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Abstract. The conventional perspective on Markov chains considers
decision problems concerning the probabilities of temporal properties
being satisfied by traces of visited states. However, consider the following
query made of a stochastic system modelling the weather: given the con-
ditions today, will there be a day with less than 50% chance of rain? The
conventional perspective is ill-equipped to decide such problems regard-
ing the evolution of the initial distribution. The alternate perspective
we consider views Markov chains as distribution transformers: the focus
is on the sequence of distributions on states at each step, where the
evolution is driven by the underlying stochastic transition matrix. More
precisely, given an initial distribution vector μ, a stochastic update tran-
sition matrix M , we ask whether the ensuing sequence of distributions
(μ, Mμ, M2μ, . . . ) satisfies a given temporal property. This is a special
case of the model-checking problem for linear dynamical systems, which
is not known to be decidable in full generality. The goal of this arti-
cle is to delineate the classes of instances for which this problem can be
solved, under the assumption that the dynamics is governed by stochastic
matrices.

1 Introduction

Markov chains are most often regarded by the verification community as a proba-
bilistic means to model the uncertainty inherent to real-world systems. We refer
the reader to [4, Chapter 10] for a thorough exposition and a comprehensive
set of references on this perspective. A central application is the verification of
network protocols, where it must be certified that packets are transmitted with
high probability within a certain number of rounds, or that it is exceedingly
unlikely that a queue of requests grows longer than a certain threshold. Here,
atomic propositions are framed in terms of states of the system, and events are
linear- or branching-time properties. The probability of an event is the measure
of the set of runs in which the event occurs, and can be obtained by solving
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linear programs. The system is deemed correct if events of interest occur with
specified probabilities.

The inherent uncertainty plays a more focal role in the study of systems of
a more dynamical nature. For instance, consider the weather: it is quite natural
to ask whether initialising a forecasting system with the prevalent conditions
implies that there will be a day with less than 50% chance of rain, or whether
every week will have a day with less than 25% chance of rain. The conven-
tional approach does not resolve such queries: here, atomic propositions refer
to distributions on states and properties specify their evolution in time. For
Markov chains, this evolution is governed by the underlying stochastic matrix
M1: if the initial distribution is μ, then the ensuing sequence of distributions is
μ,Mμ,M2μ, . . . ad infinitum.

Research on verifying the evolution of distributions against temporal spec-
ifications is not as prevalent as that which adopts the conventional perspec-
tive. Decidability in the alternative setting has seemed rather inaccessible: [1,6]
only present incomplete or approximate verification procedures, while [12,13]
owe their model-checking procedures to additional mathematical assumptions.
This is not surprising, as the endeavour is fundamentally about solving special
instances of the model-checking problem for linear dynamical systems, which is
often associated with hard number-theoretic questions.

Formally, a linear dynamical system (LDS) of dimension k is given by an
initial vector v ∈ Qk and an update matrix A ∈ Qk×k. Its trajectory is the
infinite sequence of vectors (v,Av,A2v, . . . ). Let T = {T1, . . . , T�} be a collection
of semialgebraic subsets of Rk, i.e. each Ti is defined by a Boolean combination
of inequalities involving polynomials with integer coefficients. The characteristic
word α of the dynamical system with respect to T is the infinite word over the
alphabet 2T such that for all n, T ∈ α(n) if and only if Anv ∈ T . The model-
checking problem for LDS takes as input v,A, T , and an ω-regular language L
over the alphabet 2T and asks whether the characteristic word α ∈ L.

Model checking Markov chains as distribution transformers is a special case
of the above where v = μ is a distribution (all entries are non-negative and sum
up to 1), and the update matrix A = M is the (column-)stochastic transition
matrix underlying the Markov chain, i.e. the (i, j)-th entry denotes the transi-
tion probability to move from state j to state i, and hence each column is a
distribution.

The model-checking problem for linear dynamical systems is easily seen to
subsume the Skolem problem2, which is a long-standing number-theoretic prob-
lem: given an initial vector v, update matrix A, and normal vector h, the Skolem
problem asks whether there is an n such that h�Anv = 0. The Skolem problem

1 In this paper, we study a more linear-algebraic perspective than usual, and hence take
distributions to be column vectors, and matrices to be left-stochastic, i.e. columns
sum up to 1.

2 The Skolem problem is often formulated equivalently in terms of linear recurrence
sequences (LRS) that satisfy a recurrence relation un+k = ak−1un+k−1 + · · ·+a0un.
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has only been solved for dimension k ≤ 4 [14,18], and is open for k ≥ 5. We refer
to the Skolem problem in dimension k as Skolem-k.

