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Abstract

Linear recurrence sequences (LRS) are among the most fundamental and easily de-

�nable classes of number sequences, encompassing many classical sequences such as

polynomials, powers of two, and the Fibonacci numbers. They also describe the dy-

namics of iterated linear maps and arise naturally in numerous contexts within com-

puter science, mathematics, and other quantitive sciences. However, despite their

simplicity, many easy-to-state decision problems for LRS have stubbornly remained

open for decades despite considerable and sustained attention. Chief among these are

the Skolem problem and the Positivity problem, which ask to determine, for a given

LRS, whether it contains a zero term and whether it contains only positive terms,

respectively. For both problems, decidability is currently open, i.e., whether they are

algorithmically solvable.

In this thesis, we present the following results. For the Skolem problem, we intro-

duce an algorithm for simple LRS whose correctness is unconditional but whose ter-

mination relies on two classical, widely-believed number-theoretic conjectures. This

algorithm is implementable in practice, and we report on experimental results. For

the Positivity problem, we introduce the notion of reversible LRS, which enables us

to carve out a large decidable class of sequences. We also examine various expansions

of classical logics by predicates obtained from LRS. In particular, we study expan-

sions of monadic second-order logic of the natural numbers with order and present

major advances over the seminal results of Büchi, Elgot, and Rabin from the early

1960s. Finally, we investigate fragments of Presburger arithmetic, where, among oth-

ers, we establish the decidability of the existential fragment of Presburger arithmetic

expanded with powers of 2 and 3.
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Zusammenfassung

Lineare rekursive Folge (LRF) gehören zu den grundlegendsten und am einfachsten

zu de�nierenden Klassen von Zahlenfolgen und umfassen viele klassische Folgen wie

Polynome, Zweierpotenzen und die Fibonacci-Zahlen. Sie beschreiben auch die Dy-

namik iterierter linearer Abbildungen und tauchen in zahlreichen Kontexten der In-

formatik, Mathematik und anderer quantitativer Wissenschaften auf. Trotz ihrer

Einfachheit bleiben jedoch viele leicht zu formulierendes Entscheidungsprobleme für

LRF trotz erheblicher und anhaltender Aufmerksamkeit seit Jahrzehnten hartnäckig

o�en. Dazu gehören vor allem das Skolem-Problem und das Positivitätsproblem, bei

denen es darum geht, für eine gegebene LRF zu bestimmen, ob sie einen Nullterm

enthält bzw. ob eine LRF nur positive Terme enthält. Für beide Probleme ist die

Entscheidbarkeit derzeit o�en, d.h., ob sie algorithmisch lösbar sind.

In dieser Doktorarbeit präsentieren wir die folgenden Ergebnisse. Für das Skolem-

Problem stellen wir einen Algorithmus für einfache LRF vor, dessen Korrektheit nicht

an Bedingungen geknüpft ist, dessen Terminerung aber von zwei weithin akzeptierten

zahlentheoretischen Vermutungen abhängt. Dieser Algorithmus ist in der Praxis im-

plementierbar, und wir berichten über experimentelle Ergebnisse. Für das Positivität-

sproblem führen wir den Begri� der umkehrbaren LRF ein, der es uns ermöglicht, eine

groÿe, entscheidbare Klasse von Sequenzen zu bestimmen. Wir untersuchen auch ver-

schiedene Erweiterungen klassischer Logiken durch Prädikate, die aus LRF gewonnen

werden. Insbesondere untersuchen wir Erweiterungen von monadische Prädikaten-

logik zweiter Stufe der natürlichen Zahlen mit Ordnung und präsentieren wichtige

Fortschritte gegenüber den bahnbrechenden Ergebnissen von Büchi, Elgot und Rabin

aus den frühen 1960er Jahren. Schlieÿlich untersuchen wir Fragmente der Presburger

Arithmetik, wo wir unter anderem die Entscheidbarkeit des existentiellen Fragments

der Presburger Arithmetik, erweitert mit Potenzen von 2 und 3, beweisen.
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Introduction

A central objective of theoretical computer science is to explore the limits of comput-

ing: what is and is not algorithmically solvable (and at what computational cost)?

Although the roots of this endeavour go back to the foundational works of Turing and

Gödel from the 1930s, such questions remain of critical relevance to this day. One

of the grand challenges of modern computer science, as articulated by Tony Hoare

some two decades ago, is, broadly speaking, to devise algorithmic methods to help

ensuring that computer programs meet their formal speci�cations [79]. While such

problems are computationally unsolvable in general, numerous theoretical and prac-

tical open questions remain, particularly concerning simple program loops. As an

example, consider the class of linear loops, which are program fragments of the form

depicted in Figure 1. This loop terminates if and only if there is a natural number n

such that s⊤Mnt = 0. Determining whether such an n exists is a deceptively easy-

looking problem equivalent to the Skolem problem, whose decidability has been open

for some 90 years!1

Linear loops (and countless variants) are ubiquitous in real-world programs, and

their analysis falls within the �eld of discrete-time linear dynamical systems. In its

simplest form, a discrete-time linear dynamical system consists of a matrixM ∈ Qd×d

together with a vector t ∈ Qd; one then investigates properties of its orbit (Mnt)∞n=0.

One of the central decision problems concerning orbits of linear dynamical systems is

determining whether the orbit ever reaches a given region T ⊆ Qd. Classes of regions

1Terence Tao has memorably characterized the Skolem problem as �the halting problem for linear
automata�, and remarked that �it is faintly outrageous that [it] is still open� [150].

input : M ∈ Qd×d , s, t ∈ Qd

x := t
whi le s · x ̸= 0 do

x := Mx

Figure 1: A linear loop.
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for which this problem has been extensively studied include single points, hyperplanes,

and half-spaces. The reachability problem for a single point is decidable, as shown

by Kannan and Lipton in 1980 [82]. Deciding whether a hyperplane or half-space

is reachable is more challenging. For a hyperplane, reachability corresponds to the

Skolem problem: for a given s ∈ Qd, is there an n ∈ N such that s⊤Mnt = 0? For a

half-space, we obtain the Positivity problem: for a given s ∈ Qd, is it the case that,

for all n ∈ N, we have s⊤Mnt ≥ 0?2

The Skolem and Positivity problems are intimately connected to various funda-

mental topics in program analysis and automated veri�cation, such as the termination

and model checking of simple while loops [7, 8, 21, 38, 85, 123, 126] or the algorithmic

analysis of stochastic systems [2, 3, 15, 48, 124, 125, 155]. They also appear in a va-

riety of other contexts, such as formal power series [133, 147], control theory [34, 68],

and even theoretical biology [98] (see [121] for further references). Both the Skolem

and Positivity problems are often used as references to establish hardness of other

open decision problems; see, e.g., [13, 50]. The Skolem and the Positivity problems

often constitute the main bottlenecks for many decision problems related to discrete-

time linear dynamical systems: Both can be encoded in many interesting problems.

To sharpen one's understanding of these challenges, one observes that (s⊤Mnt)∞n=0

forms a linear recurrence sequence using the Cayley-Hamilton theorem.

The Skolem and Positivity problems can then equivalently be formulated in terms

of linear recurrence sequences. A linear recurrence sequence (LRS) is a sequence of

rational numbers (un)∞n=0 that obeys a linear relation of the form

∀n ∈ N : un+d = c1un+d−1 + c2un+d−2 + · · ·+ cdun , (1)

where c1, . . . , cd ∈ Q are constants. Examples of linear recurrence sequences are

geometric progressions (a · bn)∞n=0, the Fibonacci numbers (Fn)
∞
n=0 (de�ned by F0 = 0,

F1 = 1 and Fn+2 = Fn+1+Fn), and values (P (n))∞n=0 of a �xed univariate polynomial

P ∈ Z[X] at consecutive integers. In the language of linear recurrence sequences, we

reframe the Skolem and the Positivity problems as follows.

Problem 1 (Skolem problem). For a given LRS (un)
∞
n=0, determine whether un = 0

for some n ∈ N.

Problem 2 (Positivity problem). For a given LRS (un)
∞
n=0, determine whether un ≥ 0

for all n ∈ N.
2In keeping with established terminology, �positivity� is interpreted throughout this thesis in the

non-strict sense of �non-negativity�.
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As noted earlier, the decidability of these problems has been open for many

decades, a state of a�airs described as a �mathematical embarrassment� by Richard

Lipton [100]. We present partial progress on both problems in Chapters 2 and 3,

respectively.

It is worth pointing out that in our formulation of the Skolem and Positivity

problems as corresponding halting problems for linear loops (as per Figure 1), we

are concerned with a single initial con�guration. Researchers have also investigated

termination for all initial con�gurations (i.e., all choices of initial vector t), with posi-

tive decidability results [39, 80, 154]. Yet di�erent lines of inquiry concern themselves

with robustness questions, i.e., whether arbitrarily small perturbations of the initial

con�guration t a�ect reachability [5, 55]. Continuous-time analogues of the Skolem

and Positivity problems have also been considered [20, 51]. Note, however, that the

inclusion of additional program features such as conditional branching, rounding, or

nondeterminism often leads to undecidability. Notable examples include the mortal-

ity problem [75] and the use of �oating-point rounding [95]. Another related question

consists in determining whether, for a given collection of LRS (u
(1)
n )∞n=0, . . . , (u

(d)
n )∞n=0,

there are n1, . . . , nd ∈ N such that
∑d

i=1 u
(i)
ni = 0; this was however shown to be unde-

cidable by Derksen and Masser [57]. In [73], Guilmant et al. identi�ed a rare instance

in which a problem involving multiple update matrices turns out to be decidable.

In Chapters 4 and 5, we then turn our attention to the decidability of expansions

of two classical logics by predicates consisting of value sets P = {un : n ∈ N} of

certain linear recurrence sequences.

We begin with the monadic second-order logic (MSO) of the natural numbers

equipped with order. This logical formalism allows quanti�cation over integer vari-

ables (�rst-order quanti�cation) and sets of integers (second-order quanti�cation). In

his 1962 in�uential paper, Büchi [43] demonstrated the decidability of this theory

by uncovering a profound connection between automata and logic. Building upon

Büchi's foundation, Elgot and Rabin [62] established the decidability of the MSO

theory of ⟨N;<,P ⟩ for certain unary predicates P . This method, now known as

Elgot-Rabin contraction, has been successfully applied to various predicates, such as

the sets of powers of two (2N), set of square numbers (Sq), the set of Fibonacci num-

bers, etc. Accordingly, the MSO theories of ⟨N;<, 2N⟩ and ⟨N;<, Sq⟩ are decidable.
Elgot and Rabin's approach was nevertheless limited both by the range of predicates

that they could consider and by the fact that predicates had to be handled in iso-

lation; in particular, they remained resolutely silent on the decidability of the MSO

theories of ⟨N;<, 2N, 3N⟩ and ⟨N;<, 2N, Sq⟩, for example. In fact, no progress was
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recorded on such questions for some 60 years, despite a vast amount of research and

a corresponding voluminous literature on the MSO theory of ⟨N;<⟩ and expansions

thereof. We present substantial progress on these and related questions in Chapter 4.

Finally, we investigate expansions of Presburger arithmetic, the �rst-order theory

of ⟨Z; 0, 1, <,+⟩. More precisely, as in the preceding chapter, we consider expansions

of this formalism by value sets of various speci�c linear recurrence sequences. Pres-

burger arithmetic was originally shown to be decidable by Presburger in 1929 via a

quanti�er-elimination procedure [128]. Büchi [42] subsequently extended Presburger's

result and established the decidability of Presburger arithmetic expanded with the

set of powers of 2 (that is, the �rst-order theory of ⟨Z; 0, 1, <,+, 2N⟩), or the set of

powers of any given base (in isolation). Further work in the ensuing decades demon-

strated, among others, that one can alternatively expand Presburger arithmetic with

the set of Fibonacci numbers or the powering function n 7→ 2n and retain decidabil-

ity. Nevertheless, formidable complications arise when expanding the base theory by

two sets of powers simultaneously (e.g., by powers of 2 and powers of 3). Indeed,

Hieronymi and Schulz recently showed that this expansion of Presburger arithmetic

is, in fact, undecidable [78], answering what at the time had been an open question

for some 40-odd years. They further conjectured that the existential fragment of this

expansion would be decidable, a result which we establish in Chapter 5.

Structure of the thesis

We now summarize the content of this thesis. This overview also serves as an outline,

as the results correspond to the chapters of this thesis.

Skolem problem Chapter 2 is devoted to the Skolem problem, where we achieve

progress by employing the onomastically related Skolem conjecture. An LRS (un)
∞
n=0

can be uniquely extended to a bi-in�nite sequence (un)
∞
n=−∞ taking values over the

rational numbers. We refer to this bi-in�nite sequence as the bi-completion of (un)∞n=0.

The bi-completion has a more global, and thus richer, structure than the one-sided

LRS. The Skolem conjecture posits that when the LRS is simple (see Section 1.2 for

the exact de�nition), 0 does not occur in its bi-completion if and only if there is an

M ≥ 1 such that (un modM)∞n=−∞ is well-de�ned and does not contain 0. Thus, it

is conjectured that there is a local-global principle for simple LRS.

In greater detail, we explore the notion of modularity for an LRS (un)
∞
n=0, which

means that there is an M such that the sequence (and not necessarily the bi-in�nite

sequence) is ultimately non-zero modulo M . Next, we study the Skolem conjecture

4



and the bi-completion of LRS and construct an algorithm that solves the Skolem prob-

lem for simple LRS when assuming this conjecture and a p-adic version of Schanuel's

conjecture. This algorithm is of practical signi�cance, as it can resolve many instances

of the Skolem problem that are intractable using previous techniques within reason-

able computational time. Importantly, this algorithm only relies on the conjectures

to guarantee termination. When our algorithm terminates, it provides a certi�cate

of correctness independent of the conjectures. We also describe our implementation

of this algorithm in the SKOLEM-tool. The tool also includes a method for solving

certain fragments of the Skolem problem using Baker's theorem on linear forms in

logarithms.

The results presented in this chapter are based on the works [31, 99] and the

tool [11].

Positivity problem In Chapter 3, we study the Positivity problem.

The chapter begins with a review of the current state of the art regarding the

Positivity problem. We present the current techniques to decide fragments of the

Positivity problem and identify the key obstacles that hinder further progress. We

use these insights to study a restricted class of LRS: the reversible linear recurrence

sequences. These are precisely the LRS whose bi-completion is integer-valued. This

de�ning property imposes strong structural constraints on the sequence, which we

unearth using Galois-theoretic methods. Therefore, we can push the borders of the

Positivity problem for reversible LRS far beyond the state-of-the-art for general LRS.

We also show that when a reversible LRS is su�ciently complicated, we encounter

the same barriers for general LRS and give explicit examples of LRS for which we

cannot decide positivity.

In the second part of the chapter, we discuss the Positivity problem for real alge-

braic LRS (LRS taking value in the ring R∩Q). It is folklore that the Skolem problem

for integer LRS is Turing-equivalent to the Skolem problem for algebraic LRS, but

the analogous question for the Positivity problem was open. We establish that the

Positivity problem for (R∩Q)-LRS is Turing-equivalent to the Positivity problem for

Z-LRS by showing that (R ∩Q)-LRS can be approximated closely by Q-LRS.
The results presented in this chapter are based on the works [84, 89, 99].

Monadic second-order logic In Chapter 4, we discuss the monadic second-order

theory (MSO) of the natural numbers with order, expanded by unary predicates Pi =

{u(i)n : n ∈ N}, where each (u
(i)
n )∞n=0 is an LRS. Thus we consider MSON;<(P1, . . . , Pd),

5



i.e., the MSO theory of ⟨N;<,P1, . . . , Pd⟩. We open the chapter by establishing a

version of the Elgot-Rabin contraction method and apply it to three di�erent variants.

The Elgot-Rabin contraction method translates predicates P1, . . . , Pd and an MSO

formula φ into an in�nite word βφ and an ω-automaton Aφ such that Aφ accepts βφ
if and only if φ is satis�ed. The central objective is to ensure that βφ belongs to a

class of in�nite words for which the acceptance problem for ω-automata is decidable.

For the predicates that Elgot and Rabin studied, this word βφ is ultimately periodic,

guaranteeing decidability.

Our �rst variant concerns multiple simple LRS (u
(i)
n )∞n=0 with a single dominant

root (see Section 1.2 for de�nitions) such as the set aN of powers of a natural number a.

As a snapshot of our results, we prove that MSON;<(2
N, 3N) and MSON;<(2

N, 3N, 6N)

are decidable and that MSON;<(2
N, 3N, 5N) is decidable when assuming Schanuel's

conjecture. In these cases, the word βφ obtained from the Elgot-Rabin contraction

method is toric, a notion recently introduced by Berthé et al. [25], as βφ can be

generated by a rotation on a torus. For MSON;<(2
N, 3N) and MSON;<(2

N, 3N, 6N), this

structure proves that βφ is e�ectively almost-periodic, establishing the decidability

of the acceptance problem for ω-automata. For MSON;<(2
N, 3N, 5N), decidability de-

pends on the linear independence of 1
log(2)

, 1
log(3)

, and 1
log(5)

over the rationals, which

Schanuel's conjecture implies.

Our second variant combines arithmetic progressions and polynomials that we

connect to the base expansions of real algebraic numbers. Consider the expansion

generated by the sets of powers of two and the squares, MSON;<(2
N, Sq). We show

that the decidability of this theory is Turing-equivalent to determining whether a

given ω-automaton accepts the binary expansion of
√
2 = 1.01101010000 · · · . While

this equivalence does not settle decidability, it highlights the core di�culty. It is

conjectured that
√
2 is a normal number, which implies that, in the binary expansion

of
√
2, �nite binary strings should occur with a uniform frequency. However, since

ω-automata can detect whether a subword occurs �nitely or in�nitely often but not

compute their frequency, we introduce the weaker notion of disjunctive words, where

every �nite subword occurs in�nitely often. Because we can prove that the acceptance

problem for ω-automata of a disjunctive word is decidable, the theory MSON;<(2
N, Sq)

is decidable when assuming that the binary expansion of
√
2 is disjunctive.

Our third variant concerns theories MSON;<(P ), where P = {un : n ∈ N} ∩ N is

the value set of a simple LRS (un)
∞
n=0 with two dominant roots. For example, consider

un = (1 + 2i)n + (1 − 2i)n, which is neither monotonic nor has only positive values.

To understand the value set P of such an LRS, we have to sort P . Let (pm)
∞
m=0

6



enumerate P such that pm is the (m+1)th smallest number in P . Our version of the

Elgot-Rabin contraction method reduces the decidability ofMSON;<(P ) to whether for

all M ≥ 1, the acceptance problem for ω-automata of (pm modM)∞m=0 is decidable.

The main challenge lies in showing that (pm)∞m=0 is e�ective prodisjunctive, which is

another concept we introduce. Informally, this means that for allM ≥ 1, the sequence

(pm modM)∞m=0 behaves like a disjunctive word, and we know that the acceptance

problem for ω-automata is decidable for disjunctive words. These sequences also

produce explicit examples of disjunctive words, which are of independent interest.

The results presented in this chapter are based on the works [24, 119].

Presburger arithmetic Finally, in Chapter 5, we study Presburger arithmetic ex-

panded with two sets of powers. Thus, in particular, we investigate the �rst-order

theory of ⟨Z; 0, 1, <, 2N, 3N⟩, denoted PA(2N, 3N). Recent work by Hieronymi and

Schulz [78] showed that this theory, and its ∀∃∀∃-fragment in particular, is undecid-

able. Our contributions are threefold.

The chapter's main result states that the existential fragment of PA(2N, 3N) is

decidable. This proof has two technical steps. In the �rst step, we solve exponential

Diophantine equations of the form
∑ℓ

i=1 ciz
ni
i = d, where ci, d ∈ Z are given and

each base zi ∈ {2, 3} is �xed. Owing to the structured nature of the solution sets of

such equations, we reduce the decidability of the existential fragment of PA(2N, 3N)

to determining the solvability of systems of homogeneous inequalities of the form

Az > 0, where z = (zn1
1 , . . . , z

nℓ
ℓ ). By applying classical results from Diophantine

approximation, we can e�ectively compute whether such a system has a solution.

Our second contribution re�nes the argument of Hieronymi and Schulz. By reduc-

ing from counter machines instead of general Turing machines, we obtain a simpler

argument that shows that the ∃∀∃-fragment of PA(2N, 3N) is already undecidable.

Hence, we sharpen the upper bound for decidability by one block of quanti�ers.

For our �nal contribution, we study the existential fragment of PA(n 7→ 2n, n 7→
3n), where we consider functions n 7→ an rather than the less expressive unary pred-

icates aN. While we cannot resolve the decidability of this fragment, we encode a

decision problem concerning the base-2 expansion of log2(3). This encoding high-

lights a central obstacle: any proof of decidability would require a breakthrough in

understanding the distribution of digits in such irrational constants.

The results presented in this chapter are based on [86].
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Chapter 1

Preliminaries

Let N = {0, 1, . . . } denote the set of natural numbers, Z the set of integers, Q the set

of rational numbers, R the set of real numbers, and C the set of complex numbers.

We use boldface letters to denote (column) vectors and occasionally write d-

dimensional column vectors in the form x = (x1, . . . , xd). In particular, 0 denotes a

vector containing solely zeros whose dimension should be clear from the context. For

vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) and a relation ∼, we write x ∼ y as

shorthand for xi ∼ yi for all 1 ≤ i ≤ d. For a ring R, an R-linear form is a function

of the form h(x1, . . . , xℓ) := c1x1 + · · ·+ cℓxℓ, where c1, . . . , cℓ ∈ R.

1.1 Number theory

A number α ∈ C is algebraic if there is a non-zero polynomial P ∈ Q[X] such that

P (α) = 0. For an algebraic number α, there is a unique non-zero polynomial P ∈ Z[X]

of least degree with coprime coe�cients and a positive leading coe�cient, the minimal

polynomial of α. A minimal polynomial is always irreducible over the rationals, and

the degree of α is the degree of its minimal polynomial. If the minimal polynomial

of α is monic, meaning its leading coe�cient is 1, then α is an algebraic integer. An

algebraic number is a unit if 1/α is also an algebraic integer, or equivalently when α

has a monic minimal polynomial with constant coe�cient ±1. The Galois conjugates

of α are the roots of the minimal polynomial of α. The set of algebraic numbers forms

a �eld, denoted by Q, and the set of algebraic integers forms a ring.

A number ζ is a root of unity if ζd = 1 for some natural number d ≥ 1. The order

of a root of unity ζ is the smallest natural number d ≥ 1 such that ζd = 1, and ζ is a

primitive dth root of unity, denoted ζd if ζ is a root of unity of order d. For example,

the imaginary unit i is a primitive root 4th root of unity. We recall an old result of

Kronecker [91].
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Theorem 1.1.1. Let P ∈ Z[X] be a monic polynomial such that P (0) ̸= 0 and all

roots of P have absolute value at most 1. Then all the roots of P are roots of unity.

A canonical representation of an algebraic number α consists of its minimal poly-

nomial P and su�ciently accurate rational approximations of its real and imaginary

parts to distinguish it from the other roots of P . All arithmetic operations can be per-

formed e�ectively on canonical representations of algebraic numbers [53, Section 4.2].

We denote the natural logarithm by log. Thus, log(e) = 1. To avoid an overload

of brackets, we often write log |a| instead of log(|a|).

1.1.1 Number �elds and Galois theory

A number �eld K is a �eld extension of Q such that K is a �nite-dimensional vector

space over the rationals. This �nite dimension of K as a Q-vector space is called

the degree of K. If α1, . . . , αd are algebraic numbers, we can e�ectively compute the

degree of Q(α1, . . . , αd).

If K is a �eld and P ∈ K[X], then the splitting �eld of P is the smallest �eld

that contains K and all roots of P . When K ⊆ L are �elds, then L : K denotes the

�eld extension L of K, and [L : K] denotes the degree of L : K (the dimension of L

of as a K-vector space). The set of algebraic integers in K forms a ring, the ring of

integers of K, denoted OK .

A polynomial P ∈ K[X] is separable if its roots are distinct in an algebraic

closure of K. If K has characteristic zero, equivalently, the polynomial P has no

double roots. A �eld extension L : K is Galois if L is the splitting �eld of a separable

polynomial P ∈ K[X]. A Galois automorphism of L : K is a �eld automorphism

(a map that is compatible with both addition and multiplication) that �xes K. The

Galois group GalK(L) is the group of Galois automorphisms of the extension L : K.

The fundamental theorem of Galois theory states that for a Galois extension L : K,

the order of GalK(L) equals [L : K].

A �nite group G is said to act transitively on a �nite set X if for each pair x, y ∈ X

there is a g ∈ G such that g(x) = y and faithfully if g(x) = x for all x ∈ X implies

that g is the unit of G. The stabilizer Gx of an element x in X is de�ned as the set

{g ∈ G : gx = x}. The Orbit-Stabilizer theorem (see, for example, [132, Theorem

3.19]) implies that if G acts transitively on X, the cardinality of Gx is the same for

each x ∈ X. Further, when G acts transitively and faithfully on X, the number

#{g ∈ G : gx = y} does not depend on the choice of x, y ∈ G. If K is a �eld

9



and P ∈ K[X] is irreducible and separable with splitting �eld L, then GalK(L) acts

transitively and faithfully on the set of roots of P .

Example 1.1.2. Let K = Q and L be the splitting �eld of X3 − 2. Then L is

the number �eld Q( 3
√
2, ζ3

3
√
2, ζ23

3
√
2), which is also a Galois extension of Q. Then

[L : Q] = 6 and the Galois group GalQ(L) is generated by two elements: complex

conjugation and the unique automorphism de�ned by 3
√
2 7→ ζ3

3
√
2 and ζ3 7→ ζ3. Thus,

GalQ(L) is isomorphic to S3, the symmetric group acting on three elements.

The p-adic numbers

Let x ∈ Z and p ∈ N be a prime number (we sometimes refer to prime numbers

as rational primes). Then the p-adic valuation of x, denoted νp(x), is the largest

integer n such that pn divides x, whereas pn+1 does not. By convention, νp(0) = +∞.

Thus, ν3(12) = 1 and ν2(12) = 2. For integers x and y and a prime p, we have that

νp(xy) = νp(x)+νp(y) and νp(x+y) ≥ min{νp(x), νp(y)}. One can extend this notion

of the p-adic valuation to number �elds.

Let K be a Galois extension of Q with a ring of integers OK . Then each non-

zero ideal of OK admits a unique factorization as a product of non-zero prime ideals.

More speci�cally, �x a rational prime p. By the Dedekind-Kummer theorem, the

ideal (p) factors into prime ideals in OK as pe1 · · · pef , where p1, . . . , pf (the prime

ideals above p) are distinct. The number e is called the rami�cation index of pi over

p. For x ∈ OK , the p-valuation νp : OK → N ∪ {∞} is de�ned as the number of

times p appears in the factorisation of (x), the principal ideal generated by x. This

de�nition can be extended from OK to K by writing α ∈ K as x/n for some x ∈ OK

and n ∈ N. Then, setting νp(α) = νp(x) − νp(n) gives a well-de�ned de�nition of

the p-adic valuation. Moreover, we have again that νp(x1x2) = νp(x1) + νp(x2) and

νp(x1 + x2) ≥ min(νp(x1), νp(x2)) for all x1, x2 ∈ K.

One de�nes an absolute value | · |p (the p-norm) on K by |x|p = p−νp(x)/e. Let Kp

be the completion of K with respect to this absolute value and OKp denote the ring of

integers of Kp. Further, let exp : pkOKp → 1 + pkOKp and log : 1 + pk
′OKp → pkOKp

denote the p-adic exponential function and p-adic logarithm, respectively, for some

numbers k, k′ for the functions to be well-de�ned. These two functions are de�ned by

their usual power series:

exp(x) =
∞∑
n=0

xn

n!
and log(x+ 1) =

∞∑
n=1

(−1)n+1x
n

n
.
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The p-adic exponential function and logarithm are inverses of each other, and for

all x, y where the functions are de�ned, we have exp(x + y) = exp(x) exp(y) and

log(xy) = log(x) + log(y).

When K = Q and p = (p), let Qp and Zp denote Kp and OKp , respectively.

Moreover, we often write p-adic instead of p-adic when discussing the valuation,

exponential function, or logarithm.

Multiplicative relationships

By a multiplicative relation of α1, . . . , αd ∈ C∗, we mean k = (k1, . . . , kd) ∈ Zd such
that αk11 · · ·αkdd = 1. Let G := GM(α1, . . . , αd) be the set of all multiplicative relations

of (α1, . . . , αd). Then G forms a free abelian group. If 0 is the sole element in G, then

α1, . . . , αd are called multiplicatively independent. The rank of G is the cardinality of

the largest multiplicatively independent subset of X. If rank(G) = m, then G has a

basis B = {v1, . . . ,vm} ⊆ Zd that is linearly independent over Q with the property

that every z ∈ G can be written as an integer linear combination of v1, . . . ,vm. For

non-zero algebraic α1, . . . , αd , we can compute a basis of G using a deep result of

Masser [112].

Theorem 1.1.3 ([112]). Given α1, . . . , αd ∈ Q∗
, one can compute a basis for the

group GM(α1, . . . , αd).

Similarly, we write GA(α1, . . . , αd) for the group of additive relations of α1, . . . , αd

over the integers. That is,

GA(α1, . . . , αd) =
{
(k1, . . . , kd) ∈ Zd : k1α1 + · · ·+ kdαd = 0

}
.

1.1.2 Transcendence and Baker's theorem on linear forms in

logarithms

A transcendental number is a complex number that is not algebraic. A �nite set

S = {α1, . . . , αd} of complex numbers is algebraically independent over a �eld R if for

all non-zero polynomials P ∈ R[X1, . . . , Xd], we have P (α1, . . . , αd) ̸= 0. The tran-

scendence degree of S is the cardinality of the largest subset of S that is algebraically

independent over Q. Below, we state Schanuel's conjecture, a classical conjecture in

transcendental number theory with far-reaching implications [92].

Conjecture 1.1.4 (Schanuel's conjecture). If α1, . . . , αd ∈ C are linearly independent

over Q, the transcendence degree of {α1, . . . , αd, exp(α1), . . . , exp(αd)} is at least d.
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Many versions of Schanuel's conjecture exist, including the following weaker ver-

sion [46, Conjecture 3.9].

Conjecture 1.1.5 (Weak Schanuel conjecture.). If α1, . . . , αd ∈ Q∗
are multiplica-

tively independent, then log(α1), . . . , log(αd) are algebraically independent over Q.

Similarly to complex numbers, we can de�ne the notions of transcendence, alge-

braic independence, and transcendence degree for p-adic numbers and the algebraic

closure of the p-adic numbers. Then, Calegari and Mazur [46, Conjecture 3.10] for-

mulated the following p-adic version of the weak Schanuel conjecture.

Conjecture 1.1.6 (Weak p-adic Schanuel conjecture.). If α1, . . . , αd ∈ Q∗
are in

some �nite extension of Qp, the p-adic logarithm log(αi) is well-de�ned for 1 ≤ i ≤
d, and α1, . . . , αd are linearly independent over Q. Then {log(α1), . . . , log(αd)} has

transcendence degree d over Q.

For simplicity, we will often refer to Conjecture 1.1.6 as the p-adic Schanuel con-

jecture.

Baker's theorem on linear forms in logarithms (which we colloquially call Baker's

theorem) is a crucial tool for many results in this thesis, and we will often rely on

an e�ective version of Baker's theorem due to Matveev. Baker's work encompassed

many breakthroughs in transcendental number theory, for which he received a Fields

medal in 1970 [113]. We start by giving a non-e�ective version of Baker's theorem.

Theorem 1.1.7 (Theorem 1.6 in [158]). If α1, . . . , αd ∈ Q∗
are multiplicatively inde-

pendent, the numbers 1, log(α1), . . . , log(αd) are linearly independent over Q.

An e�ective version of Baker's theorem also gives a lower bound on how fast such

linear combinations approach zero (in terms of their coe�cients).

Lemma 1.1.8. Given α1, . . . , αd ∈ Q and a0, . . . , ad ∈ R ∩ Q, we can e�ectively

determine the sign of a0 +
∑d

i=1 ai log(αi).

Proof. After computing the multiplicative relationships among the algebraic numbers

αi using Theorem 1.1.3, we can rewrite this expression as b0 +
∑e

i=1 bi log(αi). Here,

we relabelled the αi such that α1, . . . , αe is a maximum multiplicatively independent

subset of α1, . . . , αd, and b0, . . . , be ∈ R∩Q are explicitly computed. By Theorem 1.1.7,

this expression is zero if and only if all bi are 0. If this expression is non-zero, we can

compute it to arbitrary precision and determine whether it is positive.

A p-adic version of Theorem 1.1.7 is due to Brumer [41].
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Theorem 1.1.9 (Brumer). Let p be a rational prime, Kp a �nite extension of Qp,

and α1, . . . , αd algebraic units in Kp whose p-adic logarithms are de�ned and linearly

independent over Q, then 1, log(α1), . . . , log(αd) are linearly independent over Q.

For p-adic number �elds, we have the following generalization. See for exam-

ple [159].

Theorem 1.1.10. Let K be a number �eld whose ring of integers has a prime ideal

p, Kp the completion of K with respect to the absolute value induced by p, and

α1, . . . , αd ∈ OK not in p whose p-adic logarithms are de�ned and linearly independent

over Q, then 1, log(α1), . . . , log(αd) are linearly independent over Q.

Before we can give Matveev's e�ective version of Baker's theorem, we �rst intro-

duce the notion of the height of an algebraic number. Let α ∈ Q∗
have degree d and

minimal polynomial a0
∏d

i=1(X − αi). The absolute logarithmic Weil height of α is

de�ned as

h(α) =
1

d

(
log |a0|+

d∑
i=1

log
(
max(|αi|, 1)

))
. (1.1)

Furthermore, set h(0) = 0. For all algebraic numbers α1, . . . , αk and n ∈ Z, we have
the following properties:

h(α1 + · · ·+ αk) ≤ log(k) + h(α1) + · · ·+ h(αk) ,

h(α1α2) ≤ h(α1) + h(α2) , and

h(αn1 ) = |n|h(α1) .

In particular, for n ∈ Z \ {0}, we have that h(n) = log |n|. For a rational number

p/q with gcd(p, q), we have that h(p/q) = max(log |p|, log |q|). For simplicity, we call

h(α) the height of α.

Let α1, . . . , αk ∈ Q∗
lie in a number �eld K of degree D, b1, . . . , bn ∈ Z, and

Λ = αb11 α
b2
2 · · ·αbkk − 1 .

Further, set κ to 1 if K ⊂ R and to 2 otherwise, and let

B = max
(
|b1|, . . . , |bk|

)
.

Lastly, for 1 ≤ i ≤ k, let h′(αi) ≥ max(Dh(αi), log |αi|, 0.16). Then Matveev showed

the following.
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Theorem 1.1.11 ([115]). Using the notation above, if Λ ̸= 0, then

log |Λ| > −C(k, κ,D)h′(α1) · · ·h′(αk)
(
1 + log(B)

)
,

where

C(k, κ,D) = D2
(
1 + log(D)

)
min

(
1

κ

(
1

2
ek

)κ
30k+3k3.5, 26k+20

)
.

Thus, the constant C only depends on k, κ, and D while h′(αi) only depends on

D and αi. Thus, C and all h′(αi) only depend on α1, . . . , αk. When B ≥ 2, we have

1 + log(B) < 3 log(B), which gives us the following corollary.

Corollary 1.1.12. There is a computable constant C only depending on α1, . . . , αk

such that |Λ| > B−C whenever Λ ̸= 0.

Kronecker's theorem on Diophantine approximation

We need two consequences of Kronecker's theorem in Diophantine approximation [71].

Let T denote the additive group R/Z, which we can identify with the interval

[0, 1). For x ∈ R, let {x} denote the fractional part of x, i.e., {x} = x − ⌊x⌋. Then
we study the behaviour of rotating a point on the higher-dimensional torus Td.

Theorem 1.1.13. Let δ = (δ1, . . . , δd) ∈ Rd such that 1, δ1, . . . , δd are multiplicatively

independent, de�ne g : Td → Td by g((x1, . . . , xd)) = ({x1 + δ1}, . . . , {xd + δd}), and
let g(n) be the nth iterate of g. Then the orbit

(
g(n)((0, . . . , 0))

)∞
n=0

is dense in Td.
Thus, for every non-empty open subset O of Td there exist in�nitely many n ∈ N such

that g(n)((0, . . . , 0)) ∈ O.

Our second application only concerns a 1-dimensional torus.

Theorem 1.1.14. Let α, β ∈ N>1 be multiplicatively independent and I ⊆ R>0 be

a non-empty open interval. Then there exist in�nitely many n1, n2 ∈ N such that

αn1/βn2 ∈ I.

Proof. By multiplicative independence, the number logβ(α) is irrational, and by The-

orem 1.1.13, the sequence ({n logβ(α)})∞n=0 is dense in [0, 1). That is,

{n1 logβ(α)− n2 : n1, n2 ∈ N} ∩ (0, 1)

is dense in (0, 1). Equivalently, {αn1/βn2 : n1, n2 ∈ N} ∩ (1, β) is dense in (1, β).

Thus, for all k ∈ Z, we have that {αn1/βn2−k : n1, n2 ∈ N} is dense in (βk, βk+1) and

so {αn1/βn2 : n1, n2 ∈ N} is dense in (0,∞).
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1.2 Linear recurrence sequences

Linear recurrence sequences are the primary object of study in this thesis. In this

section, we give their fundamental properties and prove several preliminary lemmas.

Much of this section is based on Section 1.1 in [64].

A linear recurrence sequence over a ring R (an R-LRS for short) is an R-valued

sequence (un)
∞
n=0 for which there are c1, . . . , cd such that

∀n ∈ N : un+d = c1un+d−1 + c2un+d−2 + · · ·+ cdun , (1)

In other words, an LRS (un)
∞
n=0 has to satisfy a linear recurrence, and a tuple

(u0, . . . , ud−1, c1, . . . , cd) ∈ R2d uniquely de�nes an LRS (un)
∞
n=0. Here, u0, . . . , ud−1

are called the initial terms of the sequence. In (1), we refer to d as the order of the

linear recurrence. Some other works, use the terminology depth instead of order.

Applying linear algebra, one can show that every LRS satis�es a unique linear

recurrence of minimal order. This recurrence is the linear recurrence of the LRS, and

we call its order the order of the LRS. The zero-LRS is the unique R-LRS of order

0 and is constantly 0.

We will show that we can assume that cd is non-zero (where cd is as in (1)). Indeed,

if cd = 0, then (un)
∞
n=1 is an LRS of order d− 1 as it satis�es the linear recurrence

∀n ∈ N≥1 : un+d−1 = c1un+d−2 − c2un+d−3 − · · · − cd−1un

of order d−1. Hence, any linear recurrence sequence can be reduced to a concatenation

of a �nite sequence and a linear recurrence sequence whose linear recurrence satis�es

cd ̸= 0.

In this thesis, we will primarily consider rings R that are integral domains contain-

ing the integers, like number �elds, the complex numbers, and the p-adic numbers.

However, we need one result for rings Z/MZ for integers M ≥ 1. A sequence (un)∞n=0

is ultimately periodic with period P and preperiod N if un = un+P for all n ≥ N .

Lemma 1.2.1. Let M ≥ 1 be a natural number, R = Z/MZ, and (un)
∞
n=0 an R-LRS

satisfying (1) for some given (u0, . . . , ud−1, c1, . . . , cd). Then (un)
∞
n=0 is ultimately

periodic, and both the preperiod and period can be e�ectively computed.

Proof. It is su�cient to note that for each n ∈ N, one can compute un, and each

(un, . . . , un+d−1) is in the �nite set (Z/MZ)d. Hence, we can enumerate (un)∞n=0 until

we �nd N ≥ 0 and P ≥ 1 such that (uN , . . . , uN+d−1) = (uN+P , . . . , uN+P+d−1).

Then, inductively, it follows that uN+n = uN+n+P for all n ∈ N, and so (un)
∞
n=0 is

periodic with period P and preperiod N .
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In the remainder of this section, we will restrict ourselves to rings R that are

integral domains of characteristic 0 that contain 1. Let K be the fraction �eld of R.

The characteristic polynomial P ∈ R[X] of the R-LRS (un)
∞
n=0 is given by

P (X) := Xd − c1X
d−1 − · · · − cd−1X − cd ,

where c1, . . . , cd ∈ R are the coe�cients of the linear recurrence (1) of (un)∞n=0. The

characteristic roots of (un)∞n=0 are the roots of the characteristic polynomial P in a

suitable, �nite-dimensional extension L of K. The multiplicity of a characteristic root

λ is the multiplicity of λ as a root of the characteristic polynomial P . Thus, if (un)∞n=0

has characteristic roots λ1, . . . , λk with respective multiplicities m1, . . . ,mk, then its

characteristic polynomial is equal to

P (X) =
k∏
i=1

(X − λi)
mi .

Then, d =
∑k

i=1mi. As cd ̸= 0, we have that 0 is never a characteristic root.

If λi is a characteristic root and σ ∈ GalK(L) a Galois automorphism σ ∈ GalK(L),

then σ(λi) is also a characteristic root of (un)∞n=0 of the same multiplicity as λi. For

example, if (un)∞n=0 is an R-LRS with a characteristic root λ, then λ is also a charac-

teristic root. A linear recurrence sequence is called simple if all of its characteristic

roots have multiplicity one and degenerate if it has characteristic roots λi ̸= λj such

that λi/λj is a root of unity. An LRS that is not degenerate is called non-degenerate.

Assume that (un)∞n=0 is a C-LRS. Then a characteristic root λi is called dominant

if |λi| ≥ |λj| for all 1 ≤ j ≤ k. For brevity, we often refer to a dominant characteristic

root as a dominant root. If λ is a dominant root, we call |λ| the spectral radius of

the LRS. Similarly, when R is some �nite extension of Qp for some prime ideal p, we

call a characteristic root of an R-LRS (un)
∞
n=0 p-dominant if its p-norm is at least as

large as the p-norm of any other characteristic root.

By convention, when we talk about the number of dominant roots we do not count

multiplicity ; e.g., a recurrence sequence that satis�es the relation un+2 = 2un+1 − un

with characteristic polynomial (X − 1)2 has only one dominant root.

We also apply these notions of simple, (non-)degenerate, and (p-)dominant roots

to roots of polynomials.

1.2.1 The structure of a linear recurrence sequence

We need to understand the structure of linear recurrence sequences in greater detail.

Again, R is an integer domain of characteristic zero that contains 1.
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The exponential-polynomial form is a useful direct formula for LRS.

Proposition 1.2.2 ([64, Section 1.1.6]). Let (un)
∞
n=0 be an R-LRS that has char-

acteristic roots λ1, . . . , λk of respective multiplicities m1, . . . ,mk. Further, let L =

R(λ1, . . . , λk). Then there are univariate polynomials Qi ∈ L[X] of degree mi − 1

such that, for all n ∈ N,

un = Q1(n)λ
n
1 + · · ·+Qk(n)λ

n
k . (1.2)

We call (1.2) the exponential-polynomial form of (un)∞n=0, and the polynomials

Qi are called the polynomial coe�cients of (un)
∞
n=0. Sometimes, we also use the

terminology exponential-polynomial formula, and in the literature, the name Binet

formula is also used.

Note that an LRS is simple if and only if all polynomial coe�cients are constant.

Using the notation of Proposition 1.2.2, we can carefully count and conclude that

all R-LRS are exactly those such that for all Galois automorphisms σ ∈ GalK(L)

and characteristic roots λi and λj = σ(λi) we have that σ(Qi) = Qj. That is, the

expression (1.2) is closed under Galois automorphisms. For example, if R ⊂ R and λi
is a characteristic root of an R-LRS with polynomial coe�cient Qi, then λi is also a

characteristic root with polynomial coe�cient Qi. From the exponential-polynomial

formula, we can deduce that for R-LRS (un)
∞
n=0 and (vn)

∞
n=0, we have that (un+vn)

∞
n=0,

(unvn)
∞
n=0, and (

∑n
k=0 uk)

∞
n=0 are all R-LRS.

Let a ≥ 1 and b be natural numbers. Then for an R-LRS (un)
∞
n=0, the sequence

(uan+b)
∞
n=0 is again an R-LRS which we call a subsequence of (un)∞n=0. If (un)∞n=0

is simple (respectively, non-degenerate), the subsequence (uan+b)
∞
n=0 is again simple

(respectively, non-degenerate). Mignotte showed one can algorithmically decompose

a Q-LRS into non-degenerate LRS.

Theorem 1.2.3 ([64, Theorem 1.2]). Let (un)∞n=0 be a Q-LRS. Then one can compute

b ∈ N≥1 such that (ua+bn)
∞
n=0 is non-degenerate for all 0 ≤ a ≤ b− 1.

We sometimes normalise a C-LRS and study the C-LRS (un/|λ|n)∞n=0 where λ

is dominant. We call the (dominant) characteristic roots of (un/|λ|n)∞n=0 normalised

(dominant) characteristic roots. When R ⊂ C, the dominant part of an R-LRS

(un)
∞
n=0 is de�ned as

k∑
i=1

λi is dominant

Qi(n)λ
n
i
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and the non-dominant part as

k∑
i=1

λi is not dominant

Qi(n)λ
n
i .

Both the dominant and non-dominant parts are again LRS but not necessarily R-LRS.

The following example illustrates this phenomenon and the preceding de�nitions

Example 1.2.4. Let R = Z. Then the Fibonacci sequence (Fn)
∞
n=0 is de�ned by

F0 = 0, F1 = 1, and the linear recurrence

Fn+2 = Fn+1 + Fn .

Then, (Fn)∞n=0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ). The characteristic polynomial of

(Fn)
∞
n=0 is given by X2 − X − 1 = (X − φ)(X − φ̃). Here, φ := 1+

√
5

2
= 1.618 · · ·

(the golden ratio) and φ̃ = 1−
√
5

2
= −0.618 · · · are the two characteristic roots of

the Fibonacci sequence. Thus, (Fn)∞n=0 is a simple, non-degenerate LRS whose only

dominant root is φ. As both φ and φ̃ are units, both are p-dominant for every prime

ideal p of the ring of integers of Q(φ, φ̃). The exponential-polynomial form of (Fn)n=0

is also known as the Binet formula and given by

Fn =
1√
5
φn − 1√

5
φ̃n .

The dominant part of (Fn)∞n=0 is the order-1 Q-LRS
(

1√
5
φn
)∞
n=0

and the non-dominant

part of (Fn)∞n=0 is the order-1 Q-LRS
(
− 1√

5
φ̃n
)∞
n=0

. Both of these Q-LRS are not

Q-LRS.

This thesis primarily focuses on Z-LRS, but many results extend naturally to

Q-LRS due to the following lemma.

Lemma 1.2.5. Let (un)
∞
n=0 be a Q-LRS of order d. Then one can compute positive

integers a and b such that (abnun)
∞
n=0 is a Z-LRS.

Proof. Let P ∈ Q[X] be the characteristic polynomial of (un)∞n=0, which has degree

d by assumption. Then let b be a positive integer such that bdP (X/b) ∈ Z[X].

(One can surely compute b. For example, let b be the least common multiple of the

denominators of the coe�cients of P . Then indeed bdP (X/b) ∈ Z[X].) Next, let a

be the least common multiple of the denominators of b0u0, b1u1, . . . , bd−1ud−1. Then

(abnun)
∞
n=0 has an integer-valued linear recurrence (as its characteristic polynomial is

in Z[X]). As also its d initial values are in Z, the sequence (abnun)∞n=0 is a Z-LRS.
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Linear recurrence bi-sequences

Every LRS (un)
∞
n=0 satisfying (1) admits a unique extension to a K-valued bi-in�nite

sequence (un)
∞
n=−∞ that satis�es the same linear recurrence, where K is the fraction

�eld of R. Intuitively, this is accomplished by reversing the linear recurrence:

un =
1

cd
(un+d − c1un−d−1 − · · · − cd−1un+1) .

The resulting bi-in�nite sequence (un)
∞
n=−∞ is the bi-completion of (un)∞n=0 and is

called a linearly recurrent bi-sequence (or LRBS for short). More precisely, writing

S := {1, cd, c2d, . . . } and denoting by S−1R the localisation of R by S (the smallest ring

containing all elements of the form r/s with r ∈ R and s ∈ S), then the bi-completion

of (un)∞n=0 takes values in S−1R. In particular, the bi-completion of a Z-LRS takes

values in Q.
For all a, b ∈ Z, the sequence (uan+b)∞n=0 is again a K-LRS of order at most d, and

in particular, an S−1R-LRS. As a can be negative, the LRBS (un)
∞
n=−∞ can also be

interpreted as the union of two LRS: (un)∞n=0 and (u−n−1)
∞
n=0.

Reversible LRS We will sporadically discuss the class of reversible LRS, consisting

of all Z-LRS (un)
∞
n=0 whose characteristic roots are all algebraic units. Equivalently,

a Z-LRS is reversible if the constant coe�cient of its characteristic polynomial is

±1, and another equivalent de�nition is that a Z-LRS is reversible if and only if its

bi-completion is contained in the integers.

Linear dynamical systems

Linear recurrence sequences have a strong relationship with matrix powering. If

M ∈ Rd×d, s, t ∈ Rd, and P (X) = Xd − c1X
d−1 − · · · − cd is the characteristic

polynomial of M , then the Cayley-Hamilton theorem gives that P (M) = 0. Setting

un = s⊤Mnt, we get

un+d − c1un+d−1 − · · · − cdun

= s⊤Mn
(
Md − c1M

d−1 − · · · − cdId
)
t = 0 .

Therefore, (un)∞n=0 satis�es the linear recurrence (1). Conversely, for every R-LRS,

there are a matrix M ∈ Rd×d and vectors s, t ∈ Rm such that un = s⊤Mnt. De�ne
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the companion matrix as

M =


c1 c2 · · · cd−1 cd
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (1.3)

and set s = (0, . . . , 0, 1) and t = (ud−1, ud−2, . . . , u0). Then, for any n ∈ N, we have
Mnt = (un+d−1, un+d−2, . . . , un), and so un = s⊤Mnt. Due to this matrix form, other

works use the terminology eigenvalue instead of characteristic root.

More generally, for a givenM ∈ Rd×d and t ∈ Rd as above, the sequence (Mnt)∞n=0

is called a linear dynamical system for which there is an entire research program to

model-check it [83].

1.2.2 The growth of linear recurrence sequences

For many decision problems involvingR-LRS withR ⊂ C, understanding their growth
is essential. An upper bound follows directly from the exponential-polynomial form.

Lemma 1.2.6. Let (un)
∞
n=0 be a C-LRS with spectral radius ρ and C ∈ R>|λ|. Then

one can compute r ∈ Q>0 and ρ ∈ (|λ|, C) ∩Q such that |un| < rρn for all n ∈ N.

Proof. Assume that (un)
∞
n=0 satis�es un =

∑k
i=1Qi(n)λ

n
i . If m = maxki=1(deg(Qi))

and Q is larger than the absolute value of any coe�cient of any polynomial Qi,

then for all 1 ≤ i ≤ k and n ∈ N, we have |Qi(n)| < (m + 1)Q · nm and thus

|un| < k(m + 1)Q · nm|λ|n. Thus, |un| < k(m + 1)Qnm|λ|n. Then, for computably

large N ∈ N, we have that ρn ≥ nm|λ|n for all n ≥ N . Then take r ≥ k(m + 1)Q

such that |un| < rρn for all n ≤ N . The lemma follows.

Finding a lower bound for the growth of a LRS is more involved. We cite one

version found in [84, Theorem 2], which is a consequence of the works of Evertse [65]

and van der Poorten [127].

Theorem 1.2.7. Let (un)
∞
n=0 be a non-degenerate Q-LRS satisfying the polynomial

exponential formula un =
∑k

i=1Qi(n)λ
n
i with spectral radius ρ. For every 0 < r < ρ,

there exists N ∈ N such that |un| > rn for all n > N .

Since the proof of Theorem 1.2.7 relies on S-units, the result is non-e�ective,

i.e., no implicit method is provided to compute this number N . In restricted cases,

e�ective results can be proven, like the following results of Mignotte, Shorey, and

Tijdeman [116] and Vereshchagin [156].
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Theorem 1.2.8. Let (un)
∞
n=0 be a non-degenerate Q-LRS with two dominant roots

of magnitude |λ|. Then there are computable positive constants C1 and C2 such that

|un| ≥ |λ|n · n−C1 log(n)

whenever n ≥ C2.

The second of their results does not concern the growth of the LRS itself but the

distance between its terms.

Theorem 1.2.9. Let (un)
∞
n=0 be a non-degenerate Q-LRS with two dominant roots

of magnitude |λ|. Then there are computable positive constants C3 and C4 such that

|un1 − un2| ≥ |λ|n1 · n1
−C3 log(n1) log(n2+2)

whenever n1 > n2 and n1 ≥ C4.

1.3 Logic and automata

1.3.1 Words and automata

Words

By an alphabet Σ, we mean a �nite non-empty set of letters. For an alphabet Σ and

w1, . . . , wd ∈ Σ, let w = w1 · · ·wd denote the �nite word w and Σ∗ the set of all �nite

words over the alphabet Σ. Sometimes, we also write w as a tuple (w1, . . . , wd). In

this case, we call d the length of the word w, which we denote by |w|. With ε, we

denote the empty word, the unique word in Σ∗ of length 0. The set Σ+ denotes all

words of strictly positive length, i.e., Σ+ = Σ∗ \ {ε}.
Similarly, we can treat in�nite words. Let w = w0w1 · · · denote an in�nite word

over the alphabet Σ. The set of all in�nite words over the alphabet Σ is denoted by

Σω, and sometimes we write w = (w0, w1, . . . ) and call w a sequence.

We refer to elements in the alphabet Σ as letters and if w is a word and v =

v1 · · · vd ∈ Σ+, then v is a factor of w ∈ Σ∗ ∪ Σω if there is an n ∈ N such that

v = wn · · ·wn+d−1. In this case, the letter v occurs at position n in w. As an example

of this terminology, we say that v occurs in�nitely often in w if there are in�nitely

many n ∈ N such that v occurs at position n in w

An in�nite word w ∈ Σω is called recursive or e�ective if one can compute wj for

all j ≥ 0. Formally, there is a Turing machine which, at input j, outputs wj.

A factorisation of w ∈ Σω is a sequence (un)
∞
n=0 such that w = u0u1 · · · and

un ∈ Σ+ for all n ∈ N. A factorisation is uniquely determined by a strictly increasing

sequence (kn)
∞
n=0 over N such that un = wkn · · ·wkn+1−1 for all n ∈ N.
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Automata and transducers

A deterministic Muller automaton A = (Σ, Q, qinit, δ,F) consists of an alphabet Σ, a

�nite set of states Q, an initial state qinit ∈ Q, a transition function δ : Q× Σ → Q,

and an accepting family of sets F ⊆ P(Q). The run of w ∈ Σ∗ ∪ Σω on A is the

sequence of states visited while reading w starting in qinit and repeatedly updating the

state using the transition function while reading the word w. We say that A accepts

w ∈ Σω if the set of states visited in�nitely often upon reading w belongs to F . The

acceptance problem of a recursive word w ∈ Σω is the question of determining whether

A accepts w for any given deterministic Muller automaton A with alphabet Σ. We

denote the acceptance problem by Accw.

A Muller automaton is an example of an ω-automaton. Instead of using a Muller

automaton, one can use Büchi or parity automata, which are equally expressive.

A deterministic �nite transducer B = (Σin,Σout, Q, qinit, δ) is given by an input

alphabet Σin, output alphabet Σout, set of states Q, initial state qinit ∈ Q, and tran-

sition function δ : Q × Σin → Q × Σ∗
out. The transducer B starts in state qinit and

reads a word w ∈ Σ∗
in ∪Σω

in and upon reading the letter a whilst in state q, computes

(q′, w′) = δ(q, a), moves to state q′, and concatenates w′ to the output string. Write

B(w) ∈ Σ∗
out ∪Σω

out to denote the output word computed upon reading w ∈ Σ∗
in ∪Σω

in.

Disjunctive words and normal numbers

In this thesis, we frequently encounter disjunctive words. A word α ∈ Σω is disjunctive

if every v ∈ Σ+ occurs in�nitely often as a factor in α, i.e., if v = v1 · · · vd, there is

an n such that v = αn · · ·αn+d−1. Equivalently, there are in�nitely many such n: If

|Σ| = 1, then α is constant. If |Σ| ≥ 2 and N ≥ 1, one can construct w1, . . . , wN ∈ Σ+

such that v is a pre�x of each wi while these wi are not pre�xes of each other. Hence,

if each factor appears at least once, then v appears at least N times and thus v occurs

in�nitely often as a factor of α as N was arbitrary.

Some other works use the terminology rich instead of disjunctive, and in previous

works [24, 119], we used the terminology weakly normal.

If Σ̃ ⊂ Σ, then α ∈ Σω is disjunctive with respect to Σ̃ if each u ∈ Σ̃+ appears at

least once (or, equivalently, in�nitely often) in α.

The motivation of disjunctive words lies in the base-b expansions of numbers,

�rst studied by Borel in 1909 [37]. We can interpret a number x ∈ R as a word

w ∈ {0, . . . , b − 1}ω by considering its base-b expansion modulo 1. Here, a number
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is normal in base-b if each factor appears with a frequency one would expect from a

`random' number. That is, for every v = v1 · · · vd ∈ {0, . . . , b− 1}+,

lim
N→∞

#{0 ≤ n < N : v = wn · · ·wn+d−1}
N

=
1

bd
. (1.4)

Then x is normal if x is normal in base-b for all b ≥ 2.

Although rational numbers are not normal (as their base-b expansion is ultimately

periodic for every b ≥ 2), normal numbers are abundant. Borel showed that normal

numbers have Lebesgue measure 1 in (0, 1), but little is known about most other

natural constants. For example,
√
2, e, log(2), and π are all conjectured to be nor-

mal [14]. For a detailed discussion of normal numbers, see surveys [77, 129] and the

book [45].

