
the entries of the first copy of PM ′ in (5.10.75.1). There can be no other relations except
those suggested by the repeated blocks. We will show that these obvious relations can all be
accounted by the endo-relations.

We will first show that endomorphisms give enough relations to deduce that the i-th
diagonal block is equal to the 1-st diagonal block. Let γ ∈ HB

1 (M
′) and ω ∈ H1

AdR(M
′). We

will use the identities ιi = mi1 ◦ ι1, pi = p1 ◦m1i, m1i ◦mi1 ◦ ι1 = ι1 to deduce the following
identities modulo the endomorphism relations:

(5.10.76.1) ιi,∗γ ⊗ p∗iω = mi1,∗ι1,∗γ ⊗m∗
1ip

∗
1ω ≡ m1i,∗mi1,∗ι1,∗γ ⊗ p∗1ω = ι1,∗γ ⊗ p∗1ω.

To see that the (i, j)-th block is zero for i ̸= j, use the identities mjj◦ιi = 0 and pj◦mjj = pj .
Then, modulo endomorphism relations, we have

(5.10.76.2) ιi,∗γ ⊗ p∗jω = ιi,∗γ ⊗m∗
jjp

∗
jω ≡ mjj,∗ιi,∗γ ⊗ p∗jω = 0.

The trivial relations account for the remaining relations between the lattice and toric periods.
□

5.11. Period relations for saturated motives

(5.11.77) We will decompose a saturated motive as indicated in [HW22, §15.2.2] and read off
the relations in terms of endomorphisms.

(5.11.78) Let A be a non-zero abelian variety. Then A decomposes (up to isogeny) as

(5.11.78.1) A = Bn1
1 ⊕ . . .⊕Bnm

m

where Bi’s are simple, ni ≥ 1, and HomQ(Bi, Bj) = 0 for i ̸= j. Let Ei = End(Bi) so that

(5.11.78.2) End(A) ≃ Matn1(E1)⊕ . . .⊕Matnm(Em).

(5.11.79) Let M be a non-zero saturated 1-motive with abelian core A. Necessarily, A is
non-zero and decomposes as in (5.11.78). Since End(M) ≃ End(A), M has a similar structure

(5.11.79.1) M = (M ′
1)
n1 ⊕ . . .⊕ (M ′

m)
nm ,

with the abelian core of M ′
i being simple Bi. Let us write Mi = (M ′

i)
ni so that Mi belongs to

the case considered in §5.10.

(5.11.80) Let ȷi:Mi ↪→ M be the inclusion of the i-th component into M and qi:M ↠ Mi

be the projection onto the i-th component. For each i, j = 1, . . . ,m we define the following
element of End(M):

(5.11.80.1) mij =

{
0 i ̸= j

ȷi ◦ qi
.
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We have qj ◦mjj = qj and mjj ◦ ȷi = 0 if i ̸= j.

(5.11.81) Remark. Since Hom(Bi, Bj) = 0 for i ̸= j the same holds for the saturated motives
Mi and Mj. The maps mij = 0 for i ̸= j correspond to projecting onto the j-th factor and
then mapping as 0 to the i-th component.

(5.11.82) The period matrix for M is of the form

(5.11.82.1) PM =


PM1 0 . . . 0
0 PM2 . . . 0

. . .
0 0 PMm

 .

Proof of Theorem 5.6.50. All relations within the blocks PMi
are contained in the expected

relations via Proposition (5.10.76).
The zero blocks in (5.11.82.1) can be explained by the endomorphism relations. The proof

of this fact is similar to the argument at the end of Proposition (5.10.76), but this time we
use the identities qj ◦mjj = qj and mjj ◦ ȷi = 0 if i ̸= j.

There are no further relations between the periods in distinct blocks PMi
and PMj

, i ̸= j,
except for the trivial relations, by Lemma (5.9.68). □
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6. Push-pull Jacobian motives

(6.0.1) In this section, we describe a mild form of pushout and pullback constructions on
1-motives, sufficient to realize a given 1-motive as the push-pull of a composite motive.
This reduction allows us to apply Theorem (5.6.50) to the composite and compute period
relations for the original motive via (6.6.49). We carry curves, motives, and their mixed Hodge
structures effectively along these constructions without losing track of periods or relations.

(6.0.2) To a curve (C \D,E) we associate a Jacobian motive (6.1.10), a 1-motive with abelian
core JC , the Jacobian of C. Our push-pull constructions only change the lattice and the torus
around this core.

(6.0.3) There are three results in this section. The first is an explicit description of the “points”
of the push-pull of a Jacobian motive in terms of restricted divisor classes on a curve (6.3.31).
The second is an explicit description, in terms of the MHS of a curve, of the MHS of the
push-pull Jacobian motive (6.5.43). The third result states that if a motive M1 is realized as
the push-pull of another motive M2 then the period relations R(M1) of the former can be
computed from the period relations R(M2) of the latter by linear algebra on (co)homology
groups (6.6.49).

6.1. Jacobian motive of a punctured relative curve

(6.1.4) Let C/Q be a smooth proper curve and let D,E ⊂ C(Q) be disjoint finite sets. The
group of invertible rational functions on C are κ(C)× and we will write κ× for the invertible
locally constant functions on C.

(6.1.5) We define the multiplicative subgroup

(6.1.5.1) κ(C)×D := {f ∈ κ(C)× : f |D∈ GD
m} ⊂ κ(C)×

of rational functions without zeros or poles on D and the subgroup

(6.1.5.2) κ(C)×D,1 := {f ∈ κ(C)× : f |D= 1} ⊂ κ(C)×D

of functions constant 1 along D.

(6.1.6) The group of divisors (over Q) on C \D is denoted by Div(C \D). Let Div0(C \D) be
the subgroup of divisors on C \D of multidegree 0 on C, i.e., of degree 0 on each component.

(6.1.7) For a set S ⊂ C(Q), denote by LS ⊂ Div0(C) the lattice of multidegree 0 divisors
supported on S.

(6.1.8) There exists [Ser88] a semi-abelian variety JDC , the Jacobian of (C \D), defined over
Q whose Q-points coincide with the quotient

(6.1.8.1)
Div0(C \D)

{div(f) : f ∈ κ(C)×D,1}
.

Note the restricted use of rational functions in the quotient. See (6.3.26) for the realization of
JDC as a toric extension of the Jacobian of C.

(6.1.9) The Abel–Jacobi map is the quotient map

(6.1.9.1) AJ:Div0(C \D) → JDC (Q) : ξ 7→ ξ mod κ(C)×D,1.

(6.1.10) Definition. The Jacobian motive of (C \D,E) is JDC,E := [LE
AJ→ JDC ], where the the

marking is given by restricting the Abel–Jacobi map AJ to LE ⊂ Div0(C \D), divisors of
multidegree 0 supported on E (6.1.7).
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(6.1.11) When either D or E is empty, we will drop it from notation. In particular, JC is the
Jacobian of the (smooth proper) curve C.

(6.1.12) Remark. We considered it would be jarring to refer to JDC and JDC,E of JC as
Albanese varieties or complexes but, technically, that is how we defined them. The usual
Jacobian JC is both the Albanese and the Pic0 of C. On the other hand, JDC is the Albanese
of C \D but the Pic0 of the “nodal curve” (C,D), where D is contracted to a single node
with transversal branches [Ser88]. The complex [LD → JC ] is the Albanese of the “nodal”
curve (C,D) [BS99] and Pic0 of C \D, morally standing for the quotient of JC by LD. More
generally, the Jacobian motive JDC,E is best viewed as the Albanese of the punctured “nodal”
curve (C \D,E), although it is also the Pic0 of (C \ E,D).

6.2. Push-pull constructions

(6.2.13) Let M = [L→ G] be a 1-motive with toric part T and abelian core A.

(6.2.14) Let ψ:Y → L be a morphism of lattices. Then ψ∗M →M , the ψ-pullback of M , is
defined by the pullback diagram

(6.2.14.1)
G M L

G ψ∗M Y

idG
⌜

ψ

We will often write ψ∗M for the pullback, leaving the map ψ∗M →M (which includes Y → L)
implicit.

(6.2.15) Let λ:M → L =M/G denote the projection map. The pullback ψ∗M is canonically
isomorphic to the kernel of the map (λ−ψ):M ⊕ Y → L. This is a general construction valid
in any abelian category.

(6.2.16) Let χ:X → Ξ(T ) a morphism of lattices. Recall that the Cartier dual M∨ of M has
lattice part Ξ(T ). The χ-pullback of M∨ is χ∗M∨ → M∨. Taking Cartier duals gives the
χ-pushout of M , M → χ∗M , where χ∗M := (χ∗M∨)∨. As with pullbacks, we will often write
χ∗M for the pushout, leaving the map implicit.

(6.2.17) An alternative description of the χ-pushout is as follows. The map χ induces the
map χ̂:T → GX

m of tori, where GX
m = Hom(X,Gm) is an algebraic torus with dimension equal

to the rank of X. Then the χ-pushout of M is the pushout of M via χ̂,

(6.2.17.1)
T M [L→ A]

GX
m χ∗M [L→ A]

χ̂ id⌜

(6.2.18) Let τ :T →M be the inclusion map. The pushout χ∗M is the cokernel of the map
(χ̂,−τ):T → GX

m ⊕M . This is a general construction valid in any abelian category.

(6.2.19) Definition. Given morphisms of lattices χ:X → Ξ(T ) and ψ:Y → L then the
push-pull of M with respect to (χ, ψ) is χ∗ψ

∗M .

(6.2.20) The universal properties of the pushout and pullback give a canonical isomorphism
χ∗ψ

∗M ≃ ψ∗χ∗M . We will implicitly identify the two.
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6.3. Points of a push-pull Jacobian motive

(6.3.21) Consider two morphisms of lattices χ:X → LD and ψ:Y → LE. We will describe
the push-pull Jacobian motive JχC,ψ := χ∗ψ

∗JDC,E using divisors on C, see Proposition (6.3.31).
To be more precise, we will describe the points of the underlying semi-abelian variety and the
marking, but this distinction will be blurred.

(6.3.22) To make the pushout clearer, we need to give an alternative construction of the
Jacobian motive of (C \D,E).
(6.3.23) For any f ∈ κ(C)×D, the restriction of f to D defines an element f |D∈ GD

m =
Hom(D,Gm). For any divisor ξ =

∑
aipi supported on D, define f(ξ) =

∏
f(pi)

ai . In
particular, this defines an element f |D∈ GLD

m = Hom(LD,Gm). Note that the locally constant
functions κ× map to 1 ∈ GLD

m since LD consists of multidegree 0 divisors.

(6.3.24) We have a map κ(C)×D → GLD
m ⊕Div0(C \D) : f 7→ (f |D, div(f)), which restricts to

the map κ(C)×D,1 → 1⊕Div0(C \D), where 1 stands for the trivial group. In particular, by
definition,

(6.3.24.1) JDC,E =
1⊕Div0(C \D)

κ(C)×D,1
.

(6.3.25) Lemma. There is a natural isomorphism

(6.3.25.1)
Div0(C \D)

κ(C)×D

∼→ JC

Proof. Every divisor on C is linearly equivalent to a divisor on C \D. □

(6.3.26) Lemma. The Jacobian of (C \D) fits into an exact sequence

(6.3.26.1) 0 → GLD
m → JDC → JC → 0.

Proof. Surjectivity is by Lemma 6.3.25. The kernel of JDC → JC is the quotient

(6.3.26.2)
{div(f) : f ∈ κ(C)×D}
{div(f) : f ∈ κ(C)×D,1}

which is easily seen to be the torus GLD
m = GD

m/κ
×. □

(6.3.27) Lemma. The inclusion

(6.3.27.1) 1⊕Div0(C \D) ↪→ GLD
m ⊕Div0(C \D)

induces an isomorphism

(6.3.27.2) JDC
∼→ GLD

m ⊕Div0(C \D)

κ(C)×D
.

Proof. Both sides surject onto JC with kernel GLD
m . The proof of Lemma (6.3.26) makes it

clear that the map induced from the left to the right induces the identity on JC and GLD
m .

Now use the five lemma. □

(6.3.28) Lemma (6.3.27) gives an alternate construction of the Jacobian motive JEC,D = [LE
AJ→

JC ]. Using the isomorphism described in Lemma (6.3.27) we see that the marking for the
alternative description of JDC is ξ 7→ (1, ξ) mod κ(C)×D,1.
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(6.3.29) The lattice morphism χ:X → LD induces a map κ(C)×D → GX
m : f 7→ f |D◦χ.

Therefore, modifying (6.3.24) we get a map

(6.3.29.1) κ(C)×D → GX
m ⊕Div0(C \D) : f 7→ (f |D◦χ,− div(f)).

(6.3.30) Lemma. Let χ:X → LD be a morphism of lattices. The pushout χ∗J
D
C is naturally

isomorphic to

(6.3.30.1)
GX
m ⊕Div0(C \D)

κ(C)×D
.

Proof. This is clear from the alternative construction of JDC in Lemma (6.3.27). To elaborate,
it is convenient to view (the points of) both JDC and χ∗J

D
C as pushouts of

(6.3.30.2) 0 → κ(C)×D/κ
× → Div(C \D) → JC → 0

via the restriction maps to GLD
m and GX

m respectively. □

(6.3.31) Proposition. Let χ:X → LD and ψ:Y → LE be morphisms of lattices. The
push-pull Jacobian motive JχC,ψ is given by

(6.3.31.1) Y → GX
m ⊕Div0(C \D)

κ(C)×D
: y 7→ (1, ψ(y)) mod κ(C)×D.