Recently, Bilu et al. [7] gave a decision procedure for the Skolem problem
for diagonalisable A; however the guarantee of termination of this procedure is
subject to two classical number-theoretic conjectures. A tool that implements
the algorithm is available at [8].

It is not uncommon for instances of the model-checking problem for linear
dynamical systems to be shown decidable by restricting the matrix A to be
diagonalisable [2,10,15] or by bounding its dimension k [15,16]. The natural
question for us is whether restricting the update matrix to be stochastic yields
any significant spectral or dimensional benefits that make the model-checking
problem tractable. The reductions in [17] from the Skolem and closely related
problems to the model-checking problem for Markov chains indicate that the
answer is not entirely in the affirmative. Nevertheless, there is some nuance,
which we comprehensively explore and detail in this article.

Our Contributions

We identify that the dynamics of Markov chains relevant to our model-checking
problem play out in a space of dimension lower than that of the ambient space. As
an example, consider a 6-state Markov chain with states A0, A1, B0, B1, C0, C1.
The transition matrix is

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1/6 1/6 0 0 0 0
1/6 1/6 0 0 0 0
1/6 1/6 0 1 0 0
1/6 1/6 1 0 0 0
1/6 1/6 0 0 0 1
1/6 1/6 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From A0 and A1, the next state is chosen uniformly at random; B0 and B1 always
succeed each other; likewise with C0 and C1. It is easy to observe that this system
has some “redundancy” (A0 and A1 behave identically), and has two bottom
strongly connected components ({B0, B1} and {C0, C1}) which are “periodic”
(with period 2). The ensuing distributions μ =

[
μ1, . . . , μ6

]�
,Mμ,M2μ, . . .

form a sequence of 6-dimensional vectors.
It is straightforward to show that

Mnμ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

μ3 + 1/4(μ1 + μ2)
μ4 + 1/4(μ1 + μ2)
μ5 + 1/4(μ1 + μ2)
μ6 + 1/4(μ1 + μ2)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1/2
1/2

−1/4
−1/4
−1/4
−1/4

⎤
⎥⎥⎥⎥⎥⎥⎦

[1/3]n[u1 + u2] for even n > 0, (1)
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Mnμ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

μ4 + 1/4(μ1 + μ2)
μ3 + 1/4(μ1 + μ2)
μ6 + 1/4(μ1 + μ2)
μ5 + 1/4(μ1 + μ2)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1/2
1/2

−1/4
−1/4
−1/4
−1/4

⎤
⎥⎥⎥⎥⎥⎥⎦

[1/3]n[u1 + u2] for odd n. (2)

Although the ambient space containing the distributions is 6-dimensional, as
the above formulae indicate, most of the evolution is “static”: the “dynamical”
aspect is just 1-dimensional.

In fact, the dynamical dimension is guaranteed to be less than the ambient
dimension: each element of the sequence (μ,Mμ,M2μ, . . . ) is also a distribution
on the probability simplex Δ = {x : x ≥ 0 ∧ x1 + · · · + xk = 1}. As seen in the
above example, other reasons include “redundancy”, i.e. states whose behaviours
are closely related, as well as periodicity of the transition graph. These reasons
can be discerned from the spectrum of the stochastic matrix M , which we use
to formalise the notion of dynamical dimension.

Definition 1. The dynamical dimension of a stochastic matrix M is defined as
the number of nonzero eigenvalues (counted with algebraic multiplicity) of M
that have modulus strictly less than 1.

In our example above, M has eigenvalues 1, 1,−1,−1, 1/3, 0, and thus, by
definition, has dynamical dimension 1.

To solve the model-checking problem for Markov chains of dynamical dimen-
sion k, we systematically project the problem onto an instance of a linear dynam-
ical system of ambient dimension k. Technically speaking, it is the maximum
dimension of the semialgebraic sets involved (see Sect. 2.2) that plays a crucial
role in characterising the solvability of the model-checking problem for linear
dynamical systems.

Semialgebraic sets come equipped with a notion of intrinsic dimension (intu-
itively, in ambient 3-dimensional space, a point has intrinsic dimension 0, a curve
has intrinsic dimension 1, a surface has intrinsic dimension 2, and a solid has
intrinsic dimension 3). There is also a notion of linear dimension: the dimen-
sion of the smallest linear subspace that contains the set in question. In the
3-dimensional world we live in, a rope stretched taut through the origin has lin-
ear dimension 1, a rope lying coiled on the ground has linear dimension 2, a rope
being tossed as a lasso has linear dimension 3. In all three cases, however, the
rope itself is fundamentally a one-dimensional object, and hence has intrinsic
dimension 1.