In particular, [77] states the following conjecture.

Conjecture 1.3.1. Irrational real algebraic numbers are normal in any base b ≥ 2.

So far, the strongest result towards this conjecture is due to Adamczewski and

Bugeaud [1]. Let p(n) denote the factor complexity of α, i.e., the number of distinct

factors in α of length n.

Theorem 1.3.2. If b ≥ 2 and α is the base-b expansion of an irrational algebraic

number, then

lim inf
n→∞

p(n)

n
= +∞ .

1.3.2 Logical theories

Let U be a universe. Then a predicate P is a subset of Uµ for some µ ∈ N≥1, and

predicate P is unary if µ = 1. Then, we can interpret P as a function P : Uµ →
{true, false} and as a set such that P (x) holds if and only if x ∈ P .

A structure M consists of a universe U , constants c1, . . . , ck ∈ U , predicates

P1, . . . , Pℓ where each Pi ⊆ Uµ(i) for some µ(i) ≥ 1, and functions f1, . . . , fm where

each fi has the type fi : U δ(i) → U for some δ(i) ≥ 1. We denote this structure by

⟨U ; c1, . . . , ck, P1, . . . , Pℓ, f1, . . . , fm⟩. From the context, it should be clear which items

are constants, predicates, and functions.

By the language of the structure M we mean the set of all well-formed �rst-

order formulas constructed from symbols denoting the constants c1, . . . , ck, predicates

P1, . . . , Pℓ, and functions f1, . . . , fm, as well as the symbols ∀,∃,∧,∨,¬, and =. A

term is a well-formed expression constructed from constant, function, and variable

symbols. Terms represent elements of the universe. A (�rst-order) theory is simply
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a set of sentences, i.e., formulas without free variables. The theory of the structure

M is the set of all sentences in the language of M that are true in M. A formula is

existential if it is of the form ∃x1 · · · ∃xm : φ(x1, . . . , xm) for a quanti�er-free sentence

φ. The existential fragment of a theory T , which itself is a theory, is the set of all

existential formulas belonging to T . Finally, a theory T is decidable if there exists

an algorithm that takes a sentence φ and determines whether φ ∈ T . A set X ⊆ Ud

is de�nable in a structure M if there exists a formula φ in the language of M with d

free variables such that for all x1, . . . , xd ∈ U , we have that φ(x1, . . . , xd) holds if and

only if (x1, . . . , xd) ∈ X.

The real ordered �eld with the exponential function

Let Rexp := ⟨R;<,+,−, ·, exp(·), 0, 1⟩ denote the structure of the real ordered �eld

with exponentiation. The �rst-order theory of Rexp is the set of all well-formed �rst-

order sentences in a suitable language Lexp that are true in Rexp. In [109], Macintyre

and Wilkie showed that the �rst-order theory of the structure Rexp is decidable as-

suming Schanuel's conjecture (Conjecture 1.1.4) for termination.

Theorem 1.3.3. Assuming Schanuel's conjecture for termination, given a sentence

φ ∈ Lexp, one can determine whether φ holds in Rexp.

Presburger arithmetic

We denote Presburger arithmetic, the theory of the structure ⟨Z; 0, 1, <,+⟩, with
PA. If P1, . . . , Pℓ and f1, . . . , fm denote predicates and functions over the universe

Z, respectively, then PA(P1, . . . , Pℓ, f1, . . . , fm) denotes the theory of the structure

⟨Z; 0, 1, <,+, P1, . . . , Pℓ, f1, . . . , fm⟩ (Presburger arithmetic expanded with these pred-

icates and function).

A set X ⊆ Zd is semilinear if it is de�nable in the structure ⟨Z; 0, 1, <,+⟩. By the
result of Presburger [128] that Presburger arithmetic admits quanti�er elimination if

we allow a divisibility predicate [74], such X can be de�ned by a formula of the form∨
i∈I

( ∧
j=Ji

tj(x1, . . . , xd) ≡ 0 (mod Dj) ∧
∧
k∈Kj

hk(x1, . . . , xd) ∼k ck

)
, (1.5)

where Dj ≥ 1 and each tj, hj is a Q-linear form, ck ∈ Z, and ∼k ∈ {>,=}.
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Monadic Second-Order Logic

Monadic second-order logic (MSO), contrary to �rst-order logic, allows quanti�cation

over both elements and subsets of the universe. We will only be interpreting MSO

formulas over expansions of the structure ⟨N;<⟩. For a general perspective on MSO,

see [36].

Let S := ⟨N;<,P1, . . . , Pm⟩ be a structure where each predicate Pi ⊆ N is unary.

We associate a language LS of terms and formulas with S as follows. The terms of

LS are the countably many constant symbols {0, 1, 2, . . .}, lowercase variable symbols
that stand for elements of N, and uppercase variable symbols that denote subsets

of N. The formulas of LS are the well-formed statements constructed from the built-

in equality (=) and membership (∈) symbols, logical connectives, quanti�cation over

elements of N (written Qx for a quanti�er Q), and quanti�cation over subsets (written

QX for a quanti�er Q). The MSO theory of the structure S is the set of all sentences

belonging to LS that are true in S. The MSO theory of S is decidable if there exists

an algorithm that, given a sentence φ ∈ LS, determines whether φ belongs to the

MSO theory of S.
As an example, consider S = ⟨N;<,P ⟩ where P is the set of all primes. Let s(·)

be the successor function de�ned by s(x) = y if and only if

x < y ∧ ∀z : x < z ⇒ y ≤ z .

That is, s(x) = x+ 1. Further let

φ(X) := 1 ∈ X ∧ 0, 2 /∈ X ∧ ∀x : x ∈ X ⇐⇒ s(s(s(x))) ∈ X,

ψ := ∃X : φ(X) ∧ ∀y.∃z > y : z ∈ X ∧ P (z) .

The formula φ de�nes the subset {n : n ≡ 1 (mod 3)} of N, and ψ is the sentence

�there are in�nitely many primes congruent to 1 modulo 3�, which is the case.

Fourier-Motzkin elimination

Fourier-Motzkin elimination is an algorithm to eliminate variables from a system of

linear inequalities. Let Φ(x1, . . . , xm) be a Boolean combination of atomic formulas

of the form h(x1, . . . , xm) ∼ 0, where h is a Q-a�ne form and ∼ is a (strict or non-

strict) inequality symbol. Let 1 ≤ ℓ ≤ m, and consider the formula ∃x1, . . . , xℓ ∈
R : Φ(x1, . . . , xm). Using the Fourier-Motzkin elimination [54], we can compute a

formula Ψ(xℓ+1, . . . , xm) =
∨
j∈J
∧
k∈K hj,k(xℓ+1, . . . , xm) ∼j,k 0 such that

(a) each ∼j,k is an inequality and hj,k is a Q-a�ne form, and
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(b) for all zℓ+1, . . . , zm ∈ R, the sentence

∃x1, . . . , xℓ ∈ R : Φ(x1, . . . , xℓ, zℓ+1, . . . , zm)

holds if and only if Ψ(xℓ+1, . . . , xm) holds.
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Chapter 2

The Skolem problem

2.1 Introduction and main results

In this chapter, we discuss the Skolem problem, which asks one to determine whether

a Z-LRS has a zero; i.e., does there exist an n ∈ N such that un = 0? We can

generalize the Skolem problem to rings other than Z.

Problem 2.1.1 (Skolem problem for R-LRS). For an integral domain R, the R-

Skolem problem asks if it is decidable whether, for a given R-LRS (un)
∞
n=0, there is

an n ∈ N such that un = 0.

The most prominent open cases of the Skolem problem concern the rings R = Z
and R = Q. Due to Lemma 1.2.5, the Skolem problems for these two rings are

Turing-equivalent, and the reductions in both directions preserve properties like order,

degeneracy, and simplicity. Consequently, throughout this chapter, we refer to Z-LRS
simply as LRS, and the Z-Skolem problem as the Skolem problem. The Q-Skolem
problem is also Turing equivalent to the Z-Skolem problem, but this reduction does

not preserve order (see Section 3.5).

Before presenting the current state of the Skolem problem, our technical contri-

butions, we brie�y review the history of the Skolem problem.

Early motivation of the Skolem problem The origins of the Skolem problem

can be traced back to Hilbert in the 1920s. In his famous program, Hilbert identi�ed

decidability as a central objective, envisioning the development of an algorithm that

can determine whether any mathematical statement is true or false [160]. Among

his famous list of problems, Hilbert's tenth problem sought an algorithm to decide

whether a given Diophantine equation has an integer solution. Formally, for a poly-

nomial P ∈ Z[X1, . . . , Xd], determine whether there are n1, . . . , nd ∈ Z such that
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P (n1, . . . , nd) = 0. However, Hilbert's vision could not be ful�lled. Gödel's in-

completeness theorems demonstrated that no algorithm can decide the truth of all

mathematical statements. Matiyasevich, utilizing the previous work of Davis, Put-

nam, and Robinson, underscored this limitation by proving in 1970 that no algorithm

exists that determines the solutions of all Diophantine equations [114].

Thoralf Skolem was a Norwegian mathematician primarily interested in logic but

also contributed to the �elds of Diophantine equations, lattice theory, and group

theory. He is the namesake of the Skolem problem, and his involvement with the

Skolem problem began during his study of Thue equations [143]. Thue equations are

Diophantine equations of the form

a0X
3 + a1X

2Y + a2XY
2 + a3Y

3 = d ,

where a0, a1, a2, a3, and d are given integers. For many such instances, one can

construct a linear recurrence sequence that contains zero if and only if the corre-

sponding Thue equation has a solution. This is exactly an instance of the Skolem

problem! To solve these cases of the Skolem problem, Skolem relied on p-adic tech-

niques, and so this method of solving Thue equations is nowadays known as Skolem's

(p-adic) method. Skolem's method is still sporadically used (e.g., in [149]) but has

mostly fallen into obscurity since Baker developed his methods. In general, methods

employing Baker's theorem are more practical and more often applicable. As Brock,

Elkies, and Jordan [40] note �Skolem's method does not always apply in diophantine

problems, and it does not always work even when it applies (. . . )�.

The Skolem-Mahler-Lech theorem Skolem authored several papers on linear

recurrence sequences, the most notable being [144], which contains one of the most

foundational results on linear recurrence sequences: the Skolem-Mahler-Lech theorem.

This theorem states, under mild assumptions, that for an LRS (un)
∞
n=0, there are only

�nitely many indices n ∈ N such that un = 0.

Theorem 2.1.2 (Skolem-Mahler-Lech). Let (un)
∞
n=0 be a C-LRS and de�ne Z =

{n ∈ N : un = 0}. Then Z is the union of �nitely many arithmetical progressions and

a �nite set. In particular, if (un)
∞
n=0 is non-degenerate and not the zero-LRS, then Z

is �nite.

Skolem [144] initially proved this result for Q-LRS, and Mahler [110] subsequently

generalised it to Q-LRS. Two decades later, Lech [94] proved the general case for R-

LRS, where R is an integral domain of characteristic 0.
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Using Theorem 1.2.3, one can decompose an LRS (un)
∞
n=0 into non-degenerate

subsequences (uSn+i)∞n=0. If one can decide the Skolem problem for all these S sub-

sequences, it can be decided for the original sequence. Therefore, Theorem 1.2.3

reduces the Skolem problem to non-degenerate LRS. Then, according to the Skolem-

Mahler-Lech theorem, the set Z := {n ∈ N : un = 0} is �nite. However, the Skolem-

Mahler-Lech theorem does not provide a method to compute Z, i.e., the theorem

is non-e�ective. The Skolem problem may be viewed as the search for an e�ective

Skolem-Mahler-Lech theorem.

In rings of characteristic p > 0, the Skolem-Mahler-Lech theorem as above does

not hold. For instance, Lech [94] observed that for the Fp(t)-LRS de�ned by un =

(t + 1)n − tn + 1, then un = 0 if and only if n is a power of p. Thus, the zero

set Z = {pm : m ∈ N} is in�nite while (un)
∞
n=0 is non-degenerate. The Skolem-

Mahler-Lech theorem seems to fail. Nevertheless, Z still exhibits a high degree of

structure: it is p-automatic. In 2007, Derksen [56] developed an analogue of the

Skolem-Mahler-Lech theorem in positive characteristic by proving that the zero-set

Z is always p-automatic. Moreover, in the same paper, he showed that the Skolem

problem is decidable for �elds R that are �nitely generated over Fp.

The MSTV class In the 1960s, Alan Baker made groundbreaking contributions to

the study of (exponential) Diophantine equations and number theory in general with

his study of linear forms in logarithms. The methods stemming from Baker's ideas

proved far more e�ective, general, and reliable than Skolem's methods and solved

many Diophantine equations and other open problems in number theory. Among

Baker's most celebrated results is what is now known as Baker's theorem on lin-

ear forms in logarithms. As a consequence, Mignotte, Shorey, and Tijdeman [116]

and Vereshchagin [156] independently applied Baker's theorem to linear recurrence

sequences in 1984 and 1985.

Theorem 2.1.3 (Mignotte, Shorey, and Tijdeman and Vereshchagin). The Skolem

problem is decidable for all Q-LRS (un)
∞
n=0 with at most three dominant roots or at

most two p-dominant roots for some prime ideal p.

We refer to the class of LRS covered by this theorem as follows.

De�nition 2.1.4. The MSTV class comprises all Q-LRS with at most three domi-

nant roots, or at most two p-dominant roots for some prime ideal p.
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Any LRS with at most four characteristic roots belongs to the MSTV class, which

includes all LRS of order up to 4, and one can construct explicit order-5 LRS outside

of the MSTV class. More subtly, the Skolem problem is also decidable for all Q-LRS
with at most three dominant roots or at most two p-dominant roots, and that again

all Q-LRS with at most four characteristic roots have one of these two properties as

shown recently by Bacik [10] (see also Bilu [30]).

Other recent results The previously mentioned results of Mignotte, Shorey, and

Tijdeman and Vereshchagin appear to have exhausted the power of Baker's theorem.

As a result, recent research shifted to alternative approaches, focusing on certain frag-

ments of the Skolem problem or working under the assumption of certain conjectures.

In one line of research [104, 105, 106, 108], Luca et al. introduce the concept of a

universal Skolem set. A set S ⊂ N is a universal Skolem set if, for all LRS (un)
∞
n=0, one

can determine whether un = 0 for some n ∈ S. From this perspective, the classical

Skolem problem amounts to establishing that N itself forms a universal Skolem set.

So far, Luca et al. have produced a universal Skolem set S of density at least 0.29.

That is,

lim inf
N→∞

#{0 ≤ s < N : s ∈ S}/N ≥ 0.29 .

The Bateman-Horn conjecture implies that this set S has density 1. Additionally, a

variant of the Cramér conjecture implies that the Skolem problem is decidable. Both

the Bateman-Horn conjecture and the variant of the Cramér conjecture are deep

number-theoretic conjectures related to the distribution of prime numbers.

Furthermore, Blondel and Portier [35] showed that the Skolem problem is NP-

hard, and Akshay et al. [4] gave an alternative proof of this fact. In both cases, the

authors depend on degenerate LRS to obtain NP-hardness. However, to settle the

decidability of the Skolem problem, it is su�cient to consider non-degenerate LRS

and no complexity hardness result is known for non-degenerate LRS.

Main results

To demonstrate our approach to solving certain fragments of the Skolem problem, we

introduce the Bi-Skolem problem. Recall that any LRS (un)
∞
n=0 has a bi-completion

(un)
∞
n=−∞ which forms a linear recurrence bi-sequence (LRBS) that satis�es the linear

recurrence (1) for all n ∈ Z by running the recurrence backwards:

un =
1

cd
(un+d − c1un+d−1 − · · · − cd−1un+1) . (2.1)

The Bi-Skolem problem is the natural analogue of the Skolem problem for LRBS.
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Problem 2.1.5 (Bi-Skolem problem). For a Q-LRBS (un)
∞
n=−∞, determine whether

un = 0 for some n ∈ Z.

As an LRBS is the union of the two sequences (un)
∞
n=0 and (u−n−1)

∞
n=0, the Bi-

Skolem problem reduces to the Skolem problem. It is unknown whether there is

a reduction in the other direction, but in Section 2.3, we give a reduction of the

Bi-Skolem problem to the Skolem problem assuming a p-adic version of Schanuel's

conjecture (Conjecture 1.1.6).

Theorem 2.1.6. Assuming the p-adic Schanuel conjecture, the Skolem problem and

the Bi-Skolem problem are Turing-interreducible. Moreover, the p-adic Schanuel con-

jecture is solely required to prove termination.

Hence, our focus shifts from LRS and the Skolem problem to LRBS and the

Bi-Skolem problem. The advantage of this perspective is that LRBS are a more

global object as they are closed under shifts of the sequence. If (un)∞n=0 is a Z-LRS
satisfying (1), then (2.1) implies that the LRBS takes values in Z[1/cd], and the

denominators ckd of terms in the LRBS are arbitraryly large powers of cd. Thus, for

M ≥ 1 coprime with cd, the bi-sequence (un modM)∞n=−∞ is well-de�ned.

The more global structure of an LRBS seems to imply a local-global principle for

LRBS. Skolem �rst conjectured this in 1937 [145], so we refer to this conjecture as the

Skolem conjecture. The Skolem conjecture is also known as the exponential local-global

principle, but this name also sometimes refers to a more general conjecture.

Conjecture 2.1.7 (Skolem conjecture). Let (un)∞n=0 be a simple Z-LRS whose char-

acteristic polynomial has constant coe�cient cd. Then its bi-completion (un)
∞
n=−∞ is

non-zero if and only if for some M ≥ 1 coprime with cd, the bi-sequence (un mod

M)∞n=−∞ is non-zero.

In other words, if a simple LRBS is never zero, this is witnessed by some modu-

lus M for which (un modM)∞n=−∞ is well-de�ned.

There exists a substantial body of literature on the Skolem conjecture, including

proofs for a variety of special cases. In particular, the Skolem conjecture has been

shown to hold for simple LRBS of order 2 [16] and for certain families of LRBS of

order 3 [135, 136]. In a di�erent but related vein, Bertók and Hajdu have shown that,

in some sense, the Skolem conjecture is valid in `almost all' instances [26, 27].

The Skolem conjecture directly gives a method to solve the Bi-Skolem problem

for simple LRS by running two semi-algorithms in parallel:
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1. Enumerate n ∈ Z until un = 0.

2. Enumerate M ≥ 2 until �nding an M coprime with cd such that (un mod

M)∞n=−∞ does not contain 0.

These bi-sequences are enumerable, so the �rst semi-algorithm exists. For the second

semi-algorithm, we can use Lemma 1.2.1. The Skolem conjecture implies that exactly

one of these two semi-algorithms terminates. If the �rst terminates, then 0 is in

(un)
∞
n=−∞ and if the second terminates 0 is not in (un)

∞
n=−∞. Thus, the Skolem

conjecture implies that the Bi-Skolem problem is decidable for simple LRS. The

observation above and Theorem 2.1.6 imply the main result of the chapter: Under

mild assumptions, the Skolem problem is decidable for simple LRS.

Theorem 2.1.8. For all simple LRS, the Skolem problem is decidable when assuming

the p-adic Schanuel conjecture and the Skolem conjecture. Moreover, both conjectures

are only needed to ensure termination.

Because both conjectures are only used to prove termination, we obtain an inde-

pendent certi�cate of correctness that does not depend on these conjectures when our

procedure terminates.

Organization of the chapter

We start with studying the behaviour of an LRS modulo integers M in Section 2.2.

Speci�cally, we call an LRS (un)
∞
n=0 modular if there is an M ≥ 1 such that (un mod

M)∞n=0 is ultimately non-zero, i.e., un ≡ 0 (mod M) for only �nitely many n ∈ N.
We use our results from modular LRS to give an alternate proof of Theorem 2.1.8 for

LRS of order 5, where we do not rely on the p-adic Schanuel conjecture.

Theorem 2.1.9. Let (un)
∞
n=0 be an LRS of order at most 5. Then, assuming the

Skolem conjecture for termination, the Skolem problem is decidable for (un)
∞
n=0.

Next, in Section 2.3, we prove Theorem 2.1.8, and in Section 2.4, we strengthen

this result for low-order recurrences, where we show the following result.

Theorem 2.1.10. Let (un)
∞
n=0 be a simple LRS of order at most 7. Then, assuming

the Skolem conjecture for termination, the Skolem problem is decidable for (un)
∞
n=0.

Although Theorem 2.1.10 absorbs Theorem 2.1.9, we provide separate proofs and

algorithms for both as an algorithm for Theorem 2.1.9 is signi�cantly simpler.
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We also present an implementation of our procedure for Theorem 2.1.8, the

SKOLEM-tool. We also partially implemented the (often much faster) methods of

Mignotte, Shorey, and Tijdeman and Vereshchagin using Baker's theorem on linear

forms in logarithms, so we also describe how to use these tools in practice.

2.2 Modularity

An LRS is modular if there exists an M ≥ 1 such that un ≡ 0 (mod M) for only

�nitely many n ≥ 0. For a �xed LRS (un)
∞
n=0, when one knows that such a num-

ber M exists, the Skolem problem for (un)∞n=0 is decidable: Enumerate M ≥ 1 and

compute the preperiod and the repeating block of the ultimately periodic LRS (un

(mod M))∞n=0. When the repeating block does not contain 0 (which by assumption

eventually occurs), computing the �nite set {n ∈ N : un ≡ 0 modM} is straight-

forward using this ultimately periodic representation. Hence, to solve the Skolem

problem, one only needs to compute un for n in this set.

Due to such straightforward proofs, we study the notion of modularity for LRS

in this section. We describe a criterion for a simple LRS to be modular and use this

criterion to show the decidability of the Skolem problem for LRS of order 5, subject

to the Skolem conjecture. The following is a simple but useful observation about

modular LRS.

Observation 2.2.1. If an LRS (un)
∞
n=0 is not modular and q > 0, then for some

residue class r ∈ {0, 1, . . . , q − 1} one of the subsequences (uqn+r)∞n=0 is not modular.

Proof. Assume that all subsequences (uqn+r)
∞
n=0 are not modular. Then for some

M0, . . . ,Mq−1 we have that for all 0 ≤ r < q, there are only �nitely many n ∈ N such

that uqn+r ≡ 0 (mod Mr). Now letM = lcm(M0, . . . ,Mq−1) and Z = {n ∈ N : un ≡ 0

(mod M)}. Then Z has a �nite intersection with every congruence class modulo M .

Thus, Z is �nite. Hence, (un)
∞
n=0 is modular, contradicting our assumption that

(un)
∞
n=0 is modular.

Write a simple LRS (un)
∞
n=0 in its exponential-polynomial form (1.2). Then for a

prime ideal p above a rational prime, de�ne the p-dominant part (upn)
∞
n=0 as

upn :=
k∑
i=1

λi is p-dominant

Qi(n)λ
n
i . (2.2)

When (un)
∞
n=0 is simple, all polynomials Qi(n) are constant. While (upn)

∞
n=0 is a Q-

LRS, it is not necessarily a Z-LRS.
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Proposition 2.2.2. Suppose that (un)
∞
n=0 is a simple and non-degenerate LRS and

that p a prime ideal that does not contain all the characteristic roots of the LRS. If

there is no n ∈ Z such that un = upn = 0, the Skolem conjecture implies that (un)
∞
n=0

is modular.

Proof. Let p be a prime ideal that does not contain all the characteristic roots. Sup-

pose that (un)∞n=0 is not modular. We argue that un = upn = 0 for some n ∈ N.
LetK be the splitting �eld of (un)∞n=0 andOK its ring of integers. Then the residue

�eld OK/p is �nite of order pf , where p is a rational prime and f the residual degree

of p. From the assumption that (un)∞n=0 is not modular, by Observation 2.2.1, there

exists an r ∈ {0, . . . , pf − 2} such that (wn)
∞
n=0 := (u(pf−1)n+r)

∞
n=0 is not modular.

Since (wn)
∞
n=0 is not modular, iteratively applying Observation 2.2.1 we obtain a

sequence of numbers r0, r1, . . . such that rk ∈ {0, . . . , pk − 1}, rk ≡ rk+1 (mod pk),

and (wpkn+rk)
∞
n=0 is not modular. By non-modularity of these subsequences, for all

k ∈ N, there exists an nk ∈ rk + pkZ≥1 such that wnk
≡ 0 (mod pk).

As each of these subsequences (wpkn+rk)
∞
n=0 is simple and non-modular, each con-

tains a zero term by the Skolem conjecture. Since the original sequence (un)
∞
n=0 has

only �nitely many zeros by the Skolem-Mahler-Lech theorem (Theorem 2.1.2), there

exists x ∈ Z such that wx = 0 and nk ≡ x (mod pk) for in�nitely many k ≥ 1. The

characteristic roots of (wn)∞n=0 are λp
f−1

1 , . . . , λp
f−1
k and so the p-dominant roots of

(wn)
∞
n=0 are exactly the (pf − 1)th powers of the p-dominant roots of (un)∞n=0. Since

p divides the non-p-dominant roots and nk ≥ pk ≥ k, we have that νp(wnk
− wp

nk
) ≥

(pf − 1)k. Thus, for all k ≥ 1,

0 = wnk
≡ wp

nk
(mod pk) .

Since p does not divide the p-dominant roots of (un)∞n=0 and since OK/p is a �eld

of order pf , all p-dominant roots λp
f−1
i of (wn)∞n=0 lie in 1 + p. As nk ≡ x (mod pk)

for in�nitely many k, we have that λ(p
f−1)nk

i ≡ λ
(pf−1)x
i (mod pk) holds for in�nitely

many k. Thus, wp
x ≡ 0 (mod pk) for in�nitely many k and so wp

x = 0.

We conclude that (wn)∞n=0 and (wp
n)

∞
n=0 share a zero and hence so do (un)

∞
n=0 and

(upn)
∞
n=0, contradicting the hypothesis. We conclude that (un)∞n=0 is modular.

We generalize this proposition to a statement about all prime ideals.

Theorem 2.2.3. Let (un)
∞
n=0 be a simple LRS and assume the Skolem conjecture.

Then (un)
∞
n=0 is modular if and only if for all n ∈ Z for which un = 0 there exists a

prime ideal p with upn ̸= 0 that does not contain all characteristic roots.
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Proof. Because we can decompose (un)
∞
n=0 into non-degenerate subsequences using

Lemma 1.2.3, we can assume that (un)∞n=0 is non-degenerate. It also su�ces to con-

sider the case that (un)∞n=−∞ is not identically zero and hence, by the Skolem-Mahler-

Lech theorem, has �nitely many zeros.

Assume the `only if' condition holds. Then there is an ℓ ≥ 1 such that the LRS

(u
(i)
n )∞n=−∞ := (unℓ+i)

∞
n=−∞ contains at most one zero for all 0 ≤ i ≤ ℓ − 1. Let

0 ≤ i ≤ ℓ − 1. If (u(i)n )∞n=−∞ contains no zero, then by the Skolem conjecture, there

exists an Mi ≥ 1 such that (u
(i)
n modMi)

∞
n=−∞ is non-zero. Otherwise (u

(i)
n )∞n=−∞

contains a zero�say u
(i)
n′ = 0. By construction, u(i)n ̸= 0 for all n ∈ Z \ {n′}. By

assumption, upn′ ̸= 0 for some prime ideal p for which Proposition 2.2.2 applies. Thus

(u
(i)
n )∞n=0 is modular and there is an Mi ≥ 1 such that (u(i)n modMi)

∞
n=−∞ has �nitely

many zeros. Letting M = lcm(M0, . . . ,Mℓ−1), we have that (un modM)∞n=0 is zero

�nitely often and so (un)
∞
n=−∞ is indeed modular.

Now, assume that the `only if' condition does not hold. Then, there exists n ∈ Z
such that un = upn = 0 for all prime ideals p that do not contain all characteristic

roots. Shifting the sequence, we can assume that n = 0. We want to show that for

M ≥ 1, we have un ≡ 0 (mod M) for in�nitely many n ∈ N. Assume, for a rational

prime p, that p divides M exactly ℓ ≥ 1 times. We claim that there is an Spℓ ≥ 1

such that unS
pℓ
≡ 0 (mod pℓ) for all n ∈ N.

As the extension K : Q is Galois, the p-valuation of the p-dominant roots is equal

for all prime ideals p above p. In particular, they are all zero or bigger than zero.

Assume p has rami�cation index e. Then (νp(u
p
n))

∞
n=0 is purely periodic modulo peℓ,

say of period R, and so upRn ≡ 0 (mod peℓ) for all n ≥ 0 as up0 = 0. As νp(un − upn)

grows linearly, for large enough n, say larger than P , we have that νp(upn) ≥ eℓ. Hence,

taking Spℓ to be a multiple of R larger than P we have that νp(uSn) = 1
e
νp(u

p
n+(un−

upn)) ≥ ℓ. This proves our claim. Let S be the least common multiple of all Spℓ

such that pℓ divides M . Then uSn ≡ 0 (mod m) for all n ≥ 0 and so (un)
∞
n=0 is not

modular.

Because the Skolem problem is straightforward for modular LRS, we naturally

want to decide whether one can determine whether a given Q-LRS is modular.

Theorem 2.2.4. For simple LRS (un)
∞
n=0, there is a procedure to determine whether

(un)
∞
n=0 is modular assuming the Skolem conjecture.

Proof. Decompose the LRS into non-degenerate subsequences (Lemma 1.2.3). If a

subsequence is constantly zero, the LRS (un)
∞
n=0 is not modular. Otherwise, perform

the following on all subsequences.
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Run two semi-algorithms in parallel. For the �rst semi-algorithm, search for a

witness M ≥ 1 that the given subsequence is modular. If one �nds such an M ,

return that this subsequence of (un)∞n=0 is modular. For the second semi-algorithm,

iterate through the values of (un)∞n=0 until one �nds n ∈ Z such that un = 0. Having

found such an n, one searches for a prime ideal p that divides at least one but not

all characteristic roots and such that upn = 0. (The required check can be done in

�nite time since any prime ideal that lies above some characteristic root lies above a

rational prime divisor of cd, of which there are only �nitely many.) If such a prime

ideal is found, apply Theorem 2.2.3 to conclude that (un)∞n=0 is not modular and halt.

Otherwise, search for the next value of n such that un = 0.

By Theorem 2.2.3, one of these two semi-algorithms will terminate for each sub-

sequence, and if the �rst semi-algorithm terminates for all subsequences, (un)∞n=0 is

modular.

We move on to the Skolem problem for LRS of order 5. First, we introduce a

technical lemma, which will simplify the problem slightly by reducing to the case of

LRS for which all p-dominant roots have p-valuation 0.

Lemma 2.2.5. The Skolem problem reduces to the special case in which the p-

dominant roots of an LRS have p-valuation 0 for all prime ideals p in the ring of

integers of its splitting �eld. Moreover, this reduction preserves simplicity and does

not increase the order of the LRS.

Proof. The result trivially holds for the zero-LRS, so we can assume that the LRS

(un)
∞
n=0 satisfying (1) is not zero. As cd ̸= 0, only �nitely many prime ideals di-

vide ±cd. Hence, there are only �nitely many prime ideals p for which some char-

acteristic root has a positive p-adic valuation. For such a prime ideal p of rami�ca-

tion index ep, there is a natural number dp such that νp(λ)dp is divisible by ep for

all p-dominant roots λ. Then let d be the least common multiple of all these dp
and S =

∏
p|cd p

νp(λ)d/ep . Then, by construction, for 0 ≤ i < d − 1, we have that

(udn+i/S
n)∞n=0 is a Q-LRS such that for all prime ideals p, the p-dominant roots have

p-valuation 0. Hence, the sequence (Tudn+i/Sn)∞n=0 is a Z-LRS for some T ≥ 1. Now

solve the Skolem problem for the Z-LRS (Tudn+i/S
n)∞n=0 for 0 ≤ i ≤ d− 1.

If λ1, . . . , λk are the characteristic roots of (un)∞n=0 with respective multiplicities

m1, . . . ,mk, then λd1/S, . . . , λ
d
k/S also have respective multiplicities in (Tudn+i/S

n)∞n=0

for 0 ≤ i ≤ d − 1. As these are possible characteristic roots of (Tudn+i/Sn)∞n=0,

the order does not increase, but when (un)
∞
n=0 is degenerate, some λdj/S might be

equal.
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We can now prove the main result of this section, which resolves Theorem 2.1.9.

Lemma 2.2.6. Let (un)
∞
n=0 be a non-degenerate LRS of order at most 5 LRS outside

of the MSTV class. Then (un)
∞
n=0 has the exponential-polynomial form

un = α1λ
n
1 + α1 λ1

n
+ α2λ

n
2 + α2 λ2

n
+ bρn , (2.3)

where α1, λ1, α2, λ2 ∈ Q∗
and b, ρ ∈ R ∩Q∗

.

Proof. Being outside the MSTV class, the LRS (un)
∞
n=0 has at least 5 characteristic

roots (and thus precisely 5 that are all simple), of which at least four are dominant.

If there are two dominant real roots, their quotient would be ±1, contradicting non-

degeneracy. Thus, there are at least three non-real dominant roots and, as the set

of characteristic roots is closed under complex conjugation, there are two pairs of

complex conjugate dominant roots, say λ1, λ1, and λ2, λ2. The remaining root ρ is

real (as its complex conjugate is among these �ve roots), and again, by the Galois

closure of the polynomial exponential form, the polynomial coe�cient of ρ, b, is also

real. As all characteristic roots and polynomial coe�cients are non-zero, the result

follows.

Proof of Lemma 2.1.9. Let (un)
∞
n=0 be an LRS of order at most 5. We can assume

that (un)∞n=0 is non-degenerate by Lemma 1.2.3 and lies outside the MSTV class as

the Skolem problem is decidable for such LRS. By Lemma 2.2.6, (un)∞n=0 has the

exponential-polynomial form (2.3). By Lemma 2.2.5, we can assume that for all

prime ideals p of OK , the p-dominant roots have p-valuation 0.

By Theorem 3.1.6, (un)∞n=0 is not reversible and hence λ1 is not a unit. Thus, for

some prime ideal p, we have λ1 ∈ p. As λ1λ1 = λ2λ2, we have λ2 ∈ p or λ2 ∈ p, and

without loss of generality, λ2 ∈ p. As (un)∞n=0 is not in the MSTV class, at least three

characteristic roots are p-dominant and have thus p-valuation 0. Thus, ρ, λ1, and λ2
have p-valuation 0. Therefore,

upn = α1λ
n
1 + α2λ

n
2 + bρn .

If un = upn = 0 for some n ∈ Z, then 0 = un − upn − upn = −bρn, implying b = 0 or

ρ = 0, which are both not allowed. As such, by Proposition 2.2.2, the LRS (un)
∞
n=0 is

modular.

Thus, we can search for an M ≥ 1 and N ≥ 0 such that un ̸≡ 0 (mod M) for

all n ≥ N and check whether un = 0 for some 0 ≤ n ≤ N to solve the Skolem

problem.
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The result cannot be extended beyond order 5. First, there are non-simple order-6

LRS outside the MSTV class (and so the Skolem conjecture does not apply). Secondly,

there are non-modular simple order-6 LRS outside of the MSTV class.

Example 2.2.7. Write

λ1 = 1 + 2i, λ2 =
3

2
+

1

2

√
−11, λ3 =

1

2
+

1

2

√
−19 ,

and let

un = λn1 + λ1
n
+ λn2 + λ2

n − 2λn3 − 2λ3
n
.

Equivalently, (un)∞n=0 is de�ned by the linear recurrence

un+6 = 6un+5 − 26un+4 + 66un+3 − 130un+2 + 150un+1 − 125un

and the initial values 0, 3, 11,−12,−125,−177 for n = 0, . . . , 5. Showing that (un)∞n=0

is non-degenerate is straightforward. We prove that (un)∞n=0 is not modular and does

not belong to the MSTV class.

We start with the latter. Let OK be the ring of integers of the splitting �eld of

(un)
∞
n=0. All six characteristic roots are dominant with absolute values

√
5. If p is a

prime ideal in OK , all roots are p-dominant when p is not above 5. When p is above

5 and i = 1, 2, 3, exactly one of λi and λi is in p. Thus, there are three p-dominant

roots, and (un)
∞
n=0 is not in the MSTV class.

By the previous remarks, we have that (un)∞n=0 = (upn)
∞
n=0 when a prime ideal p

is not above 5. When p is above (5), exactly one of λi and λi is in p for i = 1, 2, 3.

Thus,

u0 = 1 + 1 + 1 + 1− 2− 2 = 0 = 1 + 1− 2 = up0 .

We conclude that (un)∞n=0 is not modular using Theorem 2.2.3.

2.3 From bi-in�nite sequences to sequences

In this section, we discuss the relationship between the Bi-Skolem problem and the

Skolem problem and prove Theorems 2.1.6 and 2.1.8. To solve the fragments of the

Skolem problem, we will provide a method to compute the set

Z = {n ∈ Z : un = 0}

of zeros of a given non-degenerate LRBS (un)
∞
n=−∞, which is �nite by the Skolem-

Mahler-Lech theorem. To solve the Skolem problem, it is su�cient to compute

whether Z has a positive entry.
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We �rst show how to compute Z given access to two abstract subroutines. Then,

we implement these subroutines assuming the p-adic Schanuel conjecture and Skolem

conjecture, respectively.

Proposition 2.3.1. Let Z ⊆ Z be a �nite recursive set. Then Z can be computed by

the following two subroutines:

� Subroutine 1: subsequence search. For a ∈ Z and b ≥ 1, return False if the set

Z∩{bn+a : n ∈ Z} is empty and else return an element from Z∩{bn+a : n ∈ Z};

� Subroutine 2: leapfrogging. For z ∈ Z, return S ≥ 1 such that z is the only

element in Z ∩ {z + Sn : n ∈ Z}.

We postpone the proof of the proposition. First, we explain our application of this

result and give an example. Recall that an arithmetic progression is a set {cn+d : n ∈
Z} for some c, d ∈ Z with c ≥ 1.

In our application of Proposition 2.3.1, the set Z has the form {n ∈ Z : un = 0}.
Subroutine 1 is thus equivalent to determining whether ubn+a = 0 for some n ∈ Z. If
such an n exists, it is returned, and False is returned otherwise. Therefore, we call

this routine the subsequence search. Determining whether there exists n such that

ubn+a = 0 is straightforward as Q-LRBS are enumerable. Meanwhile, the Skolem

conjecture allows us to certify that ubn+a ̸= 0 for all n ∈ Z: we �nd a number M such

that ubn+a is never congruent to 0 modulo M . The Skolem conjecture ensures such

an M exists.

For Subroutine 2, we want to isolate one zero of the LRBS. If we discover z ∈ Z
such that uz = 0 then we �nd an arithmetic progression {Sn + z : n ∈ Z} such that

uSn+z = 0 implies that n = 0. By this choice of S, we `leapfrog' over all other zeros

in the sequence, hence we name this subroutine leapfrogging. Implementation of this

subroutine relies on the p-adic Schanuel conjecture.

Example 2.3.2. Let (un)
∞
n=−∞ be the LRBS de�ned by (u0, u1, u2) = (0, 3, 1) and

the recurrence un+3 = 2un+2 − un for all n ∈ Z. Then, un = −Fn−3 − 2, where Fk is

the kth Fibonacci number (which are de�ned in Example 1.2.4).

To compute Z = {n ∈ Z : un = 0}, we �rst apply Subroutine 1 (subsequence

search) to discover that u0 = 0. Using Subroutine 2 (leapfrogging), we obtain S = 8

such that uSn = 0 if and only if n = 0. Now we apply our method recursively on the

remaining seven subsequences:

(u8n+1)
∞
n=−∞, (u8n+2)

∞
n=−∞, . . . , (u8n+7)

∞
n=−∞ .
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Using the subsequence search, we �nd that (u8n+1)
∞
n=−∞ is always non-zero modulo 4.

Similarly, (u8n+2)
∞
n=−∞, (u8n+3)

∞
n=−∞, (u8n+4)

∞
n=−∞, (u8n+5)

∞
n=−∞, (u8n+7)

∞
n=−∞ are all

non-zero modulo 3. Hence, these six subsequences cannot contain 0. For (u8n+6)
∞
n=−∞,

such a modulus does not exist as the subroutine will �nd that u6 = 0.

Using the leapfrogging method on the LRBS (u8n+6)
∞
n=−∞, we �nd S = 3. Thus,

u8·S·n+6 = u24n+6 = 0 if and only if n = 0. The only subsequences which could

still contain unknown zeros are (u8·3·n+8+6)
∞
n=−∞ and (u8·3·n+2·8+6)

∞
n=−∞, for which the

subsequence search shows that their terms are never zero modulo 2: They are always

odd and thus never 0.

In this way, we can conclude that Z = {0, 6}.

Now we will prove Proposition 2.3.1.

Proof of Proposition 2.3.1. We use a recursive method.

Assume we have to compute Z ∩ {bn + a : n ∈ Z} for some given integers a

and b ≥ 1. Then, using Subroutine 1 (subsequence search), we either conclude that

Z ∩ {bn + a : n ∈ Z} is empty or �nd a speci�c z such that bz + a ∈ Z. In the �rst

case, we are done. In the second case, we use Subroutine 2 (leapfrogging) to compute

an S ≥ 1 such that Sbn+ bz+a ∈ Z if and only if n = 0. Hence, we found all indices

n where Sbn+ (bz + a) ∈ Z and only need to focus on the arithmetic progressions

{Sbn+ (b+ bz + a) : n ∈ Z}, . . . , {Sbn+ ((S − 1)b+ bz + a) : n ∈ Z} .

We apply this recursive approach to each of these arithmetic progressions.

Starting from Z, we partition Z into �nitely many arithmetic progressions when

encountering an element from Z and re�ne this partition every time we encounter an

element in Z. Because we re�ne our partition only once for every element in the �nite

set Z and Z is �nite, this recursive method ultimately terminates, giving us �nitely

many arithmetic progressions that form a partition of Z such that for each, we either

know they contain no element from Z or exactly one element of Z (which we know).

Therefore, we can compute Z.

2.3.1 The subsequence search

As mentioned earlier, the Skolem conjecture will be our main tool for Subroutine 1.

Proposition 2.3.3. For simple Z-LRBS, a procedure for Subroutine 1 exists that

only depends on the Skolem conjecture for termination.
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Proof. Let (un)
∞
n=−∞ be an LRBS, which is the bi-completion of a simple Q-LRS

(un)
∞
n=0. Then, using Lemma 1.2.5, we can assume that (un)

∞
n=0 is a Z-LRS. We

have to show that for all a ∈ Z and b ≥ 1, we can show whether the subsequence

(ubn+a)
∞
n=−∞ contains a zero term. As each LRBS (ubn+a)

∞
n=−∞ is again simple, it is

su�cient to show the statement for (un)∞n=−∞. Let cd be the constant coe�cient of

the characteristic polynomial of (un)∞n=−∞. To do this, run two semi-algorithms in

parallel:

� Semi-algorithm 1: Enumerate M = 1, 2, 3, 4, . . . until gcd(M, cd) = 1 and

(un modM)∞n=−∞ does not contain 0. Then return False.

� Semi-algorithm 2: Enumerate the sequence u0, u1, u−1, u2, u−2, u3, . . . until uz =

0 holds. Then return z.

Semi-algorithm 1 exists because one can compute the integer cd and for each M ,

the LRBS (un modM)∞n=−∞ is periodic, and this period can be computed due to

Lemma 1.2.1. So if one computes the LRBS modulo M and �nds an n ≥ 1 such that

u0 ≡ un (mod M),. . . ,ud−1 ≡ un+d−1 (mod M), then the period of the LRBS modulo

M divides n. Then, if u0, . . . , un−1 are all non-zero modulo M , the LRBS (un)
∞
n=−∞

does not contain 0.

Semi-algorithm 2 exists because an LRBS is recursive.

If Semi-algorithm 1 does not terminate, the Skolem conjecture (Conjecture 2.1.7)

implies that (un)∞n=−∞ contains a zero, say uz = 0 for some z ∈ Z. In that case, Semi-

algorithm 2 will terminate. If Semi-algorithm 1 does terminate, the LRBS (un)
∞
n=−∞

does not contain any number congruent to 0 modulo M , and so certainly has no zero

term.

Thus, assuming the Skolem conjecture, exactly one of the semi-algorithms termi-

nates, giving Subroutine 1. If the Skolem conjecture is false for a particular instance,

both semi-algorithms will fail to terminate.

In our proof, we assumed the Skolem conjecture in full generality to prove that

the procedure for Subroutine 1 terminates. This can be made more precise. Let

C be a subset of LRBS. Then call C closed if for all (un)∞n=−∞ ∈ C, b ∈ Z≥1, and

0 ≤ a ≤ b − 1, we have that (ubn+a)
∞
n=−∞ is in C. These closed subsets form a

topology. In particular, the union and intersection of closed subsets of Q-LRBS are

closed. Many natural classes of LRBS are closed: non-degenerate LRBS, simple

LRBS, LRBS of order at most d, LRBS with a characteristic root that is a power of

2, etc.
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If the Skolem conjecture holds for a class C of LRBS and one also has a leapfrogging

procedure for all Q-LRBS in C, then the Skolem problem is decidable for all LRS

whose bi-completion is in C.
The Skolem conjecture does not hold for some non-simple LRS such as un =

(2n + 1)2n. In this case, un ̸= 0 for all n ∈ Z but (un)
∞
n=0 is also not modular: If

M = 2ts for some odd number s, then there are in�nitely many n ∈ N such that

s | (2n + 1) while 2t | 2n for large enough n. Thus, there are in�nitely many n ∈ N
such that un ≡ 0 (mod M).

2.3.2 Leapfrogging

In this section, we discuss various methods to implement Subroutine 2 (leapfrogging)

and obtain Theorem 2.1.6 as a corollary.

Recall that for a given z ∈ Z, we want to compute S ≥ 1 such that z is the only

element in Z ∩ {Sn + z : n ∈ Z}. In the context of LRBS, this means that for a

given LRS (un)
∞
n=0 such that uz = 0 for some z ∈ Z, we have to compute S ≥ 1 such

that unS+z = 0 if and only if n = 0. By shifting the sequence to (un−z)
∞
n=−∞, we can

assume that z = 0.

Using Lemma 3.5.1, we can assume that (un)∞n=−∞ is non-degenerate and non-zero.

Let (un)∞n=0 satisfy the order-d linear recurrence (1) (un+d = c1un+d−1 + · · · + cdun)

and has characteristic polynomial P and characteristic roots λ1, . . . , λd. As (un)∞n=0

is integer-valued, the numbers u0, . . . , ud−1, c1, . . . , cd are all integers.

Let us sketch our method. For all our methods, we rely on p-adic numbers and

the p-adic valuation. In particular, we �nd a prime number p, integers a and b, and

S ≥ 1 such that

νp(uSn) = a+ bνp(n) .

In that case, we have the following implications:

uSn = 0 ⇐⇒ νp(uSn) = +∞
⇐⇒ a+ bνp(n) = +∞
⇐⇒ νp(n) = +∞
⇐⇒ n = 0.

Hence, Sn is in Z if and only if n = 0. This argument is exactly the leapfrogging

subroutine.

To compute S, a, and b, we construct a p-adic power series f(X) =
∑∞

j=0 ajX
j.

For the sake of exposition, assume that p does not divide cd such that we can use the
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p-adic valuation in some �eld extension Kp of Qp. We will compute a natural number

L ≥ 1 such that f(Ln) = uLn for all n ∈ Z with computable p-adic coe�cient aj such

that νp(aj) ≥ r for some r ∈ Z.
Let b be the smallest number such that ab ̸= 0. Then, for a computable number

t, we have that

νp(ab · (Lnpt)b) = νp(ab) + bt+ bνp(Ln) < r + jt+ jνp(Ln) ≥ νp(aj · (Lnpt)j)

for all j > b and n ∈ Z \ {0}. Therefore, if we take S = Lpt, we have that

νp(uSn) = νp(ab(np
t)b) = νp(ab) + bt+ νp(n

b) = a+ bνp(n) .

We will show how to compute the step size S for each prime p. We exhibit multiple

methods that di�er in practicality and generality.

A simple criterion

Assume that (un)∞n=0 is simple, non-zero, and integer-valued. Let D be the discrimi-

nant of P and C the circular determinant, the determinant of the circular matrix :

C = det


u0 u1 · · · ud−1

u1 u2 · · · ud
...

...
. . .

...
ud−1 ud · · · u2d−2

 .

Because (un)∞n=0 is simple and has minimal order d, the numbers C and D are non-zero

integers.

Let p ≥ 3 be a rational prime and L the period of (un mod p)∞n=−∞.

Theorem 2.3.4. Assume that p does not divide cd, C, and D and that p2 does not

divide uL. Then unL ̸= 0 for all n ∈ Z \ {0}.

Proof. Let Kp be the splitting �eld of the characteristic polynomial of (un)
∞
n=−∞

over Qp. As (un)∞n=−∞ is simple, we can write the polynomial exponential form (1.2)

as

un = α1λ
n
1 + · · ·+ αdλ

n
d

for some non-zero numbers αi ∈ Kp. As (un)∞n=0 is a Z-LRS, the numbers λ1, . . . , λd
are in OKp . Next,

1 1 · · · 1
λ1 λ2 · · · λd
...

...
. . .

...
λd−1
1 λd−1

2 · · · λd−1
d




α0

α1
...

αd−1

 =


u0
u1
...

ud−1

 ,
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and the square matrix is a Vandermonde matrix with determinant ±
√
D. As p ∤ D,

we know that all the αi are in OKp . If any αi were in pOKp , then (un mod p)∞n=−∞

would have order less than d, and so the circular matrix would not be invertible

modulo p. Hence, p divides C, which we explicitly assumed not to be the case. Thus

all αi are in O∗
Kp
.

We claim that λLi ≡ 1 (mod p) for all 1 ≤ i ≤ d. To see this, set xi = αi(λ
L
i − 1).

Then,
1 1 · · · 1
λ1 λ2 · · · λd
...

...
. . .

...
λd−1
1 λd−1

2 · · · λd−1
d




x0
x1
...

xd−1

 =


uL − u0
uL+1 − u1

...
uL+d−1 − ud−1

 ≡


0
0
...
0

 (mod p)

as un ≡ un+L (mod p) for all n ∈ Z. Again, as p does not divide D, the square matrix

is invertible modulo p, and so xi ≡ 0 (mod p). As αi ∈ O∗
Kp
, the claim follows.

Because p ≥ 3, we have that νp(log(λLi )) ≥ 1 > 1/p− 1, and so the p-adic analytic

function

f(z) =
d∑
i=1

αi exp
(
z log(λLi )

)
is well-de�ned on OKp . Moreover, f(n) = uLn for all n ∈ Z. Setting

aj =
1

j!

d∑
i=1

αi
(
log(λLi )

)j
,

gives that f(z) =
∑∞

j=0 ajz
j, where a0 = u0 = 0.

By Legendre's formula [72, Chapter 5], we have that for j ≥ 1,

νp(j!) =
∞∑
j=1

⌊
j

pj

⌋
<

∞∑
j=1

j

pj
=

j

p− 1
. (2.4)

Therefore,

νp(aj) ≥ min
1≤i≤d

(
νp(αi) + j νp(log(λ

L
i ))
)
− νp(j!) > j − j

p− 1

as νp(log(λLi )) ≥ 1. Thus, as p ≥ 3, we have νp(a1) ≥ 1 and νp(aj) ≥ 2 for all j ≥ 2.

Only, νp(a1) = 1 as

0 ̸≡ U(N) ≡ f(1) ≡
∞∑
j=1

aj ≡ a1 (mod p2) .

The result follows as now for any non-zero integer n,

νp(uLn) = νp(f(n)) = νp(a1n) ̸= +∞ .
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Using the exponential function

In this subsection, we will give a more general method than the one described in the

previous section. In particular, we will prove the following.

Proposition 2.3.5. Let (un)
∞
n=0 be a non-zero and non-degenerate Z-LRS such that

u0 = 0 and let p be a rational prime. Then one can construct a power series f(X) =∑∞
j=0 ajX

j with computable coe�cients aj in a �nite extension Kp of Qp when p ∤ cd
or when p | cd and p is a prime ideal above p in Kp.

We start with the easiest case: p does not divide cd. We generalise our argument

later. Let Kp be an extension of Qp that contains all characteristic roots, and their

polynomial coe�cients Qi are in Kp[X].

Write (un)
∞
n=0 in its polynomial exponential form (1.2): un =

∑k
i=1Qi(n)λ

n
i . By

our earlier assumptions, each characteristic roots λi is in the ring of integers of Kp,

OKp , but not in pOKp as p ∤ cd. By multiplying the sequence with an appropriate

power of p, we can assume that all polynomial coe�cients Qi are in OKp [X]. Now,

compute L ≥ 1 such that log(λLi ) is de�ned for all 1 ≤ i ≤ k. Then,

uLn =
k∑
i=1

Qi(Ln)λ
Ln
i =

k∑
i=1

Qi(Ln) exp(n log(λ
L
i )) =

∞∑
j=0

(
k∑
i=1

Qi(Ln) log(λ
L
i )
j

)
nj

j!

(2.5)

gives the p-adic power series f(X) =
∑∞

j=0 ajX
j we had to construct. Using the fact

that aj = 1
j!
f (j)(0), we can compute an explicit formula for the coe�cients aj using

di�erentiation that also shows these numbers are computable:

aj =
1

j!

j∑
ℓ=0

(
j

ℓ

)
Lℓ

d∑
i=1

Q
(ℓ)
i (0) log(λLi )

j−ℓ . (2.6)

When the LRS is simple, say un =
∑d

i=1 αiλ
n
i , we have that aj =

1
j!

∑d
i=1 αi log(λ

L
i )
j.

As the power series converges for all n ∈ N, the p-adic valuation of the coe�cients

aj tends to in�nity. Using (2.4) and a lower bound on log(λLi )
j, we can give a linear

lower bound on the p-adic valuation of aj.

Thus, in this restricted case, we have proved Proposition 2.3.5.

For primes p that divide cd, one has to be more careful. By computing S+ and

S− such that uS+n ̸= 0 and u−S−n ̸= 0 for n ≥ 1, we can take S = lcm(S−, S+). By

symmetry, we consider S+ as one can compute S− analogously by considering the

sequence (u−n)
∞
n=0. Let p be a prime ideal above p in the splitting �eld of f . By

Lemma 2.2.5, we can assume that the p-dominant roots have p-valuation 0. Then
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νp(un − upn) grows faster than some computable linear function. Then, again for a

computable number L, the expression exp(n log(λLi )) is well-de�ned for all p-dominant

λi. Hence, aj can be computed up to arbitrary precision modulo powers of p, giving

the remainder of Proposition 2.3.5.

Using the companion matrix

Here, we present a di�erent method to compute the coe�cients aj. This other method

applies to general primes p, but we again begin by assuming that p ∤ cd and that p is

odd. Recall that the companion matrix (1.3) of (un)∞n=0 is de�ned as

A :=


c1 · · · cd−1 cd
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 .

If

s =
(
0 · · · 0 1

)
and t =

(
ud−1 · · · u0

)⊤
then un = sAnt for all n ∈ Z. Modulo p, the matrix A is reversible as p ∤ cd =

± det(A). Interpreting A as an element of GLd(Fp), the group of invertible matrices

modulo p, there is a minimal L ≥ 1 such that AL ≡ Id (mod p) because the group

of invertible matrices over the �nite �eld Fp (GLd(Fp)) is �nite. Then, setting B =
1
p
(AL − Id), we have that

uLn = sALnt

= s(Id + pB)nt

=
n∑
ℓ=0

(
n

ℓ

)
pℓsBkt

=
n∑
ℓ=0

n(n− 1) · · · (n− ℓ+ 1)

k!
pℓsBℓt

=
∞∑
ℓ=0

n(n− 1) · · · (n− ℓ+ 1)

ℓ!
pℓsBℓt

=
∞∑
ℓ=0

∞∑
j=0

cℓ,jn
j p

ℓ

ℓ!
for certain cℓ,j ∈ Z with cℓ,j = 0 for j > ℓ

=
∞∑
j=0

(
∞∑
ℓ=j

cℓ,j
pℓ

ℓ!

)
nj .
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The last step is allowed by [72, Proposition 4.1.4] as (2.4) implies that νp(cℓ,jpℓ/ℓ!) ≥
(p−2)ℓ
p−1

and so the terms cℓ,jpℓ/ℓ! converge to 0 p-adically as j goes to in�nity and

uniformly to 0 as ℓ goes to in�nity. Similarly, the double sum in the last line converges.

Therefore, the coe�cients aj :=
∑∞

ℓ=j cℓ,j
pℓ

ℓ!
of the power series f̃(X) =

∑∞
n=0 ajX

n

are well-de�ned in Zp. Moreover, by the previous considerations, we have νp(aj) ≥
νp(

pj

j!
) ≥ (p−2)j

p−1
and so limj→∞ νp(aj) = ∞.

Next, if p = 2, then we search for a minimal L ≥ 1 such that AL ≡ Id (mod 22),

which exists as GLd(Z/4Z) is �nite. The same computation applies, but now we get

that for some integers cℓ,j,

uLn =
∞∑
ℓ=0

∞∑
j=0

cℓ,jn
j 2

2ℓ

ℓ!
=

∞∑
j=0

(
∞∑
ℓ=j

cℓ,j
22ℓ

ℓ!

)
nj .

Again, we claim that we can invert the summation, that aj :=
∑∞

ℓ=j cℓ,j
22ℓ

ℓ!
gives a

converging sum, and that limj→∞ aj = ∞. This will follow in the same manner as in

the odd case, but now ν2(cℓ,j
22ℓ

ℓ!
) ≥ 2ℓ − ℓ

2−1
= ℓ, which surely goes to in�nity when

ℓ does. Thus, νj(aj) ≥ νj(2
2j/j!) ≥ j and so limj→∞ aj = ∞ as well. As such, our

claim follows.