Proof. This combines Lemma (6.3.30) and the observation made in (6.3.28). □

6.4. A moving lemma

(6.4.32) Definition. For ξ ∈ Div0(C \D), let [ξ]D = {ξ + div(f) : f ∈ κ(C)D,1} denote the
D-linear equivalence class of ξ. This equivalence class represents a point of JDC . When we have
a lattice morphism χ:X → LD and a ∈ GX

m, then we let [a, ξ]χ = {(a− f |D◦χ, ξ + div(f))}
be the χ-linear equivalance class of (a, ξ), which defines a point of JχC . When a = 1 is the
identity, we write [ξ]χ := [1, ξ]χ, making the two notations compatible when χ = idLD .

(6.4.33) For D ⊂ D′ have a surjection JD′
C ↠ JDC . This implies that any D-linear equivalence

class [ξ]D can be represented by a divisor ξ′ supported outside of D′. We need to make the
determination of ξ′ from ξ effective.

(6.4.34) Lemma. Let D ⊂ D′ ⊂ C(Q) be finite sets. Then any divisor ξ ∈ Div(C \D) can
be effectively moved away from D′ within its D-linear equivalence class.

Proof. We may assume that ξ is supported only on D′ \D, leaving the rest in place. Write
ξ = ξ+ − ξ− where ξ+, ξ− are effective and have disjoint support. Let ξϵ− be obtained by
increasing each coefficient in ξ− by 1.

Let D̃ = D′ \ (D ∪ supp(ξ)). Fix a divisor p of positive degree on every component of C,
and choose n≫ 0 such that

(6.4.34.1) h1(np− ξϵ− − D̃ −D) = 0.

Consider the exact sequence

(6.4.34.2) 0 → OC(np− ξϵ− − D̃ −D) → OC(np+ ξ) → Oξ+ ⊕Osupp(ξ−) ⊕OD̃∪D → 0.

By our choice of n, the global sections of the middle term surject onto those of the right term.
Hence, there exists f ∈ κ(C)× such that

(6.4.34.3) div(f) + ξ + np ≥ 0
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and

(6.4.34.4) div(f)− ξϵ− − D̃ −D + np ̸≥ 0.

In particular, f has just enough zeros to cancel ξ−, but no extra zeros on D̃ or D. Surjectivity
onto Oξ+ allows us to arrange poles cancelling ξ+. Finally, surjectivity to OD ensures we can
arrange f |D= 1D.

Thus, ξ + div(f) is D-linearly equivalent to ξ and supported away from D′. □

(6.4.35) Remark. This construction gives an explicit algorithm: given ξ ∈ Div(C \D), it
produces f ∈ κ(C)×D such that ξ′ := ξ +div(f) ∈ Div0(C \D′). It follows that, for any lattice
morphism χ:X → LD, the divisor class [ξ]χ can be represented by [f |D◦χ, ξ′]χ.

6.5. Homology and cohomology of a push-pull Jacobian motive

(6.5.36) Consider two morphisms of lattices χ:X → LD and ψ:Y → LE. We wish to describe
the (co)homology of the push-pull motive JχC,ψ := χ∗ψ

∗JDC,E.

(6.5.37) Recall that we have a canonical isomorphism H1(JDC,E) ≃ H1(C \D,E) (5.2.16.1).
We will combine our explicit representation of H1(C \ D,E) (4.1.6), with the push-pull
constructions below to give an explicit representation of H1(JχC,ψ).

(6.5.38) The H1, H
1 functors from 1-Mot to (Q,Q)-MHS are fully-faithful and exact. Therefore,

the homology and cohomology of the push-pull motives can be described by making use of
the descriptions of the pullback as a kernel (6.2.15) and the pushout as a cokernel (6.2.18).

(6.5.39) For a lattice L we will write LQ := L ⊗Z Q and LQ := L ⊗Z Q. Similarly, use
subscripts for the Q or Q tensor of maps between lattices.

(6.5.40) We will need to refer to parts of the usual exact sequence involving the (co)homology
of (C \D,E). The quotient map to the lattice λ: JDC,E ↠ LE and the inclusion of the torus
τ :GLD

m ↪→ JDC,E induce the following maps

∂ := λB: H
B
1 (C \D,E) → LE,Q,(6.5.40.1)

Gy := τB:L
∨
D,Q → HB

1 (C \D,E),(6.5.40.2)

δ := λAdR:L∨
E,Q → H1

AdR(C \D,E),(6.5.40.3)

Res := τAdR: H1
AdR(C \D,E) → LD,Q.(6.5.40.4)

The map ∂ := λB is the usual boundary map on chains and Res := τAdR is the residue map on
differential forms. The map Gy := τB is the Gysin map, putting circles around the punctures
D of C. The map δ := λAdR is the connecting morphism in cohomology, corresponding to
the inclusion of constants on E, see (3.4.31.1) and (3.5.41.1), after the obvious identification
L∨
E,Q = QE

0 (3.4.29).

(6.5.41) Lemma. For a morphism χ:X → LD of lattices, we have

(6.5.41.1) H1
AdR(J

χ
C) = {(η, x) ∈ H1

AdR(C \D)⊕XQ : Res(η) = χ(x)}.

Proof. Applying H1
AdR to GLD

m ↪→ JDC ↠ JC and making use of the identification (5.2.16.1) we
get

(6.5.41.2) 0 → H1
AdR(C) → H1

AdR(C \D)
Res→ LD ⊗Q → 0.
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The pullback of this exact sequence via χQ will give the cohomology of JχC by functoriality of
H1 and (6.2.15). □

(6.5.42) The general case can be proven in the same manner. We will simply state the result.

(6.5.43) Proposition. Let χ:X → LD and ψ:Y → LE be morphisms of lattices. The mixed
Hodge structre on the push-pull Jacobian motive JχC,ψ is given by:

H1
AdR(J

χ
C,ψ) =

{(s, η, x) ∈ Y ∨
Q ⊕ H1

AdR(C \D,E)⊕XQ : Res(η) = χ(x)}
im(−ψ∨

Q, δ, 0)
,(6.5.43.1)

HB
1 (J

χ
C,ψ) =

{(t, γ, y) ∈ X∨
Q ⊕ HB

1 (C \D,E)⊕ YQ : ∂γ = ψ(y)}
im(−χ∨

Q,Gy, 0)
,(6.5.43.2)

and, by denoting the class of triplets by square brackets, the period pairing

(6.5.43.3) ℘JχC,ψ([s, η, x]⊗ [t, γ, y]) = y(s) +

∫
γ

η + (2πi) t(x),

where we used the integration pairing (3.4.33). The weight and Hodge filtrations are deduced
immediately from those of the (co)homology of (C \D,E). □

6.6. Pushing and pulling period relations

(6.6.44) We are going to show in this subsection that if M is the push-pull of a motive M ′

then R(M) can be computed from R(M ′) using just linear algebra on (co)homology spaces.

(6.6.45) SupposeM = ψ∗M ′ f→M ′ is a pullback by a lattice map ψ. Let IB := im fB
∗ ⊂ HB

1 (M
′)

and IAdR := im f ∗
AdR ⊂ H1

AdR(M) denote the images of the induced maps on (co)homology.
Choose a splitting of the surjections

(6.6.45.1) HB
1 (M) ↠ IB, H1

AdR(M
′) ↠ IAdR,

and denote the lifts of the images by ĨB ⊂ HB
1 (M) and ĨAdR ⊂ H1

AdR(M
′). This gives an

isomorphism

(6.6.45.2) σ: IB ⊗ ĨAdR
∼→ ĨB ⊗ IAdR.

(6.6.46) Lemma. We have R(M) = Rtriv(M)+ker(fB
∗ )⊗im(f ∗

AdR)+σ
(
R(M ′) ∩ (IB ⊗ ĨAdR)

)
.

Proof. Let K = ker(f) ⊂ M be the kernel of f . Notice that K is the lattice [kerψ → 0]
and, therefore, has periods in Q. Let I = im(f) ⊂ M ′ be the image of f . The lattice
part of I is im(ψ) and if we pick a splitting of the lattice of M as ker(ψ)⊕ im(ψ) then we
can embed I into M by identifying I with the submotive of M obtained from the pullback
via im(ψ) ↪→ ker(ψ) ⊕ im(ψ). Call this submotive I ⊂ M . We now have a decomposition
M = K ⊕ I which allows us to view F(I) and F(K) as subspaces of F(M).

The period matrix PM of M is of the block diagonal form

(6.6.46.1) PM =

ker(fB
∗ ) HB

1 (I)( )
H1

AdR(K) PK 0
ker(f ∗

AdR) 0 PI

The lower left zero block in the matrix PM corresponds to ker(fB
∗ )⊗ im(f ∗

AdR) ⊂ R(M). Let
M = [L→ G].

The space HB
1 (K) ≃ ker(fB

∗ ) ⊂ HB
1 (M) is a lift of ker(ψ)Q ⊂ HB

1 (L) via the quotient
HB

1 (M) → HB
1 (L). Modulo HB

1 (G) ⊗ H1
AdR(L) ⊂ Rtriv(M), the space ker(fB

∗ ) ⊗ H1
AdR(L) ⊂
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F(M) is independent of the lift and the period pairing on ker(fB
∗ )⊗H1

AdR(L) factors through
℘L. Therefore, (ker(fB

∗ )⊗ H1
AdR(L)) ∩R(M) is contained in the trivial relations.

The submotive I ⊂M contains the underlying semi-abelian variety G = W−1M , regardless
of the splitting chosen for imψ. Therefore, the projection M → K factors through M → L.
In particular, H1

AdR(K) ⊂ H1
AdR(L) ⊂ H1

AdR(M), regardless of the splitting.
Moreover, modulo ker(fB

∗ )⊗ im(f ∗
AdR) ⊂ R(M), the space ker(fB

∗ )⊗ H1
AdR(K) ⊂ F(M) is

independent of our choice of splitting.
All combined, we see that the space of relations arising from the entries of PK are contained

in Rtriv(M) + ker(fB
∗ )⊗ im(f ∗

AdR). This explains all relations in the first column of (6.6.46.1).
Every zero entry in the upper right zero block in PM is coming from trivial relations:

Since, G ⊂ I and H1
AdR(K) ⊂ H1

AdR(L) the weight relation HB
1 (G) ⊗ H1

AdR(L) explains
a portion of this zero block. The splitting L = ker(ψ) ⊕ im(ψ) identifies H1

AdR(K) with
im(ψ)⊥Q ⊂ H1

AdR(L) = LQ. Modulo HB
1 (G), HB

1 (I) is identified with im(ψ)Q ⊂ LQ. This
orthogonal pairing explains the rest of the zero block.

Furthermore, since PK consists of algebraic numbers and algebraic periods of any motive
(modulo relations) must come from its lattice part, we conclude that any relations between
the periods of PI and PK must lie in the space R(I) +Rtriv(M) ⊂ R(M).

So far, we proved

(6.6.46.2) R(M) = Rtriv(M) + ker(fB
∗ )⊗ im(f ∗

AdR) +R(I).

Observe, H1
AdR(I) = im f ∗

AdR = IAdR is independent of the splitting. As for HB
1 (I), it is a lift

of IB. The other lift ĨB will differ by elements of ker(fB
∗ ) so

(6.6.46.3) ĨB ⊗ IAdR ≡ HB
1 (I)⊗ IAdR mod ker(fB

∗ )⊗ im(f ∗
AdR).

Therefore, in the expression (6.6.46.2), we can replace R(I) with R(M) ∩ (ĨB ⊗ IAdR), which
is equal to

(6.6.46.4) ker(℘M |IB⊗ĨAdR
).

Via the isomorphism ĨB
∼→ IB we can identify the period pairing ℘M restricted to ĨB⊗ IAdR

with the period pairing of I ≃ I. Of course, the period pairing on I ⊂ M ′ is obtained
analogously by the period pairing of M ′ restricted to IB ⊗ ĨAdR. The kernel R(I) of the
period pairing on I can now be identified with with

(6.6.46.5) R(M ′) ∩ (IB ⊗ ĨAdR).

The map σ makes the identifications explicit. □

(6.6.47) Suppose M ′ g→ χ∗M ′ = M is a pushout by a map χ character lattices. Let IB :=

im fB
∗ ⊂ HB

1 (M) and IAdR := im f ∗
AdR ⊂ H1

AdR(M
′). Once again, choose lifts ĨB ⊂ HB

1 (M
′)

and ĨAdR ⊂ H1
AdR(M) of IB and IAdR respectively. This gives an isomorphism

(6.6.47.1) σ: ĨB ⊗ IAdR
∼→ IB ⊗ ĨAdR.

(6.6.48) Lemma. We have R(M) = Rtriv(M)+im(fB
∗ )⊗ker(f ∗

AdR)+σ
(
R(M ′) ∩ (ĨB ⊗ IAdR)

)
.