Upon projecting an instance of the model checking problem for a Markov
chain of dynamical dimension k onto one for a linear dynamical system of ambi-
ent dimension k, it is clear that the attendant semialgebraic sets become at
most k-dimensional. We show additionally that the linear dimension necessarily
decreases as well:

Theorem 1 (Auxiliary decidability result). The model-checking problem
for Markov chains with instances (μ,M, T ,L) such that
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(a) M has dynamical dimension k, and
(b) the target sets in T have intrinsic dimension at most d1 and linear dimension

at most d2

reduces to the model-checking problem for linear dynamical systems with
instances (v,A, T ′,L′) such that

(A) A is an invertible k × k matrix, and
(B) the target sets in T ′ have intrinsic dimension at most d1 and linear dimen-

sion at most d2 − 1.

We remark that proving the above requires us to preserve not only the spec-
tral properties of the update matrix but also the rationality of the matrix and
the initial vector.

The state of the art motivates us to define a criterion for semialgebraic sets
to be considered low-dimensional with respect to our model-checking problem
for Markov chains.

Theorem 2 (Main result of [11]). The model-checking problem (v,A, T ,L)
for linear dynamical systems with T being a collection of semialgebraic sets whose
intrinsic dimension is at most 1 or linear dimension is at most 3 is decidable.

Note that the above result is indeed at the cutting edge of decidability: the
open Skolem problem in dimension 5, for example, queries the reachability of a
set that has linear dimension 4.

Definition 2. A semialgebraic set T ⊆ Rk is said to be Markov-low-dimensional
if it has intrinsic dimension at most 1 or is contained in a linear subspace of
dimension at most 4.

Combining Theorems 1 and 2 gives us our main decidability result.

Theorem 3 (Main decidability result). The model-checking problem for
Markov chains restricted to instances (μ,M, T ,L) such that either

(a) T is a collection of Markov-low-dimensional sets, or
(b) the dynamical dimension of M is at most 3

is decidable.

For instances in which both hypotheses (a) and (b) of Theorem 3 fail to hold,
we establish hardness through a slightly generalised version of the result of [17].
Recall that semialgebraic sets are defined in terms of polynomial inequalities.
We call a set homogeneous if all the polynomials involved are homogeneous, and
s-homogeneous if all the polynomials involved would be homogeneous were the
origin shifted to s. We refer the reader to Sect. 2.2 for detailed definitions of
these terms.
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Theorem 4 (First hardness result). Let s ∈ Qk+1 be any distribution with
strictly positive entries. The model-checking problem for k-dimensional linear
dynamical systems with homogeneous target sets reduces to the model-checking
problem for (k + 1)-state ergodic Markov chains with s-homogeneous target sets.

Theorem 5 (Second Hardness Result). Skolem-5 Turing-reduces to the
reachability problem for ergodic Markov chains and semialgebraic targets of
intrinsic dimension at most 2.

We give the prerequisite mathematical background in Sect. 2, prove our decid-
ability results in Sect. 3, our hardness results in Sect. 4, and finally offer con-
cluding remarks in Sect. 5.

2 Mathematical Background

We will use 0k to denote the zero vector of dimension k, and 1k to denote the
k-dimensional vector whose entries are all 1. If vi ∈ Rdi for 1 ≤ i ≤ k, then by
(v1, . . . , vk) we mean the concatenation of v1, . . . , vk belonging to Rd1+···+dk .

2.1 Automata over Infinite Words

Let Σ be a finite non-empty alphabet. We use Σ∗, Σω to respectively denote the
sets of finite and infinite words over Σ. An ω-language L over Σ is a subset of
Σω. A language L is ω-regular if and only if it is accepted by a deterministic
Muller automaton, which is defined as follows.

Definition 3. A deterministic Muller automaton A is given by (Q,Σ, q0, δ,F)
where Q is a finite set of states, Σ is a finite alphabet, q0 is the initial state,
δ : Q × Σ → Q is the transition function, and F = {F1, . . . , Fa} ⊆ 2Q. Let
Inf(α) denote the set of states visited infinitely often by the run of A on α. The
automaton accepts α if Inf(α) ∈ F .