2.3.3 Computing the step

In the previous two sections, we discussed two methods to produce a power series:

The exponential function gives a power series fexp(X) and the companion matrix

method gives fcomp(X). As fexp(n) = un = fcomp(X) for in�nitely many numbers

n, Strassman's theorem [72, Chapter 5] implies that fexp(X) = fcomp(X). Thus,

the companion matrix method lets us compute aj to arbitrary precision without

using extensions of the p-adics, the p-adic logarithms, or p-adic exponential functions

explicitly.

Thus, to compute S, we have a power series

f(X) =
∞∑
j=0

ajX
n , (2.7)

where aj is de�ned by (2.6) and can be computed up to arbitrary precision. For

j ≥ 0, one can thus compute a polynomial F ∈ Q[X1, . . . , Xk] such that aj =

F (log(λL1 ), · · · , log(λLk )). First, we reduce the number of variables with Theorem 1.1.3,

which we apply to λ1, . . . , λk. With possible reordering, we can then compute t ∈ N,
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st+1, . . . , sk ∈ Z̸=0, and si,j ∈ Z such that λ1, . . . , λt are multiplicatively independent

and

λ
si,1
1 · · ·λsi,tt = λsii .

We use these relationships to construct a polynomial F̃ ∈ Q[X1, . . . , Xt] such that

F (log(λ1), . . . , log(λk)) = F̃ (log(λ1), . . . , log(λt)).

When p does not divide cd, the characteristic roots λ1, . . . , λt lie in an �nite exten-

sion of Qp, and so the (weak) p-adic Schanuel conjecture says that log(λ1), . . . , log(λt)

are algebraically independent over Q. So either the polynomial F is the zero polyno-

mial (which we can check), or aj is non-zero.

When p divides the constant coe�cient of the characteristic polynomial, we take a

p-adic logarithm in the �eldQp. To the best of our knowledge, no version of Schanuel's

conjecture exists for such �elds in the literature, although one can easily formulate

one.

But we do not know whether the p-adic Schanuel conjecture is true! Yet, when

the p-adic Schanuel conjecture implies that aj is non-zero, we can still compute aj
to arbitrary precision. If aj is truly non-zero, we will encounter a non-zero term in

its p-adic expansion. Otherwise, this method will not terminate. As such, we have

proven the following.

Theorem 2.3.6. Using the notation above, there is a procedure that will return

whether aj = 0, which terminates subject to the p-adic Schanuel conjecture when

p does not divide cd.

Therefore, we indeed have an algorithm to compute the step S, which gives us

an algorithm for the leapfrogging procedure. We conclude Theorems 2.1.6 and The-

orem 2.1.8.

Simple recurrences

Using Baker's theorem on linear forms in logarithms, we can remove the dependence

on the p-adic Schanuel conjecture when determining zeroness of low-order coe�cients

of the power series (2.7). In particular, we have the following result.

Proposition 2.3.7. For simple LRS, using the above notation, we can determine

whether a0 = 0 and whether a1 = 0.
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Proof. As the LRS is simple, we can write it in its polynomial-exponential form

un =
∑k

i=1 αiλ
n
i . When p does not divide cd, we have aj =

∑k
i=1 αi log(λ

L
i )
j. When p

divides cd, we have that

aj =
k∑
i=1

λi is p-dominant

αi logp(λ
L
i )
j .

Hence, a0 is always an algebraic number for which we can test whether it is zero. When

j = 1, the proof of this proposition follows from Masser's result (Theorem 1.1.3),

where we rewrite the linear combination of logarithms into one where all logarithms

are linearly independent over Q and then apply one of the two versions of Baker's

theorem on linear forms in logarithms for p-adic logarithms: Theorem 1.1.9 or 1.1.10.

Hence, either the linear combination is trivially zero (as all coe�cients are zero) or is

non-zero.

The result follows.

2.4 Simple low-order recurrences

For simple, low-order LRS, we can eliminate the dependence on the p-adic Schanuel

conjecture and thus improve on Theorem 2.1.8. Namely, we want to prove Theo-

rem 2.1.10: The Skolem problem is decidable for simple LRS up to order 7 under the

assumption of the Skolem conjecture.

Thus, assume that (un)
∞
n=0 is a simple, non-degenerate LRS satisfying un =∑k

i=1 αiλ
k
i with all αi non-zero. Let cd denote the constant coe�cient of the charac-

teristic polynomial of (un)∞n=0.

By the discussion in the previous section, Theorem 2.1.10 follows from showing

certain coe�cients aj of the power series can be zero-tested explicitly su�cient to

show that we do not have to rely on the p-adic Schanuel conjecture to decide the

Skolem problem.

As in the proof of Proposition 2.3.5, we only need to compute S− ≥ 1 and S+ ≥ 1

such that uS−·−n and uS+n are both non-zero for all integers n ≥ 1. By symmetry, it

is su�cient to compute S+.

By Theorem 2.1.3, we can assume that (un)∞n=0 is not in the MSTV class. Hence,

(un)
∞
n=0 has at least four dominant roots and at least three p-dominant roots for

each prime ideal p of the ring of integers OK of the splitting �eld of the LRS. By

Lemma 2.2.5 we may assume that the p-dominant roots have p-valuation 0 for all

prime ideals p of OK . Hence, by Theorem 3.1.6, the characteristic roots are not all
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units, and so there is a prime ideal p above a rational prime p containing at least one

dominant root but not all dominant roots.

Let q be a rational prime not dividing cd (which exists as cd ̸= 0) and p a prime

ideal of OK . For clarity, we will write logq (respectively, logp) instead of log for the

q-adic logarithm (respectively, logp). For a prime ideal p, we write apj for the jth

coe�cient of the power series f(X) =
∑

j=0 a
p
jX

j.

By splitting into subsequences, we can assume that logq(λi) is de�ned for all 1 ≤
i ≤ k and that logp(λi) is de�ned for all p-dominant roots λi. Using the formula (2.6),

we have that

aqj =
k∑
i=1

αi logq(λi)
j and apj =

k∑
i=1

λi is p-dominant

αi logp(λi)
j . (2.8)

Using multiple applications of Baker's theorem, we can conclude the following.

Lemma 2.4.1. Assume p is a prime ideal and q a prime not dividing cd, then

ap1 = 0 ⇐⇒ ãq1 :=
k∑
i=1

λi is p-dominant

αi logq(λi) = 0 .

Proof. If ap1 = 0, Theorem 1.1.10 implies that the multiplicative relations of λ1, . . . , λk
are su�cient to show that ap1 = 0. Hence, ãq1 = 0 using the same relationships. The

other direction follows similarly, using Theorem 1.1.9 instead.

The observation above severely limits the possible cases.

Lemma 2.4.2. Let p and q as above and assume (un)
∞
n=0 has d′ characteristic roots

that are p-dominant. Then,

1. if d′ = 3, at least one of ap0, a
p
1, and a

p
2 is non-zero;

2. if d′ = k − 2, at least one of ap0, a
q
0, a

p
1, and a

q
1 is non-zero.

Proof.

1. Assume λ1, λ2, λ3 are p-dominant. Then (2.8) implies that 1 1 1
log(λ1) log(λ2) log(λ3)
log(λ1)

2 log(λ2)
2 log(λ3)

2

α1

α2

α3

 =

0
0
0

 .

As α1, α2, α3 ̸= 0, the square Vandermonde matrix has determinant 0. Thus,

λi = λj for some distinct i, j ∈ {1, 2, 3}, which contradicts that (un)
∞
n=0 is

non-degenerate.
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2. If d′ = k−2, assume λk−1 and λk are not p-dominant and that ap0, a
q
0, a

p
1, and a

q
1

are all zero. Then, 0 = aq0 − ap0 = αk−1 + αk, and a
p
1 = aq1 = 0 by Lemma 2.4.1.

Thus, αk−1 logq(λk−1) + αk logq(λk) = 0. Thus, logq(λk−1) = logq(λk), again

contradicting non-degeneracy.

We are in the position to prove Theorem 2.1.10.

Proof of Theorem 2.1.10. Let q be a prime number that does not divide cd and assume

that aq0 = aq1 = 0. By Lemma 2.2.5, for any prime ideal p, the p-dominant roots are

not in p.

As (un)∞n=0 is outside of the MSTV class and non-degenerate, the LRS (un)
∞
n=0 has

at least four dominant roots. By non-degeneracy, at most one dominant root is real,

and so there are at least two conjugate pairs of non-real dominant roots: λ1, λ1, λ2,

and λ2 are dominant roots. We claim that these dominant roots are not units. Indeed,

restricting (un)
∞
n=0 to the LRS

vn :=
k∑

i=1,
there is a Galois automorphism σ
such that σ(λi) ∈ {λ1, λ1, λ2, λ2}

αiλ
n
i

gives a reversible LRS with at least four dominant roots and order at most 7. This

contradicts Theorem 3.3.2, and so these dominant roots are indeed not units.

Assume that p is a prime ideal such that λ1 ∈ p and thus λ1 is not p-dominant.

As λ1λ1 = λ2λ2 is in p, without loss of generality, we have that λ2 is also in p and

thus not p-dominant. Assume that ap0 = ap1 = ap2 = ap0 = ap1 = 0 .

By Lemma 2.4.2, there are at least two characteristic roots that are not p domi-

nant, and the number of p-dominant roots is not three. Thus, there are at least three

characteristic roots that are not p-dominant and at least four p-dominant roots. As

there are at most k = 7 roots, we conclude that these lower bounds are sharp. Let

the other three characteristic roots be λ3, λ4, and λ5. Then exactly one of λ1, λ2, λ3,

λ4, and λ5 is not p-dominant, which by symmetry, is λ1 or λ3.

If λ1 is not p-dominant, applying Lemma 2.4.1 for the prime ideals p and p gives

0 = ap0 = α1 + α2 + α2

= ap0 = α1 + α2 + α2 and

0 = ap1 = α1 logq(λ1) + α2 logq(λ2) + α2 logq(λ2)

= ap1 = α1 logq(λ1) + α2 logq(λ2) + α2 logq(λ2) .
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The �rst two lines give that α1 = α1 and the second that logq(λ1) = logq(λ1) as α1 ̸= 0.

This contradicts the non-degeneracy condition. Thus, without loss of generality, the

characteristic root λ3 is not p-dominant.

If λ3 is real, using Lemma 2.4.1 on the di�erence of aq1 and a
p
1 gives that

α1 logq(λ1) + α2 logq(λ2) + α3 logq(λ3) = 0 .

Hence, by Theorem 1.1.9, the characteristic roots λ1, λ2, and λ3 are multiplicatively

dependent. Say the multiplicative relationship is λs11 λ
s2
2 λ

s3
3 = 1. As νp(λ3) > 0 =

νp(λ1) = νp(λ2), it follows that s3 = 0 and thus λ1 and λ2 are multiplicatively

dependent. We have that |λ1| > 1 because λ1 is dominant, and the characteristic

roots multiply to a non-zero integer larger than 1 as the LRS is not reversible. Thus,

as |λ1| = |λ2| > 1, we have s1 = −s2, and so λ1/λ2 is a root of unity, contradicting

non-degeneracy.

Thus, λ3 is not real. Then, without loss of generality, λ4 = λ3. Then, as aq0 =

ap0 = ap0 = 0, we get

0 = α5 +
3∑
i=1

(αi + αi) = α5 +
3∑
i=1

αi = α5 +
3∑
i=1

αi ,

and so α5 = 0, a contradiction.

Hence at least one of ap0, a
p
1, a

p
2, a

p
0, a

p
1, a

q
0, and aq1 is non-zero. For all, except

for ap2, zeroness can be decided, and hence if all of ap0, a
p
1, a

p
0, a

p
1, and a

q
0 are zero, a

p
2

is non-zero, suggesting we can simply compute its p-adic expansion until a non-zero

digit appears.

As such, we can apply Proposition 2.3.5 to �nd an S such that uSn ̸= 0 for all

n ≥ 1.

2.5 The Baker-Davenport method

All Z-LRS with at most three dominant roots or at most two p-dominant roots for

some prime ideal p are in the MSTV class, and thus, in principle, the Skolem problem

is decidable for such LRS. The SKOLEM-tool contains a procedure that solves (un-

conditionally) the Skolem problem for a large subset of the MSTV class (Section 2.6),

namely all LRS with at most three dominant roots, all of which are simple. To the

best of our knowledge, this is the �rst implementation of the method of [116, 156].

However, our actual method will di�er from the works of Mignotte, Shorey, and

Tijdeman [116] and Vershchagin [156] because nowadays, we can rely on the conve-

nient tools of Matveev [115] and Yu [159]. These tools simplify their proofs greatly.
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To start, we make a brief observation.

Proposition 2.5.1. Let (un)
∞
n=0 be a Q-LRS with dominant roots λ1, . . . , λk having

respective multiplicities m1, . . . ,mk. If m1 > m2, . . . ,mk, then the Skolem problem is

decidable for (un)
∞
n=0.

Proof. Writing (un)
∞
n=0 in its exponential-polynomial form (1.2) gives

un = Q1(n)λ
n
1 + · · ·+Qk(n)λ

n
k + r(n) ,

where |λ1| = · · · = |λk| and r(n) is an LRS whose dominant roots have modulus

strictly smaller than |λ1|. We see that λ1 is real as the exponential-polynomial form

is invariant under complex conjugation. Dividing by nm1−1 gives

un =
Q1(n)

nm1−1
λn1 + · · ·+ Qk(n)

nm1−1
λnk +

r(n)

nm1−1
,

where one easily can compute constants N ∈ Z≥0 and C > 0 such that for all n ≥ N ,

we have ∣∣∣∣Q1(n)

nm1−1

∣∣∣∣ > C and

∣∣∣∣ r(n)

nm1−1|λ1|n
∣∣∣∣+ k∑

i=2

∣∣∣∣Qi(n)

nm1−1

∣∣∣∣ < C .

Then, by construction, un > 0 for all n ≥ N .

Proposition 2.5.1 shows in particular that the Skolem problem is decidable when

k = 1, i.e., there is a single dominant root.

The remainder of our implementation is based on [102], which relies on Matveev's

version of Baker's theorem on linear forms in logarithms (Theorem 1.1.11) and a

reduction method due to Dujella and Peth® [61].

2.5.1 Establishing a bound using Baker's theorem

Assume (un)
∞
n=0 is a non-degenerate Z-LRS with two or three dominant roots and

that all these dominant roots are simple. Then un can be expressed as

un = αλn + αλ
n
+ bρn + r(n) ,

where ρ is real algebraic, |λ| = |ρ|, and r(n) is an LRS with dominant roots strictly

smaller than |ρ|. By scaling, let λ1 = λ/ρ, b1 = b/|α|, and α1 = α/|α|. Then

|λ1| = |b1| = |α1| = 1. Then, for r1(n) = r(n)/|αλn|, we have that

αλn + α λ
n
+ b|λ|n + r(n) = |α|ρn

(
α1λ1

n + α1 λ1
n
+ b1 + r1(n)

)
.
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Next, using Lemma 1.2.6, we compute an integer N ′ ≥ 0 and rational numbers c1 > 0

and 0 < d < 1 such that for all n ≥ N ′, we have |r1(n)| < c1d
n. We will split into

two cases: |b1| > 2 and |b1| ≤ 2.

We �rst deal with the case |b1| > 2. If un = 0, then
∣∣b1− (α1λ1

n+α1 λ1
n
)
∣∣ ≤ c1d

n.

However, using the triangle inequality, we have that

c1d
n ≥

∣∣b1 − (α1λ1
n + α1 λ1

n
)
∣∣ ≥ |b1| − |α1λ1

n + α1 λ1
n| ≥ |b1| − 2 .

As d < 1 and |b1| − 2 > 0, the number n can be bounded e�ectively.

Now let |b1| ≤ 2 and write λ1 = eiφ. We want to �nd N ≥ 0 such that for all

n ≥ N ,

|α1e
inφ + α1e

−inφ + b1| > c1d
n . (2.9)

As |einφ| = 1 for all n ≥ 0, (2.9) is equivalent to∣∣α1e
2inφ + b1e

inφ + α1

∣∣ > c1d
n .

Treating the term inside the absolute value as a quadratic equation in einφ and ob-

serving that α1α1 = 1 gives that∣∣∣∣∣einφ − −b1 +
√
b1

2 − 4

2α1

∣∣∣∣∣ ·
∣∣∣∣∣einφ − −b1 −

√
b1

2 − 4

2α1

∣∣∣∣∣ > c1d
n .

As b1 is real and |b1| ≤ 2, we have b1
2 ≤ 4 by our earlier assumption; the two

values for −b1 ±
√
b1

2 − 4 are complex conjugates and have equal absolute value.

Hence, the absolute value of γ := (−b1 ±
√
b1

2 − 4)/2α1 equals the absolute value of

(−b1∓
√
b1

2 − 4)/2α1. As α1 is the product of these two complex conjugate numbers

and |α1| = 1, they both lie on the unit circle. Thus,
∣∣einφ−(−b1±

√
b1

2 − 4)/(2α1)
∣∣ ≤

2. Therefore, we have to show for all n ≥ N that

Λ :=
∣∣γ−1einφ − 1

∣∣ > 1

2
c1d

n (2.10)

for γ equal to −b1±
√
b1

2−4

2α1
.

We apply Matveev's theorem (Theorem 1.1.11) to (2.10). Then, when Λ ̸= 0, we

obtain

log |Λ| > −Ch′(λi)h′(γ−1)
(
1 + log(B)

)
,

where C ≥ 1 is a computable constant and B = max(| − 1|, |n|). When demand-

ing that n ≥ 1, we have that B = n. Recall that for β ∈ Q, we have h′(β) ≥
max(Dh(β), log |β|, 0.16). Computing D (the degree of the extension Q(λ1, γ) is rela-

tively expensive, and so we estimate it from above. The scaled numbers λ1 and α1 lie
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in quadratic extensions of the Galois closure of Q(λ) as λ/|λ| =
√
λ2/(λλ) =

√
λ/λ

and similarly for α. Thus, if λ has a minimum polynomial of degree d1, the number

�eld Q(λ1, α1) has degree at most 2 · 2 · d1!. Similarly, b lies in the Galois closure of

Q(ρ), and thus b1 = b/|α| lies in an extension of degree at most 2d1!d2!, where d2
denotes the degree of the minimum polynomial of ρ. As γ lies in a quadratic extension

of Q(α1, b1), the number �eld Q(λ1, γ) has degree D ≤ 23d1!d2!.

If Λ = 0, then λn1 = γ. Thus, h(γ) = h(λn1 ) = nh(λ1). If γ is a root of unity,

we have n = 0 as λ1 is not a root of unity by non-degeneracy. Thus, we only need

to �nd a lower bound for h(λ1) and an upper bound for h(γ) when γ is not a root

of unity. We start with γ. As γ has to be in at least one prime ideal, we have that

h(γ) ≥ log(2)/D using (1.1).

For an algebraic number x, we have that

h(x/|x|) = h
(
x/

√
xx
)
≤ h(x) +

1

2

(
h(x) + h(x)

)
= 2h(x) .

As we have the minimum polynomial of λ, estimating h(λ1) is easy: h(λ1) ≤ 2h(λ).

Thus, when Λ = 0, we have that n ≤ 2h(λ)D/ log(2).

Computing h′(γ) exactly is expensive, so we will also estimate it from above. First,

we estimate h(γ) as follows

h(γ) = h

(
−b±

√
b1

2 − 4α1α1

2α1

)
≤ h

(
−b1 ±

√
b1

2 − 4α1α1

)
+ h(2α1)

≤ 2 log(2) + h(b1) +
1

2
h(b1

2 − 4α1α1) + h(α1)

≤ 3 log(2) + h(b1) +
1

2
h(b1

2) +
1

2
h(4α1α1) + h(α1)

≤ 4 log(2) + 2h(b1) + 2h(α1) ≤ 4(log(2) + h(b) + h(α)) .

From here, we can compute an estimate for h′(γ) directly.

Finally, we have to estimate log |λ1| and log |γ|. As both lie on the unit circle,

they are at most log(π).

We have now computed a constant c3 > 0 such that log |Λ| < c3 · (1 + log(n))

when n is large enough. Taking logarithms on both sides of (2.10) gives

log |Λ| > log(c2) + n log(d) . (2.11)

As our n are large, we can assume that B = n. Then we want to �nd n for which

c3 ·
(
1 + log(n)

)
> log(c2) + n log(d) .
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As this di�erence is monotone, a computer can quickly determine for which N this

inequality fails for all n ≥ N .

The typical case is b = 0, i.e., there are two dominant roots. In this case, the

formula for γ is much simpler, giving sharper estimates for h(γ).

2.5.2 The Baker-Davenport reduction

The method described above successfully computes an N such that un ̸= 0 for all

n ≥ N . Unfortunately, this N is fairly large, for example 1020. Practically speaking,

determining whether un = 0 for some n < N is impossible by simply iterating the

LRS. As such, we need to reduce N to something more manageable. One possibility

is to use the famous LLL-algorithm [97], but in our use case with only two logarithms,

a continued fractions method is su�cient. A specialized method for LRS using the

p-adic zeros of a sequence is described by Bacik et al. in the very recent work [12].

The described method is due to Dujella and Peth® [61] and uses a version of a lemma

by Baker and Davenport.

The continued fraction of a number α = α0 ∈ R \ Q is the in�nite sequence

[an]
∞
n=0 de�ned by an = ⌊αn⌋ and αn+1 =

⌊
1

αn−an

⌋
for all n ≥ 0. As such, a0 ∈ Z,

and an ∈ Z≥1 for all n ≥ 1. For example, the continued fraction of the golden ratio,
1+

√
5

2
, is the constant sequence [1, 1, 1, . . . ]. For each n ≥ 0, put

pn
qn

= a0 +
1

a1 +
1

a2 +
1

...
+

1

an−1 +
1

an

where pn ∈ Z and qn ∈ Z≥1 are coprime. Then pn/qn is called the nth convergent

of α. A fraction p′/q′ ∈ Q is a convergent of α if and only if p/q = pn/qn for some

n ≥ 0. Moreover, the sequences (pn)∞n=0 and (qn)
∞
n=0 satisfy for n ≥ 2,

p0 = a0 p1 = a0a1 + 1 pn = anpn−1 + pn−2

q0 = 1 q1 = a1 qn = anqn−1 + qn−2.

Recall that we tried to solve the equation |γλn1 − 1| > c2d
n and that λ1 = eiφ. As

we also know that |γ| = 1, we write γ = eiθ. Then we need to solve the equation

|ei(θ+nφ) − 1| < c2d
n . (2.12)
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If ||x|| denotes the distance from x to the nearest integer, then using geometry and

the Taylor expansion of the sine function, we see that if we assume that |θ+nφ| < π,

then the bound

|ei(θ+nφ) − 1| ≥ | sin(θ + nφ)| ≥
∣∣∣∣θ + nφ

2π

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣θ + nφ

2π

∣∣∣∣∣∣∣∣
holds. Combining this bound with (2.12) gives∣∣∣∣(θ + nφ)/2π

∣∣∣∣ < c2d
n . (2.13)

Now we can apply the theorem of Dujella and Peth® [61].

Theorem 2.5.2. Let N be a positive integer, ψ ∈ R, and p/q a convergent of the

continued fraction of x ∈ R \Q such that q > 6N . Set ε = ||ψq|| −N ||xq||. If ε > 0,

then there is no solution to

0 < |nx−m+ ψ| < CD−n

in positive integers n and m such that

log(Cq/ε)

log(D)
≤ n ≤ N .

In our context we have that x = ± φ
2π
, ψ = ± θ

2π
, C = c2, D = d, and N is the

upper bound found in the previous subsection. Here, the two ± have equal sign, and

we need both (together with the inclusion of m in this theorem) to transform (2.13)

into the pure absolute value, i.e., the inequality | ± (θ + nφ)/2π +m| < c2d
n has no

solution.

Often, this method successfully reduces N to log(Cq/ε)/ log(D), which is much

smaller. One can simply check whether un = 0 for some n ≤ log(Cq/ε)/ log(D) by

iterating the sequence.

However, the reduction does not always succeed. In certain speci�c cases, there

exists no convergent p/q such that ||ψq|| > N ||xq|| holds. For example, if ψ = 0, then

||ψq|| = 0 for every convergent. This scenario is not impossible as it occurs when α

is real. Moreover, the reduced N may still be very large. For example, this occurs

when D is very close to 1. In that case, iterating the sequence is still too laborious.

Hence, we need another reduction.
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Another reduction using local methods As mentioned previously, the Baker-

Davenport reduction cannot always be applied. When the LRS is simple, we can

use another approach. As explained in Section 1.2, the sequence (un mod p)∞n=0 is

periodic for almost all primes p. For m ≥ 2 such that (un mod p)∞n=0 is periodic, let

Lm be the period of (un mod p)∞n=0 and

Zm =
{
0 ≤ n < Lm : un ≡ 0 (mod m)

}
.

If m′ ≥ 2 as well, the set Zlcm(m,m′) can be computed by applying the Chinese Re-

mainder theorem repeatedly. Then, #Zlcm(m,m′) ≤ #Zm#Zm′ . We can use this trick

when Zm and Zm′ are not too big and m and m′ have few common factors.

In our approach, we use primes p for which the characteristic polynomial of (un)∞n=0

splits over Fp. Then, Lp | p−1 because we assumed that our LRS is simple. Hence, if

we assume that the numbers un mod p are randomly distributed for each 0 ≤ n < Lp,

we have that un ≡ 0 (mod p) with a probability of 1/p. Thus, we expect that

#Zp ≈ Lp/p < 1. If Lp is smaller than p − 1, this expected value is even lower.

Computing Zp and Lp for primes p = p1, . . . , pk, lets us to compute Zm and Lm for

m = p1 · · · pk using the Chinese remainder theorem. When m ≥ N exceeds N , only a

few values remain in Zm. For each element in Zm below N , one can compute un and

check whether it is zero. As we are only interested in Zp ∩ {0, . . . , N − 1}, adding a

few more primes pi will eliminate many large values in Zm, leaving only true in zeros

of (un)∞n=0 in Zm, most of the time. By explicitly computing these values, we can

check whether they are truly zero.

2.5.3 The non-simple case

For non-simple LRS with two or three dominant roots, the method to compute an

upper bound N such that un ̸= 0 for all n ≥ N still applies. Here,

α(n)λn + α(n)λ
n
+ b(n)ρn + r(n) = 0

where α(n), α(n), and b(n) are now polynomials in n. Following the same recipe,

when b(n) ≤ 2|α(n)| for large enough n, we �rst �nd a bound N such that α(n) ̸= 0

for all n ≥ N and write α1(n) = α(n)/|α(n)| = α(n)/
√
α(n)α(n) etc. Thus, α1(n),

α1(n), and b1(n) are now algebraic functions. Hence,

γ(n) =
−b1(n)±

√
b1(n)2 − 4

2α1(n)
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is also an algebraic function. Using the rules for the height, we can estimate the

height of γ(n) as a linear function in both α(n) and b(n). As α(n) and b(n) are

known polynomials in n, their height can be bounded e�ectively by a linear function

in log(n). Hence, h(γ(n)) < C1+C2 log(n) for some computable constants C1 and C2.

Thus, showing that Λ is non-zero, that is, einφ ̸= γ(n) can be done as

nh(eiφ) = h(einφ) = h(γ(n)) ≤ C1 + C2 log(n)

does not hold for computably large n. Meanwhile, in the application of Baker's

theorem, we have that log |Λ| > −C log2(n) due to this extra factor log(n). As

log2(n) still grows slowly, the number n can be bounded by some constant N .

Unfortunately, this bound N is again often large, and the Baker-Davenport re-

duction Section 2.5.2) cannot be used. Moreover, the local methods of Section 2.5.2

can also fail. Even for primes p such that the characteristic polynomial splits over Fp,
the period Lp of the LRS modulo p is still only bounded by (p− 1)p, and so #Zp has

size approximately ≈ (p − 1)p/p = p − 1. Hence, the size of this set is too large for

practical purposes, and one has to resort to other algorithms like the LLL-algorithm

or compute the p-adic zeros up to a decent precision using the recent result [12].

2.6 The SKOLEM-tool

We have implemented many of the methods described in Sections 2.3 and 2.5 in the

SKOLEM-tool, which �nds all the zeros of a given LRBS. Speci�cally, the leapfrogging

algorithm from Section 2.3 is implemented for simple LRS, and the Baker-Davenport

method from Section 2.5 is implemented for all described classes, including all LRS

with at most three dominant roots, which are all simple. No guarantees are provided.

The tool supports non-degenerate LRS, and, by default, rejects degenerate inputs.

Degenerate sequences could be manually decomposed into several non-degenerate

subsequences. The check for non-degeneracy can be skipped, yielding a modest speed-

up, but may lead to non-termination if the given LRS contains in�nitely many zeros.

For both the Baker-Davenport method and the Leapfrogging method, there are

several modes in which the algorithm can run. In the web version of the tool, they

can be enabled with a slider. One such example is that the user can choose whether to

automatically reduce the (sub)sequences by their greatest common divisor using the

Use GCD reduction setting. Doing so will slightly improve the bounds found by the

Baker-Davenport method and will signi�cantly speed up the Leapfrogging algorithm.
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Leapfrogging

The Leapfrogging algorithm of Section 2.3 is implemented only for primes p that do

not divide the constant coe�cient of the characteristic polynomial of the LRS. For the

sake of e�ciency, Theorem 1.1.3 is not implemented and checking whether a coe�cient

aj of the power series (2.7) is zero is done by computing its p-adic expansion to high

precision. If the p-adic valuation of aj is su�ciently large, then aj is assumed to be

zero. Hence, the output of the tool may be unsound in very speci�c circumstances.

For the Leapfrogging algorithm, the option factor subcases reduces the number

of subsequences analyzed. For example, when u0 = 0, and the step S is computed

to be 24, normally the 23 subsequences (u24n+1)
∞
n=−∞, . . . , (u24n+23)

∞
n=−∞ are ana-

lyzed separately. Factor subcases �nds a more optimal partition of the remaining

subsequences. In this case, (u3n+1)
∞
n=−∞, (u3n+2)

∞
n=−∞, (u6n+3)

∞
n=−∞, (u12n+6)

∞
n=−∞,

and (u24n+12)
∞
n=−∞. Thus, only �ve instead of 23 sequences need to be analyzed. In

practice, enabling this setting can slow the algorithm as higher numbers M may be

needed, although the length of the certi�cate is reduced.

Secondly, we have two approaches to searching for a suitable M :

minimal M . This option will simply start from M = 1 and search upwards to seek

M such that the sequence is non-zero mod M . Whilst this method guarantees

the minimalM is found, the period such that it is non-zero mod m can be quite

large.

minimal period. Our second approach �nds the shortest period. Iterating k, we

test whether there is an M such that (un modM)∞n=−∞ has period k and is

non-zero. In practice, despite obtaining far larger numbers M found than in

the minimal M method, the algorithm runs faster with approach.

Baker-Davenport

In the implementation of the Baker-Davenport method from Section 2.5, complex

numbers are treated numerically rather than symbolically, as this speeds up the algo-

rithm immensely. The resulting approximations do not a�ect the correctness of the

algorithm but might give slightly higher bounds for N . When the dominant roots

and the largest non-dominant root have absolute values which are almost equal, the

algorithm returns an error. Currently, the minimum allowed distance is 2−950, but

this number can be changed manually in the code. Still, when this distance is small,
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Order Number zero Degenerate Non-simple
of LRS LRS LRS LRS

2 9250 6 358 50
3 8995 0 74 2
4 9195 0 35 2
5 9188 0 15 3
6 9172 0 10 6
7 9213 0 12 0
8 9157 0 10 0
9 9143 0 4 3
10 9047 0 8 1

Table 2.1: The distribution of the LRS in our randomly generated dataset.

the Baker-Davenport method can return an enormous bound N , making the method

impractical.

For the Baker-Davenport method, there is the choice of whether to only compute

the bound or whether to also check for zeros up to this bound. The method is

in principle only for LRS (not LRBS), but we provide an option to search in both

directions, giving bounds N− and N+ such that un ̸= 0 for n ≤ N− and n ≥ N+.

Therefore, all the zeros of the corresponding LRBS will be found (alternatively, either

of the two directions can be run independently).

2.6.1 Testing results

We tested the SKOLEM-tool on a suite of random LRS generated in [31]. This dataset

comprises 82367 LRS of orders uniformly distributed between 2 and 10. The coef-

�cients and initial values are uniformly chosen between −20 and 20, with the only

restriction being that the constant coe�cient of the characteristic polynomial is non-

zero. That is, cd, as in (1), is non-zero.

A subset of these LRS have all initial values set to zero, yielding identically zero

sequences. Additionally, some LRS are non-degenerate, yet our implementation does

not currently incorporate a decomposition algorithm to extract the non-degenerate

components. We list the number of occurrences of these phenomena in Table 2.1 by

order. Some of these recurrences may not be minimal, which we have not tested. But

we believe this should only involve a negligible number of LRS).

For each LRS, we attempted to solve the Skolem problem using �ve di�erent

variations of our algorithm, each with a 60-second timeout. Testing was conducted

using SageMath in Docker on a Dell PowerEdge M620 blade equipped with 2 × 3.3
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Order Leapfrog A Leapfrog B Leapfrog C Leapfrog D Baker-
Davenport

2 100% 100% 100% 100% 100%
3 100% 100% 100% 100% 100%
4 99.92% 99.90% 99.97% 99.93% 100%
5 84.6% 98.0% 83.6% 97.4% 100%
6 36.5% 62.1% 34.0% 58.9% 99.99%
7 8.0% 16.4% 7.0% 14.4% 100%
8 2.1% 4.4% 1.9% 3.8% 99.97%
9 0.42% 0.83% 0.38% 0.68% 99.95%
10 0.14% 0.32% 0.13% 0.21% 99.88%

Table 2.2: The success rate for each variant, by order.

Order Leapfrog A Leapfrog B Leapfrog C Leapfrog D Baker-
Davenport

2 0.18 0.18 0.18 0.18 0.28
3 0.21 0.21 0.21 0.21 0.34
4 0.38 0.29 0.40 0.30 0.39
5 5.8 3.1 6.0 3.4 0.45
6 7.8 9.0 8.9 9.5 0.51
7 10.0 11.3 10.1 11.4 0.58
8 7.7 10.8 8.4 9.6 0.72
9 4.5 8.3 4.1 7.1 0.88
10 14.8 6.0 11.8 8.1 1.03

Table 2.3: The mean time in seconds for successful runs for each variant, by order.

GHz Intel Xeon E5-2667 v2 (2× 8 cores, 32 with hyper-threading) and 256GB RAM.

Testing was restricted to 16 parallel threads (50% of the computer's resources).

The �ve variations of our algorithm comprise of four variants of the leapfrogging

algorithm (labelled A�D) and the Baker-Davenport method. All variants use the

GCD-reduction method, and all Leapfrogging variants use the exponential-polynomial

method in Section 2.3.2 to compute the step. Variants A and C use the minimal M

method, and variants B and D use the minimal period method. Variants C and D

use the factor subcases method while variants A and B do not. The Baker-Davenport

method computes the zeros in both the positive and the negative direction and iterates

the zeros up to the bounds found by the Baker-Davenport reduction. Tables 2.2

and 2.3 present the success rates and mean runtimes of these experiments, broken

down by order. For the leapfrogging variants, the experiments were restricted to

non-simple LRS.

In our experiments, the Baker-Davenport method is by far the fastest and most
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successful. However, it does not apply to LRS with more than three dominant

roots, which were not present in our randomly generated dataset. Moreover, for

rare instances, the leapfrogging methods are indeed faster than the Baker-Davenport

method. For example, when (u0, . . . , u4) = (−1,−17,−3,−6, 8) and

un+5 = −11un+4 − 4un+3 + 5un+2 + 12un+1 + 13un ,

Our Leapfrogging B experiment runs in 0.23 seconds while the Baker-Davenport

method needs 14.9 seconds because the bound N− in the negative direction after

the Baker-Davenport reduction is −196851. Among the leapfrogging variants, the

minimal period method is substantially faster and more successful than the minimal

M method while the factor subcases method slows down the algorithm to a lesser

extent. Note that for higher orders, the success rate of the leapfrogging variants is

too low to allow for a direct comparison of run times.

Surprisingly, in this large random set of LRS, zeros do not occur often. For exam-

ple, for the Baker-Davenport method (which almost always succeeded), the largest

n such that at least one LRS (un)
∞
n=0 satis�es un = 0 is n = 13. Thus, despite the

enormous number of LRS, for all these LRS (un)
∞
n=0, we have that un ̸= 0 for all

n > 13.

2.7 Concluding remarks

The proof of Theorem 2.1.8 only depends on the Skolem and p-adic Schanuel con-

jecture for termination and provides a certi�cate when terminating. The following

theorem gives a shortened version of this certi�cate.

Theorem 2.7.1. Let (un)
∞
n=0 be a simple LRS. Then, assuming the Skolem conjecture

and the p-adic Schanuel conjecture for termination, one can compute a number Q ≥ 1

such that for all 0 ≤ i < Q either

1. (uQn+i)
∞
n=−∞ is constantly zero;

2. one can compute integers bi > 0, ai, and zi ≡ i (mod Q) and a prime number

pi such that νpi(uQn−zi) = ai + biνpi(n) for all n ∈ Z; or

3. one can compute Mi ≥ 1 coprime with the constant coe�cient of the character-

istic polynomial of (un)
∞
n=0 such that uQn+i ̸≡ 0 (mod Mi) for all n ∈ Z.
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Thus, we partition the LRBS (un)
∞
n=0 into Q LRBS that are either constantly 0

(case 1), contain 0 exactly once as proven by the pi-adic valuation of the sequence

(case 2), or the subsequence is non-zero as demonstrated by considering the bi-in�nite

sequence modulo Mi (case 3). Case 1 can only occur when (un)
∞
n=0 is degenerate or is

the zero-LRS. Theorem 1.2.3 allows us to decompose the LRBS into non-degenerate

LRBS. When (un)
∞
n=0 is non-degenerate and not constantly zero, only cases 2 and 3

occur.

The statement of Theorem 2.7.1 is complex due to the many di�erent parameters

ai, bi, zi, pi, and Mi. Only �nitely many primes pi are excluded, and we can choose

them freely otherwise, so we can choose all pi to be equal to, say, a single prime

p. As the numbers Mi also are describe the local behaviour of the subsequence, we

would like to relate Mi to p. That is, we want that all Mi to be powers of p. Then

(at the cost of needing to choose a bigger number Q), we can compute ai such that

ai, νpi(un) = ai for all n ≡ i (mod Q). After [111], we refer to such a formula as a

Marques-Lengyel formula.

De�nition 2.7.2 (Marques-Lengyel formula). If (un)∞n=−∞ is an LRBS and p a prime

number, (un)∞n=−∞ allows a Marques-Lengyel formula for the prime p if there are

Q ≥ 1 and integers bi ̸= 0, ai, and zi ≡ i (mod Q) for 0 ≤ i < Q such that either

a. for all n ∈ Z, νp(uQn−zi) = ai + biνp(n); or

b. for all n ∈ Z, νp(uQn+i) = ai.

Encouraged by Lengyel's result that the Fibonacci numbers allow a Marques-

Lengyel formula for every prime number [96], Marques and Lengyel were optimistic

about the existence of Marques-Lengyel formulas in [111]. They studied the Tri-

bonacci numbers, which are de�ned by T0 = 0, T1 = T2 = 1, and the recurrence

Tn+3 = Tn+2 + Tn+1 + Tn .

They show that the Tribonacci numbers allow a Marques-Lengyel formula for the

prime 2:

ν2(Tn) =



0 if n ≡ 1, 2 (mod 4)

1 if n ≡ 3, 11 (mod 16)

2 if n ≡ 4, 8 (mod 16)

3 if n ≡ 7 (mod 16)

ν2(n)− 1 if n ≡ 0 (mod 16)

ν2(n+ 4)− 1 if n ≡ 12 (mod 16)

ν2(n+ 1) + 1 if n ≡ 31 (mod 32)

ν2(n+ 17) + 1 if n ≡ 15 (mod 32)
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and conjectured that such a formula exists for every prime p. In [32], we showed that

this conjecture holds for p = 3, 83, and 397 and fails for all other primes p < 600

except for p = 11, 103, and 163 for which one needs more precise arguments to reach

a conclusion.

For some primes, a more general phenomenon occurs: zi can be rational. For

example, let p = 269 and Z = {0,−1,−4,−17, 1/3,−5/3}. Then,

ν269(Tn) =

{
0 if n ̸≡ zi (mod 268) for all zi ∈ Z

ν269(n− zi) if n ≡ zi (mod 268) for some zi ∈ Z .

Besides the integer zeros 0,−1,−4,−17, there are also rational zeros 1/3 and −5/3.

For at least 1/12th of all primes, these rational zeros occur, contradicting the conjec-

ture of Marques and Lengyel.

Thus, the valuation argument can also apply when the zero is outside the sub-

sequence. Bacik et al. formalised this idea as follows [12]. For an LRBS (un)
∞
n=−∞

and a prime p such that (un mod p)∞n=−∞ is well-de�ned and periodic, call z ∈ Zp
a p-adic zero if for some sequence (zn)

∞
n=0 ∈ Zω, the p-adic limits limn→∞ zn = z

and limn→∞ uzn = 0 hold. We revisit the Tribonacci sequence with p = 257 and

Z = {0,−1,−4,−17, 1/3,−5/3}:

ν257(Tn) =


0 if n ̸≡ zi (mod 256) for all zi ∈ Z ∪ {56}
ν257(n− zi) if n ≡ zi (mod 256) for some zi ∈ Z

ν257(
n−56
256

− z257) if n ≡ 56 (mod 256) ,

where z257 = 20+95·257+199·2572+234·2573+165·2574+· · · is a 257-adic zero. Our
other formulas for the p-adic valuations assert z257 does not correspond to an integer

zero of the Tribonacci sequence. Bacik et al. showed that one can compute p-adic

zeros to arbitrary precision, and when one assumes the p-adic Schanuel conjecture,

one can also show that two zeros are distinct and thus enumerate the p-adic zeros.

This method provides limited help for the Skolem problem. It allows one to search for

zeros quite quickly, but one still has to determine whether a p-adic zero corresponds

to a zero of the LRS. As these p-adic zeros can correspond to transcendental numbers

that are very hard to describe, this is not an easy task.

Therefore, we investigate p-adic zeros that can be explained algebraically. Such

an algebraic explanation shows that an entire subsequence does not contain zero. The

earlier-mentioned rational zeros, and more generally, twisted rational zeros.
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De�nition 2.7.3 ([33]). A non-degenerate LRBS (un)
∞
n=−∞ with an exponential-

polynomial form un =
∑k

i=1Qi(n)λ
n
i has a twisted rational zero at q ∈ Q if for some

roots of unity ζ1, . . . , ζk and some de�nition of λq1, . . . , λ
q
k,

ζ1Q1(q)λ
q
1 + ζ2Q2(q)λ

q
2 + · · ·+ ζkQk(q)λ

q
k = 0 .

In other words, twisted rational zeros imply there is a non-degenerate LRBS

(vn)
∞
n=−∞ such that v0 = 0 (the twisted rational zero) and the LRBS (un)

∞
n=−∞ and

(vn)
∞
n=−∞ share a subsequence. That is, there are integers a, b, c, d with a, c ≥ 1 such

that van+b = ucn+d for all n ∈ N.
The Skolem-Mahler-Lech theorem extends to twisted rational zeros.

Theorem 2.7.4 (Theorem 1.9 in [33]). A non-degenerate, non-zero Q-LRS has

�nitely many twisted rational zeros.

To end the chapter, we give an explicit example of an LRS for which the sole

known method of solving the Skolem problem depends on twisted rational zeros.

Example 2.7.5. De�ne the non-degenerate LRBS (un)
∞
n=−∞ by

un = (−4 + 7i)n + (−4− 7i)n + 2(8 + i)n + 2(8− i)n − n .

The �rst four characteristic roots have modulus
√
65, and for every prime deal p,

there are either three or �ve p-dominant roots. Thus, (un)∞n=0 is outside the MSTV

class, and Luca showed that (un)∞n=0 is not modular [103]. We will show that un ̸= 0

for all n ∈ Z using the technology developed in this chapter and a twisted rational

zero at q = 0:

1 · (−4 + 7i)0 + (−1) · (−4− 7i)0 + 1 · 2(8 + i)0 + (−1) · 2(8− i)0 − 0 = 0 .

Using modular arithmetic, un ≡ 0 (mod 4) if and only if n ≡ 2 (mod 4). Then de�ne

the Q-LRBS (vn)
∞
n=−∞ by

vn = (−4 + 7i)n − in(−4− 7i)n + 2(8 + i)n − 2in(8− i)n − n

= (−4 + 7i)n − (7− 4i)n + 2(8 + i)n − 2(1 + 8i)n − n

such that u4n+2 = v4n+2 for all n ∈ Z. We can exploit the fact that v0 = 0 to deduce

that for n ≡ 2 (mod 4),

ν3(un) = ν3(vn) =

{
1 if n ≡ 3 (mod 6)

ν3(n) if n ≡ 0 (mod 6) .
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We conclude that for all n ∈ Z:

un ̸≡ 0 (mod 4) if n ̸≡ 2, 6, 10 (mod 12) ;

un ̸≡ 0 (mod 9) if n ≡ 2, 10 (mod 12) ;

ν3(un) = ν3(n) if n ≡ 6 (mod 12) ,

which is su�cient to conclude that un ̸= 0 for all n ∈ Z.

The method above does not seem to apply to all non-simple order-6 LRS outside

the MSTV class. An explicit example for which we cannot solve the Skolem problem

is the non-simple, non-degenerate, and non-modular sequence (un)
∞
n=0 de�ned by

un = 2(−4 + 7i)n + 2(−4− 7i)n + 4(8 + i)n + 4(8− i)n + n .
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Chapter 3

The Positivity problem

3.1 Introduction and main results

In this chapter, we study the Positivity problem for linear recurrence sequences. The

Positivity problem shares many similarities with the Skolem problem and, as discussed

in the introduction, shows up in many di�erent contexts. The Positivity problem asks

to determine whether a Q-LRS only contains positive numbers:

Problem 2 (Positivity problem). For a given LRS (un)
∞
n=0, determine whether un ≥ 0

for all n ∈ N.

Like the Skolem problem, we can generalise this problem to other rings than the

integers, but for `positivity' to make sense, the ring has to be a subring of R.

Problem 3.1.1 (Positivity problem for R-LRS). For a ring R ⊆ R, the R-Positivity
problem asks to determine for a given R-LRS (un)

∞
n=0 whether ∀n ∈ N : un ≥ 0.

Similarly to the Skolem problem, the Positivity problems for R = Z and R = Q
are Turing-interreducible: If (un)∞n=0 is a Q-LRS, one can compute integers a, b ≥ 1

such that (abnun)∞n=0 is an integer-valued LRS. As a and b are positive, the numbers

un and abnun have the same sign. The case R = Z is also the most prominent case

of the Positivity problem, so, in this chapter, assume that all LRS are Z-LRS unless

stated otherwise.

The Positivity problem is known to be Skolem-hard. If (un)∞n=0 is a Z-LRS, then
un = 0 if and only if u2n − 1 is negative. Hence, as (u2n − 1)∞n=0 is again a Z-LRS.

However, the distribution of negative terms in a sequence is far more complicated

than the distribution of zeros. For the Skolem problem, the Skolem-Mahler-Lech

theorem describes the set of zeros of an LRS as a union of �nitely many arithmetic

progressions and a �nite set. Moreover, by Lemma 1.2.3, we can explicitly compute
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all these arithmetic progressions. There is no analogue of the Skolem-Mahler-Lech

theorem for the Positivity problem. In fact, it is still open to decide whether an

LRS has �nitely many negative terms. This problem is called the Ultimate Positivity

problem, which asks to determine whether an LRS is ultimately positive or, in other

words, contains only �nitely many negative terms.

Problem 3.1.2 (Ultimate Positivity problem for R-LRS). The Ultimate Positivity

problem asks to determine for a given R-LRS (un)
∞
n=0 whether (un)

∞
n=0 is ultimately

positive, i.e., ∃N ≥ 0 ∀n ≥ N : un ≥ 0.

The case R = Z is again the most prominent case of the Ultimate Positivity

problem, and so when the ring R is not speci�ed, we assume that R = Z.
The (Ultimate) Positivity problem has a much shorter history than the Skolem

problem. In the 1970s, around a decade before Mignotte, Shorey, and Tijdeman, and

Vereshchagin published their powerful results on the Skolem problem, the Positivity

problem emerged in computational biology, and the study of Lindenmayer systems in

particular [98, 134].

Since, various authors have made incremental progress on the Positivity problem.

In 1981, Burke and Webb solved the Ultimate Positivity problem for LRS up to order

2, and in 1990, Nagasaka and Shiue did the same for LRS up to order 3 with repeated

roots. In 2006, Halava et al. [76] showed that the Positivity problem was decidable for

LRS of order at most 2, and Laohakosol and Tangsupphathawat [93] solved the order-

3 case three years later while also solving the general order-3 case for the Ultimate

Positivity problem. All of these solutions relied on relatively elementary tools.

In 2014 and 2015, Ouaknine and Worrell pushed the boundaries of decidability of

the Positivity and Ultimate Positivity problems to their current limit in a series of

papers.

Theorem 3.1.3 ([121]). The Positivity problem and the Ultimate Positivity prob-

lem are decidable for all LRS of order at most 5. Moreover, both problems are

Diophantine-hard for order-6 LRS.

Theorem 3.1.4 ([120]). The Positivity problem is decidable for all simple LRS of

order at most 9.

Theorem 3.1.5 ([122]). The Ultimate Positivity problem is decidable for all simple

LRS.
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For the �rst two results, Ouaknine and Worrell rely on Baker's theorem on linear

forms and for the latter two results, they use Tarski's result that the �rst-order theory

of ⟨R; 0, 1,+, ·⟩ is decidable. In Section 3.2, we will give intuition about these three

theorems and also explain what �Diophantine hardness� as in Theorem 3.1.3 means.

Main results and organization of this chapter

In Section 3.2, we break down the current state-of-the-art of the Positivity and Ulti-

mate Positivity problems. We sketch the proofs of Theorems 3.1.3, 3.1.4, and 3.1.5

and explain why these techniques are insu�cient to make further progress. We also

give explicit LRS for which we cannot decide (ultimate) positivity and show that the

Skolem problem for order 5 LRS reduces to the Positivity problem for simple LRS of

order 10, sharpening a bound of Ouaknine and Worrell.

In Section 3.3, we study a special class of linear recurrence sequences, namely

reversible linear recurrence sequences. Recall that an LRS is reversible if its bi-

completion is integer-valued. We will show that the Skolem, Positivity, and Ultimate

Positivity problems are decidable for LRS of a much higher order when they are in

this class by exploiting their structural properties.

Theorem 3.1.6. For reversible LRS, the Skolem problem is decidable up to order 11.

Theorem 3.1.7. For reversible LRS, the Positivity and Ultimate Positivity problems

are both decidable up to order 11.

Theorem 3.1.8. For simple reversible LRS, the Positivity problem is decidable up to

order 17.

To prove these theorems, we will analyse the potential possible ways the charac-

teristic roots of a reversible LRS are distributed, i.e., the roots of a monic polynomial

P ∈ Z[X] whose constant coe�cient is ±1. We rely on Galois-theoretic techniques to

show that such polynomials cannot have `many' dominant roots.

In Section 3.4, we show that we cannot push these Galois-theoretic techniques any

further: we will inevitably encounter the same type of problem as one encounters for

the general Skolem and (Ultimate) Positivity problems. We construct reversible LRS

for which the Positivity problem is open. In particular, we construct a reversible LRS

of order 12 and a simple reversible LRS of order 18 for which we do not know how

to solve the Positivity problem and a reversible LRS of order 7 for which we do not

know how to decide the Skolem problem. Thus, Theorems 3.1.6, 3.1.7, and 3.1.8 are

sharp.
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In Section 3.5, we discuss the Positivity problem for real algebraic linear recurrence

sequences. For the Skolem problem, it is folklore [107, Lemma 9] that the Z- and Q-
Skolem problems are Turing-interreducible. However, such a result was not known

for the Positivity problem. We prove the following result:

Theorem 3.1.9. The R∩Q-Positivity problem and Q-Positivity problem are Turing-

interreducible. Moreover, the Positivity problem for simple R ∩ Q-LRS is Turing

equivalent to the Positivity problem for simple Q-LRS.

3.2 Overview of the Positivity problem

In this section, we discuss obstacles to extending our results for deciding the (Ulti-

mate) Positivity problem at higher orders.

As stated in the introduction, the (Ultimate) Positivity problem is decidable for

all LRS up to order 5. However, extending this result to LRS of order 6 is chal-

lenging because it would resolve certain number-theoretical problems in Diophantine

approximation. Hence, Ouaknine and Worrell referred to the (Ultimate) Positivity

problem as Diophantine-hard in Theorem 3.1.3. This hardness depends on the LRS

being non-simple. In contrast, for non-simple LRS, this Diophantine-hardness obsta-

cle does not exist. Ouaknine and Worrell established decidability for simple LRS for

the Ultimate Positivity problem and decidability for simple LRS of order at most 9

for the Positivity problem. For simple order-10 LRS, one encounters another type

of hardness. Before exploring these two forms of hardness, we present a lemma that

addresses most cases.

Lemma 3.2.1. Let (un)
∞
n=0 be a non-degenerate LRS. Then the (ultimate) positivity

for (un)
∞
n=0 is decidable if the following condition is not satis�ed: Among the dominant

roots of (un)
∞
n=0 of maximum multiplicity, there is a non-real dominant root and a

positive real dominant root.

Proof. As (un)∞n=0 is non-degenerate, the LRS (un)
∞
n=0 has at most one real dominant

root. Let λ be the modulus of a dominant root. Then we scale (un)
∞
n=0 with |λ|n to

obtain the following normalised exponential-polynomial form:

un
|λ|n = Q(n)(±1)n +

k∑
i=1

Qi(n)λ
n
i +Qi(n)λi

n
+ rn .

Here, Q(n) is the zero polynomial if (un)
∞
n=0 has no real dominant root, all λi

are normalised dominant roots, and (rn)
∞
n=0 is the normalised non-dominant part
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of (un)∞n=0. As the dominant roots of the normalized sequence have modulus 1, we

have limn→∞ rn = 0. Moreover, by Lemma 1.2.6, we can compute rational numbers

r > 1 and 0 < R < 1 such that |rn| < rRn. Let d := maxki=1 deg(Qi).

If deg(Q) > d, then

un
|λ|nnd+1

=
Q(n)(±1)n

nd+1
+O(1/n) ,

where the constant in the big O-notation can be controlled. For computably large n,

we thus have that Q(n)(±1)n determines the sign of un.

If deg(Q) < d or deg(Q) = d and the normalised real dominant root is −1, we

apply a lemma due to Braverman [39].

Lemma 3.2.2. Let γ1, . . . , γk ∈ {z ∈ C : |z| = 1, z ̸= 1} be distinct complex numbers,

α1, . . . , αk ∈ C\{0}, and wn =
∑k

i=1 αiγ
n
i . Then there is a c < 0 such that Re(wn) < c

for in�nitely many n.

In our case, we can write that

un
|λ|nnd = α(±1)n +

k∑
i=1

αiλ
n
i + αiλi

n
+O(1/n) ,

where α = 0 when the normalised real dominant root is 1 and at least one αi is

non-zero. Then Lemma 3.2.2 says that for some c < 0, there are in�nitely many n

such that un < c+O(1/n), and thus (un)∞n=0 is not (ultimately) positive.

As the degrees of the polynomials Q and Qi correspond to the multiplicities of

their characteristic roots, the lemma follows.

Hardness at order 6 From the lemma above, we can conclude the following: If we

cannot decide positivity for an LRS (un)
∞
n=0 with non-simple dominant roots, then

the LRS has at least three characteristic roots of multiplicity 2, and hence, order at

least 6. Ouaknine and Worrell use such LRS to obtain their Diophantine hardness.

We give a simpli�ed version of their method. Let

un =
1

2
n
(
2− λn − λ

n)− r
(
iλn − iλ

n)
= n

(
1− cos(2πφn)

)
− r sin(2πφn) , (3.1)

where λ = ei2πφ is an algebraic number in Q(i) of modulus 1 which is not a root of

unity. If un were negative, then cos(2πφn) is close to 1. Let m ∈ Z such that nφ−m

is in (−1/2, 1/2]. Then, using the Taylor series expansion,

1− cos(2πφn) =
1

2
(2πφn− 2πm)2 +O

(
(2πφn− 2πm)4

)
and

sin(2πφn) = (2πφn− 2πm) +O
(
(2πφn− 2πm)4

)
.
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Hence, when 2πφn − m decreases, we have that un < 0 roughly when n(2πφn −
2πm)2 < r(nφ− 2πm). The latter is equivalent to∣∣∣φ− m

n

∣∣∣ < r(2π)−1

n2
.

For a real number x, de�ne the Lagrange constant (or homogeneous Diophantine

approximation constant)

L(x) = inf
{
c ∈ R :

∣∣∣x− m

n

∣∣∣ < c

n2
for some n,m ∈ Z

}
,

and the type (or homogeneous Diophantine approximation type)

L∞(x) = inf
{
c ∈ R :

∣∣∣x− m

n

∣∣∣ < c

n2
for in�nitely many n,m ∈ Z

}
.

Now assume that (Ultimate) Positivity is decidable for LRS of the shape (3.1). Then,

except the error from the Taylor approximation, we can vary r and apply Positivity

oracles (respectively, Ultimate Positivity oracles) to compute the Lagrange constant

(respectively, type) of φ up to arbitrary precision. However, computing L∞(φ) and

L(φ) is a problem in Diophantine approximation that appears very di�cult, and this

shows that the (Ultimate) Positivity problem is `Diophantine-hard'.

Hardness for simple LRS of order 10 Ouaknine and Worrell [120] also achieved

the state-of-the-art for the Positivity problem for simple LRS from which they con-

clude Theorem 3.1.4.