Proof. One can replicate the proof of Lemma (6.6.46), this time making reference to the
toric periods and toric relations instead. Reference to algebraic periods must be replaced by
algebraic multiples of 2πi. □

(6.6.49) Proposition. If M is the push-pull of a motive M ′ then explicit linear algebra on
the (co)homology spaces computes R(M) from R(M ′).
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Proof. Let M be the push-pull of M ′ via the pair of lattice morphisms (χ, ψ). Let M ′′ =
ψ∗M ′ → M ′ be the ψ-pullback. Compute R(M ′′) from R(M ′) via Lemma (6.6.46). Now,
M ′′ → χ∗M

′′ =M so that R(M) can be computed from R(M ′′) via Lemma (6.6.48).
The statement of the referenced lemmas require only the computation of kernels and images

of vector space maps as well as making arbitrary choices to lift quotients of vector spaces.
Recall that the trivial relations are also computed by pure linear algebra (5.6.47). □
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7. Correspondences

(7.0.1) In this section, we recall the classical theory of correspondences acting on Jacobian
varieties of smooth proper curves, and the representation of the endomorphism algebra
EndZ(JC) by correspondences. We also recall that the action of a correspondence on divisors
and homology can be computed effectively. We extend these constructions to Jacobian motives
associated to marked and punctured curves.

(7.0.2) Correspondences will be crucial for representing the action of EndZ(JC) on Jacobian
motives explicitly. In particular, they allow us to compute the endo-relations introduced
in (5.6.48). They also form the basis for the supersaturation process in §9.

(7.0.3) We will also recall the practical methods recently developed to compute a representation
of EndZ(JC) [CMSV18; CLV21].

7.1. Correspondences on Jacobian varieties

(7.1.4) Let C1, C2 be smooth proper irreducible curves over Q.

(7.1.5) Correspondences. An irreducible correspondence from C1 to C2 is a triple (C, f1, f2)
where C is an irreducible curve and fi:C → Ci, i = 1, 2, are finite morphisms. A finite
formal Z-linear combination C =

∑
aj(C

(j), f
(j)
1 , f

(j)
2 ) of irreducible correspondences is a

correspondence. The additive group of correspondences is Corr(C1, C2).

(7.1.6) Remark. A correspondence from C1 to C2 defines a divisor in C1 × C2 with no
horizontal or vertical components. Conversely, such a divisor will yield a correspondence by
taking the sum of its resolved irreducible components together with the two projection maps.
Using divisors on C1 × C2 (modulo fibers) is an equivalent and common way to work with
correspondences. We chose a definition that is more compatible with our representations of
curves as function fields.

(7.1.7) Representing a correspondence. An irreducible correspondence is represented
by the induced inclusions of function fields κ(Ci) → κ(C) for i = 1, 2. A correspondence is
represented by the formal Z-linear combination of representations of its irreducible components
(C(j), f

(j)
1 , f

(j)
2 ).

(7.1.8) Transpose of a correspondence. The transpose of an irreducible correspondence
(C, f1, f2) is the irreducible correspondence (C, f2, f1). This operation is extended linearly to
correspondences Corr(C1, C2)

∼→ Corr(C2, C1) and we denote the transpose of C by Ct.
(7.1.9) Action on divisors. An irreducible correspondence C = (C, f1, f2) induces a morphism
C∗: Div(C1) → Div(C2) defined by ξ 7→ f2,∗f

∗
1 ξ, namely, by pulling back divisors via f1 and

pushing forward via f2. By taking Z-linear combinations, any correspondence C induces a
morphism C∗: Div(C1) → Div(C2). We will also write C∗ to denote the transpose Ct∗: Div(C2) →
Div(C1).

(7.1.10) Linear equivalence. For C = (C, f1, f2) we have C∗ div(g) = Nmf2(f
∗
1 (g)). In

particular, any correspondence C induces an action on divisor classes which we will denote by
[C∗]: JC1 → JC2 .

(7.1.11) Action on points is effective. Given a representation of C and ξ ∈ Div(C1)
represented as a formal sum of points, the computation of C∗(ξ) ∈ Div(C2) is effective since
the pullback and pushforward maps on divisors are effective.
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(7.1.12) An irreducible correspondence C = (C, f1, f2) induces a morphism of MHS C∗ :=
f2,∗ ◦ f !

1: H1(C1) → H1(C2). This operation extends linearly to any correspondence.

(7.1.13) Lemma. Given bases for the Betti and de Rham realizations of H1(Ci) the action of
any correspondence C∗ can be effectively computed as matrices in the given bases.

Proof. First, compute bases for the homology and cohomology of C as in §3 and §4. Then
apply Propositions (3.8.56), (3.8.62), (4.5.52), (4.5.55) to compute the pullback, pushforward,
and transfer maps. □

(7.1.14) The group HomZ(JC1 , JC2) ≃ Zρ is torsion-free and of finite rank. It is classi-
cal that each morphism JC1 → JC2 arises from a correspondence, hence the natural map
Corr(C1, C2) → HomZ(JC1 , JC2) is surjective.

(7.1.15) A representation of HomZ(JC1 , JC2) consists of correspondences C1, . . . , Cρ ∈ Corr(C1, C2)
such that the induced maps µi = [Ci,∗] form a Z-basis for HomZ(JC1 , JC2).

(7.1.16) If C1 and C2 are reducible, with irreducible components {Ci,j} and {C2,j} respec-
tively, then Corr(C1, C2) is defined as the direct sum of correspondences between components:
Corr(C1, C2) =

⊕
i,j Corr(C1,i, C2,j). The group HomZ(JC1 , JC2) admits the analogous decom-

position and its representation is defined as in (7.1.15).

(7.1.17) Let C =
∐

iCi be a smooth proper curve over Q with Ci’s the irreducible components
of C. We view Corr(C) := Corr(C,C) =

⊕
Corr(Ci, Cj) as a matrix of correspondences.

Similarly, the endomorphism ring decomposes as EndZ(JC) =
⊕

HomZ(JCi , JCj).

(7.1.18) A representation of EndZ(JC) consists of a basis of correspondences C1, . . . , Cρ ∈
Corr(C) as in (7.1.15) and a tensor A ∈ Zρ×ρ×ρ such that [Ci,∗] · [Cj,∗] =

∑
k A

k
ij[Ck,∗] ∈

EndZ(JC).

(7.1.19) Remark. In other words, we represent EndZ(JC) by an abstract Z-algebra together
with a Z-linear map to Corr(C) such that the composition with Corr(C) → EndZ(JC) yields
an isomorphism of Z-algebras.

(7.1.20) Effectivity. Given a representation of EndZ(JC), its action on JC(Q)—with points
represented by divisor classes—and on H1(C) can be computed effectively, using (7.1.11)
and (7.1.12).

7.2. Computing a representation of the endomorphism algebra of a Jacobian

(7.2.21) Costa, Mascot, Sijsling, and Voight [CMSV18] give an algorithm to compute a
representation of HomZ(J1, J2) from the equations of two irreducible curves C1 and C2,
provided the rank a = rkHom(J1, J2) is known. When a is unknown, the method becomes an
algorithm only under the Mumford–Tate conjecture [CLV21]. The procedure is implemented
and performs well in practice.

(7.2.22) While the algorithm of [CMSV18] is formulated for computing EndZ(JC) when C is
irreducible over Q, it also applies to HomZ(JC1 , JC2) for irreducible curves C1 and C2. For a
possibly reducible curve C, use the identification in (7.1.17) to reduce to the irreducible case
and compute a representation of EndZ(JC).

(7.2.23) Theorem[CMSV18; CLV21]. There exists a (practical, implemented) semi-algorithm
to compute EndZ(JC) from the equations of a smooth proper curve C/Q. This becomes an
algorithm assuming the Mumford–Tate conjecture, or unconditionally if the rank rkEndZ(JC)
is known. □
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(7.2.24) Remark. In practice, the semi-algorithm is expected to terminate even when the
rank is not known in advance. When it does, the output is provably correct. A practical
upper bound for the rank, that we expect to be sharp, can be obtained from the crystalline
cohomology of the surface C × C, via the theory of correspondences; see the final section
of [CS21].

(7.2.25) Although the semi-algorithm of [CMSV18] generally suffices in practice, for theoretical
decidability one may use a complete algorithm due to Lombardo [Lom18, §3], which computes
the full endomorphism algebra of an abelian variety. While impractical, it is unconditional.
For our purposes, we require only the rank and need not recover Betti or de Rham realizations.
See also [AL24, §7.4] for another impractical but complete method.

(7.2.26) Lombardo’s algorithm takes as input equations for an abelian variety A with respect
to a projective embedding, together with equations for the subvariety ΓA ⊂ A3 representing
the graph of the group operation (x, y, x ·A y−1). It outputs a description of the endomorphism
algebra EndZ(A), including its rank.

(7.2.27) Theorem[Lom18; CMSV18; CLV21]. There exists an unconditional algorithm that
takes as input the equations defining a smooth proper curve C/Q and returns a representation
of EndZ(JC).

Proof. Given an irreducible curve C/Q, we can compute equations for JC and its group law by
following the approach of [Cho54]. For irreducible curves C1, . . . , Ck, we compute projective
embeddings of the JCi and embed their product

⊕
JCi into projective space via the Segre

embedding. Given equations for a smooth proper curve C/Q, this procedure yields equations
for JC and its group operations. We then apply Lombardo’s algorithm to compute the rank of
EndZ(JC), and the algorithm of [CMSV18] to compute a representation of the endomorphism
ring. □

(7.2.28) Remark. The algorithm of [CMSV18] computes a representation of the integral
endomorphism algebra E = EndZ(JC) together with the decomposition of its rational span

(7.2.28.1) EQ := E ⊗Z Q ∼= B1 × . . .×Br

as a product of simple Q-algebras Bi, each isomorphic to a matrix algebra Matni(Di) over a
division algebra Di with center a number field; see [CMSV18, Rem. 7.2.13].

Given a finitely generated E-module X (e.g., a lattice with a E-action), this decomposition
induces a canonical and effective splitting

(7.2.28.2) XQ := X ⊗Z Q = X1,Q ⊕ . . .⊕Xr,Q,

where each Xi,Q is a Bi-module. Intersecting with X, we obtain sublattices Xi := X ∩Xi,Q of
finite index in Xi,Q, giving a corresponding decomposition up to isogeny:

(7.2.28.3) X ∼ X1 ⊕ . . .⊕Xr.

This splitting is explicitly computable from the data returned by [CMSV18].

7.3. Induced morphisms between Jacobian motives

(7.3.29) Suppose p:C → C ′ is a morphism of smooth proper curves over Q, and letD,E ⊂ C(Q)
and D′, E ′ ⊂ C ′(Q) be finite disjoint sets. Then p induces a morphism p: (C \ D,E) →
(C ′ \D′, E ′) if and only if p(E) ⊂ E ′ and p−1(D′) ⊂ D.

(7.3.30) The morphism p induces a pushforward p∗: Div
0(C \ D) → Div0(C ′ \ D′), which

restricts to a morphism of lattices LE → LE′ . For g ∈ κ(C)×D,1, we have Nmp(g) ∈ κ(C ′)×D′,1
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and p∗(div(g)) = div(Nmp(g)). Thus, we have a well defined map

(7.3.30.1) p∗:
Div0(C \D)

κ(C)×D,1
→ Div0(C ′ \D′)

κ(C ′)×D′,1

which respects the markings LE → JDC and LE′ → JD
′

C′ .

(7.3.31) We denote the induced map on Jacobian motives by p∗: JDC,E → JD
′

C′,E′ . At the level
of mixed Hodge structures, this corresponds to

(7.3.31.1) p∗: H1(J
D
C,E) = H1(C \D,E) → H1(J

D′

C′,E′) = H1(C
′ \D′, E ′).

(7.3.32) The Cartier dual of the map p∗ is a morphism p!: JE
′

C′,D′ → JEC,D. On points, this is
induced by the pullback map on divisors

(7.3.32.1) p∗: Div0(C ′ \ E ′) → Div0(C \ E),
which restricts to a lattice morphism LD′ → LD. Observe that, for g ∈ κ(C ′)E′,1 we have
p∗ div(g) = div(g ◦ p) and g ◦ p ∈ κ(C)E,1 because p(E) ⊂ E ′. Therefore, linear equivalence is
preserved.

(7.3.33) Remark. To prove that the Cartier dual of p∗ behaves as we described on points,
recall that JEC,D can be described as a Picard group on (C \ E,D) and the pullback map on
line bundles is given by divisorial pullback.

(7.3.34) On homology, the corresponding map is the transfer map

(7.3.34.1) p!: H1(C
′ \ E ′, D′) → H1(C \ E,D).

(7.3.35) Remark. To prove this statement, note that p! is the pullback on cohomology of
(C ′ \D′, E ′), identified with homology of (C ′ \ E ′, D′) via Poincaré–Lefschetz duality. Recall
that Cartier duality on motives correspond to the Poincaré–Lefschetz duality on H1.

(7.3.36) Effectivity. Both the action on the points and the action on H1 for p! and p∗ is
effective. The chain of arguments essentially follows that of (7.1.20).

7.4. Correspondences on Jacobian motives

(7.4.37) For i = 1, 2 let Ci be a smooth proper irreducible curves over Q and Di, Ei ⊂ Ci(Q)
be finite disjoint sets.

(7.4.38) Definition. An irreducible correspondence from (C1 \D1, E1) to (C2 \D2, E2) is a
correspondace (C, f1, f2) from C1 to C2 such that f1(f−1

2 D2) ⊂ D1 and f2(f
−1
1 E1) ⊂ E2. A

correspondence is a formal Z-linear combination of irreducible correspondences.