2.2 Semialgebraic Sets

Definition 4. A set T ⊆ Rk is called semialgebraic if there is a Boolean combi-
nation of finitely many polynomial (in)equalities pi(x1, . . . , xk) ∼ 0, where each
pi ∈ Z[x1, . . . , xk] (i.e. has integer coefficients) such that T consists exactly of
all points satisfying this Boolean combination.

Definition 5. A semialgebraic set T ⊆ Rk is said to be homogeneous if it can
be expressed as a Boolean combination of finitely many polynomial (in)equalities
pi(x1, . . . , xk) ∼ 0, where each pi is homogeneous, i.e. all its additive monomial
terms have the same degree. If there exists s ∈ Rk such that each pi(x − s) is
homogeneous, then T is said to be s-homogeneous.
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By definition, we have that for all λ > 0, and nonzero vectors x, we have
x ∈ T if and only if λx ∈ T for homogeneous sets T , and s + x ∈ T ′ if and only
if s + λx ∈ T ′ for s-homogeneous sets T ′.

Using cell decomposition (see [5, Chapter 5]), a semialgebraic set T can be
decomposed into a finite union of semialgebraic sets T1, . . . , T�, where each Ti

is (semialgebraically) homeomorphic to a single point or (0, 1)di for some di ≥
1. The intrinsic dimension d of T is defined to be dim(T ) = maxi di; As [5,
Chapter 5.3] shows, d is independent of the choice of decomposition and hence
well-defined. The linear dimension of T is the dimension of the smallest linear
subspace of Rk that contains T .

Next we define the Zariski topology on Rd. An algebraic set X is defined by
p(x1, . . . , xd) = 0 where p ∈ Q[x1, . . . , xd]. Note that a conjunction

∧
i∈I

pi(x1, . . . , xd) = 0

of polynomial equalities can be defined by a single polynomial equality
∑
i∈I

pi(x1, . . . , xd)2 = 0.

The closed sets in the Zariski topology are exactly the algebraic sets.
Let f : Rd → Rk be given by f(x) = (p1(x)/q1(x), . . . , pk(x)/qk(x)) where

each pi, qi ∈ Q[x1, . . . , xd]. Suppose qi(x) 	= 0 for all x ∈ Rd and 1 ≤ i ≤ k.
Consider a Zariski-closed set X ⊆ Rd defined by a polynomial h. Then f−1(X) is
exactly the set defined by h(p1(x)q2(x) · · · qk(x), . . . , pk(x)q1(x) · · · qk−1(x)) = 0,
which is Zariski-closed. It follows that such a function f is continuous in the
Zariski topology.

Given a topology, a set X is irreducible if its closure X cannot be written
as a union of two closed sets different from X. Irreducibility is preserved under
continuous mappings.

2.3 Linear Algebra

We begin by recalling some standard terminology and results. The dimension
of a vector space is the smallest number of (necessarily linearly independent)
vectors required to span it. Given a matrix A, its rank is equivalently: (a) the
size of the largest subset of linearly independent rows (dimension of row space);
(b) the size of the largest subset of linearly independent columns (dimension of
column space). The kernel of an m × n matrix A is the vector space of solutions
to Ax = 0m. The rank-nullity theorem states that the rank of a matrix plus the
dimension of its kernel equals the number of columns.

We follow a standard text [3, Chapter 8] in recording some spectral properties
of matrices.

Definition 6. Let A ∈ Ck×k. If λ ∈ C satisfies det(A − λI) = 0, it is called an
eigenvalue of A. A nonzero vector v ∈ Ck that satisfies (A−λI)v = 0k is called a
(right) eigenvector of λ. A nonzero vector v′ ∈ Ck that satisfies v′�(A−λI) = 0�

k

is called a left eigenvector of λ.
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If not explicitly specified, an eigenvector means a right eigenvector. We seek
to generalise the definition of eigenvectors; the following definition can be made
analogously for left eigenvectors too. If not explicitly specified, an eigenvector
means an order-1 eigenvector in the sense of the following definition.

Definition 7. A vector v that satisfies (A−λI)jv = 0k, but (A−λI)j−1v 	= 0k,
is called an order-j generalised eigenvector of λ.

An eigenvalue λ is called simple if all its generalised eigenvectors have order
1. Note that λ has a left order-(j + 1) generalised eigenvector if and only if it
has a right order-(j +1) generalised eigenvector if and only if rank(A−λI)j+1 <
rank(A − λI)j .