Theorem 3.2.3. Let (un)
∞
n=0 be a non-degenerate simple (R ∩Q)-LRS with charac-

teristic polynomial f ∈ Z[X] and a positive dominant root. If f ∈ Z[X] has either

at most eight dominant roots or precisely nine roots, then we can determine whether

un ≥ 0 for each n ∈ N0.

We will recall the techniques employed in Theorem 3.2.3. For the sake of brevity,

we shall give only a brief outline here; we direct the interested reader to the full

argument given in [120].

Let (un)∞n=0 be a simple, non-degenerate (R ∩Q)-LRS satisfying the assumptions

of Theorem 3.2.3 (again, we note that the study of the Positivity problem reduces to

the study of non-degenerate LRS). By Lemma 3.2.1, we know that any hard instance

has a positive real dominant root.

We then normalise (un)
∞
n=0 such that the dominant roots have modulus 1. Thus,

the non-real dominant roots λ1, λ1, . . . , λk, λk lie on the unit circle and the positive
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real characteristic root of (un)∞n=0 is equal to 1, and so |λi| = 1 for all 1 ≤ i ≤ k.

For each n ∈ N, the normalised sequence (un)∞n=0 satis�es the exponential-polynomial

form

un = α+
k∑
i=1

αiλ
n
i + αiλi

n
+

k′∑
i=1

βiξ
n
i ,

where ξ1, . . . , ξk′ are the normalised non-dominant roots of (un)∞n=0 satisfying 0 <

|ξi| < 1 and α1, . . . , αk, α, β1, . . . , βk′ are non-zero algebraic numbers. Thus, if write

λj = e2πiφj and αj = 1
2
a1e

2πiψj , we get that αjλnj + αjλj
n
= aj cos(2π(φjn + ψn)).

Therefore,

un = a1 cos
(
2π(φ1n+ ψ1)

)
+ · · ·+ ak cos

(
2π(φkn+ ψk)

)
+ α +O(ξn) (3.2)

where ξ < 1. Before giving the general argument, we illustrate it through an example.

Example 3.2.4. De�ne the Q-LRS (un)
∞
n=0 by

un =

(
3 + 4i

5

)n
+

(
3− 4i

5

)n
− 2

(
5 + 12i

65

)n
− 2

(
5− 12i

65

)n
+ 3

(
63− 16i

13

)n
+ 3

(
63 + 16i

13

)n
+ 12− (1/2)n .

Then, λ1 = 3+4i
5

= ei2πφ1 , λ2 = 5+12i
13

= ei2πφ2 , λ3 = 63−16i
65

= ei2πφ3 are representatives

of the complex conjugate pairs of the non-real dominant roots, α1 = 1 = 1
2
2e2π0,

α2 = 2 = 1
2
4e2π

1
2 , α3 = 3 = 1

2
6e2π0, 12, and 1 are the polynomial coe�cients of the

characteristic roots λ1, λ2, λ3, 1, and ξ = 1/2, respectively. Then, λ3 = λ1λ2, and λ1
and λ2 are multiplicatively independent. Thus, in the notation of (3.2), we get that

un = 2 cos(2πφ1n) + 4 cos(2π(φ2n+ 1/2)) + 6 cos(2π(−φ1n+ φ2n)) + 12− (1/2)n .

Using the trigonometric identities, we can rewrite the latter as

un = 2 cos(2πφ1n)− 4 cos(2πφ2n) + 6 cos(2πφ1n) cos(2πφ2n)

− 6 sin(2πφ1n) sin(2πφ2n) + 12− (1/2)n .

By Kronecker's theorem (Theorem 1.1.13), ((φ1n mod 1, φ2n mod 1))∞n=0 is dense in

the torus T2 (recall that T = [0, 1)). Thus,

lim inf
n→∞

2 cos(2πφ1n)− 4 cos(2πφ2n) + 6 cos(2πφ1n) cos(2πφ2n)

− 6 sin(2πφ1n) sin(2πφ2n)

= min
(x1,x2)∈T2

2 cos(2πx1)− 4 cos(2πx2) + 6 cos(2πx1) cos(2πx2)

− 6 sin(2πx1) sin(2πx2) = −12 .
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where the minimum is achieved at (x1, x2) = (1/2, 0). Hence, if (un)∞n=0 is negative,

φ1n mod 1 has to be (exponentially) close to 1/2 and φ2n mod 1 has to be (expo-

nentially) close to 0. Whether φ1n mod 1 is (exponentially) close to 1/2 for some n

can be veri�ed with Baker's theorem on linear forms in logarithms, and positivity for

(un)
∞
n=0 is decidable.

We return to the general case. In general, we can �nd all the multiplicative

relationships between the normalised dominant roots λ1, . . . , λk with Masser's the-

orem (Theorem 1.1.3). By renumbering the roots, we can assume that λ1, . . . , λℓ
form a maximal multiplicatively independent subset of {λ1, . . . , λk} and that for

ℓ + 1 ≤ j ≤ k, we have that λj = λ
aj,1
1 · · ·λaj,ℓℓ for some integers aj,i. Then,

φ1, . . . , φℓ, 1 are linearly independent over the rationals and so by Theorem 1.1.13

the points
(
(φ1n+ ψ1) mod 1, . . . , (φℓn+ ψℓ) mod 1

)
are dense in the torus Tℓ.

This induces a function f : Tℓ → R de�ned by

f(x1, . . . , xℓ) =
k∑
j=1

2aj cos
(
2π(xj + ψj)

)
+

k∑
j=1

2aj cos
(
2π
( ℓ∑
i=1

aj,ixi + ψj

))
+ α .

Then, un = f(φ1n, . . . , φℓn) + O(ξn). Using trigonometric identities, we can rewrite

the cosines to obtain a polynomial P ∈ (R ∩Q)[X1, . . . , X2ℓ] such that

f(x1, . . . , xℓ) = P
(
cos(2πx1), sin(2πx1), . . . , cos(2πxℓ), sin(2πxℓ)

)
.

Then, using a density argument, we get

µ := lim inf
n→∞

un = min
(x1,...,xℓ)∈Tℓ

P
(
cos(2πx1), sin(2πx1), . . . , cos(2πxℓ), sin(2πxℓ)

)
= min

(y1,ỹ1,...,yℓ,ỹℓ)∈R2ℓ

∀j : y2j+ỹ2j=1

P
(
y1, ỹ1, . . . , yℓ, ỹℓ)

)
.

The last minimum is computable as it can be expressed in the theory of the reals,

which Tarski [151] famously showed to be decidable. Moreover, we have that µ is a

real algebraic number. If µ ̸= 0, the term O(ξn) cannot in�uence the sign of un (and

we can compute from which point onward this does not occur). Thus, for a hard

instance, we can assume that µ = 0. Let

X =
{
(x1, . . . , xℓ) ∈ Tℓ : P

(
cos(2πx1), sin(2πx1), . . . , cos(2πxℓ), sin(2πxℓ)

)
= 0
}
.

Then, if un is negative, the vector (φ1n, . . . , φℓn) has to be exponentially close (in n)

to X such that the O(ξn) can potentially force a negative term. That is, we compute

a rational number 0 < r < 1 such that un < 0 implies that (φ1n, . . . , φℓn) is at most
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Figure 3.1: The set X =
{
(x1, x2) ∈ T2 : cos(2πx1) + 2 cos(2πx2) = 0

}
.

rn away from X. This occurs only �nitely often.1 For a single point x ∈ X, we can

compute all n ∈ N such that n(φ1, . . . , φℓ) and x have distance at most rn in Tℓ for
some n ∈ N, but we do not know how to do this when X is in�nite.

The meat of the result of Ouaknine and Worrell is that X is �nite when ℓ ≤ 1 or

k− ℓ ≤ 1. The smallest pair (k, ℓ) such that their methods do not apply is (4, 2), and

the LRS also a real dominant root and some non-dominant root (as ξ = 0 forces the

LRS to be positive or not ultimately positive). Thus, the hard example (un)
∞
n=0 has

to have at least order 10 (one dominant real root, one non-dominant root, and four

complex conjugate pairs of dominant roots). We now give one example for order 10

of the so-called squaring form.

Example 3.2.5. We take the simple Q-LRS (un)
∞
n=0 de�ned by

un =

((
3 + 4i

5

)n
+

(
3− 4i

5

)n
+ 2

(
5 + 12i

13

)n
+ 2

(
5− 12i

13

)n)2

− 2−n .

Then, (un)∞n=0 has order 10, ℓ = 2, and

X =
{
(x1, x2) ∈ T2 : cos(2πx1) + 2 cos(2πx2) = 0

}
.

We sketch X in Figure 3.1.

As a by-product of this construction, we can extract an improvement on a result of

Ouaknine and Worrell [120]. Instead of showing that the Skolem problem for order-5

LRS reduces to the Positivity problem for simple sequences of order 14, we can reduce

to the Positivity problem for simple sequences of order 10.

1Ouaknine and Worrell prove Theorem 3.1.5 (the Ultimate Positivity problem is decidable for
simple LRS) in this manner.
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Theorem 3.2.6. The Skolem problem at order 5 reduces to the Positivity problem

for simple LRS of order 10.

Proof. Let (un)
∞
n=0 be an LRS of order 5. Using Lemma 1.2.3, we can assume

that (un)
∞
n=0 is non-degenerate, and as we can solve the Skolem problem for LRS

in the MSTV class, we assume that (un)
∞
n=0 is outside the MSTV class. Thus, by

Lemma 2.2.6, the LRS (un)
∞
n=0 has the exponential-polynomial form (2.3). Due

to Theorem 3.3.2, the dominant roots are not units. Further, we can assume by

Lemma 2.2.5 that for any prime ideal p the p-dominant roots have p-valuation 0.

We claim that |ρ| < |λ1|. As λ1 is dominant, we have |ρ| ≤ |λ1|, so presume

that equality holds. Further, let p be a prime ideal containing λ1 (which exists as

λ1 is not a unit). Then, λ1λ1 = λ2λ2 = ρ2 ∈ p, and so ρ and at least one of λ2 and

λ2 is in p. As the p-dominant roots have p-valuation 0, there are thus at most two

p-dominant roots, and hence (un)∞n=0 would be in the MSTV class, contradicting our

earlier assumptions. The claim follows.

We claim that ρ is an integer. If not, ρ would have a Galois conjugate among the

other characteristic roots, say σ is a Galois automorphism such that σ(λ1) = ρ. Then

applying σ on λ1λ1 = λ2λ2 and taking absolute values gives that

|ρ||σ(λ1)| = |σ(λ2)||σ(λ2)|

where within each pair of absolute value bars, there is a di�erent characteristic root.

Thus, ρ is also a dominant root, contradicting our previous claim, and so ρ has no

non-trivial Galois conjugates. As ρ is an algebraic integer, it is a non-zero integer.

By the Galois closure, b ∈ Q. When un = 0,

α1λ
n
1 + α1λ1

n
+ α2λ

n
2 + α2λ2

n
= −bρn ,

where both sides of the equation are rational. If the above holds, then clearly

vn :=
(
α1λ

n
1 + α1λ1

n
+ α2λ

n
2 + α2λ2

n
)2

− 2b2ρ2n < 0,

where (vn)∞n=0 is an order-10 LRS which by Theorem 1.2.7 and the construction above,

is only 0 �nitely often. Thus, apply Positivity oracles to (vn)
∞
n=N (which is simple

and has order 10) until one returns this sequence is positive. Then, un = 0 implies

that n < N , and we can enumerate these �nitely many numbers.
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Beyond orders 6 and 10 So far, we have seen two di�erent obstacles that prevent

progress on the Positivity problem:

1. For φ such that ei2πφ is algebraic, r, q ∈ Q, can one compute all solutions to

|φ− m
n
| < rn−q?

2. When X is an in�nite curve as de�ned in the previous section, can one compute

all n ∈ N such that n(φ1, . . . , φℓ) come expectationally close to a point in X?

When investigating LRS of higher orders, one can encounter instances where these

two problems are combined: can one compute all n ∈ N such that n(φ1, . . . , φℓ) come

polynomially close to a point in X?

3.3 The Positivity problem for reversible linear re-

currence sequences

In this section, we will add an extra restriction (reversibility) to the linear recur-

rence sequences and show that this minor restriction already enlarges the realms of

decidability for these decision problems for LRS. Recall the de�nition of a reversible

LRS.

De�nition 3.3.1. A Z-LRS (un)
∞
n=0 is reversible if its bi-completion (un)

∞
n=−∞ is

integer-valued.

By an old result of Fatou [66] (see also [23, Chapter 7]), an LRS is reversible if and

only if its constant coe�cient is equal to ±1. That is, reversible LRS are exactly the

LRS whose characteristic roots are all units. Similarly, a polynomial f(X) ∈ Z[X]

reversible if it is monic and its constant coe�cient is ±1, or, equivalently, all its roots

are units.

The LRS (t⊤Mns)∞n=0 is reversible whenM is an integer-valued matrix with deter-

minant ±1 (that is, M is uni-modular). Examples of reversible LRS are polynomials

(which are LRS that only have the characteristic root 1) and the Fibonacci numbers

introduced in Example 1.2.4 whose bi-completion is (. . . ,−3, 2,−1, 1, 0, 1, 1, 2, 3, . . . ).

Our goal for this section is to prove Theorems 3.1.6, 3.1.7, and 3.1.8. Theorem 3.1.6

was �rst proven by Lipton et al. [99] and was later reproven by Kenison [88]. In the

same paper, Kenison also showed that the Positivity problem is decidable for simple

reversible LRS of order 10 or less [88]. However, in both of these papers, the authors

focused on these relatively low-order LRS, and we will deduce the result from a more

general study of reversible sequences.

78



3.3.1 Reducing reversible LRS to reversible polynomials

We are going to deduce Theorems 3.1.6, 3.1.7, and 3.1.8 from the following result,

which is proven in Section 3.3.2.

Theorem 3.3.2. Let f be a non-degenerate reversible polynomial such that more

than half of its roots are dominant. Then either f is linear or f is cubic with two

dominant roots.

For the Skolem, Positivity, and Ultimate Positivity problems, we can use The-

orem 1.2.3 to reduce to non-degenerate LRS. This reduction does not increase the

order and preserves simplicity and reversibility. The latter follows because the char-

acteristic roots of any of these non-degenerate subsequences are powers of units and

thus units.

This enables us to instantly prove Theorem 3.1.6: The Skolem problem is decidable

for reversible LRS up to order 7.

Proof of Theorem 3.1.6. Assume that (un)∞n=0 is a reversible, non-degenerate LRS of

order d ≤ 7. Due to Theorem 2.1.3, we can assume that (un)
∞
n=0 has at least four

dominant roots. Thus, the characteristic polynomial of (un)
∞
n=0 is reversible and

non-degenerate, has at least four dominant roots, and its degree is at most 7. This

contradicts Theorem 3.3.2.

Next, we turn our attention to the (Ultimate) Positivity problem. As a conse-

quence of Lemma 3.2.1, we can reduce the problem of deciding positivity to LRS that

possess a positive dominant root. Next, we deal with Theorem 3.1.8: The Positivity

problem is decidable for reversible LRS up to order 17.

Proof of Theorem 3.1.8. As previously noted, we can assume that the LRS (and thus

its characteristic polynomial f) is simple, reversible, non-degenerate), has a dominant

root in R>0, and its degree is at most 17. Due to Theorem 3.3.2, we can assume

that f is cubic, linear, or that at most half of its characteristic roots are dominant.

Thus, f has at most eight dominant roots. Hence, by Theorem 3.2.3, positivity is

decidable.

Lastly, we tackle Theorem 3.1.7: positivity and ultimate positivity are decidable

for reversible LRS up to order 11.
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Proof of Theorem 3.1.7. Let (un)∞n=0 be a reversible LRS of order at most 11 for which

we have to prove that (ultimate) positivity is decidable. Then, by the same arguments

earlier in this section, we can assume that (un)∞n=0 is non-degenerate. Moreover, by

Lemma 3.2.1, we can assume that (un)∞n=0 has a real positive dominant root ρ and a

pair of non-real complex conjugate dominant roots λi and λi.

Claim 3.3.3. We have that (un)
∞
n=0 has a non-simple dominant root.

Proof. If (un)∞n=0 would be simple, then positivity and ultimate positivity would be

decidable by Theorem 3.1.5 and Theorem 3.1.8, respectively as (un)∞n=0 has order at

most 11. Thus, (un)∞n=0 has a non-simple characteristic root.

Otherwise, due to the Galois closure of the polynomial form, we can split (un)∞n=0

into two reversible LRS (vn)
∞
n=0 and (wn)

∞
n=0 where (vn)

∞
n=0 is simple and contains

all the non-dominant roots, (wn)∞n=0 is non-simple and its characteristic roots have

modulus strictly smaller than ρ, and un = vn + wn for all n ∈ N.
By Lemma 1.2.6, there are positive rational numbers r, R such that R < λ and

|wn| < rRn for all n ∈ N. Let (u−n )∞n=0 and (u+n )
∞
n=0 be the simple Q-LRS de�ned by

u−n = un− rRn and u+n = un+ rR
n such that u−n < un < u+n for all n ∈ N. As (wn)∞n=0

has a non-simple characteristic root, we know that (wn)
∞
n=0 has order at least two.

Thus, (vn)∞n=0 has order at most 9 = 11− 2. By Theorem 3.3.2, (vn)∞n=0 has at most

four dominant roots.

Theorem 1.2.7 implies that the signs of u−n and u+n di�er for only �nitely n ∈ N, and
thus the same holds for (un)

∞
n=0 and (u−n )

∞
n=0. Hence, (un)∞n=0 is ultimately positive

if and only if (u−n )
∞
n=0 is ultimately positive, where the latter is decidable due to

Theorem 3.1.5. Thus, ultimate positivity is decidable for (un)∞n=0.

If (un)∞n=0 is not ultimately positive, the LRS (un)
∞
n=0 is not positive. Otherwise,

(u−n )
∞
n=0 is also ultimately positive, and so there are only �nitely many n such that

u−n < 0. As (u−n )
∞
n=0 has the same dominant roots as (vn)∞n=0, the sequence (u

−
n )

∞
n=0 has

at most four dominant roots and is simple, and so, for every k ∈ N, we can determine

whether (u−n )
∞
n=k is positive due to Theorem 3.2.3. As (u−n )

∞
n=0 is ultimately positive,

the LRS (u−n )
∞
n=k is positive for some k ∈ N (which we can decide for all k ∈ N). Then

(un)
∞
n=0 is positive if and only if un ≥ 0 for all 0 ≤ n < k.

Thus, we can assume that one of the dominant roots of (un)∞n=0 is non-simple. By

Lemma 3.2.1, both the real dominant root and a pair of complex conjugate roots are

non-simple. We can assume this complex conjugate pair is λ and λ.

Let f be the monic integer-valued polynomial of the smallest degree with ρ and λ

as roots. Then, f is non-degenerate and reversible. By Theorem 3.3.2, it follows that
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at most half of the roots of f are dominant if f is neither linear nor cubic with two

dominant roots. As such, f has degree at least 6 and, additionally, as each of these

roots is non-simple (being a Galois conjugate of either ρ or λ), the sequence (un)
∞
n=0

has order at least 12.

We thus deduce the desired result: Positivity and ultimate positivity are decidable

for reversible LRS up to order 11.

3.3.2 Root analysis of reversible polynomials

The main result of this section is Theorem 3.3.2. Essentially, the theorem says that

excepting a number of special cases, no more than half of the roots of such a polyno-

mial can be dominant.

We will prove Theorem 3.3.2 by studying identities between the roots of irre-

ducible polynomials. We employ a powerful result due to Dubickas and Smyth [59],

Theorem 3.3.4 below, concerning necessary conditions for an algebraic unit and all its

Galois conjugates to lie on two concentric circles centred at the origin. (Theorem 3.3.4

is a specialisation of the general result [59, Theorem 2.1].)

Theorem 3.3.4. Let f ∈ Z[X] be an irreducible, reversible polynomial of degree d

whose roots lie on two circles centred at the origin with respective r and R. Without

loss of generality, at most half of the roots of f lie on the circle of radius r. Then,

either

1. d is even, and half of the roots lie on the circle of radius r; or

2. d is a multiple of three, and a third of the roots lie on the circle of radius r.

Moreover, for every root β on the circle of radius r, there exists n > 0 such that

βn ∈ R.

We also need the following lemma, versions of which were proven by Smyth [146]

and Ferguson [67].

Lemma 3.3.5. Suppose that λ is an algebraic number with Galois conjugates β and

γ satisfying λ2 = βγ. Then λ/β is a root of unity.

The last lemma has the following immediate helpful consequence.

Lemma 3.3.6. Let f ∈ Z[X] be an irreducible, non-degenerate polynomial with a real

root ρ. Then f has exactly one root of modulus |ρ|.
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Proof. If λ also has modulus ρ, we have ρ2 = λλ and hence ρ/λ is a root of unity by

Lemma 3.3.5. As f is non-degenerate, ρ = λ; that is, f has exactly one dominant

root.

Lemma 3.3.7. Suppose that f ∈ Z[X] is irreducible, non-degenerate, and reversible,

with 2m non-real dominant roots and no real dominant roots. Then f is constant, we

have (deg(f),m) = (3, 1) or deg(f) > 3m.

Proof. Since f has at least 2m roots, it is clear that deg(f) ≥ 2m. If m = 0, f is a

constant polynomial. Thus, we can assume that m ≥ 1.

We �rst show deg(f) > 2m. Assume, to get a contradiction, that deg(f) = 2m.

Then the roots of f all lie on the circumference of some circle centred at the origin.

As f is reversible, the polynomial f is monic and its constant coe�cient is ±1 (which,

by Vieta's formulas, equals the product of the roots of f). Thus, all roots of f have

modulus 1 and lie on the unit circle. So, by Theorem 1.1.1, they are therefore roots

of unity. As m ≥ 1, the polynomial f has at least two roots, whose quotient is thus a

root of unity. We have reached a contradiction: f was assumed to be non-degenerate.

Thus deg(f) > 2m.

We study the case m = 1. Then, deg(f) ≥ 3. If deg(f) = 3, we are the second

case of the lemma, and if deg(f) > 3 = 3m, we have the third case. Thus, we assume

that m ≥ 2.

We now show that m ≥ 2 implies that deg(f) ≥ 3m. Let λ1, λ1, . . . , λm, λm be

the 2m dominant roots of f . Thus λ1λ1 = λiλi for each i ∈ {1, . . . ,m}. Since

2m < deg(f) < 3m, the polynomial f has somewhere between 1 and m − 1 non-

dominant roots. Let γ be one such non-dominant root. Further, since f is irreducible,

there is a Galois automorphism σ such that σ(λ1) = γ. Then, the equation

γσ(λ1) = σ(λ2)σ(λ2) = · · · = σ(λm)σ(λm) (3.3)

contains 2m di�erent roots of f . As there are at most m − 1 non-degenerate roots,

the roots σ(λi) and σ(λi) are both not non-dominant for at least one 2 ≤ i ≤ m.

That is, σ(λi) and σ(λi) are dominant. But, |γσ(λ1)| = σ(λi)σ(λi)| cannot hold, as
|γ| < |σ(λi)| and |σ(λ1)| ≤ |σ(λi)|. Thus, we have a contradiction, and so f has at

least m non-dominant roots. Thus, deg(f) ≥ m+ 2m = 3m.

Finally, we eliminate the case that deg(f) = 3m when m ≥ 2. Using the same

argument as before (with the same choice of γ and σ), we deduce that for all 1 ≤
i ≤ m, exactly one of σ(λi) and σ(λi) is dominant, and the other is non-dominant.

By taking absolute values in (3.3), we see that all non-dominant roots have an equal
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modulus. Thus, the roots lie on two circles centred at the origin: them non-dominant

roots lie on one, and the 2m dominant roots lie on the other. Thus, by Theorem 3.3.4,

for each non-dominant root γi there is an ni such that γ
ni
i ∈ R. Then, |(γ1/γ2)n1n2| = 1

as |γ1| = |γ2| while γn1n2
1 = (γn1

1 )n2 and γn1n2
2 = (γn2

2 )n1 are both real numbers. Thus,

(γ1/γ2)
n1n2 = ±1 and so γ1/γ2 is a root of unity, contradicting our assumption that

f is non-degenerate.

Hence, deg(f) > 3m if m ≥ 2, from which the desired result follows.

To improve the bound from deg(f) > 3m to deg(f) ≥ 4m, we shall introduce new

and novel techniques for counting symmetries in the roots of f . Let λ1, . . . , λℓ be the

roots of f . The interesting case occurs when all the dominant roots of f are non-real.

We denote the dominant roots of f by λ1, λ1, . . . , λm, λm. Let µ1 := λ1λ1 and g be the

minimal polynomial of µ1 (hereafter we shall refer to g as the dominating polynomial

of f). Let µ2, . . . , µn be the Galois conjugates of µ1 (and thus the other roots of g)

and σ1, . . . , σn the Galois automorphisms associated with g such that σj(µ1) = µj.

Set K = Q(µ1, . . . , µn) and L = Q(λ1, . . . , λℓ). Clearly, K ⊂ L, and so each σj
can be lifted to an automorphism σ̃j in GalQ(L) such that σ̃j|K = σj. Applying these

σ̃j on λ1λ1 = · · · = λmλm = µ1 gives rise to the following n equations:

α1,1,1α1,1,2 = · · · = αm,1,1αm,1,2 = µ1

...
...

... (3.4)

α1,n,1α1,n,2 = · · · = αm,n,1αm,n,2 = µn

where αi,j,1 = σ̃j(λi) and αi,j,2 = σ̃j(λi). Since each αi,j,k is a Galois conjugate of a

dominant root of f , each αi,j,k is also a root f . Given a root λ of f , we de�ne the

equation number

E = #
{
(i, j, k) : αi,j,k = λ for 1 ≤ i ≤ m, 1 ≤ j ≤ n, k = 1, 2

}
.

In Lemma 3.3.9, we will show that E is independent of the choice of root λ. It is

useful to see the two roots of f in one position in one equation in (3.4) as a pair. In

other words, αi,j,1 and αi,j,2 are paired for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Further, for

j = 1, . . . , n, let Aj := {α1,j,1, α1,j,2, . . . , αm,j,1, αm,j,2}. Note that #Aj = 2m, as σ̃j is

a bijection between the set of dominant roots of f and Aj.

We claim that Aj is independent of the choice of lift σ̃j of σj. If λ and λ′ are roots

of f such that λλ′ = µj, then σ̃
−1
j (λ)σ̃−1

j (λ′) = µ1 = λ1λ1. Thus, σ̃
−1
j (λ) and σ̃−1

j (λ′)

are dominant roots of f . Further, since σ̃j is a bijection, λ = σ̃j
(
σ̃−1
j (λ)

)
∈ Aj (and

similarly λ′ ∈ Aj). We make two deductions. First, if µj is the product of two distinct
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roots of f , then those roots are two elements of Aj. Second, we infer our claim that

Aj is independent of the choice of σ̃j.

In the case of one dominant root, the same construction applies: g is de�ned as

the minimal polynomial of λ21, where λ1 is the sole dominant root of f . By non-

degeneracy, the squares of all roots of f are distinct, and so deg(f) = deg(g), µj = λ2j

for j = 1, . . . , deg(f), and E = 2 for all roots of f (it appears once as a square). Only,

Aj = {λj} consists of exactly one root of f .

Lemma 3.3.8. Suppose that f ∈ Z[x] is reversible, non-degenerate, and irreducible

with 2m non-real dominant roots and has degree less than 4m. Write g for the domi-

nating polynomial of f . Then g is also reversible, non-degenerate, and irreducible.

Proof. By construction, g is irreducible, and as all the roots are products of roots

of f (which are units), g is reversible. Assume, to get a contradiction with g being

non-degenerate, that a quotient of roots of g, say µj/µj′ , is a root of unity. Both sets

of roots Aj and Aj′ have cardinality 2m. Since deg(f) < 4m = #Aj + #Aj′ , we

deduce that Aj ∩Aj′ is non-empty. Let λ ∈ Aj ∩Aj′ and κ, κ′ be roots of f such that

λκ = µj and λκ′ = µj′ . Since µj ̸= µj′ , we have κ ̸= κ′. It follows that f is degenerate

because κ/κ′ = µj/µj′ is a root of unity. From this contradiction, we deduce that g

is non-degenerate.

Lemma 3.3.9. Suppose that f ∈ Z[X] is reversible, non-degenerate, and irreducible

with 2m non-real dominant roots dominant polynomial g. Then all the roots of f have

the same equation number E and

2m deg(g) = E deg(f) . (3.5)

Proof. We use the notation of λi, µj, σj, σ̃j, αi,j,k, K, L, etc. as above.

SetH = GalQ(K) and G = GalQ(L). By the Orbit-Stabilizer theorem, the number

of σ ∈ H such that σ(µ1) = µj is independent of the choice of 1 ≤ j ≤ n. Now each

σ ∈ H has the same number of lifts to G, and so the number of elements of G that

map µ1 to each µj is independent of 1 ≤ j ≤ n. Thus, the number of elements of G

such that the image of A1 is Aj is also independent of the choice of 1 ≤ j ≤ n.

We claim there is no pair of distinct j1 and j2 for which Aj1 = Aj2 . Indeed, we

assume, to get a contradiction, that Aj1 = Aj2 for j1 ̸= j2. Then µj1 ̸= µj2 and

µmj1 =
m∏
i=1

αi,j1,1αi,j1,2 =
m∏
i=1

αi,j2,1αi,j2,2 = µmj2 .
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Thus µj1/µj2 is a root of unity. However, by Lemma 3.3.8, the polynomial g is non-

degenerate, causing the contradiction.

We also make the following observation. By the Orbit-Stabilizer theorem, for

every choice of two roots λ and λ′ of f , the number of σ ∈ G such that σ(λ) =

λ′ is equal. Thus for each root λ of f , the number of σ ∈ G such that one of

σ̃(λ1), σ̃(λ1), . . . , σ̃(λm), σ̃(λm) equals λ is independent of the choice of λ. Thus, the

equation number E is independent of the choice of the root λ.

The equation 2m deg(g) = E deg(f) follows from counting the number of αi,j,k.

On the one hand, there are deg(g) equations with 2m entries as all Aj are distinct.

On the other hand, the roots of deg(f) each appear E times.

The following result increases the bound on the degree of f to deg(f) ≥ 4m.

Theorem 3.3.10. Let f ∈ Z[X] be an irreducible, non-degenerate, and reversible

polynomial with 2m dominant non-real roots and no real dominant roots. Then

(deg(f),m) = (3, 1) or deg(f) ≥ 4m.

Proof. Assume, to get a contradiction, that f is a counterexample of lowest degree.

From Lemma 3.3.7, we deduce that deg(f) > 3m if we are not in the exceptional

case (deg(f),m) = (3, 1). As f is a counterexample to Theorem 3.3.10, we have

deg(f) < 4m as well. Therefore, 3m < deg(f) < 4m, and so m ≥ 2 as deg(f) ∈ N.
We shall employ the preceding notation for the dominating polynomial g, the sets of

roots Aj of f , and the equation number E.

In each equation in (3.4), there are 2m distinct roots of f . Since deg(f) < 4m and

f has 2m dominant roots, the polynomial f has less than 2m non-dominant roots,

and so each such equation contains at least one dominant root of f . In an equation

in (3.4), the smallest root of f appearing in the equation has to be paired with the

largest root of f in the equation, which is dominant by the argument above. Let γ be a

root of f with minimal absolute value, then in any equation in (3.4) where γ appears,

the root γ is paired with a dominant root. Thus, |γλ1| is the minimal absolute value

attained by any root of g. We now show that at least half of the roots of g lie on

the circle {z ∈ C : |z| = |γλ1|}. Using (3.5) and that deg(f) < 4m, we obtain that

E > deg(g)/2. Thus, γ is in more than half of the equations in (3.4). Each such

equation corresponds to a root of g of minimal absolute value, which has modulus

|γλ1|. Hence, ±Xng(X−1) is an irreducible, reversible, non-degenerate such that more

than half of its characteristic roots have modulus |γλ1| and are thus dominant.

Hence, g is either a counterexample to the theorem or deg(g) = 3. In the latter

case, as γ is not dominant, we have E < deg(g) = 3. Meanwhile, E > deg(g)/2,
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and so E = 2. Then, by (3.5), we have deg(f) = 3m, which we excluded. As f is

a counterexample of lowest degree, we have that deg(g) ≥ deg(f). Thus, 2m ≤ E

by (3.5).

If λ1 is paired with a dominant root λ, then µj = λλ1 and |µj| = µ1. As g is

non-degenerate by Lemma 3.3.8, Lemma 3.3.6 implies that g has no other roots of

modulus µ1 as µ1 is real. Thus, λ1 is the only dominant root with which λ1 is paired,

and so λ1 is paired with at most deg(f)− 2m non-dominant roots of f and λ1. This

gives the upper bound E ≤ deg(f) − 2m + 1 ≤ 2m. Combined with 2m ≤ E, we

have that E = 2m and E = deg(f) − 2m + 1 and so deg(f) = 4m − 1. Therefore,

deg(g) = deg(f) = 4m− 1 by (3.4).

Each of the 2m dominant roots pair exactly with their respective complex conju-

gate and all 2m − 1 non-dominant roots. Let γ and γ′ be non-dominant. Both are

paired with 2m dominant roots and no other roots as E = 2m. Further, as there are

4m − 1 di�erent equations, the roots γ and γ′ both appear in at least one equation

in (3.4) where they are therefore paired with a dominant root. Thus, |γ| = |γ′| and
so f has exactly 2m − 1 non-dominant roots with the same modulus. As 2m − 1 is

odd, at least one non-dominant root is real. Hence, Lemma 3.3.6 implies that as f is

non-degenerate, we have 2m− 1 = 1 and so m = 1. This contradicts that m ≥ 2.

In Theorem 3.3.10, we made the super�uous assumption that f is irreducible. We

circumvent the irreducibility assumption with a careful case analysis.

Proof of Theorem 3.3.2. Let f be a counterexample of minimal degree, and factor

f into irreducible reversible polynomials f1, . . . , fk. For 1 ≤ i ≤ k, let m′
i be the

number of dominant roots of fi. Call an irreducible factor sharp if 2m′
i = deg(fi)

and special if 2m′
i > deg(fi). From Lemma 3.3.6 and Theorem 3.3.10, it follows that

if an irreducible factor is special, then (deg(fi),m
′
i) = (1, 1) or (3, 2). If k = 1, the

polynomial f is irreducible, and the result follows automatically. Thus, we can assume

that k ≥ 2. Since f is a counterexample of minimal degree, a straightforward proof

by contradiction permits us to assume k = 2 and that the dominant roots of each

fi are dominant for f . Thus, our argument reduces to the following cases: we need

only show that the product of either two special polynomials or a special and sharp

polynomial breaks the hypothesis. By renumbering, we can assume f1 is special and

f2 is either sharp or special. We observe that under our assumptions, the dominant

roots of f1 and f2 are necessarily equal in absolute value and, as we do not count

multiplicity, we have f1 ̸= f2.
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We begin our case analysis. First, consider the case where (deg(f1),m
′
1) = (1, 1).

Then f1(X) = X ± 1 as f1 is reversible. Thus, the dominant roots of f2 also have

modulus 1. As the product of the roots of f2 is ±1 by the Vieta formulas, they all

lie on the unit circle. Hence, using Theorem 1.1.1, the roots of f2 are roots of unity.

Thus, the quotient of a root of f1 and f2 is a root of unity, causing a contradiction.

Second, we suppose that (deg(f1),m
′
1) = (3, 2). Following the argument in the

preceding case, either (deg(f2),m
′
2) = (3, 2) or deg(f2) = 2m′

2. In the former, the

non-dominant roots γ1 and γ2 of f1 and f2 (respectively) are both real and equal in

modulus. This is straightforward to see since each fj is of the form

fj = (x− γj)(x−Reiθj)(x−Re−iθj)

with constant coe�cient ±1 for some R ∈ R>0. Thus, γj := ±R−2. We cannot have

two such irreducible factors since then the ratio γ1/γ2 = ±1, which contradicts the

non-degeneracy assumption on f .

We continue with the latter subcase (deg(f1),m
′
1) = (3, 2) and deg(f2) = 2m′

2.

Since the dominant roots of f1 and f2 are dominant roots of f , the dominating

polynomials of f1 and f2 are one and the same, say g. Let E1 and E2 be the respective

equation numbers of f1 and f2. From (3.5), we obtain that 2 deg(g) = 3E1 and that

E1 is even. Since 1 ≤ E1 ≤ deg(f1) = 3 (each pairing is distinct), we have that

E1 = 2 and, it follows immediately, deg(g) = 3. By (3.5), 2m′
2 deg(g) = E2 deg(f2)

and as deg(g) = 3 and deg(f2) = 2m′
2, we deduce that E2 = 3/2 is not an integer.

We have exhausted the possibilities for constructing a minimal counterexample f

and �nd that no such counterexample exists. We have thus proved Theorem 3.3.2.

3.4 Hard instances of the Positivity problem

In this section, we extend the di�culties found for the Positivity problem for general

LRS in Section 3.2 to reversible LRS to show that our methods above are optimal

and cannot be improved. Speci�cally, we construct a simple reversible LRS of order

18 and sketch the construction of a reversible LRS of order 12 that, to the best of our

knowledge, for which the same di�culties apply as in Section 3.2.

The calculations involved in preparing these hard instances were performed in

SageMath [58].
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The Positivity problem for simple, reversible linear recurrence

sequences

We start with the most complicated hard instances: constructing a simple, reversible

order 18 for which we cannot decide positivity.

Example 3.4.1. Take the irreducible polynomial

f(X) = X8 − 3X7 + 4X6 − 4X5 + 11X4 − 21X3 + 19X2 − 7X + 1 ,

which has eight non-real roots λ1, λ1, λ2, λ2, λ3, λ3, λ4, λ4 such that λ1 and λ2 are

dominant, the roots λ3 and λ4 are both non-dominant, and |λ4| < 1 < |λ3| ≈ 1.143.

Let φ := (1+
√
5)/2 denote the golden ratio. Then, with a certain labelling of complex

conjugates,

λ1λ1 = λ2λ2 = φ2 and λ3λ4 = λ3 λ4 = φ−2 ,

which, due to the number of relations, severely limits the possible Galois automor-

phisms. In particular, the Galois group has the form of a wreath product D4 ≀ C2.

Thus a dihedral group D4 acts on λ1, λ1, λ2, and λ2 and is generated by the elements

(written in cycle notation) (λ1 λ2 λ1 λ2) and (λ1 λ1). A second dihedral group D4

acts on λ3, λ3, λ4, λ4 and is generated by (λ3 λ3 λ4 λ4) and (λ3 λ4). Lastly, there is a

cyclic C2 group acting on these two sets of four roots generated by the permutation

(λ1 λ3)(λ1 λ4)(λ2 λ3)(λ2 λ4).

The terms in the hard sequence (un)
∞
n=0 are given as follows:

un =
1√
5

(
(1 + λ1)λ

n
1 + (1 + λ1)λ1

n
+ (1 + λ2)λ

n
2 + (1 + λ2)λ2

n
)2

− 1√
5

(
(1 + λ3)λ

n
3 + (1 + λ3)λ3

n
+ (1 + λ4)λ

n
4 + (1 + λ4)λ4

n
)2
.

By the action of the Galois group, it can be seen that each term un is rational and

further that (un)∞n=0 is simple, reversible, and has exactly order 18. The initial values

u0, . . . , u17 of (un)∞n=0 are

− 11,−8, 0, 240, 704,−20, 192, 5508, 46305, 2625, 13425, 73117, 2469800, 536000,

554151, 77287, 108792361, 66461616 .

The simple LRS (un)
∞
n=0 satis�es the relation

un+18 = un+17 − 10un+16 + 6un+15 + 43un+14 − 93un+13 + 672un+12 − 596un+11

+ 120un+10 + 3972un+9 − 15345un+8 + 29654un+7 − 36108un+6 + 23847un+5

− 9572un+4 + 2361un+3 − 325un+2 + 26un+1 − un .
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Observe that u0, u1, and u5 are negative, but these are the only negative terms up to

n = 105. Thus, the question is to prove that un ≥ 0 for all n ≥ 6.

It remains to show that the torus T associated with (un)
∞
n=0 has the prescribed

`squaring form' (as in Example 3.2.5) and that (un)∞n=0 is non-degenerate. To start, the

numbers un and un
φ2n have the same sign. Moreover, we observe that |1+λ1| ̸= |1+λ2|

and that both λ1/φ and λ2/φ lie on the unit circle. For a = 1 + λ1, b = λ2 and some

0 < r < 1, we have that

un
φ2n

=
1

φ2n

(
(1 + λ1)λ

n
1 + (1 + λ1)λ1

n
+ (1 + λ2)λ

n
2 + (1 + λ2)λ2

n
)2

+O(rn)

=

(
a

(
λ1
φ

)n
+ a

(
λ1
φ

)−n

+ b

(
λ2
φ

)n
+ b

(
λ2
φ

)−n
)2

+O(rn)

is close to the `squaring form' discussed in Example 3.2.5. To verify that we indeed

have such a hardness, we have to verify that λ1/φ and λ2/φ are multiplicatively

independent.

Proposition 3.4.2. We have that λ1/|λ1| and λ2/|λ2| are multiplicatively indepen-

dent.

Proof. Note that |λ1| = |λ2| = φ as λ1λ1 = λ2λ2 = φ2. By the earlier described Galois

action, we see that there are Galois automorphisms σ and τ such that σ(λ1) = τ(λ1) =

λ3, σ(λ2) = λ4, and τ(λ2) = λ3. Further, by this choice, σ(φ) = τ(φ) = −φ−1.

Assume, to get a contradiction, that λ1/|λ1| and λ2/|λ2| are multiplicatively de-

pendent; that is to say, there are a, b ∈ Z, not both 0, such that (λ1/|λ1|)a (λ2/|λ2|)b =
1. By applying σ to this identity, we obtain

1 =

(
λ3

−φ−1

)a(
λ4

−φ−1

)b
= ζ

( |λ3λ4|
φ−2

)a(
λ4

−φ−1

)b−a
= ζ

(
λ4

−φ−1

)b−a
for some ζ on the unit circle. Since |λ4/−φ−1| ̸= 1, we conclude that a = b. Then

when we apply τ to the identity (λ1/|λ1|)a (λ2/|λ2|)b = 1 we obtain

1 =

(
λ3

−φ−1

)a(
λ3

−φ−1

)b
= ζ ′

( |λ3|
|λ3|

)a(
λ3

−φ−1

)b+a
= ζ ′

(
λ3

−φ−1

)b+a
for some ζ ′ on the unit circle. Since |λ3/(−φ−1)| ̸= 1, this implies that a = −b.
Together with a = b, we deduce that a = b = 0. Thus λ1/|λ1| and λ2/|λ2| are
multiplicatively independent.
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Constructing other hard instances of reversible linear recur-

rence sequences

In this subsection, we will construct reversible LRS (un)
∞
n=0 of

� order 8 for which we cannot decide the Skolem problem; and

� order 12 for which we cannot decide the (Ultimate) Positivity problem.

We start with the order-8 LRS. Using Theorem 3.3.2, we can conclude that any

reversible order-8 LRS outside the MSTV class is simple, and so we can apply the

methods from Chapter 2 that depend on the Skolem Conjecture and the p-adic version

of Schanuel's conjecture. However, for this example, we care about constructing a

class of examples we do not have an unconditional algorithm.

Due to Theorem 2.1.3, a hard example (un)∞n=0 has to have at least four dominant

roots. As (un)∞n=0 is reversible, all of its characteristic roots are units, and thus the p-

adic condition implies that (un)∞n=0 has at least three dominant roots. This condition

is thus subsumed by the condition that (un)
∞
n=0 has at least four dominant roots.

Lastly, we have to show that (un)∞n=0 is non-degenerate.

Fix non-zero integers a, b with a ̸= ±b and let ρ =
√
2 + 1 (more generally, the

construction below applies to any real quadratic unit ρ greater than 1). Let k be an

even positive integer parameter. Writing

g1(X) := (X2 − aX + ρk)(X2 − bX + ρk) ,

the roots of g1 are

a±
√
a2 − 4ρk

2
and

b±
√
b2 − 4ρk

2
.

If k is large enough, the four roots of g1 are all non-real and have modulus ρk/2.

Now write g(X) := g1(X)g2(X), where

g2(X) := (X2 − aX + ρ−k)(X2 − bX + ρ−k) .

Noting that the Galois conjugate of ρ = 1 +
√
2 is −ρ−1 = 1−

√
2, we obtain that g

is an integer polynomial of degree 8 and constant term 1 (and thus g is reversible).

Using that k is even, the Galois conjugate of ρk is ρ−1, and so the roots of g2 are

a±
√
a2 − 4ρ−k

2
and

b±
√
b2 − 4ρ−k

2
.

90



For suitably large k, we have a2, b2 > 4ρ−k, giving that the roots of g2 have modulus

less than max(|a|, |b|) < ρk/2 and so g has exactly four dominant roots: the roots of

g2.

It remains to observe that g is non-degenerate. Indeed, the non-dominant roots

(in modulus) are real and all pairwise distinct. Thus, if λ/λ′ is a root of unity for

two distinct roots λ and λ′ of g, then both roots are dominant and have degree 4.

Therefore there is a Galois automorphism σ that maps λ to a non-dominant root, but

σ(λ′) maps to another root of g and thus |σ(λ)| ̸= |σ(λ′)|. This gives a contradiction

as σ(λ/λ′) = σ(λ)/σ(λ′) is a root of unity of modulus 1. Thus, g is non-degenerate.

We now make the numbers a, b, k more explicit.

Example 3.4.3. Let ρ =
√
2 + 1 as earlier, and write

λ1 =
1 +

√
1− 4ρ2

2
and λ2 =

2 +
√

4− 4ρ2

2
.

The characteristic roots of maximum modulus will be λ1, λ1, λ2, and λ2. The other

four (real) roots are

r1 =
1 +

√
1− 4ρ−2

2
, r̃1 =

1−
√

1− 4ρ−2

2
,

r2 =
2 +

√
4− 4ρ−2

2
and r̃2 =

2−
√
4− 4ρ−2

2
.

Let

un =
√
2
(
λn1 + λ1

n
+ 2λn2 + 2λ2

n − rn1 − r̃n1 − 2rn2 − 2r̃n2

)
.

Equivalently, write:

un+8 = 6un+7 − 25un+6 + 66un+5 − 120un+4 + 150un+3 − 89un+2 + 18un+1 − un ,

with initial values (for n = 0, . . . , 7) of (0, 0,−48,−120, 0, 520, 624,−2016).

Then (un)
∞
n=0 has zeros at indices 0, 1, and 4. It does not belong to the MSTV

class, is non-degenerate and not modular.2

With the SKOLEM-tool (see Section 2.6), we can still solve the Skolem problem

for (un)∞n=0 and con�rm that un = 0 if and only if n ∈ {0, 1, 4}.

For a reversible LRS of order 12 for which we cannot decide positivity and ultimate

positivity, we use the same construction. Our example will be related to the discussion

in Section 3.1, which is based on the work of Ouaknine and Worrell [121]. We recall

2Any reversible LRS that has a zero (or whose bi-completion has a zero) will necessarily fail to
be modular since for any given integer m ≥ 2, the sequence of residues modulo m is always periodic.
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the following point from Theorem 3.1.7: a non-simple LRS that is a hard example

of (ultimate) positivity possesses (at least) three dominant roots of multiplicity (at

least) 2 which one is real and positive. As our LRS has order 12 and is reversible, the

methods from Theorem 3.1.7 imply there are six roots each of multiplicity 2.

With a, b, k, ρ as above, we take the polynomial

g(X) = (X2 − aX + ρ2k)(X2 − aX + ρ−2k)

Let λ and λ be the roots ofX2−aX+ρ2k and λ3 and λ4 be the roots ofX2−aX+ρ−2k.

Let the last two characteristic roots be ρ̃±1 := ρ±k.

Then λ, λ, and ρk are dominant while the three other roots are not dominant and

real. Moreover, g is non-degenerate. Lastly, let q ∈ Q>0 with denominator d. Then

de�ne the reversible LRS (u
(q)
n )∞n=0 as

u(q)n = (n+ ρ̃)ρ̃n+(n+ ρ̃−1)ρ̃−n+ q
(
(n+λ)λn+(n+λ)λ

n
+(n+λ3)λ

n
3 +(n+λ4)λ

n
4

)
.

Then, (du(q)n )∞n=0 is a reversible LRS. However, given the current state of the art, it is

unknown how to solve the Positivity problem for such LRS as one can again encode

the approximation of certain real numbers.

3.5 The Positivity problem for real algebraic linear

recurrence sequences

So far, we have mostly covered decision problems involving Z-LRS and Q-LRS. For
the Skolem problem, the folklore result [107, Lemma 9] implies that the Q- and Q-
Skolem problems are Turing-interreducible. Proving this fact is straightforward:

Using the same technique as in Lemma 1.2.3, we can assume we are dealing with a

non-degenerate Q-LRS (un)
∞
n=0 with polynomial-exponential form (1.2) and splitting

�eld K. Then,

vn =
∏

σ∈GalQ(K)

σ
( k∑
i=1

Qi(n)λ
n
i

)
=

∏
σ∈GalQ(K)

k∑
i=1

σ(Qi(n))σ(λi)
n

is a Q-LRS (being closed under Galois automorphisms) while it is the product of

non-degenerate Q-LRS that by the Skolem-Mahler-Lech theorem are only zero �nitely

often. Hence, (vn)∞n=0 has �nitely many zeros that we can compute using a Skolem

oracle. Then, for these �nitely many zeros z, one can test whether uz = 0.

Unfortunately, this reduction does not apply to the Positivity problem as we do

not know how many factors in this product are positive. Fortunately, we can �nd

another approach.
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Theorem 3.1.9. The R∩Q-Positivity problem and Q-Positivity problem are Turing-

interreducible. Moreover, the Positivity problem for simple R ∩ Q-LRS is Turing

equivalent to the Positivity problem for simple Q-LRS.

We outline our proof of Theorem 3.1.9. Fix a real-algebraic LRS (un)
∞
n=0, which

we can assume to be non-degenerate by Lemma 1.2.3.

We �rst show that a (R ∩ Q)-LRS is a (R ∩ Q)-linear combination of Q-LRS.
That is, un =

∑ℓ
i=1 n

ℓiβiu
(i)
n for some βi ∈ R ∩ Q, ℓi ∈ N, and Q-LRS (u

(i)
n )∞n=0.

To sketch the proof, when writing (un)
∞
n=0 in its exponential form, it is su�cient to

prove this for sequences (λn)∞n=0. Using the minimal polynomial of λ of degree d, we

�nd Q-LRS (ũ
(0)
n )∞n=0, . . . , (ũ

(d−1)
n )∞n=0 such that λn =

∑d−1
i=1 λ

iũ
(i)
n in Lemma 3.5.1. By

complex conjugation, we have λ
n
=
∑d−1

i=1 λ
i
ũ
(i)
n , and so when considering the entire

LRS (un)
∞
n=0, we indeed obtain real algebraic coe�cients βi.

Thus, the constants βi are the only non-rational part in these formulas un =∑ℓ
i=1 n

ℓiβiu
(i)
n . In Lemma 3.5.2, we show we can approximate these constants βi as

follows. Given 0 < r < 1, we construct simple Q-LRS (c
(i)
n )∞n=0 and (d

(i)
n )∞n=0, b > 0,

and N ∈ N such that |β − c
(i)
n /d

(i)
n | < brn for n ≥ N .

Then set (Dn)
∞
n=0 to be the product of all LRS (d

(i)
n )∞n=0, which is a rapidly growing

Q-LRS and construct three new Q-LRS (vn)
∞
n=0, (v

+
n )

∞
n=0, and (v−n )

∞
n=0, where vn =

Dnun, and

v±n = ±1

2
r̃n +Dn

ℓ∑
i=1

c
(i)
n

d
(i)
n

nℓiu(i)n

are Q-LRS. For some computable N ∈ N and n ≥ N , we have that Dn > 0 and

v−n ≤ vn ≤ v+n , and due to their similar growth, Theorem 1.2.7 implies there are only

�nitely many n such that v−n < 0 < v+n . If a Positivity Oracle allows us to decide

the Positivity problem for the Q-LRS (v−n )
∞
n=N ′ and (v+n )

∞
n=N ′ for all N ′ ∈ N, we can

decide the Positivity problem for (vn)∞n=N ′ and thus (un)∞n=0.

Our proof of Theorem 3.1.9 starts with the two technical lemmas mentioned above.

The �rst shows that the powers of an algebraic number form a Q-linear combination
of rational LRS.

Lemma 3.5.1. Let λ ∈ Q∗
have the monic minimal polynomial P (x) = Xd−c1Xd−1−

· · · − cd ∈ Q[X]. One can construct simple rational LRS u
(0)
n , . . . , u

(d−1)
n such that for

all n ≥ 0,

λn =
d−1∑
i=0

λiu(i)n .
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Proof. Let a0, . . . , ad−1 ∈ Q and consider α = a0+a1λ+· · ·+ad−1λ
d−1. Then, using the

minimal polynomial of λ, we have αλ is again in the direct sum of Q, λQ, . . . , λd−1Q.
Using the companion matrix (1.3), we can compute αλ as

αλ =
(
ad−1 ad−1 · · · a0

)

c1 c2 · · · cd−1 cd
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



λd−1

λd−2

...
1

 .

LetM denote the square companion matrix above and ei the ith standard unit vector.

Then,

λn =
(
0 · · · 0 1

)
Mn


λd−1

λd−2

...
1

 .

Hence, λn =
∑d−1

i=0 λ
ie⊤dM

ned−i, where each (e⊤dM
ned−i−1)

∞
n=0 is a computable Q-LRS.

As P is the minimal polynomial of λ and the characteristic polynomial of M , these

Q-LRS are also all simple.

The second technical lemma shows that every algebraic number can be approxi-

mated exponentially fast by the quotient of two Q-LRS.

Lemma 3.5.2. For β ∈ R ∩ Q and 0 < r < 1, one can construct simple Q-LRS
(cn)

∞
n=0 and (dn)

∞
n=0, b ∈ Q>0, and N ∈ N such that

∀n ≥ N :
∣∣∣β − cn

dn

∣∣∣ < b · rn ∧ dn > 0 .

Proof. If β ∈ Q, choosing cn = β, dn = 1, b = 1, and N = 0 su�ces. Hence assume

β is irrational and let β = β1, . . . , βd denote the Galois conjugates of β.

First, we claim that we can �nd p/q ∈ Q and s ∈ {−1, 1} with the property that

when setting f(x) = s
x−p/q , f(β) ∈ R>0, and f(β) > |f(βi)| for i = 2, . . . , d.

Let δ = min(|β − β2|, . . . , |β − βd|). As Q is dense in R, there exists an e�ectively

computable p
q
∈ Q such that |β− p

q
| < δ/2. Let f1(x) = x− p

q
. Then, for i = 2, . . . , d,

the reverse triangle inequality implies that

|f1(βi)| =
∣∣∣βi − p

q

∣∣∣ ≥ |βi − β| −
∣∣∣β − p

q

∣∣∣ ≥ δ − δ/2 = δ/2 > |f1(β)| .

Thus, f1(β) is closer to the origin than f1(βi), but f1(β) ̸= 0 as β is irrational.

Let s ∈ {−1, 1} be the sign of f1(β) and f(x) = s
f1(x)

. Then f(β) > 0 and

|f(β)| > |f(βi)| for all 2 ≤ i ≤ d. Therefore, f has the properties stated above.
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De�ne the simple LRS (cn)
∞
n=0 and (dn)

∞
n=0 as follows:

cn =
d∑
i=1

βif(βi)
n and dn =

d∑
i=1

f(βi)
n .

As any Galois automorphism would permute the terms of the sum in cn, we deduce

that cn is rational for all n ≥ 0. Similarly, we have that dn is rational for all n ∈ N.
Thus, (cn)∞n=0 and (dn)

∞
n=0 are simple Q-LRS. As β is the single dominant root of

(dn)
∞
n=0 with polynomial coe�cient 1 in front of it, the LRS (dn)

∞
n=0 is ultimately

strictly positive, and one can compute N ∈ N such that dn > 0 for all n ≥ N .

Let b ≥ 1
2

∑d
i=2 |β − βi| be rational and r̃ = maxdi=2 |f(βi)|. Then r̃ < f(β) and

update N such that
(
f(β)
r̃

)N
> 2(d− 1) also holds. Then, for all n ≥ N ,

∣∣∣∣β − cn
dn

∣∣∣∣ =
∣∣∣∣∣
∑d

i=1(β − βi)f(βi)
n∑d

i=1 f(βi)
n

∣∣∣∣∣
=

∣∣∣∣∣
∑d

i=2(β − βi)f(βi)
n

f(β)n +
∑d

i=2 f(βi)
n

∣∣∣∣∣
≤
∣∣∣∣ 1

2
b · r̃n

f(β)n − (d− 1)r̃n

∣∣∣∣
=

1

2
b

∣∣∣∣(f(β)r̃
)n

− (d− 1)

∣∣∣∣−1

≤ b

(
r̃

f(β)

)n
.

It remains to choose ℓ ∈ N such that (r̃/f(β))ℓ < r. Then, choosing the LRS (cℓn)
∞
n=0

and (dℓn)
∞
n=0 gives that ∣∣∣∣β − cℓn

dℓn

∣∣∣∣ < b · rn .