(7.4.39) Given an irreducible correspondence C = (C, f1, f2) as above, let D = f−1
2 (D2) and

E = f−1
1 (E1). Then, recalling (7.3.29), we have morphisms f1: (C \ E,D) → (C1 \ E1, D1)

and f2: (C \D,E) → (C2 \D2, E2). Note the flip in the role of punctures and markings for f1.

(7.4.40) Consequently, applying the constructions in §7.3, we get maps

(7.4.40.1) JD1
C1,E1

f !1→ JDC,E
f2,∗→ JD2

C2,E2
,

whose composition we will denote by

(7.4.40.2) [C∗] = f2,∗ ◦ f !
1: J

D1
C1,E1

→ JD2
C2,E2

.

This definition extends additively to formal Z-linear combinations of irreducible correspon-
dences.
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(7.4.41) Using §7.3, we see that the map on divisor classes is defined at the level of divisors
by q∗p∗: Div0(C1 \D1) → Div0(C2 \D2) and this restricts to LE1 → LE2 .

(7.4.42) Using §7.3, we see that the induced map on mixed Hodge structures is q∗p!: H1(C1 \
D1) → H1(C2 \D2) which is effective by (7.3.36). .

(7.4.43) Therefore, given a correspondence C from (C1 \ D1, E1) to (C2 \ D2, E2) we can
effectively compute the action on divisors representing the map [C∗]: JD1

C1,E1
→ JD2

C2,E2
and the

action on H1.

(7.4.44) Lemma. Let C1, . . . , Ck be a tuple of correspondances on C and D ⊂ C(Q) a finite
subset. Then we can effectively compute a finite set D′ ⊂ C(Q) containing D such that, for all
i = 1, . . . , ρ, Ci induces a correspondance from (C,D) to (C,D′), in particular Ci,∗:LD → LD′ .
Dually, the transpose correspondances Cti induce correspondances from C \D′ to C \D, in
particular, C∗

i : Div
0(C \D′) → Div0(C \D).

Proof. Write Ci =
∑

j aij(Cij, pij, qij) as a sum of irreducible correspondances. Let Dij ⊂ Cij
be the preimage p−1

ij (D). Let D′ be the union ∪ijqij(Dij). Then, for each i, j, (Cij, pij, qij) is
a correspondance from (C,D) to (C,D′). Therefore, Ci is a correspondance from (C,D) to
(C,D′). The dual statement is clear. □

(7.4.45) Remark. It is tempting to choose a basis ξ1, . . . , ξd for LD and define D′ to be
the union of the supports of Ci,∗ξj. Although this ensures Ci,∗:LD → LD′ , each irreducible
component of Ci,∗ may not induce such a map and then the construction of the action on H1

requires an extra step.
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8. Explicit morphisms and decompositions of push-pull Jacobian motives

(8.0.1) In this section, we describe the operations on push-pull Jacobian motives that can be
carried out explicitly, both at the level of points and mixed Hodge structures.

(8.0.2) We begin by introducing the notions of point-explicit and MHS-explicit morphisms (8.1.17).
In this context, explicit means that the action on divisor classes and on H1 can be com-
puted effectively by linear algebra and divisor arithmetic on curves, without invoking higher-
dimensional techniques. We also develop techniques to determine more suitable representatives
for a given push-pull Jacobian motive in its isogeny class.

(8.0.3) We explain how to compute the kernel of the Abel–Jacobi map from a lattice (8.3.32),
and build on this to explicitly split off Baker components from push-pull Jacobian mo-
tives (8.4.39), (8.5.43).

(8.0.4) We also explain how to compute the period relations of a Baker motive (8.8.61).

8.1. Explicit representations of morphisms

(8.1.5) Representing motives. In this work, we represent a subclass of motives by push-pull
Jacobian motives. Not all motives admit such a description; in fact, not even all abelian
varieties are Jacobians. Nevertheless, the subclass we consider is evidently rich enough to
represent any 1-period and, as we will show, is enough to capture all relations.

(8.1.6) Representing a push-pull. To represent a motive M = [Y → [X → A]∨] as a
push-pull of another motive M ′ = [Y ′ → [X ′ → A]∨] is to represent M ′ and lattice morphisms
χ:X → X ′ and ψ:Y → Y ′ such that M = ψ∗χ∗M

′. If M already has another representation,
then it is implied that the isomorphism M ≃ ψ∗χ∗M

′ (or its inverse) is explicit, at least at
the level of H1.

(8.1.7) Different representations, same motive. Let D ⊂ D′ ⊂ C(Q) be finite sets. The
motive JDC is represented as a Jacobian motive, while it is also isomorphic to the pushout
ι∗J

D′
C = J ιC via the inclusion of lattices ι:LD → LD′ . Although isomorphic, these motives

have different representations, affecting how points and Betti or de Rham realizations are
described. For example, points of JDC are represented by divisors on C \D, whereas points of
ι∗J

D′
C by divisors on C \D′. Such distinctions matter when applying morphisms or moving

divisors away from problematic loci.

(8.1.8) Representing morphisms. We will need to single out representations of certain
morphisms between push-pull Jacobian motives. We aim for an effective—even, efficient—
computation of the action of the map on “points” and on H1. Prime examples are those
induced from lattice pushout and pullback maps as well as correspondences. The map induced
by a correspondence in the sense of (7.4.40) is represented by the correspondence itself as
in (7.1.7).

(8.1.9) Representing pullback and pushout maps. Consider the push-pull Jacobian
motive M = JχC,ψ where χ:X → LD and ψ:Y → LE. A morphism of lattices µ:X ′ → X

represents the pushout map JχC,ψ → µ∗J
χ
C,ψ = Jχ◦µC,ψ . Similarly, a lattice morphism ν:Y ′ → Y

represents the pullback map ν∗JχC,ψ = JχC,ψ◦ν → JχC,ψ.

(8.1.10) Points of a motive. Let M = [L→ G] be a 1-motive. By the points of M , we mean
the complex L→ G(Q), or, up to isogeny, the complex L⊗Q → G(Q)⊗Q. For push-pull
Jacobian motives, both the group G(Q) and the map L→ G(Q) can be described explicitly
in terms of divisor classes (6.3.31).
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(8.1.11) Point-explicit morphisms. A morphism M1 →M2, or rather its representation,
between two push-pull Jacobian motives is said to be point-explicit if the induced map
M1(Q) → M2(Q) is effective. In particular, given a divisor representing a divisor class on
M1, one can compute a divisor representing its image in M2. We further require that the
operations involved reduce to simple linear algebra or to divisor arithmetic on curves and
do not rely on higher dimensional algebraic geometry. For instance, correspondences induce
point-explicit morphisms (7.3).

(8.1.12) Pushout and pullback are point-explicit. Recall that we represent points of a
push-pull Jacobian motive by the class of a tuple (a, ξ), where a ∈ GX

m and ξ ∈ Div0(C \D)
for some data X,C,D. A pushout morphism induced by a lattice map χ:X ′ → X acts on a
via the dual map χ̂:GX

m → GX′
m , while leaving ξ unchanged. That is, the point [a, ξ] is sent to

[χ̂(a), ξ]. The marking is adjusted accordingly, so pushout maps are point-explicit. Pullback
maps induced by lattice morphisms are evidently point-explicit, as they only act non-trivially
on the lattice part of the points.

(8.1.13) MHS of a motive. For a motive M , the associated mixed Hodge structure is given
by H1(M) = (HB

1 (M),H1
AdR(M)∨, cB,AdR). When M is a push-pull Jacobian motive, we have

explicit representatives for bases of both underlying vector spaces (6.5.43).

(8.1.14) MHS-explicit morphisms. A morphism M1 →M2 between two push-pull Jacobian
motives is MHS-explicit if the induced map between their mixed Hodge structures H1(M1) →
H1(M2) is effective. Once again, we require that the operations involved reduce to simple linear
algebra or to divisor arithmetic on curves and do not rely on higher dimensional algebraic
geometry. For instance, correspondences are MHS-explicit (7.4.43).

(8.1.15) Note that, given basis elements for the Betti and de Rham realizations of M1, one
can compute under an MHS-explicit map their images in the corresponding realizations of
M2. This means we have explicit linear maps: matrices in chosen bases that describe the
induced morphisms on each realization.

(8.1.16) Pullbacks and pushouts are MHS-explicit. This is clear from the representation
of the MHS given in (6.5.43). Pullback and pushout maps will act as the identity on the central
component H1(C \D,E) and act naturally via the lattice maps on the outer components.

(8.1.17) Explicit map. A morphism between two push-pull Jacobian motives is said to be
explicit if it is both point-explicit and MHS-explicit. That is, we can compute its action
on divisor classes representing points, and describe its induced morphism on mixed Hodge
structures via explicit matrices. We established above that pullback and pushout morphisms
as well as correspondences are explicit.

(8.1.18) Period effective maps. An MHS-explicit map M1 → M2 will be called period
effective if R(M1) can be determined from R(M2) by applying prescribed linear algebra
operations. Trivially, MHS-explicit isomorphisms are period effective. We also proved that
pushouts and pullbacks are period effective (6.6.49).

8.2. Isogenies, direct sum decompositions, and making lattice maps injective

(8.2.19) Our primary concern is with period relations and, therefore, with the MHS H1.
However, we cannot compute effectively with the comparison isomorphism and we resort to
numerical approximations. The motives are used to remedy this defect: their points allow us
to recover the exactness lost in working with the approximate comparison isomorphism. In
this sense, motives serve as an effective model for the underlying H1. Naturally, we wish to
allow ourselves to work up to isogeny, as this leaves H1 unchanged.
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(8.2.20) Effectively interchanging isogenous motives. Suppose M1 → M2 is an MHS-
explicit isogeny, so that the induced map H1(M1) → H1(M2) is an effective isomorphism.
Then we obtain an identification of the space of period relations: R(M1)

∼→ R(M2). Thus,
for our purposes, we may pass between M1 and M2 interchangeably.

(8.2.21) Direct sum decompositions. An explicit direct sum decomposition of a motive
M3 consists of explicit morphisms M1 → M3 and M2 → M3 (or M3 → M1 and M3 → M2)
such that the induced map M1 ⊕M2 →M3 (or M3 →M1 ⊕M2) is an isomorphism. In any
case, we obtain an explicit identification H1(M3) = H1(M1)⊕H1(M2). Furthermore, we get a
pointwise isomorphisms M1(Q)⊕M2(Q)

∼→ M3(Q), or in the other direction. We call this
giving an explicit direct sum decomposition M3 ≃M1 ⊕M2.

(8.2.22) Isogeny direct sum decomposition. An explicit isogeny direct sum decomposition
of a motive M3 into M1 and M2 consists of explicit isogenies M1 ∼ M ′

1, M2 ∼ M ′
2, and

explicit morphisms M3 →M ′
1 and M3 →M ′

2 such that M3 →M ′
1 ⊕M ′

2 is an isogeny. This
gives an explicit identification H1(M3) = H1(M1)⊕ H1(M2) and an explicit, pointwise, map
M3(Q) ⊗ Q ∼→ (M1(Q) ⊕M2(Q)) ⊗ Q. As in (8.2.21), we also allow for maps in the other
direction. We will refer to this as an explicit isogeny direct sum decomposition and denote it
by M3 ∼M1 ⊕M2.

(8.2.23) Disjoint union decomposition. Suppose (C \ D,E) is the disjoint union of
(Ci \Di, Ei)’s. Then the associated Jacobian motive JDC,E naturally admits an explicit direct
sum decomposition into the JDiCi,Ei ’s. This decomposition is induced by functoriality and is
explicit on both points and mixed Hodge structures.

(8.2.24) Making lattice maps injective. Let JC,χ be a pullback Jacobian motive with
χ:X → LD. Then we may effectively construct a disjoint union C ′ of C with finitely many
copies of P1, a finite set D′ ⊂ C ′(Q), and an injective lattice map χ′:X → LD′ , such that
there exists an explicit isomorphism JC,χ ∼= JC′,χ′ . This gives a model in which the lattice
map is injective—a seemingly minor step that yields significant expository simplification.

Proof. Let χ:X → LD and let K = kerχ. Choose a basis e1, . . . , ek for K, and a complement
X ′ ⊂ X such that X = K ⊕X ′. Let C ′ be the disjoint union of C and k copies of P1, and let
D′ be the union of D with {0,∞} on each added copy.

Define χ′:X → LD′ by sending ei 7→ ∞ − 0 on the i-th P1, and restricting to χ on X ′.
Then χ′ is injective by construction.

Observe that JC,χ ∼= [K → 0]⊕ [X ′ → JC ] is an explicit decomposition because the kernel of
the lattice map splits from the representation of points and of H1 by the pullback construction.
On the other hand, JC′,χ′ ∼= [Z → 0]⊕k ⊕ [X ′ → JC ] by the disjoint union decomposition of
(C ′, D′). The two motives are identified via identification of summands. □

(8.2.25) Remark. The construction in (8.2.24) is effective and leaves JC unchanged. We will
invoke this operation by saying that we may assume χ is injective, without renaming C, D,
or χ.