By definition, we observe that if vj+1 is an order-(j + 1) generalised eigen-
vector, then Avj+1 is of the form λvj+1 + vj , where vj ∈ ker(A − λI)j but
vj /∈ ker(A − λI)j−1, i.e. vj = Avj+1 − λvj+1 is an order-j generalised eigenvec-
tor. Given vj of order j, let vj , . . . , v1 be a chain of generalised eigenvectors of λ
obtained thus. We can show, by a simple induction on n, that:

Anvj = λnvj +
(

n

1

)
λn−1vj−1 + · · · +

(
n

j − 1

)
λn−j+1v1. (3)

The eigenspace V ⊆ Ck of an eigenvalue λ is defined as the vector space
spanned by the generalised eigenvectors of the eigenvalue λ of A. We immediately
observe the invariance property of the following result [3, Construction 8.20]:

Lemma 1. The dimension � of an eigenspace V belonging to an eigenvalue λ is
equal to the algebraic multiplicity of λ. The space V is the kernel of (A − λI)k,
and a basis can be expressed accordingly. Moreover, V is invariant under A, i.e.
if v ∈ V , then Av ∈ V .

In order to state our next property, we need a notion of composition of vector
spaces.

Definition 8 (Sum of vector spaces). Let V1, . . . , Vm be linear subspaces of
Ck with bases B1, . . . , Bm respectively. Their sum V = V1+ · · ·+Vm is the vector
space spanned by the set of vectors B = B1 ∪ · · · ∪ Bm. Furthermore, if the set
B is linearly independent, then the sum is called a direct sum, and is denoted
V1 ⊕ · · · ⊕ Vm.

By definition, the dimension of the direct sum of vector spaces is equal to
the sum of the dimensions of the vector spaces. The definition of direct sum
also implies that 0k is the only vector common to any pair of subspaces being
summed.

Eigenspaces permit a convenient decomposition of C [3, Theorem 8.22]: they
are linearly independent and span the entire space.

Theorem 6. Let λ1, . . . , λm be distinct eigenvalues of A ∈ Ck×k, with respective
eigenspaces V1, . . . , Vm. Then V1 ⊕ · · · ⊕ Vm = Ck.

We note the following property.
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Lemma 2. Let λ, η be distinct eigenvalues of A ∈ Ck×k. Let vη be a generalised
left eigenvector of η and let vλ be a generalised right eigenvector of λ. Then
v�

η vλ = 0.

Proof. We prove this by induction on the orders i, j of the generalised left and
right eigenvectors vη, vλ respectively. We have that (i, j) > (i′, j′) if i ≥ i′ and
j ≥ j′ with at least one inequality being strict.

We prove the base case (where vη, vλ are order-1). Observe by associativity
that v�

η Avλ = ηv�
η vλ = λv�

η vλ. Since λ, η are distinct, it must be that v�
η vλ = 0.

Now for the induction step (where vη, vλ are of order i, j respectively), we
assume that (v′

η)�v′
λ = 0 for all v′

η, v′
λ of orders i′, j′, with (i, j) > (i′, j′). Observe

by associativity that v�
η Avλ = (ηvη + v′

η)�vλ = v�
η (λvλ + v′

λ).
We have that v′

η is of order i − 1, and v′
λ is of order j − 13. Thus by the

induction hypothesis, (v′
η)�vλ = v�

η v′
λ = 0. Substituting into the above equality,

we get that v�
η Avλ = ηv�

η vλ = λv�
η vλ as before: it must be that v�

η vλ = 0. �

2.4 Rational Stochastic Matrices

We use rational (column-)stochastic matrices to specify Markov chains. We shall
apply linear-algebraic results to state their important properties.

Definition 9. A matrix M ∈ Qk×k is said to be stochastic if each entry is
non-negative, and 1�

k M = 1�
k , i.e. the entries of each column sum up to 1.

Very clearly, 1 is an eigenvalue of M : det(M − I) = 0 since by definition,
1�

k (M − I) = 0�
k . The following property holds.

Lemma 3. Let λ be an eigenvalue of a stochastic matrix M . We have that
|λ| ≤ 1. Moreover, if |λ| = 1, then λ must be a root of unity and a simple
eigenvalue (all generalised eigenvectors are of order 1).