Proof of Theorem 3.1.9. Let (un)∞n=0 be a (R∩Q)-LRS with a exponential-polynomial

form un =
∑k

i=1Qi(n)λ
n
i . By decomposing into non-degenerate subsequences using

Theorem 1.2.3, we can assume that (un)∞n=0 is non-degenerate. We assume that k ≥ 1

as the Positivity problem is trivial for the zero-LRS. As the characteristic polynomial

of (un)∞n=0 is in (R∩Q)[X], the non-real characteristic roots come in complex conjugate

pairs. That is, for each 1 ≤ i ≤ k such that λi ̸∈ R, there exists 1 ≤ j ≤ k such

that λj = λi. Therefore, by the Galois closure of the polynomial-exponential form,

we have Qj(n) = Qi(n), and we can rewrite un as

un =
∑
i∈R

nσ(i)γiλ
n
i +

∑
i∈C

nσ(i)(γiλ
n
i + γi λi

n
) (3.6)
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where R and C are disjoint �nite sets, σ(i) ∈ N for all i ∈ C∪R, λi, γi ∈ R∩Q for i ∈
R, and λi ∈ Q\R and γi ∈ Q for i ∈ C. Next, for i ∈ C∪R, we apply Lemma 3.5.1 to λi
and obtain that λni =

∑d−1
j=0 λ

j
iv

(i,j)
n for some simple Q-LRS (v

(i,0)
n )∞n=0, . . . , (v

(i,di−1)
n )∞n=0

where di is the degree of λi. Next, observe that if i ∈ C,

λi
n
= λni =

d−1∑
j=0

λi
j
v(i,j)n .

For j ≥ 0 and i ∈ R, we have γiλ
j
i ∈ R and for i ∈ C, we have γiλ

j
i + γi λi

j ∈ R.
Therefore,

un =
∑
i∈R

di−1∑
j=0

nσ(i)γiλ
j
iv

(i,j)
n +

∑
i∈C

di−1∑
j=0

nσ(i)(γiλ
j
i + γi λi

j
)v(i,j)n =

ℓ∑
i=1

nℓiβiu
(i)
n

for some ℓ, ℓi ∈ N, βi ∈ R ∩Q, and simple Q-LRS (u
(i)
n )∞n=0.

Let Ri denote the spectral radius of (u(i)n )∞n=0 and let r ∈ Q satisfy 0 < r <

min(1, 1/Ri) for all 1 ≤ i ≤ ℓ. Then, for each 1 ≤ i ≤ ℓ, invoke Lemma 3.5.2 with βi
and r to obtain simple Q-LRS (c

(i)
n )∞n=0 and (d

(i)
n )∞n=0, bi ∈ Q>0, and the threshold Ni.

Let r̃ ∈ Q satisfy rR < r̃ < min(1, R) and compute N ′ ∈ N such that for all n ≥ N ′,

1

2
r̃n ≥ rn

ℓ∑
i=1

bin
ℓi |u(i)n | .

This is possible as (rn
∑ℓ

i=1 biu
(i)
n nℓi)∞n=0 is a Q-LRS with spectral radius rRi < r̃.

De�ne N = max(N1, . . . , Nℓ, N
′), the simple Q-LRS (Dn)

∞
n=0 as Dn = d

(1)
n · · · d(ℓ)n ,

and the Q-LRS (vn)
∞
n=0, (v

+
n )

∞
n=0, and (v−n )

∞
n=0 as

vn = Dn

ℓ∑
i=1

βin
ℓiu(i)n = Dnun,

v+n = Dn

(1
2
r̃n +

ℓ∑
i=1

c
(i)
n

d
(i)
n

nℓiu(i)n

)
, and

v−n = Dn

(
− 1

2
r̃n +

ℓ∑
i=1

c
(i)
n

d
(i)
n

nℓiu(i)n

)
.

Then, by construction, for all n ≥ N ,

|v+n − vn| ≤ |Dn|
(1
2
r̃n +

ℓ∑
i=1

∣∣∣βi − cn
dn

∣∣∣nℓi |u(i)n |
)

< |Dn|
(1
2
r̃n + rn

ℓ∑
i=1

bin
ℓi |u(i)n |

)
≤ |Dn|

(1
2
r̃n +

1

2
r̃n
)
= |Dn|r̃n .
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Thus (v+n −v−n )∞n=0 has a spectral radius strictly smaller than (vn)
∞
n=0. The same holds

for |v−n − vn| and |v+n − v−n |. Moreover, v−n ≤ vn ≤ v+n holds for all n ≥ N . As d(i)n

is strictly positive for n ≥ N , so is Dn. Hence, we have that for all n ≥ N , we have

vn ≥ 0 if and only if un ≥ 0.

Therefore, as r̃ < R, Theorem 1.2.7 implies there exists an N ′′ ≥ N such that

|vn|, |v+n |, |v−n | > |Dn|r̃n for all n ≥ N ′′. Thus, the signs of vn, v+n , and v
−
n are identical

for all n ≥ N ′′. In particular, (vn)∞n=0 is ultimately positive if and only if both (v+n )
∞
n=0

and (v−n )
∞
n=0 are ultimately positive.

As such, we can decide positivity for (vn)
∞
n=N ′′ using the Positivity query on

(v+n )
∞
n=N ′′ and (v+n )

∞
n=N ′′ . Let K ≥ N ′′. Then, (v−n )

∞
n=K being positive, implies that

(vn)
∞
n=K is positive while (v−n )

∞
n=K not being positive implies that (vn)∞n=K is not pos-

itive. As (v−n )
∞
n=K is positive if and only if (v+n )

∞
n=K is positive, we can iterate natural

numbers K until (v−n )
∞
n=K are both positive or both not positive. Then (un)

∞
n=0 is

positive if and only if un ≥ 0 for all 0 ≤ n ≤ K, which we can check.

This proves the �rst claim of Theorem 3.1.9. For the second claim, note that if

(un)
∞
n=0 is simple, the LRS (v+n )

∞
n=0 and (v−n )

∞
n=0 are also simple. Hence, our reduction

only involves Positivity queries for simple rational LRS.
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Chapter 4

Monadic second-order logic

4.1 Introduction and main results

In this chapter, we study expansions of monadic second-order (MSO) logic with pred-

icates derived from linear recurrence sequences. In particular, we study expansions

of the structure ⟨N;<⟩.
Büchi, in his seminal 1962 paper [43], established the decidability of the MSO the-

ory of ⟨N;<⟩ (call this theory MSON;<) and in so doing brought to light the profound

connections between mathematical logic and automata theory. Over the ensuing

decades, considerable work has been devoted to the question of which expansions

of ⟨N;<⟩ retain MSO decidability. In most cases, the resulting theory is undecid-

able. When adding a single function or non-unary predicate, there is little chance

of retaining decidability. For example, the MSO theory of ⟨N;<, n 7→ 2n⟩ (where

n 7→ 2n denotes the doubling function) is undecidable while the �rst-order theory of

this structure is decidable: It can be encoded in Presburger arithmetic.

Therefore, we study the decidability of the MSO theory of ⟨N;< P1, . . . , Pd⟩ for
unary predicates P1, . . . , Pd (call this theory MSON;<(P1, . . . , Pd)). Here, we interpret

a unary predicate P as a �xed set of non-negative integers P ⊆ N (see Section 1.3.2).

Taking, for example, P to be the set of prime numbers, Büchi and Landweber [44]

observed in 1969 that a proof of decidability ofMSON;<(P ) would �seem very di�cult�,

as it would inter alia enable one to settle the twin prime conjecture. (Decidability

was subsequently established assuming Schinzel's hypothesis H [18].)

The set of prime numbers is, of course, highly intricate. In 1966, Elgot and Ra-

bin [62] considered a large class of simpler predicates of `arithmetic' origin, such as, for

any �xed k, the set kN = {kn : n ∈ N} of powers of k, and the set Nk = {nk : n ∈ N}
of kth powers. For any such predicate P , they systematically established decidability

of MSON;<(P ) by using what is now known as the Elgot-Rabin contraction method.
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In short, they reduce the decidability of the MSO theory to deciding whether an ω-

automaton accepts a certain word α, where in their cases, the word α is ultimately

periodic.

Although Elgot and Rabin establish separately the decidability of the MSO the-

ories with a single added predicate, for example, of MSON;<(2
N) and MSON;<(N2),

they remain resolutely silent on the obvious joint expansions MSON;<(2
N, 3N) and

MSON;<(2
N,N2). Over the last several decades worth of research on monadic second-

order expansions of ⟨N;<⟩, it is fair to say that the bulk of the attention has fo-

cused on the addition of a single, well-behaved predicate P . The decidability of such

single-predicate expansions of ⟨N;<⟩ can usually be handled with automata-theoretic

techniques alone, by reasoning about individual patterns in isolation. This is not the

case when multiple predicates are at play simultaneously.

Moreover, usually, a single predicate is given in a convenient form to allow one to

reduce to the acceptance of a word α by an automaton A, like an increasing sequence.

But, one can also consider a non-increasing sequence (like un = (2+ i)n+(2− i)n) or

the union of two `nice' predicates (like 2N ∪ 3N). When a sequence is not increasing,

one has to `sort' the predicate �rst: One takes the sequence's positive values and sorts

them to obtain a new sequence (pm)∞m=0, which destroys the original structure of the

predicate. The classical automata-theoretic methods cannot handle the disparity

between the sequence (un)∞n=0 and its sorted counterpart (pm)∞m=0. Such collections of

predicates can exhibit highly complex interaction patterns, which existing approaches

are ill-equipped to handle. However, this is sometimes still possible (see for example

also [52]).

Due to these two di�culties, dealing with ultimately periodic words is insu�cient,

forcing us to employ wider classes of predicates. The �rst such class are (e�ective)

almost-periodic words, as introduced in the 1980s by Semenov [140], which roughly

speaking, are words α ∈ Σ∗ such that if a factor w ∈ Σ+ appears in�nitely often in

α, the �nite word w appears in every factor of α of a certain length. In particular,

almost-periodic words are examples of toric words, which are generated by a dynam-

ical system on a torus [25]. We also use disjunctive words (see, for example, [45,

Section 4.4]), which are words α ∈ Σω of maximum factor complexity: every w ∈ Σ+

appears in�nitely often as a factor in α. In addition, we apply number-theoretic tools

to ensure e�ectiveness at various junctures of our algorithms.

Since, the general theory has been substantially developed and abstracted by,

among others, Carton, Rabinovich, and Thomas [47, 130, 131], giving rise to con-

cepts like pro�nitely ultimately periodic words. In our study, we steer away from
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such abstract concepts and use less general, but practical, classes of words to estab-

lish results for explicit predicates.

This chapter contains three main results. First, Theorem 4.4.1 considers predicates

arising from the value sets of linear recurrence sequences, generalizing the predicates

considered above. A simpli�ed version of that result is as follows:

Theorem 4.1.1. Let ρ1, . . . , ρd > 1 be natural numbers.

1. MSON;<(ρ
N
1 , . . . , ρ

N
d ) is decidable, assuming the weak Schanuel conjecture.

2. If 1/ log(ρ1), . . . , 1/ log(ρd) are linearly independent over Q, then the decidability

is unconditional.

3. If each triple of distinct ρi, ρj, ρk is multiplicatively dependent, then the decid-

ability is unconditional.

Item (3) captures, for example, that MSON;<(2
N, 3N) and MSON;<(2

N, 3N, 6N) are

decidable. However, Item (3) does not apply MSON;<(2
N, 3N, 5N), so our decidability

for this theory is conditional on the weak Schanuel conjecture. More precisely, we

need to decide whether 1
log(2)

, 1
log(3)

, and 1
log(5)

are linear independent over Q. Although
these results are novel, we should mention that the decidability of the �rst-order

theory of ⟨N;<, 2N, 3N⟩ has been known for over forty years, an important result of

Semenov [139]. It was shown in [87] that, in a restricted case, termination using our

method requires only Schanuel's conjecture, using the decidability results for Rexp

established by Macintyre and Wilkie [109].

When η ∈ R and b ≥ 2 is a natural number, then one can represent η as an

in�nite word α over the �nite alphabet Σ = {0, . . . , b− 1} using its base-b expansion.

By the MSO theory of the base-b expansion of η we mean the MSO theory of ⟨N;<
,P0, . . . , Pb−1⟩, where each Pi is the unary predicate {n ∈ N : αn = i}. Our second

main result is Theorem 4.5.2, restated here:

Theorem 4.1.2. Let p, q, d ≥ 1 and b ≥ 2 be integers and set η = d
√
p/q, P1 =

{qnd : n ∈ N}, and P2 = {pbnd : n ∈ N}. The decidability of MSON;<(P1, P2) is

Turing-equivalent to that of the MSO theory of the base-b expansion of η.

The underlying dynamical system here is symbolic in nature: it consists of the

base-b expansion of the irrational number η, which is a dth root of a rational number.

When η is irrational, such expansions are widely conjectured to be normal, and a
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fortiori disjunctive: every �nite pattern of digits occurs in�nitely often. As the MSO

theory of a recursive and disjunctive word is decidable (Theorem 4.2.8), we obtain

a conditional decidability result. When η is rational, the base-b expansion of η is

periodic, and so we obtain unconditional decidability. Therefore, MSON;<(4
N,N2) is

decidable and more speci�cally, we have the following result.

Corollary 4.1.3. For any positive integers b and d, the theory MSON;<((b
d)N,Nd) is

decidable.

When a sequence (un)
∞
n=0 is non-increasing, deciding MSON;<(P ) with a single

predicate P = {un : n ∈ N} ∩N already transcends the methods of Elgot and Rabin.

In our last main contribution in this chapter, we study LRS with two dominant roots

instead of one. In that case, we obtain our third main result.

Theorem 4.1.4. Let (un)
∞
n=0 be a non-degenerate, simple LRS with two dominant

roots and set P = {un : n ∈ N} ∩ N. Then MSON;<(P ) is decidable.

Although the hypothesis of Theorem 4.1.4 seems quite restrictive, the result covers

a wide variety of LRS. In fact, it covers almost all LRS as nearly all LRS have a single

dominant root (for which MSON;<(P ) is decidable using Elgot and Rabin's results)

or satisfy the hypothesis of Theorem 4.1.4. In particular, the LRS (un)
∞
n=0 for which

we can decide MSON;<(P ) have density 1 in the space of all LRS (see the work of

Dubickas and Sha in [60] and their citations).

Next, we summarise our methods. First, in Section 4.2, we study various classes of

words (procyclic, almost-periodic, toric, and disjunctive) and the acceptance problem

for an ω-automaton for words in these classes.

For the remaining sections in this chapter, we need more space to explain their

content.

The Elgot-Rabin contraction method

In Section 4.3, we study the Elgot-Rabin contraction technique. To outline this

method, we return to Büchi, who �rst de�ned the characteristic word. Let Σ = {0, 1}d
and P1, . . . , Pd ⊂ N be unary predicates.

De�nition 4.1.5. The characteristic word of P1, . . . , Pd, written

α := Char(P1, . . . , Pd) ∈ Σω ,

is de�ned by αn = (bn,1, . . . , bn,d) where bn,i = 1 if n ∈ Pi and bn,i = 0 otherwise.

101



For example, if P1 = N2 and P2 = 2N,

Char(P1, P2) =
(
(1, 0), (1, 1), (0, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0), . . .

)
.

When there is only a single predicate (that is, d = 1), we also write αn = bn,1 instead

of αn = (bn,1).

Recall that Accα denotes the acceptance problem for an in�nite word α over an

alphabet Σ and asks to determine, given a deterministic Muller automaton A with

an alphabet Σ, whether A accepts α.1 The connection between the decidability of

MSON;< and the acceptance problem is captured by the following theorem of Büchi.

Theorem 4.1.6 ([153, Theorems 5.4 and 5.9]). Decidability of MSON;<(P1, . . . , Pd)

is Turing-equivalent to Accα, where α = Char(P1, . . . , Pd).

Elgot and Rabin studied the case where d = 1 by adding a single in�nite predicate

P that is `sparse' and behaves decently well (which we formally de�ne later). Re-

stricting ourselves to in�nite predicates is a minor limitation as �nite predicates can

be de�ned inMSON;<. Examples of such predicates are the set of powers of k (denoted

by kN), the kth powers (Nk), the factorials, the Fibonacci numbers and many more.

Then the crux of Elgot and Rabin's method is that for every deterministic automaton

A, they construct an ultimate periodic word that is accepted by A if and only if A
accepts Char(P ). Deciding the former is straightforward.

We often rely on the positive value sequence and the order word.

De�nition 4.1.7. � The positive value sequence (pn)
∞
n=0 ⊂ N of a tuple of in�nite

predicates (P1, . . . , Pd) is de�ned by setting pn−1 to be the nth smallest number

such that αn ̸= (0, . . . , 0). That is, we enumerate
⋃d
i=1 Pi.

� The order word β ∈ (Σ \ {(0, . . . , 0)})ω is de�ned as βn = αpn . Thus, removing

all occurrences of (0, . . . , 0) in the characteristic word gives the order word.

If 0 = (0, . . . , 0) and (pm)
∞
m=0 is the positive value sequence of (P1, . . . , Pd), we

have rewritten as α as

α = 0p0αp00
p1−p0−1αp1 · · ·0pn−pn−1αpn · · ·

= 0p0β00
p1−p0−1β1 · · ·0pn−pn−1βn · · · .

Next, we quantify our notion of sparsity.

1Instead of deterministic Muller automata, one could also use other, equally expressible classes
of ω-automata like Büchi automata or deterministic parity automata.
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De�nition 4.1.8 (E�ectively Sparse Predicates). Let d ≥ 2, P1, . . . , Pd ⊂ N be

predicates, and (p
(i)
m )∞m=0 be the positive value sequence of Pi.

� P1 is said to be e�ectively sparse if for anyK ∈ N, the inequality p(1)m+1−p(1)m ≤ K

has �nitely many solutions in m which can be e�ectively enumerated.

� (P1, . . . , Pd) are called pairwise e�ectively sparse if
⋃d
i=1 Pi is e�ectively sparse.

Thus, a predicate is e�ectively sparse if its entries grow arbitrarily far apart, and

we control how far they are at least apart from a certain point onward. A family

of predicates is pairwise e�ectively sparse if their positive value sequence (pm)
∞
m=0

satis�es limm→∞ pm+1 − pm = ∞ and for each K ≥ 0, we can e�ectively compute all

the solutions m to pm − pm−1 ≤ K.

Using this notion of sparsity, we generalize the Elgot-Rabin contraction method

in the following two ways, which are proven in Section 4.3. First, we can show the

following for a single predicate P .

Theorem 4.1.9. Let P be an in�nite, recursive, and e�ectively sparse predicate with

positive value sequence (pm)
∞
m=0. Then the decidability MSON;<(P ) reduces to the

decidability of Acc(pm modM)∞m=0
for all M ≥ 1.

For the predicates studied by Elgot and Rabin, Theorem 4.1.9 instantly reproduces

their result as for every M ≥ 1, then (pn modM)∞n=0 will be ultimately periodic. For

example, if P = 2N, we have pm = 2m. Then (2m modM)∞m=0 is ultimate periodic, and

we can compute the lengths of the preperiod and period explicitly. We call predicates

with this property e�ectively procyclic. An in�nite predicate with a positive value

sequence (pm)∞m=0 is called e�ectively procyclic if for allM ≥ 1, then (pm modM)∞m=0

one can compute N ≥ 0 and r ≥ 1 such that pm+r ≡ pm (mod M) for all m ≥ N . All

LRS with a single dominant root give rise to e�ectively procyclic predicates, which

include the powers of 2, squares and Fibonacci numbers), and the set of factorial

numbers is e�ectively procyclic as well.

Secondly, we obtain the following when expanding MSO with multiple predicates.

Theorem 4.1.10. Assume that P1, . . . , Pd are in�nite, recursive, pairwise e�ectively

sparse, e�ectively procyclic predicates with order word β. Then MSON;<(P1, . . . , Pd)

reduces to Accβ.

Theorem 4.1.10 also recovers the results of Elgot and Rabin. Their predicates

were e�ectively procyclic, and as d = 1, the word β is constant.
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Multiple LRS with a simple dominant roots

In Section 4.4, we prove Theorem 4.1.1. Next, we present a high-level overview of our

approach towards MSON;<(ρ
N
1 , . . . , ρ

N
d ), where each ρi ≥ 2 is a natural number. As

alluded to, we apply a variation of the Elgot-Rabin contraction method, and more

speci�cally, Theorem 4.1.10.

These predicates ρNi correspond to strictly increasing LRS and are thus e�ectively

procyclic by Lemma 1.2.1. Moreover, such predicates are in�nite, recursive, and

e�ectively sparse.

However, a set ρN1 , . . . , ρ
N
d of predicates is not necessarily pairwise e�ectively sparse.

If ρ1 and ρ2 are multiplicatively dependent, the sets ρN1 and ρN2 have an in�nite overlap.

In that case, (consider for example the case ρ1 = 4 and ρ2 = 8), we can �nd a number

b (in our case, take b = 2), such that the sets ρN1 and ρN2 can be de�ned in MSON;<(b
N).

Thus, instead ofMSON;<(ρ
N
1 , . . . , ρ

N
d ), we studyMSON;<(b

N, ρN3 , . . . , ρ
N
d ). Therefore, we

can assume that ρ1, . . . , ρd are pairwise multiplicatively independent. Then Baker's

theorem implies that ρN1 , . . . , ρ
N
d are pairwise e�ectively sparse.

Thus, the hypothesis of Theorem 4.1.10 is satis�ed, and we solely have to consider

its order word γ. We devote Section 4.4.2 to proving that Accγ is decidable by

showing that a su�x of γ can also be generated as a toric word. Toric words enjoy a

crucial combinatorial property: they are almost-periodic. It is known that if a word

β is e�ectively almost-periodic, then Accβ is decidable (Theorem 4.2.4). Through

number-theoretic arguments, we establish when the order word γ is indeed e�ectively

almost-periodic.

Geometric series and polynomials

In Section 4.5, we again apply the Elgot-Rabin contraction method to expansions

derived from multiple LRS. We analyse Char(P1, P2) for predicates P1 = {qnd : n ∈
N} and P2 = {pbnd : n ∈ N} to prove Theorem 4.1.2. The di�erence is that the

underlying dynamical systems are driven by numeration systems [101, Chapter 7].

For the sake of exposition, assume we are dealing with P1 = {n2 : n ∈ N} and

P2 = {2 · 4n : n ∈ N}. Then, P1 and P2 satisfy the conditions of Theorem 4.1.10

(where pairwise sparsity is the only non-trivial condition), and so we reduce to the

order word, which enumerates the squares and numbers of the form 2 · 4n. There

are exactly 1 + ⌊
√
2 · 4n⌋ = 1 + ⌊

√
2 · 2n⌋ squares below 2 · 4n. This number is

increasing, so the terms 2 · 4n are again e�ectively sparse within the set P1 ∪ P2.

And moreover, ⌊
√
2 · 2n⌋ mod 2 is exactly the nth digit in the base-2 expansion of
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√
2. Hence, Theorem 4.1.2 follows by two applications of the Elgot-Rabin contraction

method.

Linear recurrence sequences with two dominant roots

We now sketch our approach for our third and �nal main result of this chapter:

the theory MSON;<({un : n ∈ N} ∩ N) is decidable when (un)
∞
n=0 is a simple, non-

degenerate LRS with two dominant roots (Theorem 4.1.4).

Using Theorem 4.1.9, one of our versions of the Elgot-Rabin contraction method,

the key to Theorem 4.1.4 is to understand the positive value sequence (pm)
∞
m=0 of

{un : n ∈ N} ∩ N. In particular, it is su�cient to show that Acc(pm modM)∞m=0
is

decidable for all M ≥ 1.

To outline our approach, we defer to an example. Let (un)∞n=0 de�ned by

un+3 = 6un+2 − 13un+1 + 10un (4.1)

and u0 = 2, u1 = 4, and u2 = 7. Its subsequent values are

10, 9,−6,−53,−150,−271,−206, 787, 4690, 15849, 41994, 92827, 169530, 230369,

106594,−659933,−3041630,−8604711,−18686406,−30673493,−27164790, . . . .

One can readily verify that (un)∞n=0 satis�es the exponential-polynomial formula

un =
1

2
(2 + i)n +

1

2
(2− i)n + 2n . (4.2)

From the exponential-polynomial form, we can infer that (un)∞n=0 is indeed simple and

non-degenerate with two dominant roots and thus satis�es the hypothesis of Theo-

rem 4.1.4. It is straightforward that un is both in�nitely often positive and in�nitely

often negative. Moreover, although limn→∞ |un| = +∞, the sequence (|un|)∞n=0 is not

monotonically increasing. On the contrary, for all N ∈ N there is an n ∈ N such that

|un+N | < |un|.
For our LRS (un)

∞
n=0, let (pm)

∞
m=0 be the positive value sequence of {un : n ∈

N} ∩ N. Then, in our example,

(pm)
∞
m=0 = (u0, u1, u2, u4, u3, u10, u11, u12, u13, u14, u17, u15, u16, u24, u25, u26, u27, u28,

u30, u29, u38, u39, u44, u40, u41, u42, u43, u51, u52, u53, u54, u55, u57, u56, . . . ) .

One immediately notices that two complications are at play here. The �rst one

is that we are `throwing away' all the negative values of our LRS (this in turn is

necessary since we are working over the domain N rather than Z). This restriction

is, however, entirely benign in view of the following result:
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Corollary 4.1.11. Let P = {un : n ∈ N} for (un)
∞
n=0 a non-degenerate, simple,

integer-valued linear recurrence sequence with two dominant roots. Then the MSO

theory of ⟨Z; 0, <, P ⟩ is decidable.

This result is straightforwardly obtained from Theorem 4.1.4 via an application

of Shelah's celebrated composition method in model theory [142]. In the case at

hand, one can directly invoke, for example, [152, Corollary 6], since the structure

⟨Z; 0, <, P ⟩ is isomorphic to the ordered sum ⟨Z − N;<,P−⟩ + ⟨N;<,P ⟩, where the
second summand is as per Theorem 4.1.4, and the �rst structure is obtained by setting

P− = {un : n ∈ N}∩ (Z−N). Intuitively speaking, MSO sentences over ⟨Z;<,P ⟩ can
be faithfully decomposed into component subformulas dealing exclusively with either

positive or negative values of our LRS, with the truth value of the original sentence

obtained by appropriately piecing together truth values of each of the sub-sentences

within their respective structures.

The second complication is that, as noted earlier, the ordering of the positive

values of our LRS does not respect the index ordering of the LRS. This ostensibly

precludes the direct application of classical techniques such as Elgot and Rabin's con-

traction method (or, more generally, Carton and Thomas's e�ective pro�nite ultimate

periodicity criterion [47]) or Semenov's toolbox of e�ective almost periodicity.

To prove Theorem 4.1.4, we therefore rely instead on a new concept, that of

(e�ective) prodisjunctivity, which we introduce formally in De�nition 4.2.9. Prodis-

junctivity is itself predicated on the notion of disjunctivity. Informally an increas-

ing sequence (pm)
∞
m=0 is e�ective prodisjunctive if for each M ≥ 1, the su�x of

(pm modM)∞m=0 is disjunctive, and we can control where this su�x starts and which

entries in {0, . . . ,M − 1} it contains. That is, we can compute SM ⊂ {0, . . . ,M − 1}
and NM ∈ N such that (pm modM)∞m=NM

is a disjunctive sequence with respect to

SM (See Section 1.3.1 for the exact de�nitions).

We establish the following instrumental result:

Theorem 4.1.12. Let (pm)
∞
m=0 be the positive value sequence of {un : n ∈ N} ∩ N,

where (un)
∞
n=0 is a non-degenerate, simple, integer-valued LRS with two dominant

roots. Then (pm)
∞
m=0 is e�ectively prodisjunctive.

Theorem 4.1.12 already implies Theorem 4.1.4 because we can determine whether

an ω-automaton accepts a recursive and disjunctive word (Theorem 4.2.8).
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We return to our example and set M = 5. Then, applying Lemma 1.2.1,

un mod 5 =


0 if n ≡ 3 (mod 4)

2 if n = 0, or if n ≡ 2 (mod 4)

4 otherwise .

(4.3)

Thus, it follows that S5 = {0, 2, 4}, N5 = 0, and

(pm mod 5)∞m=0 = (2, 4, 2, 4, 0, 2, 0, 4, 4, 2, 4, 0, 4, 4, 4, 2, 0, 4, 2, 4, 2, 0, 4, 4, 4, 2, 0, 0, 4, 4,

2, 0, 4, 4, 4, 2, 0, 0, 4, 4, 2, 2, 0, 4, 4, 2, 0, 4, 4, 4, 2, 0, 2, 4, 4, 2, 0, . . . )

is in {0, 2, 4}ω.
When computing the �rst million terms of (pm mod 5)∞m=0, one does not en-

counter the factor (0, 0, 0). Nevertheless, according to Theorem 4.1.12, it should

appear in�nitely often! Indeed, we prove this in Section 4.6.2 and construct an index

of roughly 2.18·1059 where this occurs. However, in Section 4.6.2, we follow the subop-

timal construction of our proof of Theorem 4.1.4, overlooking the far smaller number

m = 8479226 for the index of the �rst occurrence of (0, 0, 0) in (pm mod 5)∞m=0.

The above discussion indicates that, whilst (pm mod 5)∞m=0 is disjunctive with

respect to the alphabet S5, it is seemingly not normal, i.e., a given factor w ∈ {0, 2, 4}∗
does not necessarily appear with frequency 3−|w|. This is, however, unsurprising in

view of (4.3): the residue class 4 should statistically appear approximately twice as

often as either of the other two residue classes. Indeed it is possible to prove that this

is asymptotically the case.

4.2 Special classes of in�nite words

To establish the broad range of results presented in the previous section, we have to

discuss a couple of classes of words and sequences.

Procyclic sequences

First, we generalize the notion of periodic words to sequences.

De�nition 4.2.1. An e�ective, strictly increasing integer-valued sequence (un)∞n=0 is

called e�ectively procyclic if for allM ≥ 1, the sequence (un modM)∞n=0 is ultimately

periodic, and given M , one can e�ectively compute the period and preperiod of

(un modM)∞n=0. A predicate is e�ectively procyclic if its positive value sequence

is e�ectively procyclic.
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The sets of factorial numbers, squares, and powers of two are all examples of

e�ectively procyclic predicates.

Lemma 4.2.2. Let (un)
∞
n=0 satisfy limn→∞ un = ∞ and be a polynomial or an LRS

with a single dominant root. Further, set P = {un : n ∈ N}∩N. Then, P is recursive,

in�nite, e�ectively sparse, and e�ectively procyclic.

Proof. Write (un)
∞
n=0 in its exponential-polynomial form,

un = Q(n)ρn + rn ,

where Q(n) ∈ (R∩Q)[X] is non-zero, ρ ∈ R∩Q∗
and (rn)

∞
n=0 is a Q-LRS of spectral

radius smaller than |ρ|. Using Lemma 1.2.6, there are r, R ∈ Q such that R < ρ and

|rn| < rRn for all n ∈ N. Hence, for large enough n, we have |Q(n)ρn| > rRn and

so Q(n)ρn determines the sign of un. As the sign of Q(n) stabilizes for large enough

n and limn→∞ un = ∞, we have ρ > 1 and the leading coe�cient of Q(n) is strictly

positive. Moreover, if ρ = 1, we have deg(Q) > 1.

Then (un)
∞
n=0 and (un+1 − un)

∞
n=0 are both ultimately positive and ultimately

increasing sequences, where the start of the ultimately positive su�x can be explicitly

computed. Thus, P is recursive, in�nite, and e�ectively sparse. To show that P is

e�ectively procyclic, we combine the fact that (un)∞n=0 is ultimately increasing with

Lemma 1.2.1.

Almost periodic and toric words

The second class of words we employ are the so-called almost-periodic words as in-

troduced by Semenov in 1984 [140].

De�nition 4.2.3. A word α ∈ Σω is almost-periodic, if for every u ∈ Σ+, there exists

R(u) ∈ N such that the word u either

(a) does not occur in (αR(u), αR(u)+1, . . . ), or

(b) occurs in every factor of α of length R(u).

If, moreover, α is recursive and for every u ∈ Σ+ the return time R(u) computable,

then α is called e�ectively almost-periodic. If for every u ∈ Σ+, only option (b)

occurs (i.e., every factor of α occurs in�nitely often with bounded intervals), then α

is uniformly recurrent.

This result leads to the following theorem.
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Theorem 4.2.4 (Theorem 3 in [118]). If α ∈ Σω is e�ectively almost-periodic, then

Accα is decidable.

Although we only rely on the following lemma for uniformly recurrent words, we

prove it for the more general class of almost-periodic words.

Lemma 4.2.5. Let α ∈ Σω be recursive and almost periodic. Then α is e�ectively

almost-periodic if and only if for all w ∈ Σ+, one can decide whether w occurs in α.

Proof. For increasing values of n ≥ |w|, compute Tn ⊆ Σn, the set of all factors of α

length n. If for all u ∈ Tn, the (shorter) word w is not a su�x of u, each u appears

only �nitely often in w and R ≤ n+ |w|+ 1 (as else α0 · · ·αn+|w|+1 would be a factor

of α of length n + |w| + 2 with su�x u). Thus, R = n is a valid return time. If for

all u ∈ Tn, the (shorter) word w is a factor of u, then w occurs in�nitely often as a

factor of w with a return time R = n. As one of these two scenarios has to unfold for

large enough n (as a return time exists), we compute Tn until one of these scenarios

occurs.

Now, we can introduce the notion of toric words. Recall that T denotes the

abelian group R/Z, viewed as the interval [0, 1). For x ∈ R, let {x} := x−⌊x⌋ be the
fractional part of x. A word α ∈ Σω is toric if there exist a dimension d > 0, initial

point s = (s1, . . . , sd) ∈ Td, translation g : Td → Td given by

(x1, . . . , xd) →
(
{x1 + δ1}, . . . , {xd + δd}

)
(4.4)

for δ = (δ1, . . . , δd) ∈ Td, and a collection S = {Sb : b ∈ Σ} of open, pairwise disjoint

subsets of Td such that for all n ∈ N and b ∈ Σ,

αn = b⇐⇒ g(n)(s) ∈ Sb . (4.5)

Here, g(n)(s) denotes the result of iteratively applying g to s a total of n times. Thus,

g(n)(s) = ({s1 + nδ1}, . . . , {sd + nδd}). That is, α is the coding (with respect to S) of
the trajectory of the discrete-time dynamical system on Td de�ned by (g, s). See [25]

for a discussion of various subclasses of toric words.

For λ1, . . . , λd ∈ T, we de�ne the group of additive relations on the torus as

GA(λ1, . . . , λd) :=
{
(k1, . . . , kd) ∈ Zd : {k1λ1 + · · ·+ kdλd} = 0

}
.

As GA(δ) ⊂ Zd is a torsion-free, �nitely generated abelian group that has thus a basis

v1, . . . ,vm ∈ Zd for some m ≤ d. Let s, δ ∈ Td, and g : Td → Td be as in (4.4). Next,

we de�ne the following set:

Tδ :=
{
z ∈ Td :

(
∀1 ≤ i ≤ m : vi · z ∈ Z

)}
.
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Thus, Tδ is equal to the quotient Td/GA(δ). One can de�ne Tδ arithmetically as

follows. When the basis v1, . . . ,vm is known, compute C = maxi ∥vi∥∞ such that

|vi · z| ≤ Cd for all z ∈ Td. We have that z ∈ Tδ if and only if vi · z ∈ Z for all i,

which is equivalent to
m∧
i=1

∨
|k|≤Cd

vi · z = k .

That is, Tδ, viewed as a subset of Rd, is an intersection of Td with a union of a�ne

subspaces of Rd with integer parameters.

We can now de�ne Tδ,s := {({s1+z1}, . . . , {sd+zd}) | (z1, . . . , zd) ∈ Tδ}. Applying
Theorem 1.1.13 and shifting by s, gives the following result.

Theorem 4.2.6. The orbit (g(n)(s))∞n=0 is dense in Tδ,s, and for every non-empty

open subset O of Tδ,s there exist in�nitely many n ∈ N such that g(n)(s) ∈ O.

To prove Theorem 4.1.1, we will need to show that Accα is decidable for certain

toric words. The following fact will play an important role in this [25].

Theorem 4.2.7. Every toric word is uniformly recurrent.

Disjunctive words

The third class of words and sequences we study stems from disjunctive words. Recall

from Section 1.3.1 that α ∈ Σω is disjunctive if every u ∈ Σ∗ appears in�nitely often

in α.

Theorem 4.2.8. If α is recursive and disjunctive, then Accα is decidable.

Proof. Consider a given deterministic Muller automaton A as a directed graph allow-

ing multiple edges. We partition the graph into its strongly connected components

(SCCs) and call an SCC without outgoing edges a bottom SCC. We will show that

the set of states visited in�nitely often by the run of α on A is precisely a bottom

SCC. Hence, we decide Accα by simulating this run until a bottom SCC is inevitably

reached. Then α is accepted if and only if this bottom SCC is in the Muller acceptance

condition.

We need to show that (a) if an SCC is not a bottom SCC, then the run eventually

exits it; and (b) if the run enters a bottom SCC, it visits all its states in�nitely often.

For (a), let S be a non-bottom SCC. There thus exist q1 ∈ S, b ∈ Σ such that

δ(q1, b) /∈ S, i.e., reading the letter b in state q1 exits S. We will order the states of

S as q1, . . . , qk, construct words u1 = b, u2, . . . , uk ∈ Σ+, and inductively prove that
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δ(qj, ui) /∈ S for all j ≤ i. Since α is disjunctive, the word uk will inevitably occur as

a factor, and hence, the run will exit S.

We have observed the base case to hold with u1 = b. For the induction step,

assume that δ(qj, ui) /∈ S for all j ≤ i. Now, if δ(qi+1, ui) /∈ S, take ui+1 = ui.

Otherwise, if δ(qi+1, ui) = q ∈ S, the strong connectivity of S implies that δ(q, vi) = q1

for some vi ∈ Σ∗. Thus, take ui+1 = uivib, and observe that δ(qj, ui+1) /∈ S for all

j ≤ i+ 1.

We prove (b) similarly. Fix an order of states q1, . . . , qk of S. By de�nition, a run

entering the bottom SCC S will be con�ned in S. It thus su�ces to prove that for

any q ∈ S, we can inductively construct a word uk ∈ Σ+ such that for all j ≤ k,

the non-empty run of uk on A starting from qj visits q. The induction is similar to

the one above. Choose q1 ∈ S and u1 ∈ Σ∗ to be such that δ(q1, u1) = q. By the

induction hypothesis, for every j ≤ i, the run on ui starting in qj visits q. If the

run on ui starting in qi+1 visits q, take ui+1 = ui. Otherwise, use that S is a bottom

SCC to identify vi ∈ Σ+ such that δ(qi+1, uivi) = q, and take ui+1 = uivi. We have

thus ensured that for all j ≤ i + 1, the run on ui starting in qj visits q. Since α is

disjunctive, the word uk occurs as a factor in�nitely often, and hence all q ∈ S are

visited in�nitely often.

Intuitively, the proof uses the abundance of each factor to guarantee that the set

of states visited in�nitely often is an entire bottom strongly connected component in

the graph induced by the automaton.

Similar to the generalization of ultimately periodic words to procyclic predicates,

we can lift the notion of disjunctive words to sequences of integers. First, recall that

for Σ̃ ⊂ Σ, the in�nite word α ∈ Σω is disjunctive with respect to Σ̃ if every u ∈ Σ̃

appears in�nitely often in α.

De�nition 4.2.9. Let (pm)
∞
m=0 be an increasing integer-valued sequence. For any

integer M ≥ 1, let SM be the set of residue classes modulo M that appear in�nitely

often in (pm modM)∞m=0:

SM =
{
s ∈ {0, . . . , M − 1} :

(
∃∞m ∈ N : pm ≡ s (mod M)

)}
(4.6)

and NM a threshold such that for every m ≥ NM , we have pm ≡ s (mod M). We

say that the sequence (pm)
∞
n=0 is prodisjunctive if, for all M ≥ 1, the sequence of

residues (pm mod M)∞m=NM
is disjunctive with respect to SM , and (pm)

∞
m=0 is e�ec-

tively prodisjunctive if, in addition, for each M , the set SM and threshold NM are

also computable.
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The classes of almost-periodic and disjunctive words are orthogonal as the words

within the intersection of these classes are ultimately constant as the following propo-

sition shows.

Proposition 4.2.10. Assume that |Σ| > 1. Then α ∈ Σω cannot be almost-periodic

and disjunctive.

Proof. Let α be almost periodic and disjunctive, and let a, b ∈ Σ be distinct. Then,

by disjunctivity, a and b appear in�nitely often in α. Hence, as α is almost-periodic,

there is a number R such that for every N ≥ 0, the letter a is in αN · · ·αN+R−1.

However, as α is disjunctive, the word bR also appears in�nitely often in α. Thus, for

some n ≥ 0, we have αn · · ·αn+R−1 is equal to bR but also contains the letter a. This

causes a contradiction.

4.3 Reductions to order words

The purpose of this section is to establish Theorems 4.1.9 and 4.1.10, which are our

versions of the Elgot-Rabin contraction method. Our tools will be very similar to

those we proved in [24] on which part of this chapter is based. For conciseness, we

only prove the results necessary for the main theorems of this chapter. In particular,

we rely on the following lemma that asserts that the decidability of acceptance of an

automaton is closed under transduction. The proof is given in [24, Lemma 4.5].

Lemma 4.3.1 (Transduction). Let α ∈ Σω, B be a deterministic �nite transducer

with input alphabet Σ and output alphabet Γ, and β = B(α) ∈ Γω. Then the problem

Accβ reduces to Accα.

Recall that we associate to a characteristic word α ∈ Σω to a tuple of predicates

(P1, . . . , Pd), where Σ = {0, 1}d and αn records which of the predicates hold for n.

Next to the transduction property stated above, we will rely on the property that the

predicates P1, . . . , Pd we use are `sparse'. That is, if we look at the characteristic word

α, the vast majority of all letters will be (0, . . . , 0): Most numbers are in none of the

predicates Pi. Hence, we want to `compress' the characteristic word to make it more

convenient. By Büchi's theorem (Theorem 4.1.6), we only need to determine whether

a given deterministic Muller automaton A accepts α, and this automaton has �nite

memory. Therefore, when A reads a string of K letters (0, . . . , 0), the automaton A
can only remember what K is modulo a certain number and whether K exceeds a

certain threshold. That is, for every such automaton A, there are numbers M and N
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such that for allK ≥ N , the automaton A cannot discern between reading (0, . . . , 0)K

and (0, . . . , 0)K+M .

Recall that the positive value sequence (pm)
∞
m=0 enumerates

⋃d
i=1 Pi, i.e., the se-

quence of indices n for which n is is some Pi, and that the order word β is the word

obtained when removing all letters (0, . . . , 0) from α. Thus, for all m ∈ N, we have
βm = αpm . We compress α as follows.

Theorem 4.3.2. Assume that P1, . . . , Pd are in�nite, recursive, and pairwise e�ec-

tively sparse predicates with positive value sequence (pm)
∞
m=0 and order word β. Then

MSON;<(P1, . . . , Pd) reduces to Acc((βm,pm modM))∞m=0
.

Proof. Using Theorem 4.1.6, MSON;<(P1, . . . , Pd) is decidable if one can determine

whether a deterministic Muller automaton A = ({0, 1}d, Q, qinit, δ,F) accepts the

characteristic word α of (P1, . . . , Pd). Write 0 for (0, . . . , 0) and restrictA to a directed

graph G with nodes Q and 0-transitions as arrows.

By construction, every node in G has outdegree 1, and so each state is in at

most one cycle in G. Therefore, we can compute the least common multiple of the

cycle lengths in G (call this number M) and the longest path to a cycle (call this

number N). Then, for all states q, numbers n ≥ M +N , and d ≥ 1, reading 0n and

0n+dM leads to journeying through the exact same set of states and ending up in the

same state.

As the tuple (P1, . . . , Pd) is pairwise e�ectively sparse, we can compute a num-

ber K such that for all m ≥ K, we have pm+1 − pm > M + N . We construct a

deterministic �nite transducer B that hard-codes the initial segment of α as follows:

αinit := 0p0β00
p1−p0−1β1 · · ·0pK−pK−1−1βK . For m > K, after reading (pm−1 mod M)

and (pm mod M), the transducer B outputs 0kmβm, where M +N < km ≤ 2M +N

is congruent to pm − pm−1 − 1 modulo M . Then, by construction, a state q is visited

in�nitely often upon reading the characteristic word of (P1, . . . , Pd) if and only if q is

visited in�nitely often when A reads αinitB((βm, pm mod M))∞m=K+1).

Assume Acc(βm,pm mod M))∞m=0
is decidable. By hard-coding the initial segment, the

problem Acc(βm,pm mod M))∞m=K+1
is also decidable and thus AccB((βm,pm mod M))∞m=K+1)

is decidable by Theorem 4.3.1. Then, AccαinitB((βm,pm mod M))∞m=K+1
is decidable (by

again hard-coding the initial segment), and so by construction, the automaton A
accepts α if and only if A accepts αinitB((βm, pm mod M))∞m=K+1). Hence, Accα is

decidable, as required.

Due to Theorem 4.3.2, we are now in the position to prove Theorems 4.1.9

and 4.1.10. We start with the former.
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Proof of Theorem 4.1.9. The hypothesis of Theorem 4.3.2 is clearly ful�lled. We now

observe in the case of a single predicate, we have β ∈ ({0, 1} \ {0})ω = {1}ω and thus

β is a constant word. Then by relabelling the alphabet from {1}× {0, . . . ,M − 1} to

the {0, . . . ,M − 1}, we obtain the result.

Proof of Theorem 4.1.10. Again, the hypothesis of Theorem 4.3.2 is clearly ful�lled.

Fix M ≥ 1 and let α and β denote the characteristic- and order word of (P1, . . . , Pd),

respectively. For 1 ≤ i ≤ d, one can compute the preperiod Ni and period Mi of the

positive value sequence (p
(i)
m modM)∞m=0 of Pi as each Pi is e�ectively procyclic.

We construct a transducer B such that B(β) = ((βm, pm modM))∞m=0. Then, The-

orem 4.3.1 implies the result. The transducer B has states {0, . . . , N1}×{0, . . . ,M1−
1} × · · · × {0, . . . , Nd} × {0, . . . ,Md − 1}. The state corresponding to Ni keeps track

of the number of entries from Pi the transducer B has read, with the exact number if

there are less than Ni and Ni otherwise. The state corresponding to Mi keeps track

how many entries from Pi the transducer B has read modulo Mi. Now assume we

read βm. If the ith component of βm is 0, then we do not change the components

of the state belonging to Ni and Mi. If the ith component of βm is 1, then we up-

date the components of the state belonging to Ni and Mi accordingly and output the

corresponding value for (βm, pm modM). This value pm modM is independent of

which component of βm equals 1 causes it to output, but as βm ̸= (0, . . . , 0) at least

one such value outputs it. Hence, when reading β, the automaton indeed outputs

((βm, pm modM))∞m=0.

4.4 Multiple linear recurrence sequence with a single

dominant root

In this section, we prove Theorem 4.1.1 by proving a more general version.

Theorem 4.4.1. Consider Z-LRS (u
(1)
n )∞n=0, . . . , (u

(d)
n )∞n=0 with a single dominant root

with the following properties for 1 ≤ i ≤ d:

(1) the exponential-polynomial form of (u
(i)
n )∞n=0 can be decomposed as u

(i)
n = ciρ

n
i +

r
(i)
n such that (ciρ

n
i )

∞
i=0 and (r

(i)
n )∞n=0 are the dominant and non-dominant parts

of (u
(i)
n )∞n=0, respectively;

(2) ci > 0 and ρi > 1;

(3) for 1 ≤ j ≤ d not equal to i, there exist only �nitely many pairs (n,m) ∈ N2

such that ciρ
n
i = cjρ

m
j .
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Writing Pi = {u(i)n : n ∈ N}, the theory MSON;<(P1, . . . , Pd) is decidable assuming the

weak Schanuel conjecture. The decidability is unconditional in either of the following

cases:

(a) If 1/ log(ρ1), . . . , 1/ log(ρd) are linearly independent over Q;

(b) If rank(GM(ρ1, . . . , ρd)) ≥ d − 2 and ρ1, . . . , ρd are pairwise multiplicatively

independent.

Several remarks are in order concerning this theorem. First, we go over conditions

(1)�(3).

Condition (1) is equivalent to (u
(i)
n )∞n=0 having a single dominant root that is not

repeated and excludes examples like polynomials and (n2n)∞n=0.

Condition (2) is not necessary, but we include it as it simpli�es the proof. As we

are dealing with the minimal representation of an LRS, we have ci ̸= 0, and if ci < 0,

then u(i)n is positive for �nitely many n that we can compute (this is an instance of the

Positivity problem with a single dominant root). Thus, Pi is �nite and computable

and therefore de�nable already in the MSO theory of ⟨N;<⟩. As (u(i)n )∞n=0 is a Z-LRS,
the ineuqality |ρi| ≤ 1 would imply that |u(i)n | is bounded, and we can again actually

compute the �nite set Pi. Finally, if ρi < 1, then (u
(i)
2n)

∞
n=0 and (u

(i)
2n+1)

∞
n=0 are both

LRS with a strictly positive dominant root where one LRS satis�es Condition (2)

while the other has a negative coe�cient c in front of its dominant root. Thus, we

can apply the theorem with either the even or odd terms of (un)∞n=0 while the other

one gives rise to a �nite set Pi that we can explicitly compute.

Condition (3) is equivalent to the following: For every 1 ≤ i, j ≤ d, the equation

ciρ
n
i = cjρ

m
j has at most one solution (n,m) ∈ N2; The proof is elementary. Omitting

this condition quickly leads to Positivity-hardness.

Next, we discuss the second half of the statement of Theorem 4.4.1 involving the

weak Schanuel conjecture. The main technical di�culty in the proof of Theorem 4.4.1

is to translate the MSO theory into a problem of linear programming on a d − 1-

dimensional torus Td−1 = [0, 1)d−1. We carefully partition this torus into pairwise

disjoint open subsets S := {Sb : b ∈ Σ} de�ned by linear inequalities and �nd a point

s = (s1, . . . , sd−1) to reduce to understanding the orbit of the map

g : Td−1 → Td−1, (z1, . . . , zd−1) 7→
({

z1 +
log(ρ2)

log(ρ1)

}
, . . . ,

{
zd−1 +

log(ρd)

log(ρ1)

})
.

That is, if we can decide Accγ, where γ is de�ned by γn = b if and only if g(n)(s) ∈ Sb,

the theory MSON;<(P1, . . . , Pd) is decidable.
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Of course, γ will be a toric word, and by Theorem 4.2.7, uniformly recurrent and

thus almost periodic. We need to prove that γ is e�ectively almost-periodic, which

implies that Accγ is decidable by Theorem 4.2.4. However, the open subsets Sb and

the initial point s are de�ned by ugly expressions in logarithms, while we also have

to determine the subtorus where the orbit of g is dense. Using the weak Schanuel

conjecture, we can circumvent these number-theoretical problems. Condition (a)

implies the orbit is dense, and we can avoid relying on the weak Schanuel conjecture.

Condition (b) implies Condition (a), as we will see in Lemma 4.4.12.

Theorem 4.4.1 implies Theorem 4.1.1 from this chapter's introduction.

Proof of Theorem 4.1.1. Assume that ρ1 and ρ2 are pairwise multiplicatively inde-

pendent, say ρa1 = ρb2 for some a, b ∈ N≥1. Then set ρ = ρ
a/ lcm(a,b)
1 = ρ

b/ lcm(a,b)
2 , which

is an integer as ρlcm(a,b) is both a power of a and b. The sets ρN1 and ρN2 can be de�ned

in MSON;<(ρ
N) and so MSON;<(ρ

N
1 , . . . , ρ

N
d ) reduces to MSON;<(ρ

N, ρN3 , . . . , ρ
N
d ). Thus,

without loss of generality, ρ1, . . . , ρd are pairwise multiplicatively independent. The

result is immediate.

4.4.1 Reduction to the order word

To prove Theorem 4.4.1, we will use the framework described in Section 4.1. Let

(u
(i)
n )∞n=0 and Pi be as in the statement of Theorem 4.4.1. Let α denote the charac-

teristic word of (P1, . . . , Pd), and by β the order word of (P1, . . . , Pd).

Our �rst goal is to understand the structure of the linear recurrence sequences

satisfying Theorem 4.4.1. We prove the following lemma derived from Matveev's

version of Baker's theorem (Theorem 1.1.11).

Theorem 4.4.2. Let b1, b2, c1, c2, ρ1, ρ2, R1, R2 be positive real algebraic numbers such

that ρ1 > R1, 1 and ρ2 > R2, 1. Then, one can compute N ∈ N such that for all

n1, n2 ≥ N , the inequality ∣∣c1ρn1
1 − c2ρ

n2
2

∣∣ ≤ b1R
n1
1 + b2R

n2
2 (4.7)

implies that c1ρ
n1
1 = c2ρ

n2
2 .

Proof. First assume that ρ1 and ρ2 are multiplicatively dependent, say ρm1
1 = ρm2

2 .

Then let ρ3 = ρ
1/m2

1 and R3 = max(R
1/m2

1 , R
1/m1

2 , 1). Then R3 < ρ3 and solving∣∣c1ρn′
1

3 − c2ρ
n′
2

3

∣∣ ≤ (b1 + b2)R
max(n′

1,n
′
2)

3 (4.8)
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gives all solutions to (4.7) by setting n1 = m2n
′
1 and n2 = m1n

′
2. When c1ρ

n1
1 = c2ρ

n2
2

has �nitely many solutions, the left-hand side of (4.8) can be bounded from below by

C1ρ
max(n′

1,n
′
2)

3 for a computable constant C1 > 0. Thus, we can take N large enough

such that C1ρ
n
3 > (b1 + b2)R

n
3 for all n ≥ N .

Now assume that ρ1 and ρ2 are multiplicatively independent. It is su�cient to

bound n1, n2 that satisfy∣∣c1ρn1
1 − c2ρ

n2
2

∣∣ ≤ 2b1R
n1
1 or

∣∣c1ρn1
1 − c2ρ

n2
2

∣∣ ≤ 2b2R
n2
2 (4.9)

as adding the two cases gives the result. Due to Theorem 1.1.3, the �nitely many

solutions of c1ρ
n1
1 = c2ρ

n2
2 can be e�ectively computed, and we can assume that n1

and n2 are large enough such that c1ρ
n1
1 ̸= c2ρ

n2
2 .

Without loss of generality, ρ1 < ρ2, and if n1 > n2, we have that for n1 and n2

satisfying (4.9), the number n1 is e�ectively bounded as c1ρ
n1
1 < c2ρ

n1
2 + 2biR

n1
i has

�nitely many solutions for i = 1, 2. Moreover, we can assume that n2 ≥ 1. Similarly,

let k ∈ N be such that ρk2 > ρ1. By the same argument, we can assume that n2 ≤ kn1.

After dividing both sides of (4.9) by c1ρ
n1
1 , we apply Matveev's result to Λ =

c−1
1 c2(ρ

−1
1 )n1ρn2

2 − 1 (which is non-zero by assumption) to �nd that

log |Λ| > −C1

(
1 + log(max(1, n1, n2))

)
= −C1

(
1 + log(n2)

)
(4.10)

for some computable constant C1 > 0. Thus, combining (4.9) and (4.10), we need to

bound n1 ≤ n2 that satisfy

C1(1 + log(n2)) > n1 log(ρ1/R1)− log(2b1/c1) or

C1(1 + log(n2)) > n1 log(ρ1)− n2 log(R2)− log(2b2/c1) .

Thus,

C1

(
1 + log(n2)

)
>

1

k
n2 log(ρ1/R1)− log(2b1/c1) or

C1

(
1 + log(n2)

)
>

1

k
n2 log(ρ1)− n2 log(R2)− log(2b2/c1) .

In both cases, we have an inequality of the form C1(1+ log(n2)) > n2c1 + c3 for some

computable constants c2 and c3. This e�ectively bounds n2 (and thus n1 as well).

The result follows.

Corollary 4.4.3. With the notation from Theorem 4.4.1, if 1 ≤ i, j ≤ d are distinct,

the predicates Pi and Pj have a �nite overlap which we can e�ectively compute, are

e�ectively pairwise sparse, and for some computable number N , we have u
(i)
n1 < u

(j)
n2 if

and only if ciρ
n1
i < cjρ

n2
j .
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Proof. Let K ∈ N. Using Lemma 1.2.6, we compute r1, r2, R1 < ρ1 and R2 < ρ2 such

that |r(i)n | < r1R
n
1 − K and |r(j)n | < r2R

n
2 for all n ∈ N. Then, applying the lemma

above, we have that

|u(i)n1
− u(i)n2

| −K > |ciρn1
i − cjρ

n1
i | − |r(i)n1

| − |r(j)n2
| −K > |ciρn1

i − cjρ
n1
i | − r1R

n1
1 − r2R

n2
2

has only �nitely many solutions, and we can compute N ∈ N, such that there are no

solutions with n1, n2 ≥ N .

Due to the previous corollary, we prefer to rely on the sequences (ciρni )
∞
n=0 instead

of the sequences (u(i)n )∞n=0. To do this, we need to generalize the notion of order words.

De�nition 4.4.4. Let (v
(1)
n )∞n=0, . . . , (v

(d)
n )∞n=0 be a family of real-valued, pairwise

disjoint, and strictly increasing sequences. Further let Z =
⋃d
i=1{v

(i)
n : n ∈ N}. We

de�ne the word

ξ := Ord
(
(v(1)n )∞n=0, . . . , (v

(d)
n )∞n=0

)
∈ {1, . . . , d}ω

by

ξn = i⇐⇒ ∃z ∈ (v(i)n )∞n=0 :
∣∣{y ∈ Z : y < z}

∣∣ = n .

If predicates P1, . . . , Pd are pairwise disjoint, then the two de�nitions of the order

word almost coincide, with the sole di�erence being the alphabet being {1, . . . , d} or

{0, 1}d.
We now prove the following.