8.3. Computing the kernel of an Abel–Jacobi map

(8.3.26) Consider JC,D = [LD
AJ→ JC ]. Let KD ⊂ LD be the kernel of the Abel–Jacobi map

AJ:LD → J(Q), these are the divisors supported on D which are linearly equivalent to 0. We
will give an algorithm here to compute KD. Let TD ⊂ LD be the kernel of LD → J(Q)⊗Z Q,
these are the divisors supported on D whose linear equivalence classes are torsion.
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(8.3.27) Saturating a lattice. Once we know KD ⊂ LD, we can saturate it in LD to compute
TD. If we choose bases and represent the inclusion KD ↪→ LD by an integer matrix, the
saturation of the image can be computed from the Smith normal form of the matrix.

(8.3.28) Preparation. Without loss of generality, we may assume C is irreducible. Fix a
basis ξ1, . . . , ξn for LD, these are divisors of degree 0 on C supported on D. Let k ⊂ Q be a
number field over which C and each point of D can be defined. In particular, the divisors
ξ1, . . . , ξn are defined over k.

(8.3.29) The Néron–Tate height pairing. The algorithm of [vBHM19] allows us to
compute the Néron–Tate height pairing ⟨[ξi], [ξj]⟩ of the divisor classes to arbitrary precision.
By performing the relevant period computations with certified error bounds, we may compute
complex balls containing each Néron–Tate height with desired precision. The Néron–Tate
height pairing is positive definite on JC(k)⊗R. The matrix (⟨[ξi], [ξj]⟩)ni,j=1 gives the pullback of
the height pairing to LD⊗R. The rank of this pullback matrix is the rank of LD⊗Q → JC(Q)
despite the real coefficients, since the map is defined over Q.

(8.3.30) Testing membership in the kernel. Given an element ξ ∈ LD, AJ(ξ) = 0 in JC if
and only if ξ is linearly equivalent to zero. This can be tested effectively by computing the
Riemann–Roch space of ξ. In particular, given a sublattice K ′ ⊂ LD, performing this test on
a basis for K ′ we can decide whether K ′ ⊂ kerAJ.

(8.3.31) An efficient guess for the kernel. We can use lattice reduction [LLL82] to
efficiently guess a sublattice K ′ ⊂ LD likely to lie in KD. Using the filtrations and the
comparison isomorphism on H1(C,D) we have an approximation of the map

(8.3.31.1) HB
1 (C,D;Z) → (F 1H1

AdR(C,D))∨ = (F 1H1
AdR(C))

∨

Use LLL to guess the integral kernel of the map. Project the putative kernel to LD =
HB

1 (C,D)/HB
1 (C) to formulate the guess K ′. This guess K ′ can be refined by increasing the

working precision on the period matrix.

(8.3.32) Computing the kernel. Let K = 0. We start by formulating a guess (8.3.31) of a
kernel K ′ ⊂ LD and check (8.3.30) if a basis for K ′ consists of divisors linearly equivalent to
0. Update K by adding the basis elements of K ′ that were linearly equivalent to 0. Increase
precision of the period matrix used for the guess and repeat. This gives an non-decreasing
sequence of lattices K in KD.

In parallel, we will compute a non-decreasing sequence of lower bounds on the rank of
AJ⊗R on LD ⊗ R. To find the lower bounds, we simply check which minors of the height
pairing (8.3.29) on L⊗ R do not contain zero using higher and higher precision.

Whenever our lower bound matches the corank of K, we compute the saturation T of K,
find finitely many elements in T dominating T/K and check which of these finitely elements
are linearly equivalent to 0. Then KD is the span of K with these new elements.

The algorithm terminates because LLL will eventually find a lattice of full rank in KD and
our approximation of the minor of the correct corank will eventually stop containing 0.

8.4. Splitting Baker components, part I

(8.4.33) We will now explicitly split the kernel KD of the Abel–Jacobi map from the Jacobian
motive JC,D = [LD → JC ]. This means giving a pullback Jacobian JC,ℵD , ℵD:ND → LD, and
an explicit isogeny direct sum decomposition JC,D ∼ [KD → 0]⊕ JC,ℵD , recall (8.2.22).

(8.4.34) We first need an explicit map from [KD → 0] into JC,D, meaning it must be both
point-explicit and MHS-explicit (8.1.17).

51



(8.4.35) At the level of points, the only non-trivial part of the inclusion of the motive
[KD → 0] into JC,D is the inclusion of lattices KD ⊂ LD. Having computed KD explicitly in
LD in (8.3.32), there is nothing to prove here.

(8.4.36) Lemma. The injection [KD → 0] → JC,D = [LD → JC ] is MHS-explicit.

Proof. Let e1, . . . , ek be a basis for the kernel KD ⊂ LD. For each ei ∈ KD, compute a rational
function fi ∈ κ(C)× such that ei = div(fi).

Recall that the Jacobian motive of (P1, {0,∞}) satisfies JP1,{0,∞} ∼= [Z → 0]. Let Γfi denote
the graph of the rational function fi:C → P1. Consider the transpose correspondence Γtfi
from (P1, {0,∞}) to (C,D). It acts (7.3.32) by pulling back the unique divisor class [∞− 0]
to div(fi), thus mapping the generator 1 from JP1,{0,∞} to ei in JC,D.

Identify the motive [KD → 0] with the Jacobian motive of a disjoint union of k copies of
(P1, {0,∞}). Define a correspondence Γ ⊂

(∐k
i=1 P1

)
× C as the disjoint union of graphs

Γfi ⊂ P1 ×C. The transpose correspondence Γt defines a morphism from the Jacobian motive
J⊕k
P1,{0,∞} to the Jacobian motive JC,D, representing the injection [KD → 0] ↪→ JC,D.
This map is MHS-explicit since morphisms represented by correspondances have this

property (7.4.43). □

(8.4.37) Remark (Explicit interpretation of the vanishing condition (14.3)). In the
monograph [HW22, p.137], a certain vanishing condition “(14.3)” is introduced for rational
differentials of the second type. Explicitly, given a rational differential ω on C of the second
type, and a submotive ι: [Z → 0] ↪→ JC,D, 1 7→ div(f), f ∈ κ(C)×, condition (14.3)
asks for the vanishing of ι∗([ω]), where [ω] ∈ H1

AdR(C,D) is the cohomology class of ω.
The statement of Lemma (8.4.39) implies that this condition can be explicitly checked by
arithmetic on curves. We will spell this out here, as it may be of independent interest.

Following the proof of the lemma above, we need the Cartier dual (7.3.32) of the pushforward
map given by f :C \ D → P1 \ {0,∞}. On mixed Hodge structures the induced map is
f !: H1(P1, {0,∞}) → H1(C,D), see (7.3.34).

On algebraic de Rham cohomology, this corresponds to the transfer map,

(8.4.37.1) f!: H
1
AdR(C,D) → H1

AdR(P1, {0,∞}),
which evaluates to the f -trace on differentials (3.8.59) mapping [ω] to [trf ω]. Note that the
trace of ω has no residual poles and must be exact on P1.

We have an identification H1
AdR(P1, {0,∞}) ≃ Q{0,∞}

/Q ≃ Q, which sends dh 7→ h(0) −
h(∞), see (3.4.30). Thus, the condition ι∗([ω]) = 0 is explicitly checked by computing the
rational function h such that trf ω = dh and evaluating the difference h(0)− h(∞).

(8.4.38) Representing the quotient. The quotient JC,D/[KD → 0] admits an explicit
representation as a pullback motive, which we describe here. This representation is not
unique, but any two representations differ only by an isogeny. Let KD ⊂ TD be as computed
previously, and define n ∈ N to be the least common multiple of the orders of elements
in the quotient TD/KD. Define LnD := n · LD ⊂ LD and let JC,nD denote the pullback
associated to LnD ↪→ LD. By construction, LnD ∩ TD = LnD ∩ KD = KnD, the kernel of
the Abel–Jacobi map on LnD. Define ND := LnD/KnD, which naturally maps to JC . The
resulting motive M := [ND → JC ] = JC,nD/[KnD → 0] is isogenous to the original quotient
JC,D/[KD → 0]. First note that for any splitting ℵD:ND → LnD ⊂ LD, the map ND → JC
will factor through ℵD, hence M ≃ JC,ℵD . Moreover, the natural inclusion JC,ℵD ↪→ JC,nD
followed by the quotient map induces an explicit isomorphism

(8.4.38.1) H1(JC,ℵD)
∼→ H1(JC,nD)/H1([KnD → 0]) = H1(M),
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as well as the identity map on the points JC,ℵD(Q)
∼→ M(Q). To comply with our choice

of representation, we will write JC,ℵD for M , however, we could have slightly extended our
representation to allow for quotients of lattices and cover M since the choice of ℵD plays no
role here.

(8.4.39) Lemma. We have an explicit isogeny direct sum decomposition JC,D ∼ [KD →
0]⊕ JC,ℵD . In fact, we can describe the decomposition maps in either direction

Proof. The explicit maps JC,ℵD → JC,D and [KD → 0] → JC,D give an explicit isogeny direct
sum decomposition of JC,D.

We can also realize the isogeny in the other direction. First, replace JC,D with the explicitly
isogenous representative JC,nD. The lattice LnD splits via ℵD into KnD ⊕ ND. Projecting
onto [KnD → 0] and onto the quotient JC,nD/[KnD → 0] = [ND → JC ] ≃ JC,ℵD recovers the
decomposition in the other direction. □

8.5. Splitting Baker components, part II

(8.5.40) We continue with the notation of the previous part and consider JDC . This time we
will give an explicit isogeny direct sum decomposition JDC ∼ GKD

m ⊕ JC,ℵD .

(8.5.41) Lemma. The canonical surjection from JDC to GKD
m is explicit.

Proof. The proof is dual to that of (8.4.39), using P1 \ {0,∞} in place of (P1, {0,∞}). We
repeat a part of the argument here to clarify the action on points.

Let KD = ⟨div(f1), . . . , div(fk)⟩ for some fi ∈ κ(C)×, and let Γfi denote the graph of
fi:C \D → P1 \ {0,∞}. Since JP1\{0,∞} = Gm, we identify GKD

m ≃ (J
{0,∞}
P1 )⊕k as the Jacobian

of k disjoint copies of P1 \ {0,∞}.
Let Γ =

∐
Γfi be the disjoint union of these graphs. Then Γ defines a correspondence from

C \D to
∐
(P1 \ {0,∞}) inducing the desired map JDC → GKD

m . The induced map is explicit
by virtue of being induced by a correspondance. □

(8.5.42) Action on points made explicit. The Abel–Jacobi map AJ:Div0(P1 \ {0,∞}) →
J
{0,∞}
P1 ≃ Gm is the one mapping [1 : a]−[1 : b] to a/b. Equivalently, any divisor div h is mapped

to h(∞)/h(0) ∈ Gm. Given a divisor ξ representing a point of JDC the point AJ(fi,∗(ξ)) ∈ Gm

is the i-th coordinate of the map JDC ↠ GKD
m for KD = ⟨div(f1), . . . , div(fk)⟩.

(8.5.43) Lemma. We have an explicit isogeny direct sum decomposition JDC ∼ GKD
m ⊕ JℵD

C .
We can describe the decomposition maps in either direction.

Proof. The map JDC ↠ GKD
m is made explicit in (8.5.41). The map JDC ↠ JℵD

C is explicit
by pushout construction. This gives the explicit isogeny direct sum decomposition in one
direction. To get the isogeny in the other direction repeat the argument in (8.4.39) by taking
duals. □

(8.5.44) We explicate the inclusion JℵD
C ↪→ JDC for a representative [ξ]ℵD , where ξ ∈ Div0(C\D).

Use the explicit map π: JDC → GKD
m described in (8.5.42) to compute π([ξ]D) ∈ GKD

m . Then,
use the splitting ι:GKD

m ↪→ GLD
m ↪→ JDC induced from LD ∼ KD ⊕ND and compute [ξ′]D :=

[ξ]D − ι(π([ξ]D)) which necessarily lies in kerπ ∼ JℵD
C .

8.6. Splitting Baker components, part III

(8.6.45) We continue with the notation of the previous parts. We will now split the Baker
components from JC,χ and JχC for a lattice map χ:X → LD.
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(8.6.46) Let Kχ ⊂ X be the pullback of KD ⊂ LD, i.e., the kernel of X → JC . Since KD ⊂ LD
was computed, Kχ is computable.

(8.6.47) Scaling χ by an integer corresponds to passing to an isogenous representative of
JC,χ. Then, taking n > 0 as in (8.4.38), work with nχ:X → LnD so the pullback of torsion
divisors classes and 0 divisor classes agree and give Kχ. Thus Nχ := X/Kχ → JC is well
defined. Choose a lift ℵχ:Nχ → LnD ⊂ LD to represent [Nχ → JC ] as the pullback JC,ℵχ . By
construction Nχ → JC(Q)⊗Q is injective, thus the motives JC,ℵχ and Jℵχ

C are reduced (5.5.40).

(8.6.48) Recall (8.2.24) that by a small modification to C,D, χ we may assume that χ:X → LD
is injective. We make this assumption now.

(8.6.49) Proposition. We have an explicit isogeny direct sum decompositions JC,χ ∼ [Kχ →
0]⊕ JC,ℵχ and JχC ∼ GKχ

m ⊕ J
ℵχ
C . We can describe the decomposition maps in either direction.

Observe that JC,ℵχ is reduced.