Proof. Consider a left eigenvector v = (v1, . . . , vk) of λ chosen such that the entry
of maximum modulus has modulus 1, and let T ⊂ C be the bounded polytope
defined as the convex hull of the points v1, . . . , vk ∈ C. Clearly, T is contained
in the unit circle centred at the origin. Now, since the entries of each column of
M are non-negative and sum up to 1, each coordinate of v�M = (λv1, . . . , λvk)
is a convex combination of v1, . . . , vk, and is hence contained in T , and thus the
unit circle. It follows that |λ| ≤ 1.

Moreover, observe that T can only intersect the unit circle at its corners. Now
observe that for all n ≥ 1, λnv� = v�Mn, and that the entries of each column
of Mn are non-negative and sum up to 1. Thus, by the same arguments as
above, each entry of (λnv1, . . . , λ

nvk) must be contained in T . Suppose |vi| = 1.
Then each λnvi must be one of the finitely many corners of the convex hull of
v1, . . . , vk: this is only possible if λ is a root of unity.

3 If either of i, j is 1, then the proof is even simpler because the corresponding v′ is
the zero vector.
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Now assume that an eigenvalue λ such that λd = 1 were not simple. Then
there is an order-2 left eigenvector v = (v1, . . . , vk) of λ chosen such that one of
the entries vi with maximum modulus is 1. Define T as before, and note for all n
that each coordinate of v�Mn must lie in T and hence the unit circle. However,
by Eq. 3 we have v�Mnd = v� + nd(v′)�. The coordinates of v�Mnd clearly
cannot lie in the unit circle for arbitrarily large n: a contradiction. �

3 Proofs of the Decidability Results

In this section, we establish our decidability results. We start with an instance
(μ,M, T ,L) of the model-checking problem for Markov chains, where M has
dynamical dimension d1, the sets of T have linear dimension at most d2 and
intrinsic dimension at most d3. We show how to reduce this instance to an
instance (v,A, T ′,L′) of the model-checking problem for linear dynamical sys-
tems, where A is an invertible d1×d1 matrix, the sets of T have linear dimension
at most min(d1, d2 − 1) and intrinsic dimension at most min(d1, d3). This would
precisely be the proof of Theorem 1. Given the state-of-the-art Theorem 2, this
implies that instances (μ,M, T ,L) of the form where M has dynamical dimen-
sion at most 3 or the sets of T have linear dimension at most 4 or intrinsic
dimension at most 1 are decidable, thus proving Theorem 3.

We perform the reduction to prove Theorem 1 through three lemmata.

1. Lemma 4 implies that it suffices to consider linear dynamical systems with
invertible update matrices.

2. Lemma 5 implies that assuming the update matrix is non-degenerate4 does
not lose any generality.

3. Lemma 6 takes as input an instance of a linear dynamical system model-
checking problem obtained upon performing the preprocessing of Lemmata
4 and 5 on (μ,M, T ,L). It reduces its input into an instance of the model-
checking problem with a d1 × d1 invertible matrix and semialgebraic sets of
lower dimensions.

We remark that the lemmata are elementary, but not immediate, as they
preserve both the rationality and the spectra of the involved matrices.

We start with an instance (μ,M, T ,L), where M is a stochastic matrix, and
the eigenvalues of M are 1, ν1, . . . , νj′ , γ1, . . . , γj , and possibly 0. By Lemma
3, the eigenvalues ν1, . . . , νj′ of modulus 1 must be roots of unity, and the
eigenvalues γ1, . . . , γj have modulus less than 1. Furthermore, the eigenvalues
1, ν1, . . . , νj′ must be simple, i.e. their generalised eigenvectors have order 1. We
let �1 be the multiplicity of the eigenvalue 0. The following lemma shows that
we can obtain a dynamical system with the same spectral properties as stated
above sans the eigenvalue 0.

4 A matrix A is said to be non-degenerate if for every pair of distinct eigenvalues
λ, λ′, the ratio λ/λ′ is not a root of unity.
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Lemma 4. Let μ ∈ Qk+�, and let M ∈ Q(k+�)×(k+�) be a matrix with distinct
eigenvalues 0, λ1, . . . , λj with the eigenvalue 0 having (algebraic) multiplicity �.
We can compute a rank-k matrix Q ∈ Q(k+�)×k, an invertible matrix B ∈ Qk×k

and v ∈ Qk such that:

1. For all n ≥ �, we have Mnμ = QBnv.
2. Let n ≥ �. For any semialgebraic set T ⊆ Rk+�, Mnμ ∈ T if and only if

Bnv ∈ T ′, where T ′ = {x ∈ Rk : Qx ∈ T} and has intrinsic and linear
dimensions at most those of T .