Theorem 4.4.5. With the notation as in Theorem 4.4.1, let α be the characteristic

word of (P1, . . . , Pd). Then there are computable real algebraic numbers r2, . . . , rd such

that when setting

ξ := Ord

(
N,
(
log(r2)

log(ρ1)
+ n

log(ρ2)

log(ρ1)

)∞

n=0

, . . . ,

(
log(rd)

log(ρ1)
+ n

log(ρd)

log(ρ1)

)∞

n=0

)
, (4.11)

the problem Accα reduces to Accξ. Moreover, we can assume that ρ1 ≤ ρ2, . . . , ρd,

that 0 < log(ri) < log(ρi) for 2 ≤ i ≤ d, and the sets N,
(

log(r2)
log(ρ1)

+ n log(ρ2)
log(ρ1)

)∞
n=0

, . . . ,(
log(rd)
log(ρ1)

+ n log(ρd)
log(ρ1)

)∞
n=0

have pairwise empty intersections.

Proof of Theorem 4.4.5. As we have not assumed anything about the relative sizes of

ρ1, . . . , ρd yet, we can indeed assume that ρ1 ≤ ρ2, . . . , ρd. Let β be the order word of

(P1, . . . , Pd). Using Lemma 4.2.2, we have that each Pi is in�nite, recursive, e�ectively
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sparse, and e�ectively procyclic. Due to Corollary 4.4.3, the predicates P1, . . . , Pd are

also pairwise e�ectively sparse. Hence, by Theorem 4.1.10, the problem Accα reduces

to Accβ.

Due to the same Corollary 4.4.3, one can compute a number N ∈ N such that for

all n1, n2 ≥ N and distinct 1 ≤ i, j ≤ d, we have ciρ
n1
i ̸= cjρ

n2
j and u(i)n1 < u

(j)
n2 if and

only if ciρ
n1
i < cjρ

n2
j . Thus,

ξ′ = Ord
(
(u(1)n )∞n=N , . . . , (u

(d)
n )∞n=N

)
= Ord

(
(c1ρ

n
1 )

∞
n=N , . . . , (cdρ

n
d)

∞
n=N

)
.

By the comments above, the problem Accβ reduces to Accξ′ as (by the comments

above) changing the alphabet of ξ′ to {0, 1}d by mapping i to the unit vector ei and

adding a �nite, computable pre�x gives β. Now let N1 ≥ N be the smallest number

such that for all 2 ≤ i ≤ d, we have ciρ
N−1
i < c1ρ

N1
1 . Next, for 2 ≤ i ≤ d, let Ni be

the smallest number such that c1ρ
N1
1 < c1ρ

Ni
i < ρic1ρ

N1
1 , which exists as Ni, N1 ≥ N

and thus c1ρ
N1
1 ̸= ciρ

N1
i would have been impossible. Then set ri =

ciρ
Ni
i

c1ρ
N1
1

and

ξ′′ = Ord
(
(c1ρ

n
1 )

∞
n=N1

, . . . , (cdρ
n
d)

∞
n=Nd

)
.

Then, as ξ′′ and ξ′ only have di�erent, computable pre�xes, we have that Accξ′ reduces

to Accξ′′ . Meanwhile,

ξ′′ = Ord
(
(c1ρ

N1ρn1 )
∞
n=0, . . . , (cdρ

Ndρnd)
∞
n=0

)
= Ord

(
(ρn1 )

∞
n=0, (r2ρ

n
2 )

∞
n=0, . . . , (rdρ

n
d

)∞
n=0

)

= Ord
(
(n log(ρ1))

∞
n=0, (log(r2) + n log(ρ2))

∞
n=0, . . . , (log(rd) + n log(ρd))

∞
n=0

)
= ξ ,

because dividing by ci > 0, taking logarithms, and dividing by log(ρ1) are all concave

functions. The result follows.

4.4.2 E�ective almost periodicity of the order word

In this section, we use the notation from the earlier section. For 1 ≤ i ≤ d, let

ri, ρi ∈ R ∩ Q with ri > 0 and ρi > 1. Suppose that for all 1 ≤ i < j ≤ d and

n,m ∈ N, we have riρni ̸= rjρ
m
j . Let ξ := Ord((r1ρ

n
1 )

∞
n=0, . . . , (rdρ

n
d)

∞
n=0) ∈ {1, . . . , d}ω

as in De�nition 4.4.4.

We prove the following.

Theorem 4.4.6.

(a) The word ξ is almost-periodic.
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1 2 3 4 5

1

2

3

(0, 0)

Figure 4.1: The cutting sequence ξ.

(b) Assuming the weak Schanuel conjecture, the word ξ is e�ectively almost-periodic.

(c) If 1/ log(ρ1), . . . , 1/ log(ρd) are linearly independent over Q, then ξ is uncondi-

tionally e�ectively almost-periodic.

(d) If rank(GM(ρ1, . . . , ρd)) ≥ d − 2, and ρ1, . . . , ρd are pairwise multiplicatively

independent, then ξ is unconditionally e�ectively almost-periodic.

This result, together with Theorem 4.4.5, will prove Theorem 4.4.1. By scaling and

reordering the d sequences and Theorem 4.4.5, we can equivalently consider (4.11):

ξ := Ord

(
N,
(
log(r2)

log(ρ1)
+ n

log(ρ2)

log(ρ1)

)∞

n=0

, . . . ,

(
log(rd)

log(ρ1)
+ n

log(ρd)

log(ρ1)

)∞

n=0

)
,

where ρ1 ≤ ρ2, . . . , ρd and 0 < log(ri) < log(ρi) for 2 ≤ i ≤ d.

To prove Theorem 4.4.6, we will show that ξ is derived from a toric word; recall

from Section 4.2 that toric words are almost-periodic. To prove e�ective almost-

periodicity, we rely on Baker's theorem or Schanuel's conjecture.

Example 4.4.7. Suppose r1 = 2, ρ1 = 2, r2 = 3, ρ2 = 3. Then

2 · 20 < 3 · 30 < 2 · 21 < 2 · 22 < 3 · 31 < 2 · 23 < 3 · 32 < 2 · 24 < · · ·

and equivalently,

0 <
log(3/2)

log(2)
< 1 < 2 <

log(3/2)

log(2)
+

log(3)

log(2)
< 3 <

log(3/2)

log(2)
+ 2

log(3)

log(2)
< 4 < · · ·

and hence ξ = 12112121121 · · · .
Now consider the line ℓ(t) = {(t, log(2)

log(3)
t− 1 + log(2)

log(3)
) : t ∈ R≥0} and the grid N×N

as pictured in Figure 4.1. Then, we can also generate ξ as follows: start at t = 0 and
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0

1

log(3/2)
log(3)

1

12

Figure 4.2: Generating ξ with a 1-dimensional system. Start at y = 1 + log(2/3)
log(3)

and at each step, maps y to {y + log(2)
log(3)

} and output 1 if y ∈ (0, log(3/2)
log(3)

) and 12 if

y ∈ ( log(3/2)
log(3)

, 1).

follow the line in the positive direction. Then, every time one crosses a vertical line

y = n for some n ∈ N, write a 1 and when crossing a horizontal line x = n for some

n ∈ N, write a 2.

This construction obtains a cutting sequence (equivalently, a billiard word). (See

for example [69, Chapter 4.1.2] and [9, 17] for more on billiard words.)

We aim to transform this 2-dimensional system into a 1-dimensional system. We

achieve this by �rst noting that only the intersections of ℓ with the N×N-grid matter

and not which line is intersected, except for whether it is horizontal or vertical. If

ℓ intersects a vertical line at height y, the next intersection of a vertical line occurs

at height y + log(2)
log(3)

. By translation invariance, only the fractional part of y, {y},
matters. Meanwhile, this fractional part of y also determines whether a horizontal

line is intersected before another vertical line is intersected. If {y} ∈ (0, 1 − log(2)
log(3)

),

then no horizontal line is crossed, and when {y} ∈ (1− log(2)
log(3)

, 1), exactly one horizontal

line is crossed. Here, 1− log(2)
log(3)

can be simpli�ed to log(3/2)
log(3)

.

Therefore, we can generate ξ with the following system: Let s = 1 + log(2/3)
log(3)

and de�ne g : T → T (recall that T = [0, 1) by g(y) = {y + log(2)
log(3)

}). Further, let

Σ = {1, 12}, S1 = (0, log(3/2)
log(3)

), S12 = ( log(3/2)
log(3)

, 1), and S = {S1, S12}. Thus, iterating

the map g produces a toric word β ∈ Σω, which is an obvious morphism away from

ξ. In our case, ζ = (12)(1)(12)(12)(1)(12) · · · . This construction is pictured in

Figure 4.2.

This 1-dimensional method to generate ζ is su�cient to show that ζ is a toric

word, and in particular, ζ is almost-periodic. But we can do better: ζ is e�ectively
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almost-periodic. Let w1 · · ·wr ∈ Σ∗ and use linear programming on the torus T to

either �nd an open interval (a, b) ⊂ (0, 1) where for each x ∈ (a, b) and 1 ≤ i ≤ r,

g(i)(s) ∈ Sb ⇐⇒ wi = b

or no such point exists. In the latter case, we are done. In the former case, we can

use that log(2)
log(3)

and Theorem 4.2.6 to �nd a number t such that

T =
t−1⋃
i=0

g(i)
(
(a, b)

)
.

Of course, one has to be careful with these logarithms, but using Fourier-Motzkin

elimination and Lemma 1.1.8, we can avoid such problems. Then, w1 · · ·wr has a

return time of R := t+ r in ζ (that is, w1 · · ·wr appears in every factor of ζ of length

R) and of 2R in ξ. We note that cutting sequences generated by a line on the plane

with irrational slope (as in Figure 4.1) are exactly the Sturmian words [101].

We continue our proof of Theorem 4.4.6, and as in Example 4.4.7, we will begin

by generating ξ with a cutting sequence.

Let ℓ : R≥0 → Rd be a line such that for no t ∈ R>0, we have that two coordi-

nates of ℓ(t) that are integer-valued. Then the cutting sequence of ℓ is the sequence

(xn)
∞
n=0 ∈ {1, . . . , d}ω generated by the positions of the integer-valued components

of ℓ(t). That is, xn = i if and only if for the n− 1th smallest t ≥ 0 such that ℓ(t) has

an integer component, this is the ith coordinate.

For 2 ≤ i ≤ d, let δi =
log(ρ1)
log(ρi)

. Let ℓ : R≥0 → Rd be the line

ℓ(t) =

(
0,− log(r2)

log(ρ1)
, . . . ,− log(rd)

log(ρ1)

)
+ t (1, δ2, . . . , δd)

and consider the cutting sequence generated by ℓ. We have that ℓ(t)i = n for some

integer n if and only if t = n, and for 2 ≤ i ≤ d, we have ℓ(t)i = n for some integer

n if and only if t = log(ri)
log(ρ1)

+ n log(ρi)
log(ρ1)

. As N,
(

log(r2)
log(ρ1)

+ nδ2

)∞
n=0

, . . . ,
(

log(rd)
log(ρ1)

+ nδd

)∞
n=0

are pairwise disjoint by Theorem 4.4.5, the cutting sequence of ℓ indeed generates ξ.

Now we want to squish this d-dimensional method of generating ξ into a d − 1-

dimensional method. We achieve this by constructing a toric word de�ned on the

torus Td−1 and �nding an appropriate factorization ζ of ξ.

First, note that each δi =
log(ρ1)
log(ρi)

is smaller than 1 and so each number 2 ≤ i ≤ d

appears at once between two consecutive occurrences of 1 in ξ. Let

Σ =
{
1w1, . . . , wr : wi ∈ {2, . . . , d}, wi ̸= wj for all i ̸= j

}
.
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Then, by the previous comment, we can factor ξ into a word ζ ∈ Σω such that there

is an obvious morphism that maps ζ to ξ.

We formalize this construction. Let (zm)
∞
m=0 ∈ Nω be the sequence such that

zm = n if and only if ξn is the mth occurrence of 1 in ξ. For example, using

the sequence in Example 4.4.7, we have ξ = 12112121121 · · · , and so (zm)
∞
m=0 =

(0, 2, 3, 5, 7, 8, 10, . . . ). Then, as ξ0 = 1 and 1 appears in�nitely often in ξ, we can

factor ξ as

ζm = ξzmξzm+1 · · · ξzm+1−1 = 1ξzm+1 · · · ξzm+1−1 .

Thus, by interpreting the �nite words in this factorization as single letters, the word

ζ is in Σω and ξ is the image of ζ under the application of the morphism µ : Σ∗ →
{1, . . . , d}∗ de�ned by µ(w) = w0 · · ·w|w|−1 for w ∈ Σ∗. Since e�ectively almost-

periodic words are closed under applications of morphisms (provided that the image

word is also in�nite) and �nite modi�cations [118], the word ζ is (e�ectively) almost-

periodic if and only if ξ is. We will next show that ζ is toric. Recall that {x} := x−⌊x⌋
denotes the fractional part of x.

Theorem 4.4.8. Using the notation above let si =
{

− log(ri)
log(ρi)

}
∈ T for 2 ≤ i ≤ d.

Then ζ is the toric word generated by δ = (δ2, . . . , δd) ∈ Td−1 and s = (s2, . . . , sd) ∈
Td−1, as well as a collection of open subsets of Td−1 de�ned by linear inequalities (in

variables x2, . . . , xd) of the form (1 − xi)/δi < (1 − xj)/δj or (1 − xi)/δi ∼ 1, where

∼ ∈ {>,<} and 2 ≤ i, j ≤ d are distinct.

Proof. By the hypothesis, we have that g : Td → Td is the map de�ned by

g
(
(x2, . . . , xd)

)
=
(
{x2 + δ2}, . . . , {xd + δd}

)
.

By construction, we have that for all n ∈ N that g(n)(s) = ({s2+nδ2}, . . . , {sd+nδd})
and ℓ(n) = (n, s2+nδ2, . . . , sd+nδd), which are equal when restricted to the fractional

part of the last d− 1 coordinates.

Assume that we want to compute ζn = ξzn · · · ξzn+1−1. As stated before, each 2 ≤
i ≤ d appears at most once in ζn. Let ℓ(n) = (n, x2, . . . , xd) ∈ Rd. By Theorem 4.4.5,

we have that {xi} ̸= 0 for 2 ≤ i ≤ d. Thus, {xi} ∈ (0, 1).

Then, tracing the direction of the line ℓ, the �rst coordinate of ℓ(t) is again

integer-valued for n + 1. Then i is in ζn if and only if there is a ti ∈ (0, 1) such that

{xi+ tiδi} = 0. Using that {xi}, δi, ti ∈ (0, 1) we have that {xi+ tiδi} = 0 if and only

if ti = {−xi}/δi ∈ (0, 1). Note that as {xi} ∈ (0, 1), we have {−xi} = 1 − {xi}. As
{−xi} > 0 and δi > 0, the inequality ti > 0 is trivially satis�ed, but we also need

that {−xi}/δi < 1. Thus, i ∈ ζn if and only if {−xi}/δi < 1. Moreover, i appears
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1 12

13
123

132

Figure 4.3: The torus for ρ1 = 2, ρ2 = 3, and ρ3 = 5.

before j ∈ {2, . . . , d} \ {i} in ζn if and only if 0 < ti < tj, which occurs exactly when

{−xi}/δi < {−xj}/δj < 1. The latter is equivalent to (1−{xi})/δi < (1−{xj})/δj <
1.

Now let b = 1b1 · · · bm ∈ Σ, where bi ∈ {2, . . . , d} for all 1 ≤ i ≤ m. Then, we set

Sb =

{
(x2, . . . , xd) ∈ Td−1 :

1− xb1
δb1

< · · · < 1− xbm
δbm

< 1 ∧
∧

1≤j≤d
j ̸=b1,...,bm

1− xj
δj

> 1

}
.

(4.12)

These sets Sb are open and pairwise disjoint. Let these inequalities de�ne Sb, which

gives 2d−1 open and pairwise disjoint sets of Td−1.

By construction, we have that ζn = b if and only if ℓ(n) = (n, x2, . . . , xd) has the

property that ({x2}, . . . , {xd}) ∈ Sb while ({x2}, . . . , {xd}) = g(n)(s). Thus, ζ is a

toric word de�ned by s, δ, and the sets Sb.

In the remainder of this section, let s = (s2, . . . , sd) ∈ Td−1, δ := (δ2, . . . , δd) ∈
Td−1, and g : Td−1 → Td−1 be de�ned as above. Figure 4.3 illustrates the target sets

{Sb : b ∈ Σ} constructed in Theorem 4.4.8 for the sequences (2n)∞n=1, (3
n)∞n=1, and

(5n)∞n=1. Figure 4.3 can also be viewed as follows. Consider a dynamical system on N
that starts at 2 and jumps to the next power of 2 at each step. At each step, a letter

from {1, 12, 13, 123, 132} is written depending on whether the point jumped over a

power of 3 or a power of 5 in the last step (and in what order). The exact letter to be

written is determined by keeping track of the fractional part of log3(2
n) and log5(2

n);

this gives rise to the linear inequalities de�ning the open sets depicted in Figure 4.3.

Since ζ is toric, ζ is uniformly recurrent (Section 4.2) and thus almost-periodic.

As mentioned earlier, the su�x wNwN+1 · · · of ξ is the image of ζ under a morphism,

and hence is almost-periodic by [118, Section 3]. It follows that ξ is almost-periodic;

this proves Theorem 4.4.6 (a).
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To prove the other parts, we need to show that ζ (and thus ξ) is e�ectively almost

periodic. By Lemma 4.2.5, we only need to determine whether a given w ∈ Σ∗ occurs

in ζ.

Lemma 4.4.9. Let w = w0 · · ·wk−1 ∈ Σ∗. There exists an open subset Sw ⊆ Td−1

with the following property. For all n ∈ N, the pattern w occurs in ζ at the position

n if and only if g(n)(s) ∈ Sw. Furthermore, we can compute a representation of Sw

as a Boolean combination of inequalities of the form

h(x2/δ2, . . . , xd/δd, 1/δ2, . . . , 1/δd) ∼ 0 , (4.13)

where h is a Q-a�ne form and ∼ is an inequality symbol.

Proof. Consider b = 1b1 · · · bm ∈ Σ, where bi ∈ {2, . . . , d} for all i. Let

Sb,k = {x ∈ Td−1 : g(k)(x) ∈ Sb} .

Since g : Td−1 → Td−1 is a homeomorphism, the subset Sb,k of Td−1 is open. Since

g(k)(x2, . . . , xd) = ({x2 + kδ2}, . . . , {xd + kδd}), from (4.12) it follows that Sb,k is the

set of all (x2, . . . , xd) ∈ Td−1 satisfying

1− {xb1 + kδb1}
δb1

< · · · < 1− {xbm + kδbm}
δbm

< 1 ∧
∧

1≤j≤d
j ̸= b1,...,bm

1− {xj + kδj}
δj

> 1 .

For 2 ≤ i ≤ d, let ti = ⌊kδi⌋. Observe that

1− {xb1 + kδb1} =

{
ti + 1− xi − kδi if xi + kδi < ti + 1

ti + 2− xi − kδi if xi + kδi ≥ ti + 1 .

Moreover, xi+ kδi < ti+1 is equivalent to xi/δi+ k < ti+1
δi

. Therefore, 1−{xi+kδi}
δi

▷◁ 1

(where ▷◁ is an (in)equality symbol) is equivalent to

xi
δi

+ k <
ti + 1

δi
⇒ ti + 1− xi − kδi

δi
▷◁ 1 ∧ xi

δi
+ k ≥ ti + 1

δi
⇒ ti + 2− xi − kδi

δi
▷◁ 1 .

Rearranging, this formula can be written as a Boolean combination of inequalities

of the form (4.13) where h is a Q-a�ne form. Similarly, {xi+kδi}
δi

<
{xj+kδj}

δj
can be

equivalently written as a Boolean combination of inequalities of the form (4.13) by

conditioning on whether xi/δi + k < (ti + 1)/δi and xj/δj + k < (tj + 1)/δj. Finally,

observe that 0 ≤ xi < 1 is equivalent to 0 ≤ xiδi < 1/δi. We conclude that Sb,k can

be de�ned by a Boolean combination of inequalities of the form (4.13).

It remains to de�ne Sw =
⋂|w|−1
k=0 Sw(k),k. Since each Sw(k),k is open and de�ned by

a Boolean combination of inequalities of the form (4.13), the same holds for Sw.

125



We next prove Theorem 4.4.6 (c). Suppose 1/ log(ρ1), . . . , 1/ log(ρd) are linearly

independent over Q. Then for all c2, . . . , cd, k ∈ Q,

d∑
i=2

ciδi = k ⇐⇒ c2
log(ρ2)

+ · · ·+ cd
log(ρd)

=
k

log(ρ1)

=⇒ k, c2, . . . , cd = 0 .

Hence GA(δ) is the trivial group, we have Tδ = Td−1, and by Kronecker's theorem

(Theorem 4.2.6), the set (g(n)(s))∞n=0 is dense in Td−1. Therefore, a pattern w ∈ Σ∗

occurs in ζ if and only if Sw ̸= ∅. As shown in Lemma 4.4.9, to determine whether

Sw ̸= ∅ we have to determine the truth of Ψ := ∃x2, . . . , xd : Φ(x2, . . . , xd), where Φ

is a formula of the form∨
j∈J

∧
k∈K

hj,k(x2/δ2, . . . , xd/δd, 1/δ2, . . . , 1/δd) ∼j,k 0 .

As each hj,k is a Q-a�ne form, Ψ is equivalent to ∃x̃2, . . . , x̃d : Φ(x̃2, . . . , x̃d), where
x̃i = δixi. Applying Fourier-Motzkin elimination, we can compute �nitely many Q-
a�ne forms hℓ,m and an inequality symbols ∼ℓ,m such that Ψ is true if and only

if ∨
ℓ∈L

∧
m∈M

hℓ,m(1/δ2, . . . , 1/δd) ∼ℓ,m 0 .

Recall that 1
δi
= log(ρi)

log(ρ1)
. For h(x2, . . . , xd) := c1 + c2x2 + · · ·+ cdxd,

h(1/δ2, . . . , 1/δd) =
1

log(ρ1)

(
c1 log(ρ1) + · · ·+ cd log(ρd)

)
.

Hence for all ℓ,m, whether hℓ,m(1/δ2, . . . , 1/δd) ∼ℓ,m 0 can be determined using

Baker's theorem (Lemma 1.1.8). Thus, when 1/ log(ρ1), . . . , 1/ log(ρd) are linearly

independent over Q, we can determine whether a given pattern w ∈ Σ∗ occurs in ζ.

We conclude that ζ and hence ξ are e�ectively almost periodic. This proves The-

orem 4.4.6 (c).

To prove Theorem 4.4.6 (b) and (d), we need to prove a small lemma �rst.

Lemma 4.4.10. Let d ≥ 1, e ≥ 2, c1, . . . , cd ∈ R, and for all 1 ≤ j ≤ d, bj =

(b1,j, . . . , bd,j) ∈ Rd are pairwise linearly independent vectors over the real numbers.

Assume that f is the rational function given by

f(x1, . . . , xe) =
c1∑e

i=1 bi,1xi
+ · · ·+ cd∑e

i=1 bi,dxi

If f is the zero function, then c1 = · · · = cd = 0.
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Proof. Assume that f is the zero function. For 1 ≤ j ≤ d, let Vj = {x ∈ Re : bj ·
x = 0}. Then Vj is an (e− 1)-dimensional subspace of Re. Fix some 1 ≤ j ≤ d such

that cj ̸= 0 and let (xn)
∞
n=0 ∈ (Rd \ Vj)ω be a sequence converging to x ∈ Vj, then

limn→∞ cj/
∑e

i=1(bj · xn) = ±∞. Hence, as f is the zero function, the vector x is in

Vj′ for some j′ ∈ {1, . . . , d} \ {j}. Thus,

Vj ⊂
⋃

j′∈{1,...,d}\{j}

Vj′ (4.14)

As all bj and bj′ are linearly independent, the intersection Vj ∩ Vj′ is an (e − 2)-

dimensional linear subspace of Re. This contradicts (4.14).

Thus, cj = 0. As this holds for all 1 ≤ j ≤ d, the lemma follows.

Now Theorem 4.4.6 (d) follows from combining Theorem 4.4.6 (c) and

the following lemma.

Lemma 4.4.11. Let d ≥ 2 and λ1, . . . , λd ∈ R>1 ∩Q be pairwise multiplicatively in-

dependent, and suppose rank(GM(λ1, . . . , λd)) ≥ d−2. Then 1/ log(λ1), . . . , 1/ log(λd)

are linearly independent over Q.

Proof. By the two assumptions, for any 1 ≤ i < j < k ≤ d, there exist bi, bj, bk ∈ Z̸=0

such that λbii λ
bj
j λ

bk
k = 1. Equivalently, bi log(λi) + bj log(λj) + bk log(λk) = 0. Hence,

for 1 ≤ j ≤ d, let b1,j, b2,j ∈ Q be such that log(λj) = b1,j log(λ1) + b2,j log(λ2). Then

b1,1 = b2,2 = 0 and all other bi,j are non-zero.

To get a contradiction, let c1, . . . , cd ∈ Q such that
∑d

j=1
cj

log(λj)
= 0. Multiplying

by
∏d

j=1 log(λj) gives

d∑
j=1

cj

d∏
i=1,i̸=j

(
b1,j log(λ1) + b2,j log(λ2)

)
= 0 ,

which simpli�es to
d−1∑
i=0

ei log(λ1)
i log(λ2)

d−i = 0

for some ei ∈ Q. Assume not all ei are zero. Then dividing by log(λ2)
d−1 shows

that log(λ1)/ log(λ2) is a root of the non-zero polynomial
∑d−1

i=0 eiX
i ∈ Q[X]. That

is, log(λ1)/ log(λ2) is an algebraic number, say α, and so log(λ1) − α log(λ2) = 0,

contradicting Baker's theorem (Theorem 1.1.7). Hence, all ei are zero.

Therefore, computing in Q(X1, X2)

d∑
j=1

cj
b1,jX1 + b2,jxX2

= 0 . (4.15)
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As in Lemma 4.4.12, we deduce that as all λj are pairwise multiplicatively dependent

and so (4.15) satis�es the hypothesis of Lemma 4.4.10. Thus, all ci are zero. The

statement follows.

It remains to prove Theorem 4.4.6 (b), which is the trickiest. We will need the

following two lemmas. The proof of the �rst is similar to the previous lemma.

Lemma 4.4.12. If λ1, . . . , λd ∈ R>1 ∩ Q are pairwise multiplicatively independent,

then assuming the weak Schanuel conjecture, the numbers 1/ log(λ1), . . . , 1/ log(λd)

are linearly independent over Q.

Proof. First, using Theorem 1.1.3, compute a basis for GM(λ1, . . . , λd) and select

a maximum multiplicative independent subset {λ1, . . . , λe}, possibly renumbering

the λi. For 1 ≤ j ≤ d and 1 ≤ i ≤ e, let bi,j such that log(λj) =
∑e

i=1 bi,j log(λi). Then

we have to show that the weak Schanuel conjecture implies that for c1, . . . , cd ∈ Q
such that

c1∑e
i=1 bi,1 log(λi)

+ · · ·+ cd∑e
i=1 bi,d log(λi)

= 0 , (4.16)

all ci are zero. By multiplying (4.16) by
∏d

j=1

∑e
i=1 bi,j log(λi), we obtain a polynomial

g ∈ Q[X1, . . . , Xe] such that g(log(λ1), . . . , log(λe)) = 0.

We apply the weak Schanuel conjecture (Conjecture 1.1.5) with αi = log(λi) for

1 ≤ i ≤ e. As the algebraic numbers λ1, . . . , λe are multiplicatively independent,

their logarithms log(λ1), . . . , log(λe) are linearly independent over Q. Then the weak

Schanuel conjecture implies that log(λ1), . . . , log(λe) are algebraically independent,

and so g(X1, . . . , Xe) = 0. That is, the following rational function is exactly zero:

f(X1, . . . , Xe) =
c1∑e

i=1 bi,1Xi

+ · · ·+ cd∑e
i=1 bi,dXi

.

Assume that 1 ≤ j, j′ < d are distinct and that (b1,j, . . . , be,j) = s(b1,j′ , . . . , be,j′)

for some s ∈ R. As λj′ ̸= 0, some bi,j′ is non-zero. Then s = bi,j/bi,j′ ∈ Q. Hence,

log(λj) =
e∑
i=1

bi,j log(λi) =
e∑
i=1

sbi,j′ log(λi) = s log(λj′) ,

contradicting that λj and λj′ are multiplicatively independent. Thus, the hypothesis

of Lemma 4.4.10 is satis�ed, and all cj are 0. We conclude the statement.

Lemma 4.4.13. Let λ1, . . . , λd ∈ R>1 ∩Q. Assuming the weak Schanuel conjecture,
a basis for GA(1/ log(λ1), . . . , 1/ log(λd)) can be computed.
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Proof. If λi and λj are multiplicatively dependent, say λai = λbj for some non-zero

integers a and b, then a log(λi) = b log(λj). Hence, a/ log(λj) = b/ log(λi), giving a

non-trivial element in GA(1/ log(λ1), . . . , 1/ log(λd)).

Meanwhile, by Lemma 4.4.12, for any pairwise multiplicative independent sub-

set of {λ1, . . . , λd}, the reciprocals of their logs are linearly independent. Together,

this implies that any Q-linear relationship among 1/ log(λ1), . . . , 1/ log(λd) can be

reduced to a relationship generated by pairwise multiplicative relationships. One can

easily �nd a basis among these by computing for each pair (λi, λj) whether they are

multiplicatively dependent using Theorem 1.1.3.

Assuming the weak Schanuel conjecture, we can compute a basis of the group

of additive relations GA(1/ log(ρ1), . . . , 1/ log(ρd)) (Lemma 4.4.13). Hence we can

compute an Rexp formula de�ning the compact Tδ,s ⊆ Td−1 in which in (f (n)(s))∞n=0

is dense (Section 4.2). Recall from Section 4.2 that a pattern w occurs in ζ if and

only if Sw ∩ Tδ,s ̸= ∅, which can be e�ectively veri�ed using a decision procedure for

the �rst-order theory of Rexp. Hence, ζ and ξ are e�ectively almost periodic when

assuming the weak Schanuel conjecture. This proves Theorem 4.4.6 (b) and

therefore the entire theorem.

We can now combine everything we have shown so far to prove Theorem 4.4.1.

For 1 ≤ i ≤ d, let (u(i)n )∞n=0 for 1 ≤ i ≤ d be as in the statement of Theorem 4.4.1 with

the value set Pi ⊆ N. Further let α be the characteristic word of (P1, . . . , Pd), and

recall that MSON;<(P1, . . . , Pd) is decidable if and only if Accα is decidable. Applying

Theorem 4.4.5, we can construct r1, . . . , rd such that Accα reduces to Accξ, where

ξ = Ord((r1ρ
n
1 )

∞
n=0, . . . , (rdρ

n
d)

∞
n=0). Applying Theorem 4.4.6, we obtain conditions

under which ξ is e�ectively almost-periodic. It remains to recall from Theorem 4.2.4

that Accξ is decidable if ξ is e�ectively almost-periodic.

4.4.2.1 Applying the Theory of Cutting Sequences

Let

ξ = Ord
(
(r1ρ

n
1 )

∞
n=0, . . . , (rdρ

n
d)

∞
n=0

)
be as above. As mentioned earlier, it can directly be shown that ξ is the cutting

sequence generated by the line {(t/ log(ρ1), s2+t/ log(ρ2), . . . , sd+tδd) : t ≥ 0}, where
s2 ∈ R for all 2 ≤ i ≤ d. As in Section 1.3.1, write p(n) for the number of distinct

factors of ξ of length n; the function p is the factor complexity of ξ. The factor

complexity of cutting sequences has been studied extensively, and in many cases, an
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exact formula for p(n) is known. We give an overview of the known results in this

direction.

(i) If d = 2 and log(ρ1)/ log(ρ2) is irrational, then ξ is a Sturmian word and there-

fore p(n) = n+ 1. See, e.g. [6, Chapter 10.5].

(ii) By the results of Arnoux et al. [9], if d = 3, and 1/ log(ρ1), 1/ log(ρ2), 1/ log(ρ3)

as well as log(ρ1), log(ρ2), log(ρ3) are linearly independent over Q, then p(n) =
n2 + n+ 1.

(iii) For arbitrary d > 0, Bedaride [19] gives an exact formula for p(n) assum-

ing 1/ log(ρ1), . . . , 1/ log(ρd) as well as every triple log(ρi), log(ρj), log(ρk) for

pairwise distinct i, j, k are linearly independent over Q. This generalizes the

result [17] of Baryshnikov.

Returning to our word ξ, let w be a �nite pattern of length n, and suppose we

know the value of p(n). Then we can determine whether w occurs (as required by

Lemma 4.2.5) in ξ by just reading pre�xes of ξ until we have seen p(n) distinct factors

of length n. Using this approach, we can prove that the word ξ is e�ectively almost

periodic under the assumption of (iii). Note, however, that this result is strictly

weaker than Theorem 4.4.6 (b). Consider, for example, ρ1 = 2, ρ2 = 3, and ρ3 = 6.

We will show in Lemma 4.4.11 that 1/ log(ρ1), . . . , 1/ log(ρ3) are linearly independent

over Q, but log(ρ1), . . . , log(ρ3) are not.

4.5 Decidability via expansions in integer bases

In this section, we discuss a second class of LRS that gives rise to interesting MSO

theories; we show that these are intimately connected to base-b expansions of certain

algebraic numbers. That is, we will show that the base-b expansion of d
√
p/q is

intrinsic to the pair of predicates {qnd : n ∈ N} and {pbnd : n ∈ N}. For example, the

binary expansion of 3
√
1/27 = 2/3 underlies the pair of predicates {27n3 : n ∈ N} and

{8n : n ∈ N}, while the binary expansion of 2 3
√
5 underlies the pair {n3 : n ∈ N} and

{5 · 8n : n ∈ N}. Assuming that certain irrational numbers are normal, we can use

these connections to give conditional decidability results for various MSO theories.

The dynamical systems at play in this section di�er from the ones we considered

previously: they are de�ned by numeration systems [101, Chapter 7] as opposed to

translations on a torus (Section 4.4.2 and 4.2).
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Reductions and decidability

We begin by considering the case where d
√
p/q is rational, which implies that its base-

b expansion is ultimately periodic for any b ≥ 2. The following is a generalisation of

Corollary 4.1.3.

Theorem 4.5.1. Let b, d ≥ 2 and p, q ≥ 1 be integers such that d
√
p/q is rational.

Let P1 = {qnd : n ∈ N}, P2 = {pbnd : n ∈ N}, and α ∈ ({0, 1}2)ω be the characteristic

word of (P1, P2). Then Accα is decidable.

Proof. By assumption, p/q = Ad/Bd for some A,B ∈ N, and so there is also a C ∈ N
such that p = CAd and q = CBd. We �rst solve the case where A = B = C = 1.

Then, P ′
1 = {nd : n ∈ N} and P ′

2 = {bnd : n ∈ N} and so P ′
2 ⊂ P ′

1. As P
′
1 is e�ectively

sparse and P ′
2 ⊂ P ′

1, the predicates P ′
1 and P ′

2 are pairwise e�ectively sparse. As

P ′
1 and P ′

2 are also in�nite, recursive, and e�ectively procyclic due to Lemma 4.2.2,

Theorem 4.1.10 implies that Accα′ reduces to Accβ′ , where β′ is the order word of

(P ′
1, P

′
2).

Let α′ be the characteristic word of (P ′
1, P

′
2). As P ′

2 ⊂ P ′
1, we have β

′
m = α′

pm =

α′
md , and thus β′

m = (1, 1) if md is a power of bd and (1, 0) otherwise. Thus, β′ is the

characteristic word of P ′ = {bn : n ∈ N} with the alphabet {(1, 0), (1, 1)} instead of

(0, 1). As P ′ is in�nite, recursive, e�ectively pairwise sparse, and e�ectively procyclic,

the problem Accβ′ is decidable again by Theorem 4.1.10. Thus, Accα′ is decidable as

well.

We now construct a transducer B such that B(α′) = α, which due to Theorem 4.3.1

is su�cient to decide Accα. We do this in two steps. First, we keep track how

many ri occurrences of (1, ∗), we have seen modulo A and change (1, ∗) into (0, ∗)
when ri ̸≡ 0 (mod A). Similarly, we treat occurrences of (∗, 1) modulo B. Making

just this transduction gives the characteristic word of the predicates {Adnd : n ∈
N} and {Bdbnd : n ∈ N}. Now we add the further transduction that maps (b1, b2)

to (b1, b2)(0, 0)
C−1. If we combine these two steps into a single transducer B, i.e.,

B(α′) = α, we obtain the result.

Proof of Corollary 4.1.3. Apply the previous theorem with p = q = 1.

The case where d
√
p/q is irrational is more involved. We are not able to prove

decidability, but we can show that the decidability of the MSO theory of ⟨N;<,P1, P2⟩
to Accβ, where β is the base-b expansion of some number.

Theorem 4.5.2. Let b, d, p, q be positive integers such that d
√
p/q is irrational. Fur-

thermore, let
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1. α ∈ ({0, 1}2)ω be the characteristic word of (P1, P2), where P1 = {qnd : n ∈ N}
and P2 = {pbnd : n ∈ N};

2. β ∈ {0, 1, . . . , b − 1}ω be the in�nite string of digits in the base-b expansion of

η = d
√
p/q and

3. γ be the order word (P1, P2), i.e., the word obtained by deleting all occurrences

of (0, 0) from α.

Then the problems Accα, Accβ, and Accγ are Turing-equivalent.

Proof. We will prove the theorem by showing:

1. Accβ reduces to Accα.

2. Accα reduces to Accγ.

3. Accγ reduces to Accβ.

We start by breaking down the de�nition of β. As η = · · · β−1β0 . β1β2 · · · , we have
that ηbm is equal to · · · βm−1βm . βm+1βm+2 · · · . That is, we shifted the divider between
the integer and non-integer parts in the base-b expansion of η by m. Therefore,

βm = ⌊ηbm⌋ mod b, the mth digit in the base-b expansion of η. Moreover, we obtain

the recursion that for all m ≥ 0,

⌊ηbm+1⌋ = ⌊ηbm⌋b+ βm+1 . (4.17)

Also note that (1, 1) does not occur in α. Otherwise, there would be natural numbers

m and n such that qmd = pbnd, which is equivalent to m = ηbn. As m and bn are

rational and η is irrational, this is impossible.

Part (1): Accβ reduces to Accα. By construction and the observations above,

βn = ⌊ηbn⌋ mod b = #{m ∈ N≥1 : m < ηbn} mod b

=
(
#{m ∈ N : qmd < pbdn} − 1

)
mod b

Thus, we construct a transducer B such that B(α) = β by keeping track of the number

of letters (1, 0) modulo b (which correspond to occurrences qmd in α), and outputting

this number minus 1 each time B reads (0, 1) (which corresponds to occurrences of

pbn in α). More explicitly, B has the alphabet {0, 1}2, states {0, . . . , b− 1}, and

� when reading (0, 0) or (1, 1) in state q: stay in state q and output nothing;
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� when reading (1, 0) in state q: move to state (q+1) mod b and output nothing;

� when reading (0, 1) in state q: stay in state q and output (q − 1) mod b.

Here, we added (1, 1) for completeness, but due to the observations above, it will

not occur in α. Then, by construction, we indeed have that B(α) = β, and so

Theorem 4.3.1 completes the proof in this case.

Part (2): Accα reduces to Accγ. Theorem 4.1.10 almost directly implied this

reduction. As P1 and P2 are in�nite, recursive, e�ectively sparse and e�ectively

procyclic, we only have to verify that P1 and P2 are e�ectively pairwise sparse to

apply Theorem 4.1.10. We do so by applying an old result of Schinzel and Tijdeman,

whose proof (again) relies on Baker's theorem on linear forms in logarithms [137].

Lemma 4.5.3 (Schinzel and Tijdeman). For every N ≥ 1, the equation |qnd−pbmd| =
N has �nitely many solutions (n,m) and they can be e�ectively enumerated.

Lemma 4.5.3 implies that P1 and P2 are e�ectively pairwise sparse. Then the

conditions of Theorem 4.1.10 are satis�ed. This case follows.

Part (3): Accγ reduces to Accβ. As (1, 1) does not occur in γ, we can write

γ as γ = (1, 0)m0(0, 1)(1, 0)m1(0, 1) · · · , where ∑n
i=0mi is the number of terms qmd

below pbnd. That is,
∑n

i=0mi = ⌊ηbm⌋ + 1. Now let P be the predicate consisting

of all the indices of (0, 1) in γ and (pm)
∞
m=0 the positive value sequence of P . Then

Char(P ) is γ with the alphabet {0, 1} instead of {(1, 0), (0, 1)} and

pm = m+
m∑
i=0

mi = m+ ⌊ηbm⌋+ 1 . (4.18)

Now, forM ≥ 1, we have to show that Acc(pm modM)∞m=0
is decidable. So �xM ≥ 1.

We claim that pm modM , m modM , and βm+1 uniquely determine pm+1 modM .

Indeed, due to the �rst two and (4.17), uniquely determines ⌊ηbm⌋ modM . Then,

by (4.17), the number ⌊ηbm+1⌋ modM is also uniquely determined. Then, again

using (4.18) and having access to m modM (and thus m + 1 modM), there is only

one option for pm+1 modM . This proves our claim. Also, note that p0 can be

computed. Thus, we can construct a �nite deterministic transducer that reads β

with input (pm modM,m modM) that outputs (pm+1 modM,m modM). Thus,

using Theorem 4.3.1, the problem Acc(pm modM)∞m=0
reduces to Accβ.

Together, Lemma 4.5.1 and Theorem 4.5.2 imply Theorem 4.1.3. Conjecture 1.3.1

implies that when d
√
p/q is irrational, its base-b expansion is disjunctive. Hence,

Theorem 4.5.2, implies that MSON;<({qnd : n ∈ N}, {pbnd : n ∈ N}) is decidable if we
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assume this conjecture. By mirroring the proof of Theorem 4.5.2 in the special case

where p = b, q = 1, d = 2, we can show the following.

Theorem 4.5.4. Let b ≥ 2, P1 = N2, P2 = bN, and Σ = {0, 1}2. Further let

α ∈ Σω denote the characteristic word of (P1, P2) and β ∈ {0, . . . , b − 1}ω be the

base-b expansion of
√
b. The problems Accα and Accβ are Turing-equivalent.

Proof. The proof mirrors that of Theorem 4.5.2 closely. To show that Accβ reduces

to Accα, let α̃ be the characteristic word of {n2 : n ∈ N} and {b · b2n : n ∈ N}.
Then the transducer B that changes every (1, 1) into (1, 0) (and leaves everything

else unchanged) has the property that B(α) = α̃. This follows from the fact that a

power of b is not a square if and only if it is of the form b · b2n. By Lemma 4.3.1,

the problem Accα̃ reduces to Accα. As Accα̃ and Accβ are Turing-equivalent, one

direction follows.

To show the other direction, let γ ∈ {(0, 1), (1, 0), (1, 1)}ω be the order word of α.

By the same reasoning as in the proof of Theorem 4.5.2, we have that P1 and P2 are

in�nite, recursive, e�ectively sparse, and e�ectively procyclic, and pairwise e�ectively

sparse where the latter is due to Schinzel's and Tijdeman's Lemma 4.5.3. Thus, P1

and P2 satisfy the requirements of Theorem 4.1.10 and thus Accα reduces to Accγ.

In γ, the letters (1, 1) and (0, 1) correspond to b2n and b · b2n respectively. Thus,

the terms (1, 1) and (0, 1) alternate in γ, starting with (1, 1). We factor γ as follows:

γ = (1, 0)r0(1, 1)(1, 0)s0(0, 1)(1, 0)r1(1, 1)(1, 0)s1(0, 1) · · · .

Let P ′ be the set of indices of (1, 1) and (0, 1), α′ be the characteristic word of P ′,

and (pm)
∞
m=0 the positive value sequence of P

′, Then, as (1, 1) and (0, 1) alternate in

γ, one can construct a transducer B such that B(α′) = γ. So using Theorem 4.3.1,

the problem Accγ reduces to Accα′ .

Between b2n and b2(n+1), there are bn+1− bn−1 = sn+ rn+1 squares while between

b·b2n and b·b2(n+1) there are ⌊
√
bbn+1⌋−⌊

√
bbn⌋ = rn+1+sn+1+1 squares. For allm ≥ 0,

we have that p2m = rm and p2m+1 = sm. Moreover, r0 = 1. By Theorem 4.1.9, to

decide Accα′ we only have to be able to decide Acc(pm modM)∞m=0
for all M ≥ 1. Thus,

it is su�cient to decide Acc((p2m modM,p2m+1 modM))∞m=0
= Acc((rm modM,sm modM))∞m=0

.

Hence, it is su�cient to decide Acc((sm+rm+1 modM,rn+1+sn+1+1 modM))∞m=0
for allM ≥ 1.

As (sm + rm+1 modM)∞m=0 = (bm+1 − bm − 1 modM)∞m=0 is ultimately periodic

where the period and preperiod can be controlled. Thus, we only need to determine

whether Acc(rn+1+sn+1+1 modM)∞m=0
= Acc(⌊

√
bbn+1⌋−⌊

√
bbn modM)∞m=0

, which is Turing-

interreducible with Accβ, where β is the base-b expansion of
√
b by Theorem 4.5.2.
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Applying this result with b = 2, the theorem MSON;<(N2, 2
N) is Turing-equivalent

to Accβ, where β is the binary expansion of
√
2, as stated in the introduction of this

section.

4.6 One linear recurrence sequence with two domi-

nant roots

In this section, we prove Theorem 4.1.4: the MSO theory of ⟨N;<,P ⟩ is decidable
for unary predicates P comprising the set of positive values of some non-degenerate,

simple, integer-valued LRS having two dominant roots.

We begin in Section 4.6.1 by untangling the de�nition of an LRS satisfying the

above hypotheses and reduce Theorem 4.1.4 to Theorem 4.1.12: the positive value

sequence of P is e�ectively prodisjunctive. We then provide intuition underlying the

proof of the latter through an extended example in Section 4.6.2 and prove a contin-

uous version of our problem in Section 4.6.3. Finally, we establish Theorem 4.1.12 in

Section 4.6.4.

4.6.1 Reduction to prodisjunctivity

Let (un)∞n=0 be an LRS satisfying the hypotheses of Theorem 4.1.4, i.e., (un)∞n=0 is sim-

ple, non-degenerate LRS with two dominant roots. We �rst record some elementary

observations.

Lemma 4.6.1. Assume that (un)
∞
n=0 is an LRS satisfying the hypotheses of Theo-

rem 4.1.4 and whose two dominant roots are λ1 and λ2. Then λ2 = λ1, the argument

of λ1 is not a rational multiple of π, and |λ1| > 1.

Proof. As the characteristic polynomial of (un)∞n=0 has integer coe�cients, the roots

λ1 and λ2 are also dominant. Since (un)∞n=0 has exactly two dominant roots, we have

{λ1, λ2} = {λ1, λ2}. If λ1 = λ1, we have that λ2 = λ2 and so both λ1 and λ2 are real.

Hence, λ1/λ2 = ±1, contradicting non-degeneracy. Thus, λ2 = λ1.

If the argument of λ1 is a rational multiple of π, then λ1/λ1 also has argument

a rational multiple of π. Having modulus 1, λ1/λ1 would then be a root of unity,

contradicting non-degeneracy.

Assume |λ1| ≤ 1. By the Vieta formulas, the product of the absolute values of the

characteristic roots is at most 1 and also equals |cd| ∈ Z>0, where cd is the constant

coe�cient of the characteristic polynomial of (un)∞n=0. Hence, |λ1| = 1, and there

are no non-dominant roots. Whence, by Theorem 1.1.1, we conclude that both λ1
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and λ2 are roots of unity, and thus so is their quotient, contradicting once again

non-degeneracy. Hence |λ1| > 1 as claimed.

When writing (un)
∞
n=0 in its exponential-polynomial form, we split it into its dom-

inant part (vn)∞n=0 and non-dominant part (rn)∞n=0:

un = vn + rn = αλn + αλ
n
+ rn . (4.19)

Here, α and λ are algebraic numbers such that α ̸= 0 (as otherwise λ and λ would

not be characteristic roots, i.e., roots of the polynomial corresponding to the minimal

recurrence relation that (un)
∞
n=0 obeys), |λ| > 1, and the argument of λ is not a

rational multiple of π.

Recall that P = {un : n ∈ N} ∩ N To apply Theorem 4.1.9, we need the following

lemma, whose proof relies heavily on the results of Mignotte, Shorey, and Tijdeman

from Section 1.2.

Lemma 4.6.2. Let P ⊆ N be as above. Then, P is in�nite, recursive, and e�ectively

sparse.

Proof. First, as discussed in Section 1.2, compute r > 0 and 0 < R < |λ| such that

rRn > rn for all n ∈ N.
To show that P is in�nite, invoke [39, Lemma 4]: for in�nitely many n, we have

αλn + αλ
n
> c|λ|n for some real c > 0. As c|λ|n > rRn for all but �nitely many n,

there is a c′ > 0 such that un ≥ c′|λ|n for in�nitely many n. Hence, P is in�nite. Let

(pm)
∞
m=0 be the positive value sequence of P , i.e., pm−1 is the mth smallest element

in P .

To show that (pm)
∞
m=0 is recursive, it is su�cient to �nd, for a given k ∈ N, a

number N such that |un| > k for all n ≥ N as then k ∈ P if and only if k ∈
{u0, . . . , uN−1}. Using Theorem 1.2.8, we have that when n ≥ C2 and un = k, we

have that

n log |λ| − C1 log
2(n) ≤ log |un| < log(k + 1) .

Hence, n is bounded, giving the desired bound N .

It remains to show that (pm)∞m=0 is e�ectively sparse. Assume that k, n1, n2 ∈ N,
n1 > n2, and |un1 − un2| ≤ k. Then Theorem 1.2.9 asserts that whenever n1 ≥ C4,

log(k + 1) ≥ log |un1 − un2 |
≥ |λ|n1 − C3 log(n1)

2 log(n2 + 2)

≥ |λ|n1 − C3 log(n1 + 1)3 .
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Thus |un1 − un2| ≤ k implies that n1 ≤ N ′ for some computable constant N ′. Hence

we can write out the set P ∩{0, . . . , k+1+max0≤n≤N ′{un}} and �nd the two largest

elements in this set having di�erence at most k.

Let (pm)∞m=0 denote the positive value sequence of P . By Theorem 4.1.9, it now

su�ces to prove that for all M ≥ 1, one can decide Acc(pm modM)∞m=0
(determine

whether a given deterministic Muller automaton A over alphabet {0, . . . ,M − 1}
accepts (pm modM)∞m=0). The next lemma shows how the e�ective prodisjunctivity

of (pm)∞m=0 asserted by Theorem 4.1.12 enables this.

Lemma 4.6.3. Theorem 4.1.12 implies Theorem 4.1.4.

Proof. By Lemma 4.6.2, P is in�nite, recursive, and e�ectively sparse, and so to apply

Theorem 4.1.9, we only need to verify that Acc(pm modM)∞m=0
is decidable for allM ≥ 1.

Let M ≥ 1. As Theorem 4.1.12 implies that (pm)∞m=0 is e�ectively prodisjunctive, we

can compute SM ⊂ {0, . . . ,M−1} andNM ∈ N such that (pm modM)∞m=NM
∈ SM

ω is

disjunctive. By hard-coding the �nite pre�x (pm modM)NM−1
m=0 into the automaton A

and for the remainder restricting A to the alphabet SM , we can apply Theorem 4.2.8

to conclude the lemma.

Theorem 4.1.12 asserts that, for any M ≥ 2, (pm modM)∞m=NM
∈ SM

ω is dis-

junctive. Unpacking this de�nition, we have that (pm modM)∞m=NM
∈ SM

ω is dis-

junctive if for any ℓ ≥ 1, every pattern (s1, . . . , sℓ) ∈ SM
ℓ appears in�nitely often in

(pm modM)∞m=NM
. That is, for all ℓ ∈ N, we have that N ≥ NM , and s1, . . . , sℓ ∈ SM ,

there are n1, . . . , nℓ ∈ N such that

1. n1, . . . , nℓ ≥ N ;

2. for all 1 ≤ i ≤ ℓ, we have that uni
≡ si (mod M);

3. 0 ≤ un1 < · · · < unℓ
;

4. for all m ≥ 0 such that un1 ≤ um ≤ unℓ
, we have um ∈ {un1 , . . . , unℓ

}.

As the dominant part (vn)∞n=0 (where vn = αλn + αλ
n
, see (4.19)) only relies on

two algebraic numbers, α and λ, it is easier to use (vn)
∞
n=0 than (un)

∞
n=0.

Lemma 4.6.4. Assume that for all natural numbers ℓ, N , T ≥ 2, and t1, . . . , tℓ ∈
{0, . . . , T − 1}, there are n1, . . . , nℓ ∈ N such that

(A) n1, . . . , nℓ ≥ N ;
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(B) for all 1 ≤ j ≤ ℓ, we have nj ≡ tj (mod T );

(C) 0 < vn1 < · · · < vnℓ
;

(D) for all m ≥ 0 such that vn1 ≤ vm ≤ vnℓ
, we have m ∈ {n1, . . . , nℓ}.

Then the conclusion of Theorem 4.1.12 holds.

Proof. We claim that for some computable number N ′, whenever m1,m2 ≥ N ′, we

have that um1 < um2 if and only if vm1 < vm2 . Suppose not. Then, without loss of

generality, m1 > m2 and |vm1 − vm2| < |rm1| + |rm2 | < 2rRm1 . But Theorem 1.2.9

implies that for m1 ≥ C4,

log(2r) +m1 log(R) > log |vm1 − vm2|
> m1 log |λ| − C3 log

2(m1) log(m2 + 2)

> m1 log |λ| − C3 log
3(m1 + 1) ,

which cannot hold for m1 ≥ N ′ for some computable N ′ ∈ N as log |λ| > log |R|. Our
claim follows.

Assume that (un modM)∞n=0 has period T (which can be e�ectively computed). If

s1, . . . , sℓ ∈ S and 1 ≤ j ≤ ℓ, there exists a tj ∈ {0, . . . , T − 1} such that unT+tj ≡ sj

(mod M) whenever n is large enough. Therefore, if n1, . . . , nℓ ∈ N are at least

max{N,N ′} and satisfy the hypotheses of the lemma, it follows that 0 ≤ un1 < · · · <
unℓ

and for all m ∈ N such that un1 < um < unℓ
, we have that m ∈ {n1, . . . , nℓ}.

In other words, if pm = un1 , then for 2 ≤ j ≤ ℓ, we have that pm+j−1 = unj
and

pm+j−1 = un′T+tj ≡ sj (mod M) for some n′ ∈ N.

As α ̸= 0 and Lemma 4.6.4 is only concerned with inequalities vn1 < vn2 and

vn1 > 0 for natural numbers n1 and n2, we can scale vn by 1/|2α|. That is, we can

assume that |α| = 1/2. Write α = 1
2
eiφ and λ = |λ|eiθ. Thus, vn = cos(θn+ φ)|λ|n.

Now, we sketch the method we will use to prove the hypothesis of Lemma 4.6.4.

Our proof of Lemma 4.6.4 relies heavily on the following notation.

De�nition 4.6.5. For integers d ̸= 0 and real numbers 0 < γ < δ, de�ne Jd(γ, δ) ⊂
R/2πZ as

Jd(γ, δ) =
{
x ∈ R/2πZ : 0 < γ cos(x) < cos(x+ dθ)|λ|d < δ cos(x)

}
.

Moreover, we de�ne Jd(0, δ) to stand for the limit of Jd(γ, δ) as γ tends to 0.
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In Lemma 4.6.7, We will show that these open sets Jd(γ, δ) are open intervals of

a certain size that are close to a point of the form −dθ ± π/2.

We �rst want to establish a continuous version of the hypothesis of Lemma 4.6.4,

where instead of using natural numbers n, we deal with real numbers. We can do

this, by searching for b2, . . . , bd ∈ N such that ni = n + bi. Then consider that vm =

cos(θm+φ)|λ|m for allm ∈ N. As we only compare terms of vn with other terms vn+bi
and 0, the inequality vn < vn+bi is equivalent to cos(θn+ φ) < cos(θn+ φ+ biθ)|λ|bi
and vn > 0 if and only if cos(θn+φ) > 0. Then, we consider real numbers x ∈ R/2πZ
instead of nθ + φ.

Thus, instead of n1, . . . , nℓ, we write n = n1 and ni = n + bi for 2 ≤ i ≤ ℓ.

Moreover, instead of �nding a natural number n, we want to �nd an interval I such

that there are x = θn + φ in I for arbitrarily large n in the correct conjugacy class.

This gives us the following lemma to prove:

Lemma 4.6.6. Let ℓ, T ≥ 2 and t1, . . . , tℓ ∈ {0, . . . , T − 1}. Then there are an

interval I ⊂ R/2πZ, b2, . . . , bℓ ≥ 1, 1 < δ2 < · · · < δℓ <
√
|λ|, and D ∈ N such that

(a) for all 2 ≤ j ≤ ℓ, we have bj ≡ tj − t1 (mod T );

(b) for all x ∈ I, we have

0 < cos(x) < cos(x+ b2θ)|λ|b2 < δ2 cos(x)

< cos(x+ b3θ)|λ|b3 < δ3 cos(x)

...

< cos(x+ bℓθ)|λ|bℓ < δℓ cos(x) ;

(4.20)

(c) for all integers d < D not in the set {0, b2, . . . , bℓ}, we have I ∩ Jd(1, δℓ) = ∅;

(d)
∑∞

d=D

∣∣Jd(1, δℓ)∣∣ < |I|.

Thus, if we compare this lemma with the hypothesis of Lemma 4.6.4, we see

that (a) will imply (B), (b) will imply (C), and (c) and (d) are technical conditions

which ultimately will imply (A) and (B) and are used to inductively construct further

values bi. Translating (b) in the notation of intervals J , we have that

I ⊆ (−π/2, π/2) ∩ Jb2(1, δ2) ∩ Jb3(δ2, δ3) ∩ · · · ∩ Jbℓ(δℓ−1, δℓ) .