Proof. The maps [Kχ → 0] → JC,χ and JC,ℵχ → JC,D are trivially point-explicit. To determine
the decomposition at the level of H1 observe that we have an inclusion, having made χ
injective, H1(JC,χ) ↪→ H1(JC,D). We may now use the decomposition on the right hand side
from (8.4.39). For the maps in the reverse direction repeat the arguments there.

For the dual decomposition JχC ∼ GKχ
m ⊕ J

ℵχ
C we make use of (8.5.43). For instance,

injectivity of χ implies JDC ↠ JχC and Kχ ↪→ KD implies GKD
m ↠ GKχ

m . To describe the map
JχC → GKχ

m lift the divisor to JDC , tautological at the level of representatives, map to GKD
m and

then down to GKχ
m . On the map of H1, use the splitting H1(GKD

m ) ↪→ H1(J
D
C ) followed by the

surjection H1(J
D
C ) ↠ H1(J

χ
C). The other map JχC ↠ J

ℵχ
C is induced by pushforward. For the

maps in the reverse direction we repeat the argument in (8.4.39) and use (8.5.44). □

8.7. Splitting Baker components, part IV

(8.7.50) Given a push-pull motive M = JχC,ψ with χ:X → LD and ψ:Y → LE, we will
give an algorithm that produces a push-pull Jacobian motive M ′, an explicit isogeny direct
sum decompoition of M ′ into a Baker component and a reduced push-pull Jacobian, and a
realization of M as a push-pull of M ′.

(8.7.51) Remark. Recall that period relations of M can be computed from that of M ′ (6.6.49)
and the periods of M ′ can be computed once we can split it into a direct sum of a Baker and
a reduced motive (5.6.52).

(8.7.52) We make use of the notation in the previous parts. Anything defined for χ, e.g., ℵχ,
will also be defined for ψ. Modify the representative as in (8.2.24) to assume both χ and ψ
are injective. Also, pass to an isogenous representative, as in (8.2.24), so as to assume that
neither χ or ψ hit non-trivial torsion divisors.

(8.7.53) Consider the map LE → JχC . Compute KE ⊂ LE and observe that KE → GX
m can

be made explicit: write KE = ⟨div(f1), . . . , div(fk)⟩ and recall (6.3.29) that KE → GX
m is

described by div(fi) 7→ (fi)|D◦χ. Compute the kernel Kχ
E := ker(KE → GX

m). By scaling ψ
again, we assume Kχ

ψ := ψ−1Kχ
E is saturated in Y . Let Nχ

ψ := Y/Kχ
ψ and choose a splitting

ℵχψ:N
χ
ψ → Y . If Y = LE and ψ was the identity (prior to scaling) then we write Nχ

E and ℵψE
instead.

(8.7.54) Lemma. The map [Kχ
ψ → 0] → JχC,ψ can be made explicit. In particular, we have an

explicit direct sum decomposition JχC,ψ ≃ [Kχ
ψ → 0]⊕ Jχ

C,ℵχψ
.
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Proof. The action on the points is a triviality. The difficulty is in computing the image under
H1. We can choose a basis of Kχ

ψ consisting of divisors of functions f ∈ κ(C)D. Therefore,
it will be sufficient to fix one such f with [div(f)]χ = 0 with support in Y ↪→ LE and to
determine the corresponding image of [Z → 0] → JχC,ψ under H1.

Since div(f) is supported on E, we can view it as a map f : (C \E,D) → (P1\{0,∞}, f(D)).
The pullback induces an explicit map f ∗: J

f(D)

P1,{0,∞} → JDC,E. Here Jf(D)

P1,{0,∞} = [Z⟨∞ − 0⟩ →
J
f(D)

P1 ] and f ∗ maps ∞− 0 to div(f).

Note that χ→ LD
f∗→ Lf(D) gives a pushout Jf∗◦χP1,{0,∞} of the Baker motive Jf(D)

P1,{0,∞} which
maps to JχC,E. Since [div(f)]χ = 0, the pushout has a split [Z → 0] submotive. Making
this splitting explicit by way of correspondences is possible but cumbersome. In practice,
it is much easier to put the period matrix into block form, by change of bases in the de
Rham and Betti realizations, using the fact that we can work effectively with the Baker
periods (8.8.60). Once H1([Z → 0]) ↪→ H1(J

f∗◦χ
P1,{0,∞}) is computed, map it to H1(J

χ
C,E) using f ,

and then use the pullback via ψ to determine the image in H1(J
χ
C,ψ) ⊂ H1(J

f∗◦χ
P1,{0,∞}) (here we

use div(f) ∈ Y ↪→ LE).
The map Jχ

C,ℵχψ
↪→ JχC,ψ is explicit and completes the direct sum decomposition together

with [Kχ
ψ → 0] ↪→ JχC,ψ. □

(8.7.55) Lemma. We can effectively realize JχC,ψ, up to isogeny, as a pullback of a motive
M ′ = [Y → GKχ

m ]⊕ J
ℵχ
C,ψ given as a direct sum. Note that the submotive Jℵχ

C is reduced.

Proof. Explicitly split JχC ∼ GKχ
m ⊕ J

ℵχ
C as in (8.6.49). Since this isogeny is point explicit, we

may map our marking Y → JχC to the two components, at least after scaling ψ. The pullback
via the diagonal Y → Y ⊕ Y recovers JχC,ψ. □

(8.7.56) Lemma. We can effectively realize JχC,ψ, up to isogeny, as a pushout of a motive
M ′ = [Kψ → GX

m]⊕ JχC,ℵψ . Note that the quotient motive JC,ℵψ is reduced.

Proof. The construction of M ′ is, by now, clear. Pushout M ′ via the diagonal X → X ⊕X
to recover JχC,ψ up to isogeny. □

(8.7.57) Proposition. Given JχC,ψ, we can effectively construct a Baker motive MB and
a reduced push-pull Jacobian motive M red together with lattice maps realizing JχC,ψ as a
push-pull of MB ⊕M red, up to isogeny.

Proof. We note that ℵχ and ℵψ give reduced motives (8.6.47). Now apply the two lem-
mas (8.7.55) and (8.7.56), one after the other, removing the Baker components at each step
to end up with M red = J

ℵχ
C,ℵψ . □

8.8. Period relations of a Baker motive

(8.8.58) Let MB be a Baker motive. Just like any other motive in our computational scheme,
it is represented as a push-pull Jacobian motive. We will give an algorithm to compute the
period relations R(MB) ⊂ HB

1 (MB)⊗ H1
AdR(MB).

(8.8.59) Let C = P1 and D,E ⊂ C(Q) be disjoint finite sets. Denote the points of E by
ei’s and D by di’s. To simplify notation, we will assume d0 ∈ D is ∞ and identify the rest
of the points in E,D with algebraic numbers Q. For each i, j fix a branch of the logarithm
log(ej − di). We will say that a period of JDP1,E is in standard form if it is expressed as an
explicit Q-linear combination of 1, 2πi, and log(ei − dj)’s.
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(8.8.60) Lemma. Given a representation of H1(P1 \D,E), we can effectively express each
entry in its period matrix in standard form.

Proof. We are given representative elements for bases for H1
AdR(P1 \D,E) and HB

1 (P1 \D,E).
We fix one of each: a representative form (a, ω) and 1-chain γ. We will write the period∫
γ
(a, ω) = a(∂γ) +

∫
γ
ω in standard form. The first term is an explicit algebraic multiple of 1

so we focus on the second term.
Write ω = P (x)/Q(x) dx, and decompose this into a sum of elementary fractions:

(8.8.60.1) ω =
∑
i

Pi(x)

(x− di)ni
dx,

with ni ≥ 0, degPi < ni, and Pi relatively prime to (x− di). If ni ̸= 1, then each summand
admits an elementary antiderivative, and the corresponding integral can be computed by
evaluating this antiderivative at the algebraic endpoints of γ giving an explicit algebraic
number.

When ni = −1, Pi is a constant, the residue of ω at ci, call it ri ∈ Q. The local antiderivatives
are branches of ri log(x− di). The integral of this term over γ will differ from the evaluation
of the logarithm on ∂γ by an integer multiple of ri2πi. This integer multiple can be explicitly
and rigorously determined, for instance by numerical approximation of the integral and of the
logarithms with rigorous error bounds. The evaluation of ri log(x− di) on ∂γ is an explicit
Q-linear combination of log(ej − di)’s. □

(8.8.61) Lemma. Let MB be a Baker motive. Then the space R(MB) of Q-linear relations
between the entries of its period matrix can be computed effectively.

Proof. Since a Baker motive has trivial abelian part, we may write it as a push-pull of JDC,E,
with C =

∐k
i=1 P1 and D,E ⊂ C(Q) disjoint finite subsets. By (6.6.49), the period relations

of MB are determined by those of JDC,E, and thus we may assume MB = JDC,E. The Jacobian
motive JDC,E is a direct sum of irreducible Jacobian motives with the underlying curve C = P1.
We may, therefore, apply Lemma (8.8.60) to write the entries of the period matrix of JDC,E in
standard form.

Let N = dimHB
1 = dimH1

AdR and identify the space HB
1 ⊗H1

AdR with QN2

via the represent-
ing bases. The entries of the period matrix represents the period pairing in our coordinates
QN2

→ C. The kernel R(MB) is the space of relations between the entries of the period
matrix.

Using Baker’s theorem [Bak66], see also [HW22, Theorem 1.05], any Q-linear relation among
logarithms of algebraic numbers lies in the Q-span of Q-linear relations among the same
logarithms, which are in turn spanned by the multiplicative relations among the arguments.
Moreover, a non-zero Q-linear combination of logarithms of algebraic numbers is never
algebraic. Therefore, computing the desired space of relations reduces to finding the lattice of
multiplicative relations between non-zero algebraic numbers.

To find multiplicative relations between a1, . . . , an ∈ Q× ⊂ C, construct the abstract
number field K = Q[x]/p(x) and elements k1, . . . , kn ∈ K such that K has an embedding
that maps (k1, . . . , kn) to (a1, . . . , an). A multiplicative relation between ai’s hold if and only
if the same relation holds between the ki’s in K. Find a finite set of places S of K such that
S contains all Archimedean places and the ki’s are invertible outside of S. Now use Drichlet’s
S-unit theorem, or rather its proof using logarithmic embeddings [Nar04, Theorem 3.12],
together with a day-and-night algorithm analogous to the one given in §8.3 to find the lattice
of all multiplicative relations between the ki’s. □
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9. Supersaturation

(9.0.1) In this section, we will describe an algorithm that effectively supersaturates a given
Jacobian motive JDC,E. By effective supersaturation we mean that the algorithm takes a
Jacobian motive M = JDC,E and outputs the following:

(1) A supersaturated motive M ss = Jχ
′

C,ψ′ represented as a push-pull Jacobian motive.
(2) Lattice morphisms that realize M as a push-pull of M ss.
(3) An explicit isogeny direct sum decomposition of M ss ∼MB ⊕M sat into the direct sum

of a Baker motive and a saturated push-pull Jacobian motive M sat = JχC,ψ.
(4) The action of EndQ(JC) on H1(M

sat).

(9.0.2) Note that period relations of M can be determined effectively from those of M ss

by (6.6.49). The isogeny splitting gives an effective isomorphism H1(M
ss) ≃ H1(MB) ⊕

H1(M
sat). Since MB is Baker and M sat is saturated, we can compute the period relations

of M ss from those of MB and M sat (5.6.52). The period relations of MB can be computed
directly (8.8.61). The period relations of M sat can be computed since it is saturated and we
know the endomorphism action (5.6.50). Therefore, once the supersaturation is complete, we
can compute the period relations of M .

(9.0.3) Remark. In principle, during the algorithm, we change C by adding disjoint copies
of P1 to C, see (8.2.24). However, this does not change JC and we will make this operation
without changing the name of C.

(9.0.4) Throughout, we fix a representation of E := EndZ(JC). This can be computed (7.2.27)
and involves correspondences C1, . . . , Cρ over C such that µ1 = [C1,∗], . . . , µρ = [Cρ,∗] is a
Z-linear basis for E . We will take C1 = ∆C to be the diagonal, inducing the identity on
divisors. We also have the integer tensor (akij) representing the product, µi · µj =

∑
k a

k
ijµk.

9.1. Supersaturation of Jacobian motives of the second kind

(9.1.5) We begin by giving an algorithm to supersaturate a Jacobian motive JC,D = [LD → JC ]
of the second kind. LetX ′ = E⊗LD, and define the supersaturated motive asM ss = [X ′ → JC ]

via the map µ ⊗ ξ 7→ µ([ξ]). The motive JC,D is the pullback of M ss via LD
1⊗ id−→ E ⊗ LD.

The motive M ss coincides with the one considered in [HW22, §15]. We note that M ss can be
explicitly represented as a pullback Jacobian motive, and while the induced action on the
points of JC is straightforward, the corresponding action of E on H1(M

ss) expressed via the
push-pull representation is significantly more involved.

(9.1.6) Determine (7.4.44) finite subsets D′, D′′ ⊂ C(Q) such that our chosen basis of corre-
spondences (9.0.4) induce correspondences from (C,D) to (C,D′) and from (C,D′) to (C,D′′).
Explicitly, we obtain lattice maps:

(9.1.6.1) χ′: E ⊗ LD → LD′ : µi ⊗ ξ 7→ Ci,∗(ξ), and χ′′: E ⊗ LD′ → LD′′ : µi ⊗ ξ 7→ Ci,∗(ξ).