3. The eigenvalues of B are λ1, . . . , λj. Moreover, for any i ≥ 0 and λ ∈ C�=0,
y is a generalised order-i eigenvector of B corresponding to λ if and only if
Qy is a generalised order-i eigenvector of M corresponding to λ.

Proof. Let V0, Vλ1 , . . . , Vλj
denote the eigenspaces of the respective eigenvalues.

Recall that by Theorem 6 we can define the vector space W = Vλ1 ⊕· · ·⊕Vλj
as

a direct sum, and that V0⊕W = Ck. By Lemma 1 and the properties implied by
Definition 8, we have that the dimension of V0 (over C) is �, V0 ∩ W = {0k+�},
and that the dimension of W is k.

The decomposition into V0 and W is the key ingredient of the proof because
these are invariant subspaces. Indeed, if z ∈ V0 then by (3) we have M �z = 0k+�.
For a nonzero w ∈ W , we apply Lemma 1 to each of the components Vλ of W
to conclude that Mw ∈ W and that Mw is moreover nonzero since w is not in
the eigenspace of 0.

Rational bases for V0 and W can effectively be computed. A rational basis for
V0 can be obtained by solving the rational homogeneous linear system M �x =
0k+�, one for W can be obtained by taking k linearly independent columns of
M �. To argue the latter, recall that by Lemma 2, if v′ is in the left eigenspace
V ′
0 of 0 and w ∈ W , then (v′)�w = 0. A rational basis for V ′

0 can be obtained
similarly to the one for V0: let its � vectors be the rows of H. By the above
observation, W , which has dimension k over C, is also contained in the kernel
of H, which, by the rank-nullity theorem, has dimension k. It follows that W is
indeed the kernel of H, and a rational basis can be obtained by solving a rational
homogeneous linear system.

We take P,Q to respectively be the matrices whose columns form the thusly
computed rational bases of V0,W . Note that the matrix R =

[
P Q

]
is invertible.

We take P ′, Q′ such that R−1 =
[
P ′

Q′

]
. This choice establishes that P ′, Q′, P,Q

have full rank. In particular, we remark that Q defines an invertible map from
Rk to W , and is inverted by Q′, since indeed Q′Q = I.
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Now, construct D ∈ Q(k+�)×(k+�) as

D = R−1MR =
[
P ′

Q′

]
M

[
P Q

]

=
[
P ′

Q′

] [
MP MQ

]

=
[
P ′MP P ′MQ

O Q′MQ

]
(by definition of R−1)

=
[
P ′MP O

O Q′MQ

]
(since each column of MQ is still in W )

=
[
P ′MP O

O B

]
(defining the bottom right k × k matrix B = Q′MQ).

We observe that for n ≥ �

Dn = R−1MnR =
[
P ′MnP O

O Bn

]
=

[
O O
O Bn

]

since M �P = O because P spans the eigenspace of 0.
We can compute the unique u ∈ Q�, v ∈ Qk such that μ = Pu+Qv. We now

observe that for n ≥ �

Mnμ = RDnR−1μ = RDnR−1R

[
u
v

]

= R

[
O O
O Bn

] [
u
v

]
=

[
P Q

] [
0�

Bnv

]
= QBnv.

This establishes requirement (1) of the statement.
It is obvious that for n ≥ �, Mnμ ∈ T if and only if Bnv ∈ {x : Qx ∈

T}. We observe that for n ≥ �, Mnμ ∈ W . Thus, Mnμ ∈ T if and only if
Mnμ ∈ T ∩W . Since W is a linear subspace, the linear dimension of T ∩W ⊆ T
is at most the linear dimension of T , and the intrinsic dimension also cannot
increase [5, Proposition 5.28]. Now, recall that Q′ is an invertible linear map
from W to Rk, and hence a homeomorphism from T ∩ W to T ′. The linear and
intrinsic dimensions of T ′ are hence the same as those of T ∩W . This establishes
requirement (2) of the statement.

Finally, we prove that B = Q′MQ has almost the same spectral properties
as that of M . We recall that Q is a linear map from Rk to W , the space W is
invariant under M and moreover that M never maps a nonzero w ∈ W to the
zero vector, and Q′ inverts Q. This already establishes that Bx 	= 0 for nonzero
x, and hence the invertibility of B. We shall work with pairs y ∈ Ck, w ∈ W
such that w = Qy, y = Q′w.