We will prove Lemma 4.6.6 in Section 4.6.3 and conclude Theorem 4.1.4 in Sec-

tion 4.6.4. In the following section, we begin with an example to illustrate it in a

slightly less technical context.
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4.6.2 An extended example

Consider an example. Let (un)∞n=0 be the sequence (4.1) from Section 4.1 and assume

M = 5. Then we study un = 1
2
(2 + i)n + 1

2
(2− i)n + 2n modulo 5.

From (4.3), we get that (un mod 5)n=1∞ = (4, 2, 0, 4, 4, 2, 0, 4, . . . ) is periodic

with period T = 4. Thus, S5 = {0, 2, 4}. Then Theorem 4.1.12 states that every

(s1, . . . , sℓ) ∈ S5
∗ appears in (pm mod 5)∞m=0 in�nitely often as a factor. We will show

that this indeed holds when ℓ = 3 and (s1, s2, s3) = (0, 0, 0).

We now compute t1, t2, and t3 (the conjugacy classes modulo T = 4 such that

uTn+ti ≡ si (mod 5) for all large enough n). Thanks to (4.3), we are forced to take

ti = 3 for i = 1, 2, 3 as si = 0. Thus, to �nd (0, 0, 0) in (pm)
∞
m=0, we want to �nd

n1, n2, n3 ≥ 1 congruent to 3 modulo 4 such that un1 , un2 , and un3 are successive in P ,

i.e., 0 < un1 < un2 < un3 , and ifm ≥ 0 and un1 < um < un3 , then um ∈ {un1 , un2 , un3}.
By (4.2), the dominant part (vn)∞n=0 of (un)

∞
n=0 is given by vn = 1

2
(2+i)n+ 1

2
(2−i)n

and the non-dominant part (rn)∞n=0 by rn = 2n. As shown in Lemma 4.6.4, we can

use vn = αλn + αλ
n
= cos(nθ + φ)|λ|n instead of un for large enough n. Here, we

have that λ = eiθ|λ| = 2 + i and α = 1
2
eiφ = 1

2
. Thus, in our example, φ = 0.

Hence, we wish to �nd n1, n2, n3 ∈ N that are congruent to 3 modulo 4 and satisfy

0 < cos(n1θ) < cos(n2θ)|λ|n2−n1 < cos(n3θ)|λ|n3−n1 ,

and that for all m satisfying cos(n1θ) < cos(mθ)|λ|m−n1 < cos(n3θ)|λ|n3−n1 , we have

m ∈ {n1, n2, n3} (and hence m = n2 by the strict inequalities). This is the statement

of Lemma 4.6.4.

We reached this far in the previous section. Next, we aim to �nd b2, b3 ∈ N such

that n1 = n, n2 = n + b2, and n3 = n + b3 for some n ∈ N congruent to 3 modulo 4

that satis�es our hypotheses. To ensure that n2 ≡ t2 ≡ 3 (mod 4) and n2 ≡ t2 ≡ 3

(mod 4), we have to have that b2 ≡ b3 ≡ 0 (mod 4).

To solve this discrete problem (�nd natural numbers n, b2, b3 meeting these con-

straints), we �rst want to solve a continuous variant of this problem: �nd an interval

I ⊂ R/2πZ and these natural numbers b2 and b3 such that when x = nθ is in I, these
properties hold `often'. We will construct an open, non-empty interval I ⊂ R/2πZ
such that for all x ∈ I,

0 < cos(x) < cos(x+ b2θ)|λ|b2 < cos(x+ b3θ)|λ|b3 . (4.21)

We cannot ensure that for all x ∈ I and m ∈ Z, we have that m = b2 whenever

cos(x) < cos(x+mθ)|λ|m < cos(x+ b3θ)|λ|b3 . However, we can ensure it happens for
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−π/2 π/2
−1 0 1

Figure 4.4: Let λ = 1 + 2i. Then, for d = 1, 2, 3, 4, we drew Jd(1, 3) in cyan, green,
magenta, and red, respectively, and |Jd(1, 3)| are π/2, 0.464, 0.182, 0.073, respectively.
As some of the intervals overlap, we have stacked them vertically for visual purposes.
The points in black mark out −dθ ± π/2 for the corresponding value of d.

`many' x ∈ I, including for in�nitely many numbers of the form x = nθ, where n ≡ 3

(mod 4).

We translate this statement into the notation of the intervals Jd(γ, δ). Then,

arbitrarily setting δ2 = 1.95 and δ3 = 2, we strengthen the inequality (4.21) into the

form of item (b) in Lemma 4.6.6: we want that for all x ∈ I,

0 < cos(x) < cos(x+ b2θ)|λ|b2 < 1.95 cos(x) < cos(x+ b3θ)|λ|b3 < 2 cos(x) .

Thus, I ⊆ (−π/2, π/2) (as cos(x) > 0 and x ∈ I) and I ⊆ Jb2(1, 1.95) (as 1 ·cos(x) <
cos(x+ b2θ)|λ|b2 < 1.95 cos(x)). Similarly, I ⊆ Jb3(1.95, 2).

Dealing with items (c) and (d) of Lemma 4.6.6 is more di�cult. First, we compute

that if we take I1 := (−1.1, 1.1) ⊂ (−π/2, π/2), then for all integers d < 0, we have

that whenever x ∈ I1, we have cos(x + θd)|λ|d < cos(x) and so in item (c), we can

take D = 1.

Now we discuss the useful results on the structure of the sets Jd(γ, δ) proven in

Lemma 4.6.7. For d ∈ Z, the set Jd(γ, δ) is empty or consists of a single open interval.

Furthermore, for small enough δ, we have that |Jd(γ, δ))| = O((δ − γ)|λ|−d). Thus,

these intervals Jd(γ, δ) shrink exponentially fast with respect to d. Hence, item (d)

of Lemma 4.6.6 can easily be estimated using a geometric series:

∞∑
d=D

∣∣Jd(1, δℓ)∣∣ ≥ O
(
|λ|−D

)
.

Moreover, we will show that every point in them is at most O(δ|λ|−d) away from

−dθ ± π/2 in R/2πZ. We illustrate this in Figure 4.4.

As δ2 = 1.95 and δ3 = 2, we will construct I inductively as

I := I3 := Jb3(1.95, 2)
⊆ I2 := Jb2(1, 1.95)
⊆ I1 := (−1.1, 1.1) .
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−π/2 π/2J4(1, 2)

I1

Figure 4.5: We drew the intersection of I1 and Jd(1, 2) for d = 1, . . . , 20 in red when
d ̸≡ 0 (mod 4) and in green when d ≡ 0 (mod 4). For ease of visibility, the interval
Jd(1, 2) is positioned higher for d = 1, 2, 3, and for intervals Jd(1, 2) that are too
small to draw, their position is marked out with a dot.

In each step i, we want that for the interval Ii, the items (a) and (b) are satis�ed for

j ≤ i while items (c) and (d) also hold.

Recall that for x ∈ I1 = (−1.1, 1.1), we can take D = 1. Because δ3 = 2,∣∣∣ ∞⋃
d=1

Jd(1, 2)
∣∣∣ ≤ ∞∑

d=1

∣∣Jd(1, 2)∣∣ < |I1| . (4.22)

Thus, the intervals Jd(1, 2) satisfying d ̸= 0 do not cover I1 and so item (d) is satis�ed.

For I2, we take an interval Jb2(1, 1.95) ⊂ I1, where b2 ≡ 0 (mod 4). We pick

b2 = 4 as it is the smallest possible choice for b2. As shown in Figure 4.5, we have

that I2 is indeed in I1 and for all integers d < 20 not equal to either 0 or 4, we

have that I2 ∩ Jd(1, 2) is empty. As
∑∞

d=21 |Jd(1, 2)| < |J4(1, 1.95)|, the interval

I2 := J4(1, 1.95) is not covered by the intervals Jd(1, 2) such that d /∈ {0, 4}. Hence,
D = 21 is a valid choice in this step of our inductive procedure.

For b3, recall that b3 ≡ 0 (mod 4). We �nd that Jb(1.95, 2) ∩ I2 is non-empty

for b = 0, 4, 38, 99, 160, 309, 370, . . . . The smallest such b that is not equal to 0 or 4

(which are already in use) and congruent to 0 modulo 4 is 160. Then,

∞∑
d=1,d/∈{4,160}

∣∣Jd(1, 2) ∩ J160(1.95, 2)
∣∣ < ∣∣J160(1.95, 2)

∣∣
lets us take D = 160 and I := J160(1.95, 2). This interval I is tiny: it has a length of

approximately 5.7 · 10−58. However, I ∩⋃∞
d=−∞,d/∈{0,4,160} Jd(1, 2) is an even smaller

subset of I. Thus we have found an interval I such that, for all x ∈ I,

0 < cos(x) < cos(x+ 4θ)|λ|4 < 1.95 cos(x) < cos(x+ 160θ)|λ|160 < 2 cos(x) . (4.23)

This gives a solution to the continuous version of our problem: b2 = 4, δ2 = 1.95,

b3 = 160, δ3 = 2, and I = J160(1.95, 2) satisfy Lemma 4.6.6. It remains to show

that there are in�nitely many natural numbers n ≡ 3 (mod 4) such that item (D) of

Lemma 4.6.4 holds, as the three other conditions are already satis�ed.
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For a real number x, let |x|2π denote the distance from x to the nearest integer

multiple of 2π. Assume that for n as above item (D) in Lemma 4.6.4 is not satis�ed.

Then nθ ∈ Jd(1, 2) for some integer d ̸∈ {0, 4, 160}. Hence, using that Jd(1, 2) is

close to −dθ ± π/2 modulo 2π (we prove this in Lemma 4.6.7),

|d+ n|−c1 <
∣∣nθ − (−dθ ± π/2)

∣∣
2π
< c2|λ|−d (4.24)

for two constants c1, c2 > 0. In the above, the �rst inequality follows from Baker's the-

orem, whereas the second inequality is derived from the exponential rate of shrinkage

of the intervals. Thus, n is much larger than d.

As there are many nθ in I that are fairly `evenly' distributed, we are able to prove

that (4.24) cannot hold for all n. In other words, there are n ∈ N such that

0 < vn < vn+4 < vn+160

and vn < vm < vn+160 implies that m = n + 4. Translating back to un gives us the

required result. In particular, we can calculate that when taking

n = 218085867698737188268427463501308698889728969450963229999559 ,

we have that nθ ∈ I, n ≡ 3 (mod 4), and un < um < un+160 implies that m = 4.

Thus, un, un+4, and un+160 appear consecutively in (pm)
∞
m=0 and all are divisible by

5. Thus, the pattern (0, 0, 0) does indeed appear in (pm mod 5)∞m=0.

However, this construction is far from optimal. Although our choices of b2 = 4

and b3 = 160 were as small as possible with our choice of δ2 and δ3, these choices were

not optimal. Nonetheless, this would yield only a minor improvement, as one must

handle inequalities such as (4.22) with greater care.

Then one can �nd that choosing b2 = 8, b3 = 28, and n = 16958443, we indeed

get that there is no m ∈ N \ {0, 8, 28} such that um is between un, un+b2 , and un+b3 .

Meanwhile, cos(nθ) ≈ 0.404, cos((n+ b2)θ) ≈ 94.5, and cos((n+ b3)θ) ≈ 751, and so

one should have had chosen much larger δ2 and δ3 for which the general bounds in

Lemma 4.6.7 fail.

4.6.3 Proof of Lemma 4.6.6

In this section, we prove Lemma 4.6.6, the continuous version of Theorem 4.6.4, which

will serve as our main tool to establish Theorems 4.1.12 and 4.1.4.

Before we can accomplish this, we �rst need to establish a few lemmas. First, we

start by describing the sets Jd(γ, δ). Then, we show that Jd(γ, δ) is a single interval
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whose size of Jd(γ, δ) can be decently controlled. Moreover, the distance between a

point in Jd(γ, δ) and −dθ±π/2 are also well-behaved, and thus these points −dθ±π/2
describe the location of Jd(γ, δ) well. Together with the size bounds, we will use this

to determine whether such intervals have a non-empty intersection.

Lemma 4.6.7. One can compute constants C5, C6, C7, and C8 such that for all

0 < γ < δ <
√

|λ| and all d ≥ 1, we have that Jd(γ, δ) consists of a single interval,

C6
δ − γ

|λ|ddC7
<
∣∣Jd(γ, δ)∣∣ < C5

δ − γ

|λ|d ,

and |x− (−dθ ± π/2)|2π < C8|λ|−d for any x ∈ Jd(γ, δ).

Proof. Identify R/2πZ with (−π, π]. As 2 cos(x) = eix + e−ix and eidθ|λ|d = λd, for

γ ≤ η ≤ δ, we have that

cos(x+ dθ)|λ|d = η cos(x) ⇐⇒
(
eix
)2

= −λ
d − η

λd − η
. (4.25)

Hence, there is a unique x ∈ (−π/2, π/2] such that cos(x + dθ)|λ|d = η cos(x). If

x = π/2 and cos(x + dθ) = η cos(x), then cos(x) = 0 and θ/π is rational, which we

excluded in Lemma 4.6.1. Thus, Jd(γ, δ) is a single interval within (−π/2, π/2).
We now tackle the size of Jd(γ, δ). As Jd(γ, δ) consists of a single interval, we

have |Jd(γ, δ)| = |x1 − x2|2π, where x1 and x2 are solutions in (−π/2, π/2) to (4.25)

for η = γ and η = δ, respectively. Using the triangle inequality on the unit circle,

|eix1 − eix2| ≤ |x1 − x2|2π ≤ π

2
|eix1 − eix2| .

If γ = δ, x1 = x2, and so by continuity, when δ−γ is small enough, |eix1 −eix2| <
√
2.

Assume we are on this boundary. That is, |eix1 − eix2| =
√
2. Then eix1 = ±ieix2 .

It follows that e2ix1 = −e2ix2 , and so

−1 = e2ix1e−2ix2

=
λ
d − γ

λd − γ
· λ

d − δ

λ
d − δ

=
λdλ

d − γλd − δλ
d
+ γδ

λdλ
d − δλd − γλ

d
+ γδ

.

Therefore, 2λdλ
d− (δ−γ)λd+(δ−γ)λd+2γδ = 0. Then |λ|2d ≤ (δ−γ)|λ|d+γδ, and

so (|λ|d + γ)(|λ|d − δ) ≤ 0. This is impossible in our scenario as 0 < γ < δ <
√
|λ|

and d ≥ 1. Thus, again by continuity in γ and δ, we have that |eix1 − eix2 | <
√
2.
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From the geometry of the unit circle it follows that |eix1 − eix2| <
√
2 implies that√

2 < |eix1+eix2 | ≤ 2. Then, using the fact that |e2ix1−e2ix2| = |eix1−eix2||eix1+eix2|,
we obtain

1

2
|ei2x1 − ei2x2| ≤ |x1 − x2|2π ≤ π

2
√
2
|ei2x1 − ei2x2| .

We can rewrite |ei2x1 − ei2x2| as follows:

|e2ix1 − e2ix2|

=

∣∣∣∣λd − γ

λd − γ
− λ

d − δ

λd − δ

∣∣∣∣
=

∣∣(λd − γ
)(
λd − δ)−

(
λ
d − δ

)(
λd − γ)

∣∣
|λd − γ||λd − δ|

=
1

|λd − γ||λd − δ|
∣∣∣(δ − γ)λd − (δ − γ)λ

d
∣∣∣

=
(δ − γ)|λ|d

|λd − γ||λd − δ|
∣∣ei2dθ − 1

∣∣ .
As γ, δ <

√
|λ|, there are constants c1, c2 > 0 such that c1|λ|d < |λd − η| < c2|λ|d

for η ∈ {γ, δ} and d ≥ 1. Moreover, using Baker's theorem (Theorem 1.1.11) on

|ei2dθ − 1|, we obtain a constant C7 such that d−C7 < |ei2dθ − 1| < 2. Thus, for some

constants C5 and C6, we have that

|Jd(γ, δ)| ≤
π

2
√
2

∣∣e2ix1 − e2ix2
∣∣ < C5

δ − γ

|λ|d (4.26)

and

|Jd(γ, δ)| ≥
1

2

∣∣e2ix1 − e2ix2
∣∣ > C6

d−C7(δ − γ)

|λ|d .

For the last claim, we estimate |Jd(0,
√

|λ|)| with (4.26).

In the following lemma, we show that an interval in R/2πZ contains intervals

Jd(0,
√
|λ|) and numbers nθ + φ for small d and n in given congruent classes.

Lemma 4.6.8. Let T ≥ 2. There is a number C9 > 0 such that for every t ∈
{0, . . . , T−1} and small enough interval I ⊂ (−π/2, π/2), there are |I|−C9 ≤ n1, n2 ≤
2|I|−C9 such that n1θ + φ ∈ I, Jn2(0, |

√
λ|) ⊂ I, and n1, n2 ≡ t (mod T ).

Proof. By the pigeonhole principle, there are distinct d1, d2 ∈ N such that 0 ≤ d1, d2 ≤
⌈π|I|−1⌉ and d1Tθ and d2Tθ have distance at most |I| modulo 2π. Here, we use that

θ is not a rational multiple of π (Lemma 4.6.1). The last condition implies that∣∣(d1 − d2)Tθ
∣∣
2π
< |I| .
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Baker's theorem (Theorem 1.1.11) implies there is a computable number c1 such that∣∣(d1 − d2)Tθ
∣∣
2π
>
∣∣eiT (d1−d2)θ − 1

∣∣
> |d1 − d2|−c1

>
⌈
π|I|−1

⌉−c1 .
For all N ∈ Z and x ∈ R/2πZ, there is an N ≤ n ≤ 2π⌈π|I|−1⌉c1 + N such that

x + nT (d1 − d2)θ ∈ I. Taking C9 slightly larger than c1, we have 2πT ⌈π|I|−1⌉c1 <
|I|−C9 for small enough I. Hence, for all N ∈ Z and x ∈ R/2πZ, there is an n ≡ t

(mod T ) such that x + nθ ∈ I and N ≤ n ≤ |I|−C9 + N . For n1, let x = φ and

N = |I|−C9 .

Let I ′ be the middle half of I. As before, there is an n2 ≡ t (mod T ) such

that −2|I ′|−C9 ≤ −n2 ≤ −|I ′|−C9 and −n2θ ± π/2 ∈ I ′. If Jn2(0,
√

|λ|) ̸⊆ I, then
Jn2(0,

√
|λ|) intersects I ′ and the complement of I. So, |Jn2(0,

√
|λ|)| ≥ 1

4
|I| and

1

4
|I| ≤

∣∣Jn2

(
0,
√
|λ|
)∣∣ ≤ C8|λ|−n2

≤ C8|λ|−|I′|−C9

= C8|λ|−(|I|/2)−C9

by Lemma 4.6.7. After taking logarithms, we have that

log |I| ≤ log(4C8)− (|I|/2)−C9 log |λ| ,

which cannot hold for small enough I. Thus Jn2(1,
√

|λ|) ⊆ I.

For the fourth condition of Lemma 4.6.6, we would like D to be large, i.e., the

smallest d such that Jd(1, δℓ) has a non-empty intersection with I has to be quite

large. The following lemma shows this is indeed possible.

Lemma 4.6.9. Assume I ⊂ R/2πZ, b2, . . . , bℓ ∈ N, 1 < δ2 < · · · < δℓ <
√

|λ| and
D > 0 satisfy the hypotheses of Lemma 4.6.6. Then, for every small enough ε > 0,

there is a subinterval I ′ of I of length ε for which the hypotheses of Lemma 4.6.6 hold

for these b2, . . . , bℓ and δ1, . . . , δℓ and some D′ > ε−1/2.

Proof. For an interval I ′ ⊂ R/2πZ, let D(I ′) denote the smallest natural number

d ≥ 1 such that d ̸= b2, . . . , bℓ and Jd(1, δℓ) ∩ I ′ is non-empty. Let

c1 = |I| −
∞∑
d=D

d̸∈{b2,...,bℓ}

|Jd(1, δℓ)| .
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Jd(1, δℓ)

Jb2(1, δ2)
Jb3(δ2, δ3)

Jb4(δ3, δ4)

...

Jbk−1
(δk−2, δk−1)

Jbk(δk−1, δk)
Ik

Figure 4.6: The inductive construction for I. In green, we see that at each step, the
interval Ik is taken to be Jbk(δk−1, δk). This gives (4.20) and by construction, we
have the inclusion Ik+1 ⊂ Ik. The red intervals are dense in Ik, but by being careful,
do not cover Ik at any step. The picture is not to scale as both the red and green
intervals decrease in size exponentially fast.

By construction, c1 > 0. Let k ∈ N such that c1
k+2

< ε ≤ c1
k+1

(which always exists for

small enough ε). We will study the set

X = I \
k⋃

d=D
d̸∈{b2,...,bℓ}

Jd(1, δℓ) ,

which is an interval I from which at most k intervals are removed. Thus, X consists

out of at most k+1 intervals By assumption, |X| > c1, and so |X| contains an interval
I ′ of length ε ≤ c1

k+1
such that D(I ′) ≥ k+1. Then, for large enough k, we have that

D(I ′) ≥ k + 1 >

√
k + 2

c1
> ε−1/2 .

When ε is small enough, the result follows when setting D′ = D(I ′).

Now we are in a position to prove Lemma 4.6.6.

Proof of Lemma 4.6.6. We apply induction on k and require that the conditions hold

for 1, . . . , k − 1 for an interval Ik−1, and construct an interval Ik that satis�es the

theorem when the �rst three conditions are restricted to 1, . . . , k. Then we take

I = Iℓ. The iterative process (not to scale) is depicted in Figure 4.6.

For the base case, let I1 =
{
x ∈ R/2πZ : cos(x) > |λ|−1

}
, D = 1, and 1 < δℓ <√

|λ| small enough such that that the last inequality of

∞∑
d=D

∣∣Jd(1, δℓ)∣∣ ≤ ∞∑
d=1

C5
δℓ − 1

|λ|d ≤ C5
δℓ − 1

|λ| − 1
< |I1|

holds, where the �rst inequality follows from Lemma 4.6.7 and the second by a ge-

ometric series. Hence, Condition (D) holds, and the �rst three conditions follow by

construction. The base case follows.
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For the other cases, choose δ2, . . . , δℓ−1 such that 1 < δ2 < · · · < δℓ−1 < δℓ.

Furthermore, for simplicity, set δ1 = 1.

Now assume k ≥ 1 and let ε > 0. For ε small enough, applying Lemma 4.6.9 on

Ik−1 gives intervals Iε ⊂ Ik−1 of length ε where the smallest d such that Jd(1, δℓ)∩Iε ̸=
∅ is at least ε−1/2.

Lemma 4.6.8 implies that when ε is again small enough, there is an ε−C9 <

bk < 2ε−C9 such that bk ≡ tk − t1 (mod T ) and Jbk(δk−1, δk) ⊂ Iε. If d > 0 and

Jbk(δk−1, δk) ∩ Jd(1, δℓ) ̸= ∅, then d > ε−1/2 by Lemma 4.6.9. By Lemma 4.6.7,∣∣(bk − d)θ ±1 π/2±2 π/2
∣∣
2π

≤ C8

|λ|bk +
C8

|λ|d ≤ 2C8

|λ|min{bk,d}
.

We put jπ = ±1π/2±2 π/2 for j ∈ Z.2 Then by Baker's theorem (Theorem 1.1.11),

there is a constant c1 > 0,

|bk − d|−c1 <
∣∣ei((bk−d)θ+jπ) − 1

∣∣
≤
∣∣(bk − d)θ + jπ

∣∣
2π

≤ 2C8

|λ|min{bk,d}
.

Taking logarithms, we obtain

min{bk, d} log |λ| < log(2C8) + c1 log |bk − d| . (4.27)

Hence, if d < bk, we have |bk − d| < bk (as d > 0) and

d log |λ| < log(2C8) + c1 log(bk) .

Using that d > ε−1/2 and bk ≤ 2(ε/2)−C9 , we obtain

ε−1/2 log |λ| < log(2C8) + c1 log(2)− c1C9 log(ε/2) .

This is impossible for su�ciently small ε. We can therefore assume that d > bk. We

take Ik := Jbk(δk−1, δk) such that Conditions (A) and (B) are satis�ed. Now assume

d > bk and letD = d (and so Condition (C) automatically holds). For a contradiction,

assume Condition (D) is violated. Lemma 4.6.7 and the geometric series give that for

some c2 > 0,
C6(δk − δk−1)

|λ|bkbC7
k

≤ |Ik| ≤
∞∑
d′=d

|Jd′(1, δℓ)| < c2|λ|−d .

2We have adorned the ± operator with subscripts (1 and 2) to indicate how the particular choice
of signs should be preserved.
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Hence, setting c3 = log( c2
C6(δk−δk−1)

) and taking logarithms, we get

(d− bk) log |λ| ≤ c3 + C7 log(bk) . (4.28)

Inserting the latter in (4.27) gives

bk log |λ| ≤ log(2C8) + c1 log

(
c3 + C7 log(bk)

log |λ|

)
,

which upper bounds bk (independently of ε). As taking ε small gives arbitrarily large

bk, the result follows for k. Induction completes the proof.

4.6.4 Proof of Theorems 4.1.4 and 4.1.12

Now that we have solved the continuous version of our problem (Lemma 4.6.6), we

can solve the discrete version and conclude the proofs of Theorems 4.1.4 and 4.1.12.

Proof of Theorems 4.1.4 and 4.1.12. As Theorem 4.1.12 implies Theorem 4.1.4 due

to Lemma 4.6.3, it is su�cient to prove Theorem 4.1.12. In turn, Lemma 4.6.4 states

that Theorem 4.1.12 is implied by the following statement: for all N ∈ N, T ≥ 2, and

t1, . . . , tℓ ∈ {0, . . . , T − 1}, we can �nd n1, . . . , nℓ ∈ N such that

1. n1, . . . , nℓ ≥ N ;

2. nj ≡ tj (mod T ) for 1 ≤ j ≤ ℓ;

3. 0 < vn1 < · · · < vnℓ
;

4. for all m ∈ N such that vn1 ≤ vm ≤ vnℓ
, we have m ∈ {n1, . . . , nℓ}.

We will prove this statement for given N , T , ℓ, and t1, . . . , tℓ.

Lemma 4.6.6 gives numbers b2, . . . , bℓ ∈ N and 1 < δℓ <
√
|λ| and an interval

I. We take n1 = n and nj = n + bj for 2 ≤ j ≤ ℓ and claim that n ≥ N , n ≡ t1

(mod T ), and nθ + φ ∈ I, imply the �rst three conditions. Indeed, n1 ≥ N and

n1 ≡ t1 (mod T ) hold. For 2 ≤ j ≤ ℓ, we have nj = n+ bj ≥ N and

nj ≡ n+ bj ≡ n+ (tj − t1) ≡ tj (mod T ) .

For the third condition, we have that as nθ + φ ∈ I,

0 < cos(nθ + φ) < cos
(
(n+ b2)θ + φ

)
|λ|b2 < · · · < cos

(
(n+ bℓ)θ + φ

)
|λ|bℓ

and multiplying the last inequalities by 2|λ|n and noting that 2 cos(mθ+φ)|λ|m = vm

for all m ∈ N, we obtain our claim.

149



Let 0 < ε < |I| be small enough. Lemma 4.6.9 implies that there is an interval

Iε ⊂ I of length ε such that for all d < ε−1/2, we have that Iε ∩ Jd(1, δℓ) = ∅. By

Lemma 4.6.8, there is an n such that ε−C9 < n < 2ε−C9 , nθ + φ ∈ Iε, and n ≡ t1

(mod T ). Thus, for small enough ε, we also have that n ≥ N .

Now assume that m ̸∈ {n1, . . . , nℓ} and that vn1 < vm < vnℓ
. Then, setting

d = n−m, we have that d ̸∈ {0, b2, . . . , bℓ} and

0 < cos(nθ + φ)|λ|n < cos
(
(n+ d)θ + φ

)
|λ|n+d < cos

(
(n+ bℓ)θ + φ

)
|λ|n+bℓ .

As cos((n+ bℓ)θ+φ)|λ|bℓ < δℓ cos(nθ+φ) because nθ+φ ∈ I, it follows that nθ+φ

is in Jd(1, δℓ). Thus, d ≥ ε−1/2. By Lemma 4.6.7, nθ + φ ∈ Jd(1, δℓ) and −dθ ± π/2

are at most C8|λ|−d apart. Thus, for a constant c1 derived from Theorem 1.1.11,

C8|λ|−d ≥
∣∣(nθ + φ)− (−dθ ± π/2)

∣∣
π/2

≥
∣∣ei(nθ+φ)−(−dθ±π/2)∣∣

>
π

2
|n+ d|−c1 .

Taking logarithms, we obtain

log(C8) + c1 log(n+ d) > d log |λ| .

As d ≥ ε−1/2 and n ≥ ε−C9 , it follows that n, d ≥ 2 for small enough ε. In that case,

n+ d ≤ dn and so

log(C8) + c1 log(n) + c1 log(d) > d log |λ| .

Hence, either

2 log(C8) + 2c1 log(d) > d log |λ|

or

2c1 log(n) > d log |λ| .

The former is impossible for large enough d (and thus small enough ε), while for the

latter, the upper and lower bounds for n and d give that

2c1 log(2ε
−C9) > log |λ|ε−1/2 ,

which again is impossible for small enough ε. Hence, the fourth condition also follows.
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4.7 Concluding remarks

Our two main positive results of this chapter, Theorems 4.1.1 and 4.1.4, signi�cantly

expand the decidability landscape of the MSO theory of ⟨N;<,P1, . . . , Pd⟩, where the
predicates Pi are the positive values of an LRS (u

(i)
n )∞n=0. However, the techniques are

diametrically opposed to each other. In the case of Theorem 4.1.1, we obtain a toric

word, restricting which kind of factors appear in the characteristic word. In the case

of Theorem 4.1.4, we obtain a disjunctive word, showing that the characteristic word

contains every �nite word as a factor. Recall from Proposition 4.2.10, that being toric

and disjunctive are almost orthogonal properties.

How far can these methods be pushed? In this section, we make a conjecture.

Further generalizing these properties for more general LRS forces us to prove

that predicates derived from such LRS are in�nite, recursive, e�ectively sparse, and

e�ectively pairwise sparse. Proving such properties is at least Skolem- and Positivity-

hard, so for simplicity, assume we can avoid these problems. Then we use the Elgot-

Rabin contraction method in the form of Theorem 4.3.2: We need to prove that

Acc(βm,pm modM)∞m=0
is decidable for allM ≥ 1, where β and (pm)

∞
m=0 denote the order

word and the positive value sequence, respectively.

As explored in Section 4.5, dealing with polynomials is awkward as their behaviour

wildly di�ers from exponentially growing LRS. For non-simple LRS, we do not know

how to decide ultimate positivity, let alone what kind of structure their positive

value set can have. Thus, let us assume that we are dealing with simple LRS whose

spectral radius is larger than 1. Lastly, for non-degenerate LRS, cancellations within

the exponential-polynomial form can occur regularly. We want to avoid such problems

here.

Hence, we focus on simple, non-degenerate LRS whose spectral radius is larger

than 1. Then, for an LRS (un)
∞
n=0 with a dominant root λ, we can compute the

closure of the normalised sequence (un/|λ|n)∞n=0 as an interval as in Section 3.2. That

is, we compute µ−, µ+ ∈ Q such that

[µ−, µ+] = {un/|λ|n : n ∈ N} . (4.29)

Call [µ−, µ+] the normalised closure of (un)∞n=0. If µ+ ≤ 0, the predicate P = {un : n ∈
N} ∩ N is �nite, so such predicates are not very interesting. We conjecture the

following.

Conjecture 4.7.1. Let (u
(1)
n )∞n=0, . . . , (u

(d)
n )∞n=0 be pairwise sparse LRS of spectral

radius larger than 1 whose dominant parts have �nite overlap. For 1 ≤ i ≤ d, let
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[µ
(i)
− , µ

(i)
+ ] be the normalised closure of (u

(i)
n )∞n=0 and Pi = {u(i)n : n ∈ N}∩N be in�nite.

Let M ≥ 1, β be the order word of P1, . . . , Pd, and (pm)
∞
m=0 be the positive value

sequence of
⋃d
i=1 Pi. Then, there are N ∈ N and Σ ⊆ {0, 1}d × {0, . . . ,M − 1} such

that

1.
(
(βm, pm modM)

)∞
m=N

∈ Σω is toric if µ
(i)
− > 0 for all 1 ≤ i ≤ d;

2.
(
(βm, pm modM)

)∞
m=N

∈ Σω is disjunctive if µ
(i)
− ≤ 0 for all 1 ≤ i ≤ d.

Thus, we split the set of non-degenerate, simple LRS (un)
∞
n=0 such that {un : n ∈

N} into two di�erent classes that we expect to have a very distinct structure while

combining multiple such LRS preserves these structures. However, we remain silent

on what we expect to occur when some of (u(1)n )∞n=0, . . . , (u
(d)
n )∞n=0 satisfy Condition (1)

and others satisfy Condition (2) of Conjecture 4.7.1.
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Chapter 5

Presburger arithmetic expanded with

multiple powers

5.1 Introduction and main results

In this chapter, we study the decidability of Presburger arithmetic with predicates

derived from multiple linear recurrence sequences.

Recall that Presburger arithmetic is the �rst-order theory of the integers with ad-

dition and order, i.e., the �rst-order theory of the structure ⟨N; 0, 1, <,+⟩. Presburger
�rst established its decidability in 1929 via a quanti�er-elimination procedure [128];

yet Presburger arithmetic remains to this day a topic of active research owing, among

others, to its deep connections to automata theory and formal languages (see, e.g., the

survey [74]) as well as symbolic dynamics and combinatorics on words (see, e.g., [141]).

Another rich line of inquiry has consisted in investigating expansions of Presburger

arithmetic, i.e., theories obtained by augmenting Presburger arithmetic with partic-

ular predicates or functions. Here one must proceed with care: adding, for example,

the multiplication function × : Z2 → Z (or even simply the `squaring' function, from

which multiplication is easily recovered) to Presburger arithmetic immediately results

in undecidability, thanks to Gödel's incompleteness theorem [70]. Even the existen-

tial fragment of the �rst-order theory of ⟨Z; 0, 1, <,+,×⟩ is undecidable, as shown

by Matiyasevich in his negative solution of Hilbert's 10th problem (see [114]). Nev-

ertheless, many decidable expansions of Presburger arithmetic have been discovered

and studied (see, for instance, the survey [29]). Decidability is usually established in

one of two ways: either via quanti�er elimination, following Presburger's original ap-

proach, or through automata-theoretic means, where integers are encoded in a given

base as strings of digits and are processed by automata.
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Before giving examples of such expansions, we introduce some notation. For a �xed

integer α ≥ 2, as in the previous chapter, we let αN denote the set {αn : n ∈ N} and let
αx denote the N → N-function n 7→ αn. We also write Vα(n) to represent the function

taking n to the largest power of α that divides n (thus, for example, V2(24) = 8).

Moreover, if P1, . . . , Pℓ are predicates and f1, . . . , fm functions, we denote the �rst-

order theory of ⟨Z; 0, 1, <,+, P1, . . . , Pℓ, f1, . . . , fm⟩ as PA(P1, . . . , Pℓ, f1, . . . , fm).

Using an automata-theoretic construction, Büchi showed that, for any α, the

theory PA(Vα) is decidable [42].1 Semenov used quanti�er elimination to show that,

for any `e�ectively sparse' predicate P ⊂ Z, the �rst-order theory of ⟨Z; 0, 1, <,+, P ⟩
is decidable. Examples of sparse predicates include the sets of powers αN as well as

the set of factorial numbers {n! : n ∈ N}.2
As in Chapter 4, we are interested in adding multiple such predicates simultane-

ously. Unfortunately, the results are far less positive. Villemaire [157] proved that,

for multiplicatively independent α and β, the theory PA(Vα, Vβ) is undecidable by

encoding multiplication, and in 1997, Bès [28] achieved the same for PA(Vα, β
N).

Decidability was open for the even further restricted case PA(αN, βN) for 25 years,

for which Hieronymi and Schulz recently established undecidability [78].

Automata-theoretic techniques perform well when all numbers in play can be rep-

resented over a common base. But unfortunately, for multiplicatively independent

α and β (such as 2 and 3), this is not the case: powers of 2, for example, can be

easily be described using their base-2 expansion but not in their base-3 expansion.

For example, Erd®s [63] conjectured that every large enough power of 2 contains a

2 in its base-3 expansion, and this conjecture is still open. Multiplicatively indepen-

dent power predicates enable one to formulate non-trivial number-theoretic assertions

about integers, such as that a �xed number N ≥ 0, the equation |2n − 3m| < N has

only �nitely many solutions (m,n) ∈ N2. Such an assertion can already be formulated

in PA(2N, 3N).

Hieronymi and Schulz's undecidability result is quite intricate. Often, when prov-

ing undecidability in such theories, one encodes multiplication. Unfortunately, mul-

tiplication cannot be de�ned in this theory [138]. The undecidability construction

in [78] makes use of three quanti�er alternations (i.e., four blocks of quanti�ers of al-

ternating polarity), and so the ∀∃∀∃-fragment of PA(2N, 3N) is already undecidable.

This naturally raises the question of whether weaker fragments might be decidable.

1Thus, the �rst-order theory of PA(αN⟩) is decidable as well as the set of powers of α can be
de�ned in PA(0, 1, <,+, Vα) using that x is a power of α if and only if Vα(x) = x

2The complexity of expansions of Presburger arithmetic by a power predicate αN or a powering
function αx was very recently investigated [22, 49].
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In [78, Section 5], Hieronymi and Schulz conjecture that the existential fragment of

PA(αN, βN) is decidable subject to certain number-theoretic e�ectiveness assump-

tions.

Main results

The main result of this chapter is that the existential fragment of PA(αN, βN) is

indeed decidable.

Theorem 5.1.1. There is an algorithm that, given natural numbers α, β > 1 together

with an existential formula φ of PA(αN, βN), determines whether φ is true or not.

As automata-theoretic methods are seemingly insu�cient, our methods depend on

number-theoretical tools like Baker's theorem on linear forms in logarithms (Theo-

rem 1.1.11) and Kronecker's theorem on Diophantine approximation (Theorem 1.1.14)

in a manner similar to [27, 148].

Secondly, we provide a shorter proof of Hieronymi and Schulz's undecidability

result, requiring only two quanti�er alternations (rather than three). We use the same

approach but reduce from the Halting problem for 2-counter machines as opposed to

the Halting problem for Turing machines, which results in a simpler construction.

Theorem 5.1.2. ∃∀∃-fragment of PA(αN, βN) is undecidable for multiplicatively in-

dependent α and β.

For any multiplicatively independent α, β, the decidability of PA(αN, βN) remains

open only for formulas containing exactly two alternating blocks of quanti�ers.

Finally, we also investigate the existential fragment of PA(αx, βx), in which the

power predicates have been replaced by powering functions.3 We have not been able

to establish either decidability or undecidability; however, we prove the following by

way of hardness.

Theorem 5.1.3. Let α, β > 1 be multiplicatively independent integers. Write (An)
∞
n=0

for the base-β expansion of logβ(α) and (Bn)
∞
n=0 for the base-α expansion of logα(β).

Suppose that the existential fragment of PA(αx, βx) is decidable. Then the following

are in turn decidable:

(A) Whether a given pattern appears in (An)
∞
n=0.

3To remain within the realm of integers, we set αn = βn = 0 for all n < 0

155



(B) Whether a given pattern appears at some index simultaneously in (An)
∞
n=0 and

(Bn)
∞
n=0.

(C) Whether a given pattern appears in (Aαn)∞n=0.

To place Theorem 5.1.3 in context, consider the case of α = 2 and β = 3. The

constant log3(2) is a transcendental number that is widely conjectured to be normal

(and thus in base 3, every length-ℓ pattern should appear within (An)
∞
n=0 with den-

sity 3−ℓ). A fortiori, this would entail that the answer to the �rst query is always

positive. However, normality on its own is not su�cient to settle either of the other

two queries.

Organization of the chapter

We will use the majority of this chapter to prove Theorem 5.1.1 in Sections 5.2�5.4.

The other two results, Theorems 5.1.2 and 5.1.3 have relatively short and straight-

forward proofs which can be found in Sections 5.6 and 5.5, respectively. Therefore,

we only give an overview of our proof of Theorem 5.1.1.

Recall that our central problem is to determine, given α, β ∈ N≥2, whether an

existential formula φ in the language of PA(αN, βN) holds. As the �rst step in

our decidability proof (Theorem 5.1.1), we will prove we can assume α and β are

multiplicatively independent in Lemma 5.2.1. Then, in Section 5.2, we will reduce

Theorem 5.1.1 to the following problem.

Problem 5.1.4. Given multiplicatively independent α, β ∈ N≥2, z1, . . . , zℓ ∈ {α, β},
r, s ≥ 0, A ∈ Zr×ℓ, b ∈ Zr, C ∈ Zs×ℓ, and d ∈ Zs, determine whether there exists

z = (zn1
1 , . . . , z

nℓ
ℓ ) such that Az > b and Cz = d.

Lemma 5.1.5. Let α, β ∈ N≥2 be multiplicatively independent. Then deciding the

existential fragment of PA(αN, βN) reduces to Problem 5.1.4.

We approach Problem 5.1.4 by �rst studying how to solve systems of the form

Cz = d, i.e., the case where there are no inequalities. The following de�nition

captures the structure of solutions of such systems.

De�nition 5.1.6. A set X ⊆ Nℓ belongs to the class A if it can be written in the

form

X =
⋃
i∈I

⋂
j∈Ji

Xj (5.1)
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where I and Ji for every i ∈ I are �nite, and each Xj is either of the form

Xj =
{
(n1, . . . , nℓ) ∈ Nℓ : nµ(j) = nσ(j) + cj

}
(5.2)

or of the form

Xj =
{
(n1, . . . , nℓ) ∈ Nℓ : nξ(j) = bj

}
(5.3)

where 1 ≤ ξ(j), µ(j), σ(j) ≤ ℓ and bj, cj ∈ N.

The sets belonging to A are semilinear. Observe that every �nite subset of Nℓ

belongs to A, and the class A is closed under �nite unions and intersections. In

Section 5.3, we will prove the following structure and e�ectiveness result about the

system Cz = d. Our main tool is Baker's theorem on linear forms in logarithms,

which we employ to solve Diophantine equations where the unknowns appear in the

exponent position.

Theorem 5.1.7. Let α, β ∈ N≥2 be multiplicatively independent and z1, . . . , zℓ ∈
{α, β} for some ℓ ≥ 1. Further let s ≥ 1, C ∈ Zs×ℓ, d ∈ Zs, and S ⊆ Nℓ be the

set of solutions of Cz = d, where z = (zn1
1 , . . . , z

nℓ
ℓ ). Then S ∈ A. Moreover, a

representation of S in the form (5.1) can be e�ectively computed, with the additional

property that zµ(j) = zσ(j) for every Xj of the form (5.2).

When proving Theorem 5.1.7, because the class A is closed under intersections, it

su�ces to consider a single equality

c1z
n1
1 + · · ·+ cℓz

nℓ
ℓ = d (5.4)

where c1, . . . , cℓ ∈ Z̸=0, d ∈ Z, α, β ≥ 2 are multiplicatively independent, and

z1, . . . , zℓ ∈ {α, β}. We will show that the set S of solutions of (5.4) belongs to

A and has an e�ectively computable representation. We further stipulate that zi = α

and zj = β for some i, j, and that no proper subsum of the left-hand side of (5.4) is

zero. In this case, we will show that the set of solutions is �nite and can be e�ectively

computed; see the proof of Theorem 5.3.2.4 The idea is to apply Baker's theorem on

linear forms in logarithms iteratively to bound the gaps between n1, . . . , nℓ, which,

in case d ̸= 0, will yield an upper bound on all of n1, . . . , nℓ. If d = 0, then we need

an additional argument involving p-adic valuations. On the other hand, if
⋂
j∈Ji Xj

is in�nite for some i in the representation of S in the form (5.1), then some subsum

of c1z
n1
1 + · · ·+ cℓz

nℓ
ℓ must be zero at in�nitely many points (n1, . . . , nℓ).

4For convenience, we make additional assumptions on zn1
1 , . . . , znℓ

ℓ in the statement of Theo-
rem 5.3.2. A slightly modi�ed proof can be given to show �niteness of solutions of (5.4) only assum-
ing that both α, β appear among z1, . . . , zℓ and requiring that all proper subsums of c1z

n1
1 +· · ·+cℓz

nℓ

ℓ

be non-zero.
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Example 5.1.8. Consider the equation

15 · 3n1 − 5 · 3n2 + 2n3 = 8 . (5.5)

The only proper subsum of the left-hand side that can be zero is 15 · 3n1 − 5 · 3n2 .

Therefore, we have in�nitely many solutions:

X :=
{
(n1, n2, n3) ∈ N3 : n2 = n1 + 1 ∧ n3 = 3

}
.

Suppose no proper subsum is zero. We additionally stipulate that 3n2 ≥ 3n1 ≥ 2n3 .

In this case, if n2 > n1+1, then the summand 5 ·3n2 becomes too large in magnitude:

we have that 5 ·3n2 ≥ 45 ·3n1 , 45 ·2n3 and hence (5.5) cannot hold. Therefore, only the

possibilities n2 = n1 and n2 = n1 + 1 remain. If we substitute n2 = n1 into (5.5), we

obtain 10 ·3n2+2n3 = 8, which does not have a solution. The substitution n2 = n1+1,

meanwhile, is not permitted as 15 · 3n1 − 5 · 3n2 becomes zero.

By the same argument, we can handle the case where 3n1 ≥ 3n2 ≥ 2n3 . The

four remaining cases (e.g., 3n1 ≥ 2n3 ≥ 3n2), however, require an iterated application

of Baker's theorem on linear forms in logarithms as in Theorem 5.3.2 to bound the

solutions. Checking all possible (n1, n2, n3) up to this bound, we obtain that the set

of all solutions of (5.5) is {(0, 3, 7), (1, 8, 15)} ∪X.

Once we know how to solve systems of linear equations in powers of α and β, we

discuss how we deal with inequalities. In Section 5.4, we argue as follows. Consider

a system Az > b and Cz = d as in the statement of Problem 5.1.4. Observing that

x > −c is equivalent to x = −c + 1 ∨ · · · ∨ x = 0 ∨ x > 0 for any variable x and

positive integer c, we rewrite our system in the form∨
k∈K

Akz > bk ∧ Ckz = dk

where Ak ∈ Zr×ℓ, Ck ∈ Zs×ℓ,bk ∈ Zr,dk ∈ Zs and, importantly, bk ≥ 0 for all k. We

can now solve each Akz > bk ∧ Ckz = dk separately. Let Sk denote the set of all

(n1, . . . , nℓ) ∈ Nℓ that satisfy Ckz = dk. By Theorem 5.1.7, the set Sk is de�ned by

equations of the form either na = nb + c or na = c, where 1 ≤ a, b ≤ ℓ, c ∈ N, and
za = zb in the former case. We can use each such equation as a substitution rule to

eliminate the variable za; see the proof of Theorem 5.1.1 on Page 177 for the exact

procedure. In the end, we construct Ãk ∈ Zr×ℓ such that Akz > bk ∧Ckz = dk has a

solution if and only if Ãkz > bk has a solution.

It remains to show how to solve the system Ãkz > bk. To do this, we �rst argue

that Ãkz > bk has a solution if and only if Ãkz > 0 has a solution. Next, using a
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form of Fourier-Motzkin elimination, we reduce solving the latter system to solving

systems of the form
hi(z

n3
3 ,...,z

nℓ
ℓ )

z
n2
2

<
z
n1
1

z
n2
2

− a <
hj(z

n3
3 ,...,z

nℓ
ℓ )

z
n2
2

for all (i, j) ∈ I− × I+

zn1
1 , z

n2
2 > zn3

3 > · · · > znℓ
ℓ

hi(z
n3
3 , . . . , z

nℓ
ℓ ) > 0 for all i ∈ I

n2 − n3 > N

(5.6)

where I−, I+, I are �nite sets of indices, each hi is a Q-linear form, a ∈ Q>0, and

N ∈ N. Our algorithm for solving the system (5.6) proceeds by �rst inductively

solving the subsystem consisting of the inequalities hi(z
n3
3 , . . . , z

nℓ
ℓ ) < hj(z

n3
3 , . . . , z

nℓ
ℓ )

for all (i, j) ∈ I− × I+, z
n3
3 > · · · > znℓ

ℓ , and hi(z
n3
3 , . . . , z

nℓ
ℓ ) > 0 for i ∈ I. If no such

solution exists, then (5.6) does not have a solution either. Otherwise, let (m3, . . . ,mℓ)

be a solution to the subsystem. In Section 5.4, we use arguments from Diophantine

approximation to prove that in the latter case, the system (5.6) does always have a

solution.

5.2 From formulas to systems of inequalities

To start, we can assume that α and β are multiplicatively independent.

Lemma 5.2.1. Theorem 5.1.1 holds when α and β are multiplicatively dependent.

Proof. As α and β are multiplicatively dependent, one can compute natural numbers

Dα, Dβ such that αDα = βDβ . Let γ = αDα . Then, γN can be de�ned in PA(Vγ)

(by x ∈ γN if and only if Vγ(x) = x), αN by
⋃Dα−1
i=0 αiγN, and βN by

⋃Dβ−1
i=0 βiγN.

Thus, αN and βN can be de�ned in PA(Vγ), which is decidable due to the results of

Büchi [42]. Hence, the result follows as one can encode any formula in PA(αN, βN)

thus in PA(Vγ).

From now on, we assume that α and β are multiplicatively independent and

continue by proving Theorem 5.1.5. Our main tool is the fact that semilinear sets

have quanti�er-free representations constructed from linear inequalities and divisi-

bility constraints. We note that our reduction from the decision problem for the

existential fragment of PA(αN, βN) to Problem 5.1.4 does not preserve α and β.

Proof of Theorem 5.1.5. Suppose we are given multiplicative independent integers

α, β ≥ 2 and an existential formula ∃z : φ(z) in the language of PA(αN, βN), where φ

is quanti�er-free and z is a collection of variables. We start by applying a sequence
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of transformations to ∃z : φ(z). Therefore, every atomic formula in the language of

PA(αN, βN) is equivalent to either t > 0, t = 0, t ∈ αN, or t ∈ βN for an integer linear

combination of integer constants and variables t. For a term t and γ ∈ {α, β}, we
can rewrite the formula ¬(t ∈ γN) as

t < 1 ∨ ∃x : x ∈ γN ∧ x < t < x+ · · ·+ x︸ ︷︷ ︸
γ times

.

Since ¬(t > 0) and ¬(t = 0) are equivalent to t < 0 ∨ t = 0 and t > 0 ∨ t < 0

respectively, we can construct a formula ∃x : φ̂(x) equivalent to ∃z : φ(z) in which

the negation symbol does not occur. We can also rewrite t ∈ γN as y = t ∧ y ∈ γN,

where y is a fresh variable. Therefore, we can construct a formula

φ̃(y,x) :=
∨
e∈E

∧
j∈Je

µj(y,x)

not containing the negation symbol, where y denotes a collection y1, . . . , yℓ of fresh

variables, with the following properties.

� ∃z ∈ Zk : φ(z) ⇐⇒ ∃y ∈ Zℓ,x ∈ Zk : φ̃(y,x).

� For each yi, there exists unique γi ∈ {α, β} such that yi ∈ γNi is a sub-formula

of φ̃.

� Each µj(y,x) is an atomic formula either of the form t(y,x) ∼ 0 for a term

t(y,x) and ∼ ∈ {>,=}, or of the form yi ∈ γNi for some i.

Next, write each
∧
j∈Je µj(y,x) in the form∧

j∈Ae

yσ(j) ∈ γNσ(j) ∧
∧
j∈Be

tj(y,x) ∼j 0

where σ(j) ∈ {1, . . . , ℓ} and∼j ∈ {>,=}. We can then write ∃y ∈ Zℓ,x ∈ Zk : φ̃(y,x)
equivalently as∨

e∈E

(
∃y ∈ Zℓ :

∧
j∈Ae

yσ(j) ∈ γNσ(j) ∧ ∃x ∈ Zk :
∧
j∈Be

tj(y,x) ∼j 0

)
. (5.7)

For e ∈ E, let Se be the semilinear set consisting of all y ∈ Zℓ such that ∃x ∈
Zk :

∧
j∈Be

tj(y,x) ∼j 0 holds. Observe that each Se is computable as it is de�ned in

Presburger arithmetic. Setting zi = γi and yi = zni
i for 1 ≤ i ≤ ℓ, we rewrite (5.7) as∨

e∈E

∃n1, . . . , nℓ ∈ N : (zn1
1 , . . . , z

nℓ
ℓ ) ∈ Se ,
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which is equivalent to

∃n1, . . . , nℓ ∈ N : (zn1
1 , . . . , z

nℓ
ℓ ) ∈ S

for the semilinear set S =
⋃
e∈E Se .

Recall from Section 1.3.2 that each semilinear set has a representation in the

form (1.5). For x, y, r ≥ 0 and λ,D ≥ 1, the equivalence x + y ≡ r (mod D) can be

rewritten as ∨
0≤r1,r2<D

r1+r2≡r (mod D)

x ≡ r1 (mod D) ∧ y ≡ r2 (mod D)

and x ≡ r (mod D) is equivalent to
∨λ−1
k=0 x ≡ r + kD (mod λD). Hence, we can

construct D ≥ 1 and a representation of S of the form∨
p∈P

( ℓ∧
i=1

xi ≡ ri,p (mod D) ∧
∧
s∈Sp

hs(x1, . . . , xd) ∼s bs

)
(5.8)

where each ri,p ≥ 0, hs is a Z-linear form, bs ∈ Z, and ∼s ∈ {>,=}. Write S̃p
for the set de�ned by p ∈ P in (5.8), so that S =

⋃
p∈P S̃p. It su�ces to reduce

deciding ∃n1, . . . , nℓ ∈ N : (zn1
1 , . . . , z

nℓ
ℓ ) ∈ S̃p to Problem 5.1.4. To do this, apply

Lemma 1.2.1 on the LRS (zni )
∞
n=0 to deduce that the sequence (zni mod D)∞n=0 is

ultimately periodic with a computable period Dzi . Thus, for all 1 ≤ i ≤ ℓ and

p ∈ P , the set {ni ∈ N : zni
i ≡ ri,p (mod D)} is the union of �nitely many points

and �nitely many arithmetic progressions with period Dzi that can be computed

explicitly. Therefore, ∃n1, . . . , nℓ : (z
n1
1 , . . . , z

nℓ
ℓ ) ∈ S̃p can be equivalently expressed

as a disjunction of formulas of the form

∃m1, . . . ,mℓ ∈ N :
∧
s∈Sp

hs
(
z
ts,1
1 , . . . , z

ts,ℓ
ℓ

)
∼s bs

where for all s and ℓ, we have ts,ℓ = a or ts,ℓ = a + mi · Dzi for a constant a ∈ N.
It remains to observe that z

ai+mi·Dzi
i = zaii

(
z
Dzi
i

)mi

. Therefore, we have reduced

deciding the truth value of ∃x : φ(x) to solving systems of (in)equalities in powers of

γα = αDα and γβ = βDβ . Note that γα, γβ are also multiplicatively independent. The

statement follows.

5.3 Solving Diophantine equations

We now discuss solutions of systems of a�ne Diophantine equations in powers of α

and β. This is the �rst step towards showing the decidability of Problem 5.1.4. Our

goal in this section is to prove the following theorem.
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Theorem 5.1.7. Let α, β ∈ N≥2 be multiplicatively independent and z1, . . . , zℓ ∈
{α, β} for some ℓ ≥ 1. Further let s ≥ 1, C ∈ Zs×ℓ, d ∈ Zs, and S ⊆ Nℓ be the

set of solutions of Cz = d, where z = (zn1
1 , . . . , z

nℓ
ℓ ). Then S ∈ A. Moreover, a

representation of S in the form (5.1) can be e�ectively computed, with the additional

property that zµ(j) = zσ(j) for every Xj of the form (5.2).

Proof. As the class A is closed under intersections, it is su�cient to show that the

solution set of a single equation c1z
n1
1 + · · ·+ cℓznℓ

ℓ belongs to A and can be e�ectively

computed. Moreover, we can assume that all ci are non-zero. Then the theorem

holds when ℓ = 0, and if ℓ = 1, then c1z
n1
1 = d has at most one solution that can be

computed. Thus, we can assume that ℓ ≥ 2.

To prove the theorem above, we want to assume that no proper subsum of c1z
n1
1 +

· · · + cℓz
nℓ
ℓ vanishes. We can make this assumption by partitioning {1, . . . , ℓ} into

non-empty subsets A1, . . . , Ar such that for a single subset Aj we have that∑
i∈Aj

ciz
ni
i = d (5.9)

and for all other subsets Aj, we have that∑
i∈Aj

ciz
ni
i = 0 , (5.10)

where in all cases, we can assume that no proper subsum vanishes. Note that any

solution to c1z
n1
1 + · · ·+ cℓz

nℓ
ℓ = d occurs in such a partition. As the class A is closed

under intersections and unions, it follows that �nding the solutions to equations

without vanishing proper subsums is su�cient. Thus, without loss of generality, we

can assume that we need to �nd the solutions to c1z
n1
1 + · · · + cℓz

nℓ
ℓ = d for integers

d where no proper subsum vanishes.