Because C1 = ∆C , we have D ⊂ D′ ⊂ D′′. Let ιD′,D′′ :LD′ ↪→ LD′′ be the natural inclusion
map.

(9.1.7) Pullback Jacobian representation. By construction, the map X ′ → JC factors
through χ′:X ′ → LD′ . Consequently, we represent the motive M ss as the pullback Jacobian
motive χ′,∗JC,D′ .
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(9.1.8) Action on points. The induced action on the points of M ss is clear. The algebra E acts
on the lattice E ⊗ LD through left multiplication, which is effective. For the points of JC(Q),
the action of each element of E is explicitly realized via the chosen basis of correspondences.

(9.1.9) Action on cohomology. The goal of the rest of the subsection is to provide an
algorithm explicitly computing the action of E on H1(M

ss) = χ′,∗H1(JC,D′).

(9.1.10) To simplify exposition, we first ensure the lattice maps χ′ and χ′′ are injective (8.2.24),
and scale these maps appropriately to avoid torsion divisors (??).

(9.1.11) Define K ⊂ E ⊗ LD as the pullback of TD′ (equivalently, of KD′). Since the E-action
maps torsion points of JC to torsion points, the sublattice K must be E-invariant. Use the
semisimplicity of E , and use (7.2.28), to identify a E-invariant complementary sublattice
X ⊂ X ′ such that K ⊕X has full rank in X ′. We denote by χ:X ↪→ LD′ the restriction of χ′

to X, noting this restriction remains injective.

(9.1.12) Through the inclusion K ⊕X ↪→ X ′, the original motive M ss explicitly decomposes,
up to isogeny, into the direct sum [K → 0] ⊕ JC,χ, where JC,χ = [X → JC ], using (8.6.49).
Since the E-action on [K → 0] and its corresponding H1 is explicit, the E-action on H1(M

ss) =
H1([K → 0])⊕H1(JC,χ) can be deduced from that of H1(JC,χ), which remains to be determined.

(9.1.13) Our next goal is to realize the E-action on JC,χ by correspondences from (C,D′) to
(C,D′′). However, the obvious diagram of lattices

(9.1.13.1)
E ⊗X X

E ⊗ LD′ LD′′

multiply

id⊗χ ιD′,D′′◦χ

χ′′

fails to commute. Indeed, for basis elements µi, µj ∈ E and ξ ∈ X ↪→ E ⊗ LD′ the upper path
is induced by

(9.1.13.2) µi ⊗ µj ⊗ ξ 7−→ (µiµj)⊗ ξ =
∑
k

akij µk ⊗ ξ
χ′′
7−−→

∑
k

akij Ck ·ξ,

whereas the lower path is induced by µi ⊗ µj ⊗ ξ 7→ Ci·Cj ·ξ. These two need not agree but, as
the E-action on JC is well-defined, the difference Ci ·Cj ·ξ −

∑
k a

k
ij Ck ·ξ is linearly equivalent

to 0 in LD′′ .

(9.1.14) Recall χ:X ↪→ LD′ ↪→ LD′′ avoids both KD′ and KD′′ (as well as torsion divisors).
Use (8.4.39) to explicitly isogeny split JC,D′′ ∼ [KD′′ → 0]⊕ JC,ℵD′′ where ℵD′′ :ND′′ → LD′′

is defined as in (8.4.38). We may scale χ to assume X → LD′′ factors through nD′′LD′′ and
hence X → JC factors through ℵD′′ . Since ND′′ is a quotient of nD′′LD′′ by classes linearly
equivalent to 0, the diagram (9.1.13.1) will commute when LD′′ is replaced by ND′′ (and LD′

is replaced by a multiple).

(9.1.15) In particular, fixing the diagram (9.1.13.1) as in (9.1.14) and including the Jacobian
components, we get the following diagram (defined up to isogeny), which commutes at the
level of points:

(9.1.15.1)
E ⊗ [X → JC ] [X → JC ]

E ⊗ [LD′ → JC ] [ND′′ → JC ].

We will now realize the bottom arrow using correspondences.
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(9.1.16) Let C̃ =
∐

ρC denote the disjoint union of ρ copies of C, indexed by the basis
elements µi ∈ EZ. Define D̃′ ⊂ C̃(Q) as the disjoint union of ρ copies of D′. Our choice of
basis for EZ identifies the bottom left motive in (9.1.15.1) with a Jacobian motive:

(9.1.16.1) EZ ⊗ [LD′ → JC ] ≃ [LD̃′ → JC̃ ].

To describe the bottom map (9.1.15.1) first consider the correspondence C :=
∐

Ci which
induces a correspondence from (C̃, D̃′) to (C,D′′) and hence an explicit map C∗: JC̃,D̃′ → JC,D′′ .

(9.1.17) We modify diagram (9.1.15.1) to take into account the correspondence to JC,D′′

followed by the explicit surjection coming from the splitting from Lemma (8.4.39):

(9.1.17.1)
E ⊗ [X → JC ] [X → JC ]

E ⊗ LD′ → JC = [LD̃′ → JC̃ ] [LD′′ → JC ] [ND′′ → JC ].
C∗

With this arrangement, each map in the diagram is explicitly realized either by correspon-
dences, lattice pullback, or Baker splitting, making the induced maps on H1’s effective. The
commutativity of the diagram follows from that of (9.1.15.1).

(9.1.18) We recall that the diagram does not commute at JC,D′′ but only at JC,ℵD′′ . Neverthe-
less, since X ↪→ LD′ and X ↪→ ND′′ are injective, the downward arrows in (9.1.17.1) induce
injections E ⊗H1(JC,χ) ↪→ H1(JC̃,D̃′) and H1(JC,χ) ↪→ H1(JC,ℵD′′ ). Therefore, we can compute
the action E ⊗ H1(JC,χ) → H1(JC,χ).

9.2. Supersaturation of Jacobian motives of the third kind

(9.2.19) This time we give an algorithm to supersaturate a Jacobian motive JDC = [LD → JC ]
∨

of the third kind.

(9.2.20) Remark. On could imagine supersaturating JC,D and then passing to the duals,
however, we need to be able to do both on the “same side” to handle the general case. Moreover,
we have not given an algorithm to compute the duality pairing H1

AdR(C\D)⊗H1
AdR(C,D) → C,

therefore we do not use duality to transfer period relations.

(9.2.21) Let X ′ = LD ⊗ E and define the supersaturated motive as M ss = [X ′ → JC ]
∨ where

the map is ξ ⊗ µ 7→ [ξ] · µ. The map LD
id⊗1−→→ LD ⊗ E realizes M as a pushout of M ss. We

use the right action on the lattice so that when we dualize we get the left action of E on the
Jacobian.

(9.2.22) Determine (7.4.44) finite subsets D′, D′′ ⊂ C(Q) such that our chosen basis of
correspondences (9.0.4) induce correspondences from C \ D to C \ D′ and from C \ D′ to
C \D′′. Note that we have induced maps χ′:LD ⊗ E → LD′ and χ′′:LD′ ⊗ E → LD′′ defined
as in (9.1.6.1).

(9.2.23) Pushout Jacobian representation. Once again, the map X ′ → JC factors through
χ′:X ′ → LD′ and, hence, the motive M ss is represented as the pushout motive χ′

∗J
D′
C .

(9.2.24) The action. It remains to compute the action of E on the points and on H1 of M ss.
We do so following the dual construction for the second kind motives. We will give a quick
summary on how build the dual diagram.

(9.2.25) Once again, we may assume χ′ and χ′′ are injective and avoid torsion divisors. We
determine (8.6.49) an explicit isogeny splitting M ss ∼ GK

m ⊕ JχC for a E-equivariant isogeny
splitting X ′ ∼ K ⊕ X where K is the kernel of X ′ → JC(Q) and ξ = ξ′|X . Since the

59



identification of the points M ss(Q) ⊗ Q with the isogeny splitting is effective as well the
splitting H1(M

ss) ≃ H1(GK
m)⊕ JχC , we reduce the problem to identifying the E-action on each

component separately. The E-action on GK
m is obvious, so we reduce to identifying the E

action on JχC .

(9.2.26) Remark. The right action K ⊗ E → K is induced from multiplication on the right
by the identification K ⊂ LD ⊗E . Dualizing, we get a map GK

m → E∨ ⊗GK
m so that tensoring

with E and then contracting E ⊗ E∨ → Z gives the desired action E ⊗GK
m → GK

m.

(9.2.27) Dual maps. The map JC,D′ ⊗ E → JC,D′′ : ξ ⊗ µi 7→ ξ · Ci = C∗
i ξ dualizes to give

JD
′′

C → E∨ ⊗ JD
′

C ≃ (JD
′

C )⊕ρ which at the level of points is given by

(9.2.27.1) ξ 7→ (µi 7→ Ci,∗ξ) = (C1,∗ξ, . . . , Cρ,∗ξ).
This can be seen by identifying E ⊗ JC,D′ with the Jacobian of a curve and describing the
morphism JC,D′ ⊗ E → JC,D′′ by a correspondence as in (9.1.16) and observing that taking
duals uses the transpose action of the correspondence.

(9.2.28) Dualize the action. Repeat the argument in the previous section to arrive at the
commutative diagram (9.1.17.1) on the side of lattices but using the right action of E . Taking
duals we get the following commutative diagram,

(9.2.28.1)
E∨ ⊗ JχC JχC

E∨ ⊗ JD
′

C JD
′′

C J
ℵD′′
C .

We now tensor by E and then contract with E ⊗ E∨ → Z.

(9.2.29) Once again C̃ =
∐

ρC is the disjoint union of ρ copies of C. This time, let D̃′′ ⊂ C̃(Q)

be the disjoint union of ρ copies of D′′. Using our basis E ≃ Zρ, we identify E⊗JD′′
C ≃ (JD

′′
C )⊕ρ

with J D̃′′

C̃
.

(9.2.30) We now arrive at the commutative diagram, which makes the action on points and
on H1 explicit:

(9.2.30.1)
E ⊗ JχC JχC

E ⊗ J
ℵD′′
C E ⊗ JD

′′
C = J D̃

′′

C̃
JD

′
C

C∗

(9.2.31) Effectivity. The inclusion map J
ℵD′′
C ↪→ JD

′′
C is deduced from the explicit split-

ting (8.5.43). The vertical maps are induced by lattice pushouts and the map C∗ is induced
by a correspondence. Therefore, all maps except the top horizontal map are explicit. Lifting
to JℵD′′

C then going through C∗ and down to JχC gives effective maps on points E ⊗ JχC → JχC
and on homology E ⊗ H1(J

χ
C) → H1(J

χ
C).

(9.2.32) Action on points. For future use, we spell out the action on the points. Since JχC
is realized as a pushout of JD′

C , a point p ∈ JχC is represented by a divisor ξ ∈ Div0(C \D′)
so that p = [ξ]χ. Move (6.4.34) the divisor ξ away from D′′ in its D′-linear equivalence class,
getting ξ′ ∈ [ξ]χ which lifts to [ξ′]D′′ ∈ JD

′′
C . The pushout map gives a point [ξ′]ℵD′′ ∈ J

ℵD′′
C ,

this is a lift of p along the diagonal map in (9.2.30.1). Now, use the Baker splitting (8.5.44)
to apply the (non-trivial!) inclusion J

ℵD′′
C → JD

′′
C to the point [ξ′]ℵD′′ and get [ξ′′]D′′ . This

operation moves ξ′ by linear equivalence but changes its D′′-linear equivalence class. The
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point µi⊗ [ξ′′]D′′ gets mapped to [Ci,∗ · ξ′′]D′ via the bottom horizontal map and then down to
[Ci,∗ · ξ′′]χ. Hence µi ⊗ [ξ]χ 7→ [Ci,∗ · ξ′′]χ, which extends linearly to E ⊗ JχC(Q) → JχC(Q).

(9.2.33) Further notes on the action on points. Note that ξ′′ = ξ′ + div(u) for some
u ∈ κ(C)D′′ and thus Ci,∗ · ξ′′ = Ci,∗ · ξ′ + div(v) where div(v) = Ci,∗ · div(u) and v ∈ κ(C)D′ .
Later, we will want to represent the point µi · [ξ]χ by a divisor in the image of JℵD′

C ↪→ JD
′

C .
Applying the Baker splitting again, compute ξ′′′ = ξ′′ + div(w) for w ∈ κ(C)D′ so that
µi · [ξ]χ = [ξ′′′]χ and [ξ′′′]D′ is in the image of JℵD′

C .
Summarizing, we have µi · [ξ]χ = [Ci · ξ′ + div(f)] where f ∈ κ(C)D′ depends only on i and

ξ′. If ξ is already distinct from D′′ then we can take ξ = ξ′. If, ξ already defines a point in
the image of JℵD′′

C then we may take div(f) = 0, µi · [ξ]χ = [Ci · ξ]. In the general case, we
may choose f so that [Ci · ξ′ + div(f)]D′ is in the image of JℵD′

C .

9.3. The general case

(9.3.34) We now begin the supersaturation process for the motive M = JEC,D. Construct finite
subsets D′ ⊂ D′′ ⊂ C(Q) as in (9.2.22). Extend this chain by constructing a further set D′′′

such that the Ci’s induce correspondances from (C \D′′′) to (C \D′′).