Next, we will consider the ℓ! ways in which we can order zn1
1 , . . . , z

nℓ
ℓ using the

permutations σ : {1, . . . , ℓ} → {1, . . . , ℓ}. We will show that the set (n1, . . . , nℓ) such

that 
c1z

n1
1 + · · ·+ cℓz

nℓ
ℓ = d

∀ ∅ ⊊ I ⊊ {1, . . . , ℓ} : ∑i∈I ciz
ni
i ̸= 0

z
nσ(1)

σ(1) ≥ · · · ≥ z
nσ(ℓ)

σ(ℓ)

all belong to the class A and can be e�ectively computed. To prove this by reordering

the variables, we can assume that σ is the identity. That is, the set S of tuples

(n1, . . . , nℓ) such that
c1z

n1
1 + · · ·+ cℓz

nℓ
ℓ = d

∀ ∅ ⊊ I ⊊ {1, . . . , ℓ} : ∑i∈I ciz
ni
i ̸= 0

zn1
1 ≥ · · · ≥ znℓ

ℓ

(5.11)
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is in A and can be represented as such.

Claim 5.3.1. Without loss of generality, z1 ̸= z2.

Proof. After renaming the variables α and β when needed, assume that α = z1 = z2

and that (5.11) holds. Then,

|c1|αn1 ≤ |d|+
ℓ∑
i=2

|ci|αni ≤
(
|d|+

ℓ∑
i=2

|ci|
)
αn2 ,

set N = logα

(
|d|+

∑ℓ
i=2 |ci|)

|c1|

)
such that we have to have that 0 ≤ n1 − n2 ≤ N (we use

that c1 ̸= 0). Let S̃ =
⋃N
k=0 S̃k, where each S̃k is the set of all solutions of{

(c1α
k + c2)α

n2 + c3α
n3 + · · ·+ cℓα

nℓ = d

αn2 ≥ · · · ≥ αnℓ ,

where we have eliminated n1 by setting n1 = n2 + k. If ℓ > 2 and c1α
k + c2 = 0,

a proper subsum vanishes, which is not allowed, and we set S̃k = ∅. Otherwise, we

inductively construct a representation of S̃k, by �nding a representation of the system

above and adding the condition n1 = n2 + k.

The remainder of the proof follows from the next theorem, whose proof is below.

Theorem 5.3.2. Let α, β ∈ N≥2 be multiplicatively independent, ℓ ≥ 2, z1, . . . , zℓ ∈
{α, β} with z1 = α and z2 = β, c1, . . . , cℓ ∈ Z̸=0, and d ∈ Z. Let S denote the set of

all (n1, . . . , nℓ) ∈ Nℓ satisfying all of the following.

(a) c1z
n1
1 + · · ·+ cℓz

nℓ
ℓ = d;

(b) zn1
1 , z

n2
2 ≥ zn3

3 ≥ · · · ≥ znℓ
ℓ ;

(c)
∑

i∈I ciz
ni
i ̸= 0 for every non-empty proper subset I of {1, . . . , ℓ}.

De�ne µ(j) to be 1 if zj = α and µ(j) = 2 if zj = β. We have the following.

(i) We can compute ξ1, ξ2 ∈ Q such that n1 ≥ log(β)
log(α)

n2 − ξ1 and n2 ≥ log(α)
log(β)

n1 − ξ2.

(ii) There exist e�ectively computable polynomials p1, . . . , pℓ ∈ Q[x, y] such that

nµ(j) − nj < pj
(
log(1 + n1), log(1 + n2)

)
for all (n1, . . . , nℓ) ∈ S and 1 ≤ j ≤ ℓ.

(iii) The set S is �nite and can be e�ectively computed.
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As �nite sets are in A, Theorem 5.3.2 completes the proof of Theorem 5.1.7.

Next, we show how to prove Theorem 5.1.7: under certain assumptions, equations

involving powers of both α and β have only �nitely many solutions that can be

computed using Baker's theorem on linear forms in logarithms in an iterative fashion.

Proof of Theorem 5.3.2. Observe that nj ≤ nµ(j) for all j ≥ 1 by (b).

Proof of (i). Together (a) and (b) imply that, for all (n1, . . . , nℓ) ∈ S,

|c1|zn1
1 ≤

(
|d|+

ℓ∑
i=2

|ci|
)
zn2
2 .

Taking logarithms and dividing by log(β) = log(z2) gives

n2 ≥
log(α)

log(β)
n1 −

log
(
|d|+∑ℓ

i=2 |ci|
)
− log |c1|

log(β)
.

This lets us �nd ξ2. To compute ξ1, observe that by (a) and (b),

|c1|zn1
1 ≤

(
|d|+ |c1|+

ℓ∑
i=2

|ci|
)
zn2
2

and proceed similarly.

Proof of (ii). By �nite induction. Note that we can choose p1(x, y), p2(x, y) = 1.

Suppose, therefore, that p1, . . . , pj have already been computed for some j ≥ 2. By

swapping z1 and z2 if necessary, we can assume zj+1 = z1 = α as the roles z1 and z2
in the statement of our theorem are completely symmetrical.

For (n1, . . . , nℓ) ∈ S de�ne

X := −
∑
1≤i≤j
zi=α

ciα
ni−n1 ,

Y :=
∑
1≤i≤j
zi=β

ciβ
ni−n2 ,

Λ := α−n1βn2X−1Y − 1 =

(
−
∑
1≤i≤j
zi=α

ciα
ni

)−1

·
∑
1≤i≤j
zi=β

ciβ
ni − 1 .

By (c), X is non-zero and hence X−1 is well-de�ned, and similarly, Y and Λ are

non-zero. Next, observe that (a) can be written as

Λ =

( ℓ∑
i=j+1

ciz
ni
i − d

)
·
( ∑

1≤i≤j
zi=α

ciα
ni

)−1

. (5.12)
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We will estimate the magnitude of terms on both sides of (5.12), starting with the

left-hand side. Recall the de�nition and the properties of the absolute logarithmic

Weil height h(·). We have that h(X−1Y ) ≤ h(X) + h(Y ) and

h(X) ≤ log(j) +
∑
1≤i≤j
zi=α

log |ci|+ (n1 − ni) log |α|,

h(Y ) ≤ log(j) +
∑
1≤i≤j
zi=β

log |ci|+ (n2 − ni) log |β| .

Therefore, using Corollary 1.1.12 we can compute κ1 ∈ Q>0 such that

log |Λ| > −κ1 ·
(
1 + log(1 + max(1, n1, n2))

)
· max
1≤i≤j

(nµ(i) − ni) . (5.13)

Applying the induction hypothesis, there exists computable q ∈ Q[x, y] such that

log |Λ| > −κ1 · q
(
log(1 + n1), log(1 + n2)

)
.

Next, consider the right-hand side of (5.12). Let a be the largest integer 1 ≤ i ≤ j

such that zi = α. We have that∣∣∣∣ ℓ∑
i=j+1

ciz
ni
i − d

∣∣∣∣ ≤ ∣∣∣∣ ℓ∑
i=j+1

ci − d

∣∣∣∣znj+1

j+1 = κ2α
nj+1

for some computable κ2 ∈ Z>0 as α = zj+1. By (c),
∑

1≤i≤j,zi=α ciα
ni is a non-zero

integer multiple of αna and so by the induction hypothesis,∣∣∣∣ ∑
1≤i≤j
zi=α

ciα
ni

∣∣∣∣ ≥ αna > αn1−r(log(1+n1), log(1+n2))

for a computable polynomial r ∈ Q[x, y]. Hence the magnitude of the right-hand

side of (5.12) is bounded by κ2αr(log(1+n1), log(1+n2))−n1+nj+1 , and a necessary condition

for (5.12) to hold is that

−κ1 · q
(
log(1 + n1), log(1 + n2)

)
< log

(
κ2 · αr(log(1+n1), log(1+n2))−n1+nj+1

)
which is equivalent to

n1 − nj+1 <
κ1 · q

(
log(1 + n1), log(1 + n2)

)
− log(κ2)

log(α)
+ r
(
log(1 + n1), log(1 + n2)

)
.

(5.14)

It remains to choose pj+1 ∈ Q[x, y] such that pj+1(log(1 + n1), log(1 + n2)) is at least

as large as the right-hand side of (5.14).
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Proof of (iii). Since α ̸= β by the multiplicative independence assumption,

without loss of generality, we can assume that α < β. (The roles of α = z1 and

β = z2 are symmetric, and we can swap them if necessary.) If n2 ≥ n1, (i) gives that

n2 ≥ n1 ≥ log(β)
log(α)

n2 − ξ1, e�ectively bounding n2 (and thus n1) as
log(β)
log(α)

> 1. Thus, we

can assume that n1 > n2. Call S1 the set of elements in S satisfying n1 > n2.

Case 1: Suppose d ̸= 0. This case is very similar to the proof of (ii). Let

X = −
∑
1≤i≤ℓ
zi=α

ciα
ni−n1 ,

Y =
∑
1≤i≤ℓ
zi=β

ciβ
ni−n2 ,

Λ = α−n1βn2 ·X−1Y − 1 .

Then again X, Y , and Λ are non-zero, and we rewrite (a) in the form

Λ = −d
( ∑

1≤i≤ℓ
zi=α

ciα
ni

)−1

(5.15)

and bound the magnitude on both sides. Because n1 > n2 ≥ 0 for all solutions in S,
application of Corollary 1.1.12 and (ii) yields,

log |Λ| > −κ2p
(
log(n1)

)
,

where κ2 > 0 and p ∈ Q[x] are computed e�ectively. It remains to compute an upper

bound for the right-hand side. Let a be the largest integer 1 ≤ i ≤ ℓ such that zi = α.

Then, ∣∣∣∣ ∑
1≤i≤ℓ
zi=α

ciα
ni

∣∣∣∣ > αna > αn1−f(log(n1)) ,

where f ∈ Q[x] is computable. Hence, a necessary condition for (n1, . . . , nℓ) ∈ S is

κ2p
(
log(n1)

)
>
(
n1 − f(log(n1))

)
log(α)− log |d| ,

from which we can compute a bound on n1. Once we bound n1, a bound on the

remaining variables can be computed using (b) and (i).

Case 2: Suppose d = 0. This case is trickier. We will need a lemma.

Lemma 5.3.3. There exists a prime number p ∈ N such that νp(β) > 0 and

log(α)

log(β)
>
νp(α)

νp(β)
.
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Proof. If some prime p divides β but not α, the statement is immediate. Suppose,

therefore, that α, β have exactly the same prime divisors p1, . . . , pk. We have

log(α)

log(β)
=
νp1(α) log(p1) + · · ·+ νpk(α) log(pk)

νp1(β) log(p1) + · · ·+ νpk(β) log(pk)
.

By the multiplicative independence of α and β, we have that log(α)/ log(β) /∈ Q and

hence we have that νpi(α)/νpi(β) ̸= log(α)/ log(β) for all 1 ≤ i ≤ k. It follows that

log(α)/ log(β) > νpi(α)/νpi(β) for some 1 ≤ i ≤ k.

To bound the elements of S1, let a = max{i : zi = α}, b = max{i : zi = β},

A =
∑
1≤i≤ℓ
zi=α

ciα
ni , and

B = −
∑
1≤i≤ℓ
zi=β

ciβ
ni .

Let p be a prime number as in Theorem 5.3.3. A necessary condition for (a) to hold

is that νp(A) ≥ νp(B). Using the properties of the p-adic valuation, we have

νp(B) ≥ min
zi=β

(
νp(ciβ

ni)
)
≥ νp(β

nb) = nb · νp(β) .

Under the assumption n1 > n2, by (ii), there exists e�ectively computable q1 ∈ Q[x]

such that nb > n2 − q1(log(n1))/νp(β). Hence,

νp(B) > n2νp(β)− q1
(
log(n1)

)
.

Meanwhile,

νp(A) = νp(α
na) + νp

( ∑
1≤i≤ℓ
zi=α

ciα
ni−na

)

≤ n1νp(α) + logp

∣∣∣∣ ∑
1≤i≤ℓ
zi=α

ciα
ni−na

∣∣∣∣ .
Applying (ii), we obtain that

νp(A) ≤ n1νp(α) + q2
(
log(n1)

)
for an e�ectively computable q2 ∈ Q[x]. Thus, a necessary condition for (a) to hold

is that

n2νp(β)− q1
(
log(n1)

)
≤ n1νp(α) + q2

(
log(n1)

)
,
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which is equivalent to

n2 − n1
νp(α)

νp(β)
≤ q1

(
log(n1)

)
+ q2

(
log(n1)

)
νp(β)

.

Applying (i), we obtain that

−ξ2 + n1

(
log(α)

log(β)
− νp(α)

νp(β)

)
≤ q1

(
log(n1)

)
+ q2

(
log(n1)

)
νp(β)

.

By construction of p, the left-hand side of the inequality above grows linearly in n1

while the right-hand side grows poly-logarithmically. Hence, we can compute a bound

on n1, from which bounds on every ni can be derived.

5.4 Handling inequalities

In this section, we prove the decidability of Problem 5.1.4. This, in conjunction with

Theorem 5.1.5, completes the proof of our main decidability result (Theorem 5.1.1).

The following lemma is one of our main technical tools. In particular, it says that if

Az > 0 has a solution, then it has in�nitely many solutions.

Lemma 5.4.1 (Pumping Lemma). Suppose we are given

(a) Q-linear forms h1, . . . , hr in ℓ ≥ 1 variables,

(b) multiplicatively independent α, β ∈ N≥2,

(c) z1, . . . , zℓ satisfying zi ∈ {α, β} for all i and z1 = β,

(d) m1, . . . ,mℓ ∈ N, and

(e) ε ∈ Q>0.

Write J = {j ∈ {1, . . . , r} : hj(zm1
1 , . . . , zmℓ

ℓ ) > 0}. We can compute µ, δ ∈ Q>0 with

the following property. Suppose n1 > m1 is such that there exists k ∈ N for which

|αk/βn1 − µ| < δ. Then there exist n2, . . . , nℓ such that for all 1 ≤ j ≤ r,

(i) if j ∈ J , then hj(z
n1
1 , . . . , z

nℓ
ℓ ) > 0, and

(ii)

∣∣∣∣hj(zn1
1 ,...,z

nℓ
ℓ

)
βn1

− hj

(
z
m1
1 ,...,z

mℓ
ℓ

)
βm1

∣∣∣∣ < ε.

In particular, there exist in�nitely many n1 that can be extended to (n1, . . . , nℓ) sat-

isfying (i) and (ii) for all 1 ≤ j ≤ r.
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Proof. By re-ordering the numbers z2, . . . , zℓ, we can without loss of generality assume

that z1, . . . , zb = β and zb+1, . . . , zℓ = α for some 1 ≤ b ≤ ℓ+ 1. For 1 ≤ j ≤ r, write

hj(x1, . . . , xℓ) = tj(x1, . . . , xb) + sj(xb+1, . . . , xℓ) ,

where sj, tj are Q-linear forms. Compute ν ∈ Q>0 be such that

(A) tj(βm1 , . . . , βmb) + c · sj(αmb+1 , . . . , αmℓ) > 0 whenever c ∈ (1 − ν, 1 + ν) and

j ∈ J , and

(B) ν
∣∣sj(αmb+1 , . . . , αmℓ)/βm1

∣∣ < ε for all 1 ≤ j ≤ r.

Choose µ = β−m1 and δ ∈ (0, νβ−m1) ∩Q. It remains to argue the correctness of our

choice of µ, δ.

Suppose n1 > m1 satis�es |αk/βn1−µ| < δ for some k ∈ N. Due to Theorem 1.1.14,

there are in�nitely many such n1. Write mα = k and mβ = n1 −m1. We have that∣∣∣∣αmα

βmβ
− 1

∣∣∣∣ = βm1

∣∣∣∣ αkβn1
− µ

∣∣∣∣ < βm1δ < ν .

For 2 ≤ i ≤ b de�ne ni = mi +mβ and for b+ 1 ≤ i ≤ ℓ, de�ne ni = mi +mα. Then,

for all j ∈ J ,

1

βmβ
hj(z

n1
1 , . . . , z

mℓ
ℓ ) = tj(β

m1 , . . . , βmb) +
αmα

βmβ
sj(α

mb+1 , . . . , αmℓ)

> 0 ,

where the inequality follows from (A). This proves (i). To prove (ii), �rst observe that

for 1 ≤ i ≤ b, we have zni
i /z

n1
1 = 1 and for b+1 ≤ i ≤ ℓ, we have zni

i /z
n1
1 = αmα/βmβ .

Hence,
tj(β

n1 , . . . , βnb)

zn1
1

=
tj(β

m1 , . . . , βmb)

zm1
1

for all 1 ≤ j ≤ r. Therefore, for all j,

hj(z
n1
1 , . . . , z

nℓ
ℓ )

zn1
1

− hj(z
m1
1 , . . . , zmℓ

ℓ )

zm1
1

=
sj(α

nb+1 , . . . , αnℓ)

βn1
− sj(α

mb+1 , . . . , αmℓ)

βm1

=
sj(α

mb+1+mα , . . . , αmℓ+mα)

βm1+mβ
− sj(α

mb+1 , . . . , αmℓ)

βm1

=
sj(α

mb+1 , . . . , αmℓ)

βm1

(
αmα

βmβ
− 1

)
.

It remains to invoke (B). Finally, that there exist in�nitely many n1 that can be

extended to (n1, . . . , nℓ) satisfying (i) and (ii) for all j follows from Theorem 1.1.14.
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Corollary 5.4.2. Let α, β ∈ N≥2 be multiplicatively independent, z1, . . . , zℓ ∈ {α, β},
A ∈ Zr×ℓ, and b ∈ Zr>0. There exists z = (zm1

1 , . . . , zmℓ
ℓ ) with m1, . . . ,mℓ ≥ 0

satisfying Az > 0 if and only if there exists z̃ = (zn1
1 , . . . , z

nℓ
ℓ ) with n1, . . . , nℓ ≥ 0

satisfying Az̃ > b.

Proof. The `if'-direction is trivial as one can take z := z̃. Thus, we focus on the other

direction. Let z = (zm1
1 , . . . , zmℓ

ℓ ) be as above. For 1 ≤ j ≤ r, de�ne the form

hj(x1, . . . , xℓ) = e⊤j A(x1, . . . , xℓ) .

Let ε ∈ Q>0 be such that hj(z
m1
1 , . . . , zmℓ

ℓ )/zm1
1 > 2ε for all j. Invoke Theorem 5.4.1

with the forms h1, . . . , hr and the values m1, . . . ,mℓ, ε. Therefore, there exist in-

�nitely many (m̃1, . . . , m̃ℓ) (where m̃1 can be arbitrarily large) such that, for all

j,hj(z
m̃1
1 , . . . , zm̃ℓ

ℓ ) > 0 and∣∣∣∣∣hj
(
zm̃1
1 , . . . , zm̃ℓ

ℓ

)
zm̃1
1

− hj
(
zm1
1 , . . . , zmℓ

ℓ

)
zm1
1

∣∣∣∣∣ < ε . (5.16)

Since hj(z
m1
1 , . . . , zmℓ

ℓ )/zm1
1 > 2ε, (5.16) implies that hj

(
zm̃1
1 , . . . , zm̃ℓ

ℓ

)
> εzm̃1

1 . It

remains to choose (m̃1, . . . , m̃ℓ) with z
m̃1
1 su�ciently large.

The following useful lemma shows how to eliminate a variable na if we can bound

the gap between na and some other (suitable) variable nb.

Lemma 5.4.3. Let α, β ∈ N≥2, z1, . . . , zℓ ∈ {α, β} for ℓ ≥ 2, and 1 ≤ a, b ≤ ℓ be

distinct with za = zb. Suppose we are given the system{
Az > 0

N1 ≤ na − nb ≤ N2

(5.17)

where A ∈ Zr×ℓ for r ≥ 1, z = (zn1
1 , . . . , z

nℓ
ℓ ), and N1, N2 ∈ Z. Then we can

construct matrices Ãk ∈ Zr×(ℓ−1) for N1 ≤ k ≤ N2 and y1, . . . , yℓ−1 ∈ {α, β} with the

following property. There exists y =
(
yn1
1 , . . . , y

nℓ−1

ℓ−1

)
satisfying n1, . . . , nℓ−1 ≥ 0 and∨N2

k=N1
Ãky > 0 if and only if the system (5.17) has a solution.

Proof. Choose (y1, . . . , yℓ−1) to be any ordering of {z1, . . . , zℓ} \ {za}. It su�ces to

construct Ãk for N1 ≤ k ≤ N2 such that Ãk · y > 0 has a solution if and only if{
Az > 0

na = nb + k
(5.18)
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has a solution. The system (5.18) has a solution if and only if there exist natural

numbers n1, . . . , na−1, na+1, . . . , nℓ such that

(
Aj,az

k
b + Aj,b

)
znb
b +

ℓ∑
i=1
i̸=a,b

Aj,iz
ni
i > 0 (5.19)

for all 1 ≤ j ≤ r. Thus, we have eliminated the variable na and can construct Ãk by

writing (5.19) for 1 ≤ j ≤ r in a matrix form.

By Theorem 5.4.2, to solve the inequality Az > b for b ≥ 0 it su�ces to solve

Az > 0. Next, we show how to do the latter.

Theorem 5.4.4. Suppose we are given multiplicatively independent α, β ∈ N≥2,

z1, . . . , zℓ ∈ {α, β} for some ℓ ≥ 1, and A ∈ Zr×ℓ with r > 0. It is decidable whether

there exist n1, . . . , nℓ ∈ N such that Az > 0, where z = (zn1
1 , . . . , z

nℓ
ℓ ).

Proof. The proof is by induction on ℓ. For ℓ = 1, the statement is immediate.

Suppose ℓ = 2. Then Az > 0 is equivalent to zn1
1 /z

n2
2 ∈ (c, d) for some computable

c, d ∈ Q ∪ {+∞}. If z1 = z2, then a solution exists if and only zk1 ∈ (c, d) for some

k ∈ Z, which is trivial to determine. If z1 ̸= z2, then applying Theorem 1.1.14, a

solution exists if and only if d > 0 and (c, d) is non-empty.

Suppose ℓ > 2. If we additionally assume that zna
a = znb

b for some a ̸= b, then

we can eliminate at least one variable and solve the resulting system inductively, as

follows. If za = zb, then na = nb, and we can invoke Theorem 5.4.3 with N1 = N2 = 0.

If za ̸= zb, then by multiplicative independence, we have na = nb = 0, and we can

eliminate two variables. Hence, we have reduced our problem to solving ℓ(ℓ − 1)/2

systems in at most ℓ− 1 variables (which can be solved inductively), and the system{
Az > 0

zna
a ̸= znb

b for all a ̸= b .
(5.20)

Claim 5.4.5. We can assume that there is no 1 ≤ j ≤ ℓ such that Ai,j ≥ 0 for all

1 ≤ i ≤ r.

Proof. Let j be as in the hypothesis, which we can assume to be j = 1 by reordering.

Set K = {1 ≤ i ≤ r : Ai,1 = 0. If there is a solution (n2, . . . , nℓ) to the subsystem

de�ned by ∀k ∈ K : hk(z
n2
2 , . . . , z

nℓ
ℓ ) > 0, where hk(x2, . . . , xℓ) =

∑ℓ
i=2Ak,ixi, then

the original system has a solution when taking zn1
1 large enough. If this subsystem

does not have a solution, the original system has no solution.
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Next, by case analysis on the largest two terms among zn1
1 , . . . , z

nℓ
ℓ and the order

of the remaining terms, we reduce solving (5.20) to solving systems of the form
Az > 0

z
nσ(1)

σ(1) , z
nσ(2)

σ(2) > z
nσ(3)

σ(3) > · · · > z
nσ(ℓ)

σ(ℓ)

z
nσ(1)

σ(1) ̸= z
nσ(2)

σ(2)

where σ is a permutation of {1, . . . , ℓ}. By renaming variables and rearranging the

rows of A, we reduce to solving systems of the form
Az > 0

zn1
1 , z

n2
2 > zn3

3 > · · · > znℓ
ℓ

zn1
1 ̸= zn2

2 .

(5.21)

Suppose z1 = z2. In this case, we consider the two possibilities n1 > n2 and

n1 < n2. We will only show how to solve the system{
Az > 0

zn1
1 > zn2

2 > zn3
3 > · · · > znℓ

ℓ

(5.22)

as the same argument applies to the case of n1 < n2. By Claim 5.4.5, Aj,1 < 0 for

some j. Then we can compute N such that 1 ≤ n1 − n2 ≤ N in every solution

of (5.22). Using Theorem 5.4.3, we then eliminate the variable n1 and solve the

resulting system in ℓ− 1 variables inductively.

Suppose z1 ̸= z2; this is the more di�cult case. As ℓ > 2, there is a n3 ≥ 0. As

zn1
1 , z

n2
2 > zn3

3 , both n1 and n2 are non-zero and so by multiplicative independence,

we have zn1
1 ̸= zn2

2 . By exchanging z1 and z2 if necessary, and maybe α and β as well,

we can assume that α = z1 ̸= z2 = z3 = β. Note that this implies n2 > n3.

By multiplying inequalities with di�erent rational constants if necessary, write the

system (5.21) in the form
pi(z

n2
2 , . . . , z

nℓ
ℓ ) < zn1

1 for i ∈ I−

pi(z
n2
2 , . . . , z

nℓ
ℓ ) > zn1

1 for i ∈ I+

pi(z
n2
2 , . . . , z

nℓ
ℓ ) > 0 for i ∈ J

zn1
1 , z

n2
2 > zn3

3 > · · · > znℓ
ℓ

(5.23)

where I−, I+, J are disjoint �nite sets and each pi is a Q-linear form. We can assume

that I− is non-empty by adding the identically zero Q-linear form over ℓ−1 variables

if necessary. Using Claim 5.4.5, I+ is also non-empty.

For i ∈ I−, I+, J , let ai be the coe�cient of zn2
2 in pi(z

n2
2 , . . . , z

nℓ
ℓ ). Then set

a− = maxi∈I−(ai) and a+ = mini∈I+(ai). Moreover, let Ĩ− = {i ∈ I− : ai = a−},
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Ĩ+ = {i ∈ I+ : ai = a+}, and J̃ = {j ∈ J : ai = 0}. Further, write pi(zn2
2 , . . . , z

nℓ
ℓ ) =

a−z
n2
2 +hi(z

n3
3 , . . . , z

nℓ
ℓ ) for i ∈ Ĩ−, write pi(z

n2
2 , . . . , z

nℓ
ℓ ) = a+z

n2
2 +hi(z

n3
3 , . . . , z

nℓ
ℓ ) for

i ∈ Ĩ+, and write hi(z
n3
3 , . . . , z

nℓ
ℓ ) = pi(z

n2
2 , . . . , z

nℓ
ℓ ) for i ∈ J̃ .

Then one can e�ectively compute a number N such that whenever n2 − n3 > N ,

� pi(z
n2
2 , . . . , z

nℓ
ℓ ) ≤ pj(z

n2
2 , . . . , z

nℓ
ℓ ) for all i ∈ I− \ Ĩ− and j ∈ Ĩ−;

� pi(z
n2
2 , . . . , z

nℓ
ℓ ) ≤ pj(z

n2
2 , . . . , z

nℓ
ℓ ) for all i ∈ I+ \ Ĩ+ and j ∈ Ĩ+; and

� sign(ci) = sign
(
pi(z

n2
2 , . . . , z

nℓ
ℓ )
)
for all i ∈ J \ J̃ .

If we add 0 ≤ n2−n3 ≤ N to (5.23), we can solve the resulting system by eliminating

n2 using Theorem 5.4.3. Meanwhile, if n2 − n3 > N , we have reduced (5.23) (and

hence our original decision problem) to solving systems of the following form:

a− +
hi(z

n3
3 , . . . , z

nℓ
ℓ )

zn2
2

<
zn1
1

zn2
2

< a+ +
hj(z

n3
3 , . . . , z

nℓ
ℓ )

zn2
2

for all i ∈ Ĩ−, j ∈ Ĩ+ (5.24)

zn1
1 > zn3

3 (5.25)

zn3
3 > · · · > znℓ

ℓ (5.26)

hi(z
n3
3 , . . . , z

nℓ
ℓ ) > 0 for all i ∈ J̃ (5.27)

n2 − n3 > N. (5.28)

Note that as N ≥ 0 and z2 = z3, the condition (5.28) implies zn2
2 > zn3

3 . It remains

to show how to solve the system (5.24�5.28).

Case 1. Suppose a− = a+ = a > 0 for some a ∈ Q. This is the only di�cult case.

Recalling that z2 = z3 = β, (5.24) is equivalent to

hi(z
n3
3 , . . . , z

nℓ
ℓ )

zn3
3

· 1

βn2−n3
<
αn1

βn2
−a < hj(z

n3
3 , . . . , z

nℓ
ℓ )

zn3
3

· 1

βn2−n3
for all i ∈ Ĩ−, j ∈ Ĩ+ .

Observe that hi(z
n3
3 , . . . , z

nℓ
ℓ ) < hj(z

n3
3 , . . . , z

nℓ
ℓ ) is implied by (5.24). Inductively solve

the system consisting of the inequalities hi(z
n3
3 , . . . , z

nℓ
ℓ ) < hj(z

n3
3 , . . . , z

nℓ
ℓ ) for i ∈ Ĩ−

and j ∈ Ĩ+, (5.26), and (5.27). If no solution exists, then the system (5.24�5.28) does

not have a solution either. Otherwise, let (m3, . . . ,mℓ) be a solution to the smaller

system. We will argue that the system (5.24�5.28) also has a solution.

Let x− = maxi∈Ĩ−
(
hi(z

m3
3 , . . . , zmℓ

ℓ )/zm3
3

)
, x+ = mini∈Ĩ+

(
hi(z

m3
3 , . . . , zmℓ

ℓ )/zm3
3

)
,

and ε = (x+ − x−)/4. From the construction of m3, . . . ,mℓ, it follows that ε > 0.

We construct a solution (k1, . . . , kℓ) ∈ Nℓ to the system (5.24�5.28). To do this, it

su�ces to construct (k1, . . . , kℓ) satisfying (5.25�5.28) with the following additional

properties:
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(a) x−+ε

βk2−k3
< αk1

βk2
− a < x+−ε

βk2−k3
;

(b)
hi

(
z
k3
3 ,...,z

kℓ
ℓ

)
z
k3
3

< x− + ε for all i ∈ Ĩ−;

(c)
hi

(
z
k3
3 ,...,z

kℓ
ℓ

)
z
k3
3

> x+ − ε for all i ∈ Ĩ+.

Observe that (a), (b), and (c) indeed imply (5.24) as for all i ∈ Ĩ− and j ∈ Ĩ+,

hi
(
zk33 , . . . , z

kℓ
ℓ

)
βk3

<
x− + ε

βk2−k3
<
αk1

βk2
− a <

x+ − ε

βk2−k3
<
hj
(
zk33 , . . . , z

kℓ
ℓ

)
βk3

.

Next, invoke the Pumping Lemma with m1, . . . ,mℓ, ε as above and the linear forms

� −hi(zn3
3 , . . . , z

nℓ
ℓ ) + (x− + ε)zk33 for all i ∈ Ĩ−,

� hi(z
n3
3 , . . . , z

nℓ
ℓ )− (x+ − ε)zk33 for all i ∈ Ĩ+,

� hi(z
n3
3 , . . . , z

nℓ
ℓ ) for all i ∈ J̃ , and

� zni
i − z

ni+1

i+1 for 3 ≤ i ≤ ℓ− 1

to compute µ, δ > 0. We have that any n3 > m3 satisfying |αñ/βn3 − µ| < δ for

a ñ ∈ N can be extended to (n3, . . . , nℓ) ∈ Nℓ−2 satisfying (5.26�5.27) and (b�c).

Let 0 < ∆ < min(a, aδ
2µ
). Then µ∆/a < δ/2. We will need the following lemma

that, intuitively, shows we can simultaneously satisfy the Diophantine approximation

conditions arising from the above application of the Pumping Lemma and item (a).

Lemma 5.4.6. Let a, µ, δ,∆ be as above. Given M ∈ N, we can compute d > M and

m ∈ N with the following property. For all k ≥ m, if there exists ñ ∈ N such that∣∣αñ/βk − a
∣∣ < ∆ ,

then there exists n̂ ∈ N such that∣∣αn̂/βk−d − µ
∣∣ < δ .

Proof. Let ξ = δ/(4a). Using Theorem 1.1.14, choose d,m ∈ N such that d > M and∣∣∣∣ βdαm − µ

a

∣∣∣∣ < ξ .
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Suppose |αñ/βk − a| < ∆ for some ñ ≥ m. Let n̂ = ñ−m. Then∣∣∣∣ αn̂βk−d
− µ

∣∣∣∣ = ∣∣∣∣αñβk · β
d

αm
− µ

∣∣∣∣
=

∣∣∣∣(αñβk − a

)
βd

αm
+ a

(
βd

αm
− µ

a

)∣∣∣∣
< ∆(ξ + µ/a) + aξ

< 2aξ +
µ∆

a
≤ δ ,

where the last two inequalities follow from ∆ < a, µ∆/a < δ/2, and aξ = δ/4.

Choose M > N such that ∆βM > |x− + ε|, |x+ − ε|, and x− + ε+ aβd > 1. Then

apply Lemma 5.4.6 with this value ofM to construct d and m. We will next construct

(k1, . . . , kℓ) ∈ Nℓ satisfying (5.25�5.28) and (a-c); recall that such (k1, . . . , kℓ) will also

be a solution to (5.24�5.28). First, choose k1, k2 such that k2 > max(d,m), and

x− + ε

βd
<
αk1

βk2
− a <

x+ − ε

βd
.

As d > M , we have |αk1/βk2 − a| < ∆. Then set k3 = k2 − d. By the construction of

d and m via Lemma 5.4.6, and the fact that k2 > m, there exists n̂ such that∣∣∣∣ αn̂

βk2−d
− µ

∣∣∣∣ = ∣∣∣∣ αn̂βk3 − µ

∣∣∣∣ < δ .

Hence, by construction of µ, δ via the Pumping Lemma, we can extend k3 to a tuple

(k3, . . . , kℓ) that satis�es (5.26�5.27) as well as (b�c). Inequality (5.28) and prop-

erty (a) are satis�ed by construction. It remains to show that (5.25) is satis�ed.

By (a), αk1 − aβk2 > (x− + ε)βk3 . Hence,

αk1 > (x− + ε)βk3 + aβk2 = βk3(x− + ε+ aβd) > βk3 .

Case 2. Suppose a+ > 0 and a+ > a−. Let ε = a+−max(a−,0)
4

. Compute M ≥ N

such that for all n2, . . . , nℓ ∈ N satisfying zn2
2 > zn3

3 > · · · > znℓ
ℓ and n2 − n3 > M , we

have ∣∣∣∣hi(zn3
3 , . . . , z

nℓ
ℓ )

zn2
2

∣∣∣∣ < ε for all i ∈ Ĩ− ∪ Ĩ+ .

Next, inductively solve the subsystem comprising inequalities (5.26) and (5.27). If

there is no solution, then (5.24�5.28) does not have a solution, and we are done.

Otherwise, let (k3, . . . , kℓ) be a solution of the subsystem. Applying Theorem 1.1.14,
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construct k1, k2 ∈ N such that zk11 > zk33 , k2− k3 > M , and zk11 /z
k2
2 ∈ (a−+ ε, a+− ε).

Then (k1, . . . , kℓ) is a solution of (5.24�5.28).

Case 3. Suppose a+ < a−. Let ε, M , and (k3, . . . , kℓ) be as in Case 2; If no

(k3, . . . , kℓ) exist, once again we are done. Observe that any (n1, . . . , nℓ) ∈ Nℓ such

that n2 − n3 > M is not a solution of (5.24�5.28). Hence the system (5.24�5.28) has

a solution if and only if the system comprising (5.24�5.27) and N < n2−n3 ≤M has

a solution, which can be checked using Theorem 5.4.3.

Case 4. a+ = a− = 0. In this case, (5.24) is equivalent to

hi(z
n3
3 , . . . , z

nℓ
ℓ ) < zn1

1 < hj(z
n3
3 , . . . , z

nℓ
ℓ ) for all i ∈ Ĩ− and j ∈ Ĩ+ (5.29)

in which the variable n2 does not appear. Hence, we can �rst inductively solve the

subsystem comprising (5.24�5.27). If a solution exists, then choose n2 to be su�ciently

large to satisfy (5.28). Otherwise, conclude that (5.24�5.28) does not have a solution

either.

Case 5. Suppose a+ = 0 > a−. This case is similar to Case 4. Let M be such

that for all (n1, . . . , nℓ), if n2 − n3 > M then

a− +
hi(z

n3
3 , . . . , z

nℓ
ℓ )

zn2
2

< 0 for all i ∈ Ĩ− .

Hence for such (n1, . . . , nℓ), (5.24) is equivalent to

zn1
1 < hi(z

n3
3 , . . . , z

nℓ
ℓ ) for all i ∈ Ĩ+ . (5.30)

Therefore, we solve two systems. First, inductively check if the system comprising

(5.25�5.27) and (5.30) has a solution (k1, k3, . . . , kℓ). If yes, then choose k2 to be

su�ciently large so that (5.28) is satis�ed. Thereafter, solve (5.24�5.28) together

with N < n2 − n3 ≤ M using Theorem 5.4.3. The system (5.24�5.28) has a solution

if and only if at least one of the two systems has a solution.

Case 6. Finally, suppose, a+ < 0. Let M be such that for all n2 − n3 > M ,

a+ +
hi(z

n3
3 , . . . , z

nℓ
ℓ )

zn2
2

< 0 for all i ∈ Ĩ+ .

It remains to solve (5.24�5.28) together with N < n2−n3 ≤M using Theorem 5.4.3.

We can �nally prove that Problem 5.1.4 is decidable.
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Proof of Theorem 5.1.1. We use induction on ℓ to solve Problem 5.1.4. If ℓ = 1, the

result is immediate. Suppose ℓ ≥ 2. Write the system Az > b ∧ Cz = d in the form∨
k∈K

Akz > bk ∧ Ckz = dk

where each bk ≥ 0. By Theorem 5.4.2, this is equivalent to the system∨
k∈K

Akz > 0 ∧ Ckz = dk .

It su�ces to solve each disjunct separately. Fix k ∈ K. If Ck is empty, then we

can solve Akz > 0 using Theorem 5.4.4. Suppose Ck is non-empty. Then �rst solve

Ckz = dk and write the set of solutions S in the form

S =
⋃
i∈I

⋂
j∈Ji

Xj

as in Theorem 5.1.7. It su�ces to check, for every i ∈ I, whether Akz > 0 has a

solution belonging to
⋂
j∈Ji Xj. Fix 1 ≤ i ≤ I. If Ji is empty, then we simply solve

Akz > 0 using Theorem 5.4.4. When Ji is non-empty, we will carry out a variable

elimination as follows.

Lemma 5.4.7. Let α, β ∈ N≥2, z1, . . . , zℓ ∈ {α, β}, E ∈ Zr×ℓ, u ∈ Zr, and

X1, . . . , XM ⊆ Nℓ where each Xj is de�ned by either

nµ(j) = nσ(j) + cj (5.31)

or

nξ(j) = bj (5.32)

for some bj, cj ∈ Z and 1 ≤ ξ(j), µ(j), σ(j) ≤ ℓ satisfying zµ(j) = zσ(j). We can

construct λ < ℓ, F ∈ Zr×λ, v ∈ Zr, and y1, . . . , yλ ∈ {α, β} such that

E · (zn1
1 , . . . , z

nℓ
ℓ ) > u ∧ (n1, . . . , nℓ) ∈

⋂
1≤j≤M

Xj (5.33)

has a solution if and only if F · (yn1
1 , . . . , y

nλ
λ ) > v has a solution.

Proof. We use induction on M . Write y = (yn1
1 , . . . , y

nλ
λ ) and z = (zn1

1 , . . . , z
nℓ
ℓ ). If

M = 0, we are done. So let M ≥ 1 and consider X1. If X1 is of the form (5.31), we

split into two cases. First, consider µ(j) = σ(j). If cj = 0, (5.31) holds trivially true,

and we can remove it to return to M − 1 equations while if j ̸= 0, (5.31) never holds,

and we simply return λ = 1, F = (−1), v = 0, and y1 = α such that Fy > 0 never
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holds. Secondly, if µ(j) ̸= σ(j), let (y1, . . . , yℓ−1) = (z1, . . . , zµ(j)−1, zµ(j)+1, . . . , zℓ) and

update X2, . . . , XM by substituting each occurrence of µ(j) with σj + cj to obtain a

system Ẽy > ũ equivalent to Ez > u.

Similarly, assume that X1 is of the form (5.32). Then, if bj < 0, the system has no

solution, and we return some F and v that do not have a solution. If bj ≥ 0, substi-

tute nξj with bj in X2, . . . , XM , let (y1, . . . , yℓ−1) = (z1, . . . , zξ(j)−1, zξ(j)+1, . . . , zℓ) and

obtain a system Ẽy > ũ equivalent to Ez > u by setting z
nξj

ξj
to by zbjξj . This again

reduces M . Thus, in each case, we reduce M by at least 1, proving the result.

Using the lemma above, we can construct λ < ℓ, F ∈ Zr×λ, v ∈ Zr, and

y1, . . . , yλ ∈ {α, β} such that

Akz > 0 ∧ (n1, . . . , nℓ) ∈
⋂
j∈Ji

Xj

has a solution if and only if

F · (yn1
1 , . . . , y

nλ
λ ) > v (5.34)

has a solution. Since λ < ℓ, we can use the induction hypothesis to solve (5.34). Thus,

Problem 5.1.4 is decidable and so using Lemma 5.1.5, Theorem 5.1.1 holds.

5.5 Presburger arithmetic expanded with powering

functions

We now consider the existential fragment of PA(αx, βx) for multiplicatively inde-

pendent α and β, where γx denotes the function x 7→ γx for γ ∈ {α, β}. Unlike

the case for PA(αN, βN), we show that decidability of the existential fragment of

PA(αx, βx) would give us algorithms for deciding various properties of base-α and

base-β expansions of a large class of numbers, captured by the following de�nition.

De�nition 5.5.1. A sequence (un)
∞
n=0 over N is existentially de�nable if for every

k ≥ 1 there exists an existential formula φ with k+1 free variables in the language of

PA(αx, βx) such that for all n, y0, . . . , yk−1 ∈ N, the sentence φ(n, y0, . . . , yk−1) holds

if and only if un+i = yi for all 0 ≤ i < k.

The set of de�nable sequences is closed under many operations. Let (un)
∞
n=0

and (vn)
∞
n=0 be de�nable, and c ∈ N. Then (un + vn)

∞
n=0, (c + un)

∞
n=0, (c · un)∞n=0,

(αun)∞n=0, (βun)∞n=0, and (uvn)
∞
n=0 are also de�nable. Write {x} for the fractional

part of x. Let α, β ∈ N≥2 be multiplicatively independent, (An)∞n=0 be the base-α
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expansion of {logβ(α)}, and (Bn)
∞
n=0 be the base-β expansion of {logα(β)}. Note

that logα(β), logβ(α) are both irrational, and for any γ ∈ N>0 and x ∈ R≥0, the

base-γ expansions of x and {x} di�er only by a �nite pre�x.

Proposition 5.5.2. The sequences (An)
∞
n=0 and (Bn)

∞
n=0 are de�nable.

Proof. By symmetry, it is su�cient to prove the proposition for (An)∞n=0. For x ≥ 1,

let f(x) denote the integer αm such that αm ≤ x < αm+1, noting that f(x) = α⌊logα(x⌋.

Fix k ≥ 1, and let w ∈ {0, . . . , α − 1}k. Let λ(w) denote the natural number whose
base-α expansion equals w. That w occurs at position n in (An)

∞
n=0 can be expressed

as

λ(w) < αn+k{logα(β)} < λ(w) + 1 ,

which is equivalent to

αλ(w) <

(
βα

n

α⌊αn logα(β)⌋

)αk

< αλ(w)+1 .

For any constant c and a term t, we can express c · t as t+ · · ·+ t︸ ︷︷ ︸
c times

. As α⌊αn logα(β)⌋ =

f(αn), we thus have that

φ(n, y0, . . . , yk−1) := ∃m : αm ≤ βα
n

< αm+1

∧ αλ(y0···yk−1)+mα
k

< βα
n+k

< αλ(y0···yk−1)+1+mαk

for k ≥ 1 de�ne (An)
∞
n=0 as required.

Observe that we can express whether a pattern w0 · · ·wk−1 occurs in an existen-

tially de�nable sequence (un)∞n=0 using the existential formula ∃n : φ(n,w0, . . . , wk−1),

where φ is the formula described in De�nition 5.5.1. Therefore, decidability of the ex-

istential fragment of PA(αx, βx) would entail the existence of oracles, among others,

for deciding the following problems.

(A) Whether a given pattern w appears in the base-β expansion of logβ(α).

(B) Whether a given pattern w appears at some index simultaneously in the base-β

expansions of logβ(α) and logα(β).

(C) Whether a given pattern w appears in (Aαn)∞n=0.
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This proves Theorem 5.1.3.

To the best of our knowledge, for no base γ ∈ N≥2 and multiplicatively indepen-

dent α, β ∈ N≥2, an algorithm is known that determines whether a given pattern

appears in the base-γ expansion of logα(β). Proof of normality for the sequences

(An)
∞
n=0 and (Bn)

∞
n=0 would make Problem (A) above trivially decidable. However,

normality alone is not strong enough to deal with Problems (B) and (C): Deciding

the latter problems in the same way as Problem (A) would require a far stronger

`randomness' property. Even if such properties are proven, we might still be unable

to prove the decidability of the full existential fragment of PA(αx, βx).

5.6 Undecidability of expansions with two sets of

powers

In this section, let α, β ∈ N≥2 be multiplicatively independent. In [78], Hieronymi and

Schulz reduce from the Halting problem for Turing machines to show that PA(αN, βN)

is undecidable. We provide an alternative (and shorter) undecidability proof by re-

ducing from the Halting problem for 2-counter Minksy machines, which is also un-

decidable [117, Chapter 14]. Our proof shows that already for formulas containing

three alternating blocks of quanti�ers, membership in PA(αN, βN) is undecidable.

A 2-counter Minsky machine is given by R > 0 instructions, numbered 1, . . . , R,

and two counters c(1), c(2) that take values in N. Each instruction except the Rth one

is either of the form

c(i) = c(i) + 1; GOTO r or

c(i) = 0; GOTO r; ELSE c(i) = c
(i)
i − 1; GOTO r̃ .

The execution starts at line r = 1 with both counters set to zero, and the machine

halts if the line r = R is reached. Let c(n)i denote the value of the counter ci and

by rn the current instruction number after n steps. We refer to (c
(1)
n , c

(2)
n , rn) as

the con�guration of the machine at time n. The transition function f : N × N ×
{1, . . . , R} → N × N × {1, . . . , R} of the machine describes how the con�guration is

updated. By de�nition, we have that c(1)0 = c
(2)
0 = 0 and r0 = 1.

We will represent the trace of the machine by the sequence(
αR+c

(1)
0 , αR+c

(2)
0 , αr0−1, αR+c

(1)
1 , αR+c

(2)
1 , αr1−1, . . .

)
.

Here, αR+c
(1)
n and αR+c

(2)
n are at least αR while αrn−1 < αR for every n ≥ 0. Note that

every entry in the sequence is a power of α, and the nth entry is smaller than αR if
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and only if n ≡ 2 (mod 3). It remains to represent such sequences using arithmetic

of powers of α and β.

For x ∈ N, let µ(x) denote the most signi�cant digit in the base-α expansion of

x, and by δ(x) the number αn (whenever it exists) such that the digit corresponding

to αn in the base-α expansion of x is the second most signi�cant digit that is non-

zero. For example, if α = 10, then µ(3078) = 3 and δ(3078) = 101. Next, consider

Aℓ,Au ∈ αN,Bℓ,Bu ∈ βN with Aℓ < Au and Bℓ < Bu. Let P be the set of all

b ∈ βN∩ [Bℓ,Bu] such that µ(b) = 1 and δ(b) ∈ [Aℓ,Au]. Write N = |P|−1 and order

the elements of P as B0 < · · · < BN . We say that the tuple (Aℓ,Au,Bℓ,Bu) de�nes
the �nite sequence (un)

N
n=0 over αN given by un = δ(Bn)/Aℓ. The following result,

Lemma 3.4 in [78], serves a crucial role in their and our undecidability proofs.

Theorem 5.6.1. Every �nite sequence (un)
N
n=0 over αN is de�ned by some tuple

(Aℓ,Au,Bℓ,Bu).

By choosing Bℓ to be the smallest element of P and Bu to be the largest element

of P if necessary, we can always assume that Bℓ,Bu ∈ P . We will encode the Halting

problem for 2-counter machines by constructing a formula that expresses the existence

of a tuple (A1,A2,B1,B2) that de�nes a sequence corresponding to a �nite trace of

the machine ending with the halting instruction. Let Aℓ,Au ∈ αN,Bℓ,Bu ∈ βN de�ne

the sequence (un)
N
n=0, and P = {B0, . . . , BN} be as above. De�ne

φAℓ,Au,Bℓ,Bu (C,A,B) :=C ∈ αN ∧ A ∈ αN ∩ [Aℓ,Au] ∧B ∈ βN ∩ [Bℓ,Bu]∧
∧ C ≤ B < 2C ∧ A ≤ B − C < α · A .

This formula states that B ∈ P , which is witnessed by C and A. Here, C is the

largest power of α not exceeding B, the atomic formula C ≤ B < 2C ensures that

µ(B) = 1, and A ≤ B − C < α · A ensures that A = δ(B). If φAℓ,Au,Bℓ,Bu (C,A,B)

holds, then un = A/Aℓ where n is the position of B in P . The next formula, on input

B1, B2 that belong to P , returns whether B1 is immediately followed by B2 in the

ordering of P .

ψAℓ,Au,Bℓ,Bu(B1, B2) := ∀C,A,B1 < B < B2 : ¬φAℓ,Au,Bℓ,Bu(C,A,B) .

We omit the subscript from φ and ψ when Aℓ,Au,Bℓ,Bu are clear from the con-

text. We can now construct a formula in the language of PA(αN, βN) that is true

if and only if the given 2-counter machine halts. Write X for the collection of

variables Aℓ,Au,Bℓ,Bu, B̂1, B̂2, Ĉ0, Ĉ1, Ĉ2, Clast, and Y for the collection of variables

C0, A0, B0, . . . , C5, A5, B5. The variables
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� Aℓ,Au,Bℓ,Bu serve to de�ne a �nite sequence over αN,

� Bℓ, B̂1, B̂2 denote the �rst three elements of P with witnesses (Ĉ0, α
R · Aℓ),

(Ĉ1, α
R · Aℓ), and (Ĉ2,Aℓ), respectively,

� Bu is the �nal element of P with the witness (Ĉlast, α
R−1 · Aℓ), and

� C0, A0, B0, . . . , C5, A5, B5 represent arbitrary 6 consecutive terms of the se-

quence de�ned by (Aℓ,Au,Bℓ,Bu), which correspond to two consecutive con�g-

urations of the machine. (Recall that each con�guration of the machine consists

of three numbers.)

The required formula is then

∃X : ψ(Bℓ, B̂1) ∧ ψ(B̂1, B̂2) ∧ φ(Ĉ0, α
R · Aℓ,Bℓ) ∧ φ(Ĉ1, α

R · Aℓ, B̂1)

∧ φ(Ĉ2,Aℓ, B̂2) ∧ φ(Clast,Bu, αR−1 · Aℓ)

∧ ∀Y :

( 4∧
i=0

ψ(Bi, Bi+1) ∧
5∧
i=0

φ(Ci, Ai, Bi) ∧ A2 < αR · Aℓ

)
=⇒ Φ(C0, A0, B0, . . . , C5, A5, B5)

where Φ implements the transition function of the machine. Note that Aℓ,Au,Bℓ,Bu
also appear in the de�nitions of φ and ψ. The �rst row in the formula above �xes

the initial con�guration of the machine to (0, 0, 1) by requiring that the �rst three

elements of the sequence de�ned by (Aℓ,Au,Bℓ,Bu) must be αR, αR, 1, respectively.
The second row says that the last term in the sequence must be αR−1, which rep-

resents the halting instruction. The condition A2 < αR · Aℓ in the third row, in

conjunction with φ(C2, A2, B2), ensures that the term of the sequence at the posi-

tion de�ned by B2 represents an instruction number, as opposed to a counter value.

Thus (C0, A0, B0), . . . , (C5, A5, B5) represent two consecutive con�gurations of the ma-

chine. Regarding Φ, observe that we can de�ne a function mapping αn to αn+1 (which

corresponds to incrementing a counter) by the formula χ(x, y) := y = x+ · · ·+ x︸ ︷︷ ︸
α times

,

and a function mapping αn+1 to αn (corresponding to decrementing a counter) by

χ̃(x, y) := χ(y, x). Finally, to see that the formula above has quanti�er alternation

depth 2 (i.e., three alternating blocks of quanti�ers), recall that χ1 ⇒ χ2 is equivalent

to ¬χ1 ∨ χ2 and the de�nition of ψ involves a single universal quanti�er. give There-

fore, we can conclude that Theorem 5.1.2 holds: The ∃∀∃-fragment of PA(2N, 3N) is

undecidable.
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Chapter 6

Conclusion

In this thesis, we investigated a range of decision problems for linear recurrence se-

quences with a particular emphasis on the Skolem and Positivity problems. We also

explored expansions of various logics, in particular monadic second-order logic and

Presburger arithmetic, in combination with predicates derived from linear recurrence

sequences.

We start by discussing the Positivity problem, where we are pessimistic about the

prospects of any further progress. Recall from Section 3.2 that the Positivity and

Ultimate Positivity problems are `Diophantine-hard', implying that their decidability

would entail that certain mathematical constants are computable for which no known

method currently exists. Moreover, these issues already arise for order-6 LRS, which

is the lowest order for which we cannot resolve all instances of the Positivity and

Ultimate Positivity problems. Consequently, making any substantial advances on the

(Ultimate) Positivity problem seems out of reach. Even when restricting ourselves to

simple LRS where this Diophantine hardness does not occur, the tools to approach

this case have not yet been developed.

Compared to the Positivity problem, we are more optimistic about potential

progress towards the Skolem problem. To show the decidability of fragments of the

Positivity problem, one has to rely on the growth of the LRS, where Baker's theorem

is the strongest (and only) existing method. For the Skolem problem, one can also

leverage local methods. The results of Mignotte, Shorey, Tijdeman and Vereshcha-

gin [116, 156] rely on Baker's theorem for complex logarithms and a variant for p-adic

logarithms. We presented another local method in Chapter 2, where we examined

LRS modulo integers. Although we relied on the Skolem and p-adic Schanuel's con-

jectures to guarantee termination, we expanded the repertoire of techniques for the

Skolem problem. While the Skolem conjecture does not apply to non-simple LRS,
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similar arguments sometimes still apply to non-simple LRS. Hence, we are far more

optimistic about the possibilities for progress towards a positive solution of the Skolem

problem than of the Positivity problem.

As discussed in Section 2.7, instead of focusing on natural numbers n for which

un = 0, one can extend the de�nition of a zero of an LRS to the p-adic numbers.

A non-degenerate, non-zero LRS has only �nitely many p-adic zeros that can be

explicitly approximated [12]. Empirically, contrary to classical Diophantine equations,

for most non-degenerate, non-zero LRS (un)
∞
n=0, the largest non-trivial index n ∈ N

such that un = 0 tends to be rather small. Hence, these tools allow one to rapidly

identify all zeros of an LRS while being reasonably con�dent that the remaining terms

are non-zero. Otherwise, any additional n ∈ N such that un has to correspond with

a p-adic zero and thus has to be exceedingly large.

Thus, for the Skolem problem, compared to the Positivity problem, we have a large

toolbox and can reasonably estimate the probable outcome of a speci�c instance.

Other classes of fundamental sequences beyond LRS represent an additional,

largely unexplored direction. Let Fac denote {n! : n ∈ N}. Then it is currently

unknown whether theories like MSON,<(2
N, Fac) and PA(2N, Fac) are decidable. The

factorials are in a more general class of sequences, the holonomic or P-�nite sequences,

for which one can also formulate the Skolem and Positivity problems (see, for exam-

ple, [81, 90]).

In addition to the Skolem and Positivity problems, we have studied combinations

of logic and linear recurrence sequences, which can be placed within the broader �eld

of arithmetical theories. This �eld explores the interplay of logic and arithmetic.

Since the dawn of computer science, arithmetical theories have been studied, leading

to the undecidability of Hilbert's tenth problem and the development of automata

theory to understand Presburger arithmetic and monadic second-order logic. Despite

the �eld's long history, notable progress has been made in recent years. For example,

Hieronymi and Schulz established the undecidability of PA(2N, 3N) and Chistikov,

Mansutti, and Starchak [49] showed that the existential fragment of PA(V2, n 7→ 2n)

(so-called Büchi-Semënov arithmetic) is in NP.

In Chapter 5, we examined Presburger arithmetic expanded with the sets of powers

of 2 and 3, which are examples of 2- and 3-recognizable sets, respectively.1 As a

consequence of Hieronymi and Schulz's result that PA(2N, 3N) is undecidable, the

1A set X ⊂ N is k-recognizable if there is a deterministic �nite automaton over the alphabet
{0, . . . , k − 1} whose language corresponds with the base-k representations of the elements of X.
Equivalently, X is k-recognizable if and only if X be de�ned in base-k Büchi arithmetic.
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theory PA(X2, X3) is undecidable when X2 is 2-recognizable, X3 is 3-recognizable,

and both are not de�nable in Presburger arithmetic alone. Barely anything is known

about the existential fragments of such expansions. It is even unknown if one can

determine whether the intersection of X2 and X3 is empty. In this problem, one can

encode a conjecture of Erd®s [63]: Does the digit 2 appear in the base-3 expansion of

2n for all large enough n? Here, the set of powers of 2 is 2-recognizable and the set of

numbers not having a 2 in its base-3 expansion is also 3-recognizable. More generally,

one could ask to decide certain fragments of PA(V2, V3), where one combines Büchi

arithmetic in certain bases. For example although the full theory is undecidable, the

decidability of the existential fragment is still open.

Many other open problems for arithmetic theories remain, and many such in-

stances combine number-theoretic, combinatoric, and automata-theoretic properties,

which creates an exciting, interdisciplinary �eld of research.
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