(9.3.35) Moving E away from D′′′. We may assume without loss of generality that
E ∩ D′′′ = ∅. Indeed, we can move each divisor in LE away from D′′′ within its D-linear
equivalence class, as follows. For each ξ ∈ LE, we can compute a divisor ξ′ ∈ [ξ]D disjoint
from D′′′ using (6.4.34). Move a basis of divisors of LE away from D′′′ and let Ẽ ⊂ C \D′′

denote the joint support of the new divisors. This induces a map LE → LẼ compatible with
the Abel–Jacobi maps to JDC . Hence JDC,E is realized as a pullback of JD

C,Ẽ
. Supersaturating

the latter supersaturates the former, and we may therefore replace E by Ẽ from now on.

(9.3.36) Supersaturate the underlying motive of the third kind JDC following §9.1. We continue
with the notation there: χ, χ′, χ′′, K,X. This process realizes JDC , up to isogeny, as a pushout
of GK

m ⊕ JχC . Note that JχC inherits a E-action compatible with the usual action on JC .

(9.3.37) Recall that, after a minor adjustment (8.2.24), we assume JD
′

C dominates the
supersaturation of JDC . Thus, the marking LE → JDC lifts to JD

′
C (and, in fact, to JD

′′′
C ),

yielding a marking LE → JχC⊕GK
m. We thereby realize JDC,E as a push-pull of [LE → JχC⊕GK

m].

(9.3.38) Use the two projection maps to construct the motive [LE → JχC ]⊕ [LE → GK
m]. The

diagonal map LE → L2
E realizes [LE → JχC ⊕GK

m] as a pullback of [LE → JχC ]⊕ [LE → GK
m].

We set aside the Baker component [LE → GK
m]. What remains is to supersaturate JχC,E =

[LE → JχC ] to complete the supersaturation of M .

(9.3.39) Let M ss = [E ⊗ LE → JχC ], with map µ ⊗ ξ 7→ µ · [ξ]χ. This motive M ss is clearly
supersaturated. Moreover, JχC,E is the pullback of M ss along LE

1⊗id−−→ E ⊗LE. The remainder
of this section aims to make explicit the E-action on points and (co)homology of M ss.

(9.3.40) Jacobian representation. Recall the pointwise action (9.2.32) on JχC . We will use
D′′′ and D′′ instead of D′′ and D′ for the construction. Using the basis of correspondences
µi = [Ci] for E and a basis ξj of LE, we have:

(9.3.40.1) µi · [ξj]χ = [Ci · ξj + div(fij)]χ,

where fij ∈ κ(C)D′′ , since ξj need not be moved away from D′′′ (9.2.33). Moreover, by choosing
fij ’s appropriately, we may assume ξij := Ci · ξj +div(fij) defines a D′′-linear equivalence class
in the image of JℵD′′

C ↪→ JD
′′

C .
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Let E ′ ⊂ C(Q) \D′′ be a finite set supporting the divisors ξij for all i, j. Then, we define
ψ′: E ⊗ LE → LE′ : µi ⊗ ξj 7→ ξij to realize M ss as the pullback JχC,ψ′ of JχC,E′ .

(9.3.41) Further decomposing the supersaturated motive. Once again apply (8.2.24)
to ensure ψ′ is injective and avoids torsion (??). We now follow the argument in (9.1.11) to
decompose E ⊗ LE up to isogeny as Kψ′ ⊕ Y into two E-invariant pieces: Kψ′ is the kernel

of E ⊗ LE
ψ′
→ LE′ → JC(Q) and Y is a E-invariant complement. Let ψ:Y → LE′ be the

restriction of ψ′ to Y .

(9.3.42) Observe that we can realize JχC,ψ′ effectively as a pushout of the direct sum [Kψ′ →
GX
m] ⊕ JχC,ψ, where the pushout is by the diagonal X → X ⊕ X. Putting aside the Baker

component, we will consider JχC,ψ, which is not only supersaturated but also reduced and
hence saturated.

(9.3.43) The action figure. It remains to make the E-action on JχC,ψ explicit. At this point,
we only need the action on H1 but we will also describe the action on points. This will be
done via Figure 1. The arrow 1 represents the E-action we are after and we will show how to
navigate the explicit arrows in this diagram to evaluate 1 by a composition of explicit maps.
We recall the argument in (9.1.13) to emphasize the need to follow the outer arrows in the
diagram to achieve commutativity.

E ⊗ [Y → JχC ] [Y → JχC ]

E ⊗ [Y → J
ℵD′′
C ] E ⊗ [Y → JD

′′
C ] [LE′′ → JχC ] [Nχ

E′′ → JχC ]

E ⊗ [LE′ → JD
′′

C ] [LE′′ → JD
′

C ]

1

2

3

4

5

6

7

8

9

10 11

12

Figure 1. Making the action on a supersaturated motive effective.

(9.3.44) The right hand side. We will describe the arrows appearing on the right hand
side of Figure 1. Apply (7.4.44) to construct a finite set E ′′ ⊂ C(Q) \D′ which supports the
image of E ′ ⊂ C(Q) \D′′ under our basis of correspondences. The inclusion Y ↪→ LE′ ↪→ LE′′

induces the map 2 .

(9.3.45) We adopt the notation from (8.7.53) to decompose LE′′ into Kχ
E′′ ⊕Nχ

E′′ up to isogeny.
The arrow 3 is trivially explicit, since it is the canonical inclusion defined by the pullback
induced by the (non-canonical) splitting map ℵχE′′ :N

χ
E′′ → LE′′ . The projection 4 is not

trivial but it is made explicit by (8.7.54). The composition of 2 and 4 gives the map 5 ,
which is an injection because the composition Y ↪→ LE′ ↪→ LE′′ ↠ Nχ

E′′ is injective by choice
of Y .

(9.3.46) The surjection 6 is simply the pushout representation of JχC,E′′ and is trivially
explicit.

(9.3.47) The left hand side. By our choice of basis for E we make the identification E = Zρ
and therefore, for any motive A, make the identification E ⊗ A = A⊕ρ. For a map f :A→ B,
we can define a map E ⊗ A→ E ⊗B by simply acting as identity on E , i.e., taking f⊕ρ. All
the maps appearing solely on the left hand side of Figure 1 are of this form and we will
describe the respective maps on the components.
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(9.3.48) The map 7 is the pushout corresponding to X ↪→ LD′ ↪→ LD′′ . The pushout
JD

′′
C ↠ J

ℵD′′
C is explicitly split (8.5.43) and the map 8 is the splitting inclusion. Recall

that the map 9 is surjective, since χ avoids torsion. Our construction of ψ′: E ⊗ LE → LE′

in (9.3.40) is such that we lifted our marking Y → JD
′′

C through 9 .

(9.3.49) The map 10 is used indirectly: in constructing ψ′, we first lifted the marking to
JD

′′
C naively, mapped down to JℵD′′

C , and then took the image marking in JD′′
C . The naive lift

(through 7 ) and the one we constructed (through 9 ) are different markings on JD′′
C .

(9.3.50) The inclusion 11 is the natural pullback map via ψ:Y → LE′ .

(9.3.51) Applying the correspondence. Let C̃ =
∐ρ

i=1C. Define D̃′′, Ẽ ′ by taking a copy
of D′′ and E ′ per component of C̃. Then, using our basis for E , we identify E ⊗ [LE′ → JD

′′
C ]

with J D̃′′

C̃,Ẽ′ . Define the correspondence C̃ to be “disjoint union” of the correspondences C̃i for

i = 1, . . . , ρ from (C̃ \ D̃′′, Ẽ ′) to (C \D′, E ′′). This correspondence defines the map 12 , and
is the backbone for the diagram in Figure 1.

(9.3.52) Commutativity. The path of correspondence is the map attained by composing 8 ,
11 , 12 , 6 , 4 . The path of action is the map attained by composing 9 , 1 , 5 . We claim that
these two maps commute. Commutativity at the level of semi-abelian groups was established
in (9.2.28). At the level of markings, we appeal to the commutativity of the diagram on the
semi-abelian varieties—that is, on divisor classes—and proceed as in (9.1.13) and (9.1.14).

We now expand on the proof of commutativity at the level of markings. Observe that
µi⊗y ∈ E⊗Y is mapped to Ci·ψ(y) ∈ LE′′ via the path of correspondence, whereas it is mapped
to ψ(µi · y) ∈ LE′ ⊂ LE′′ via the path of action. Note, however, that µi · [ψ(y)]χ = [Ci ·ψ(y)]χ,
since ψ(y) defines a divisor lying in the image of JℵD′′

C (9.2.33). On the other hand, the
E-action on Y and JχC are compatible by construction, so we also have µi · [ψ(y)]χ = [ψ(µi ·y)]χ.
It follows that Ci ·ψ(y)−ψ(µi ·y) ∈ Kχ

D′′ , and hence the difference vanishes in Nχ
D′′ , establishing

the desired commutativity.

(9.3.53) Effectivity. We wish to evaluate the map 1 on points and on H1. We established
the commutativity (9.3.52) of the path of action, the path involving 1 , with the path
of correspondence, the path involving 12 . By lifting via 9 we may follow the path of
correspondence and then, identifying JχC,ψ with its image via 5 , we get the desired action. We
claim that this operation is effective at the level of points and on H1. Most of the maps are
trivial at the level of representatives because they represent pushout or pullback maps. The
non-trivial maps are the splitting maps 8 and 4 . These splittings have been made explicit
at the level of points and at the level of H1 when splitting Baker components. The map 12 is
effective as it is induced by a correspondence (9.3.51).

(9.3.54) This completes the description and proof of the algorithm that effectively supersatu-
rates JEC,D.
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10. Classifying first-order autonomous differential equations

(10.0.1) Let P (x, y) ∈ Q[x, y] be an irreducible polynomial. The autonomous first-order
differential equation P (u(t), u′(t)) = 0 falls into one of four classes (10.0.3). As noted
in [NvdPT22, p.1655], no algorithm is known to classify such equations in full generality. We
resolve this problem by providing a classification algorithm based on our computational model
for the mixed Hodge structure of curves.

(10.0.2) Let C be the smooth proper curve with function field Q[x, y]/(P ) and consider the
rational differential ω = dx/y on C. For initial conditions (u(0), u′(0)) avoiding singularities
and vertical tangents of the affine plane curve Z(P ) ⊂ C2, the solution u(t) to P (u, u′) = 0
satisfies

(10.0.2.1) t =

∫ u(t)

u(0)

dx

y(x)
, with P (x, y(x)) = 0, |t| ≪ 1.

For this reason, the differential equation P (u, u′) = 0 is classified by the isomorphism type of
the pair (C, dx/y).

(10.0.3) Classification. Let C/Q be a smooth proper irreducible curve and ω a nonzero
rational differential on C. Then (C, ω) falls into one of the following classes:

(1) ω is exact,
(2) ω = h∗(dz/z) for a non-constant h:C → P1,
(3) ω = h∗η for a non-constant h:C → C ′ with C ′ an elliptic curve and η regular on C ′,
(4) none of the above.

The first two cases are effectively decidable using Riemann–Roch. Deciding between the last
two cases is the problem.

(10.0.4) Obviously, the third clause suggests a finer classification, where we ask if ω is the
pullback of a translation invariant form from an abelian variety of dimension strictly less
than the genus of C. In fact, we can do better, generalizing all three classes to obtain a finer
classification when ω has arbitrary poles.

(10.0.5) Refined classification. Let D ⊂ C(Q) be the residual polar locus of ω, and let
p ∈ C(Q) \ D. The Abel–Jacobi map AJp:C \ D → JDC identifies ω as the pullback of a
translation-invariant differential on JDC . There exists a minimal semi-abelian quotient f : JDC ↠
G (up to isogeny) and a translation-invariant differential η on G such that ω ≡ AJ∗p f

∗η in
H1(C \D). Let a and b be the dimensions of the toric and abelian parts of G, respectively.
We define the refined type of ω to be the pair (a, b). The previous classification corresponds
to the cases (0, 0), (1, 0), (0, 1), and a+ b > 1.

(10.0.6) Classification algorithm. Given (C, ω) for a smooth proper irreducible curve C/Q
and a rational differential ω on C, compute its refined type as follows:

(1) Compute a representation for H1(C \D).
(2) Compute coordinates for [ω] ∈ H1

AdR(C \D).
(3) Compute the kernel K := [ω]⊥ ⊂ HB

1 (C \D) under the period pairing.
(4) Compute W−2K := K ∩W−2H

B
1 (C \D).

(5) Return the tuple (dimQW−2K, dimQK/W−2K).

(10.0.7) The required subroutines are described in the main algorithm (2.0.1). In step (3)
of (10.0.6), compute the kernel of the period pairing and then restrict to HB

1 (C \D)⊗Q · [ω].
We now prove correctness.
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(10.0.8) Theorem. Algorithm (10.0.6) terminates and returns the correct refined type of ω.

Proof. Termination of each step follows from the subroutines cited in (2.0.1). For cor-
rectness, recall the identification H1(J

D
C ) = H1(C \ D). By Wüstholz’s analytic subgroup

theorem [Wüs89], the orthogonal K is the Betti realization of a semi-abelian subvariety
G′ ⊂ JDC , and [ω] is a pullback from the quotient G := JDC /G

′. As the kernel is the
largest possible, the quotient is the smallest possible. Hence G is the minimal isogeny quo-
tient of JDC from which [ω] can be pulled-back. The toric and abelian dimension of G are
(a, b) = (dimW−2K, dimK/W−2K). □
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