Now, By = Q′MQy = Q′Mw. Also, λy = λQ′w. If By = λy, we also have
Q′(Mw) = Q′(λw). The images of two nonzero vectors in W under the invertible
Q′ are equal: hence the vectors must be equal. We thus have y is an eigenvector
of B with eigenvalue λ only if w = Qy is an eigenvector of M with eigenvalue λ.
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Conversely, Q′Mw = Q′MQy = By, and Q′(λw) = Q′Q(λy) = λy. If Mw =
λw, we must also have By = λy. This establishes that B has the same set of
eigenvectors as M (for λ 	= 0), with Q′ mapping the eigenvectors of M to those
of B.

We can apply the above reasoning in a straightforward induction on the
order of generalised eigenvectors to prove that this mapping holds for the entire
eigenspaces of each eigenvalue. This establishes requirement (3) of the statement,
and completes the proof of Lemma 4. �

Let α be the characteristic word of the dynamical system (M,μ) with respect
to T . Denote by mult0 the (algebraic) multiplicity of the eigenvalue 0 of M , and
take L1 = {β : α(0)α(1) · · · α(mult0 −1) ·β ∈ L}. It is clear that L1 is ω-regular.
Lemma 4 thus reduces (μ,M, T ,L) to (μ1,M1, T1,L1), where M1 is invertible,
and whose eigenvalues of modulus 1 are all simple and c-th roots of unity. We
also have that the dimensions of sets in T1 are at most those in T . We now
convert all eigenvalues that are roots of unity to 1.

Lemma 5. Let v ∈ Qk, let B ∈ Qk×k be an invertible matrix with eigenvalues
λ1, . . . , λj, and let c ∈ N\{0}. Let T = {T1, . . . , Th} be a collection of semialge-
braic sets, and let L be an ω-regular language over 2T . The following hold:

1. The matrix Bc has eigenvalues λc
1, . . . , λ

c
j. If v is an order-i generalised eigen-

vector of some eigenvalue λ of B, then it is also an order-i generalised eigen-
vector of eigenvalue λc of Bc, and conversely.

2. We can construct T ′ and an ω-regular language L′ over 2T ′
such that the

characteristic word α of B, v with respect to T is in L if and only if the
characteristic word α′ of Bc, v with respect to T ′ is in L′.

Proof. It is immediately clear that Bc has λc
1, . . . , λ

c
j among its eigenvalues. We

prove the retention of generalised eigenvectors by induction on the order i. The
base case i = 1 is trivial: Bv = λv implies Bcv = λcv. For the induction step,
suppose the claim holds for i, and let vi+1 be an order-(i + 1) generalised vector
of λ of B. By (3), Bcvi+1 = λcvi+1 + (fivi + · · · + fi−1v1). The latter summand,
by the induction hypothesis, is an order-i generalised eigenvector of λc, making
vi+1 an order-(i + 1) generalised eigenvector.

Since we have identified k generalised eigenvectors of Bc, there can be no
more. We can also use Lemma 1 to conclude that since a basis of eigenvectors
of B is also a basis of eigenvectors of Bc, the multiplicities of λc

1, . . . , λ
c
j add up

to k, and there are no other eigenvalues of Bc. This establishes property (1).
The key observation to prove property (2) is that Bqc+rv = Br(Bc)qv. Thus,

for any n = qc + r and semialgebraic set T , we have Bnv ∈ T if and only if
(Bc)qv ∈ Tr = {x : Brx ∈ T}. Note that Tr is the pre-image of T under Br.
Since B is invertible, the map from T to Tr is a homeomorphism, and both sets
have the same dimensions. Define T ′ = {T1,0, . . . , Th,0, . . . , T1,c−1, . . . , Th,c−1}
where Ti,r = {x : Brx ∈ Ti}.

It is now easy to observe that the characteristic word α of B and v is a
“flattening” of α′ of Bc and v. Formally, Ti ∈ α(qc+r) if and only if Ti,r ∈ α′(q).
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Define ϕ : 2T ′ →
(
2T )c as ϕ(σ′) = σ0 . . . σc−1, where Ti ∈ σr if and only if Ti,r ∈

Σ. Define the extension ϕ′ :
(
2T ′

)ω

→
(
2T )ω as ϕ′(α′) = ϕ(α′(0))ϕ(α′(1)) · · ·

and observe that ϕ′ is bijective. Define L′ = {α′ : ϕ′(α′) ∈ L}. Clearly, α′ ∈ L′

if and only if α ∈ L. In only remains to show that L′ is ω-regular.
We shall use a deterministic Muller automaton A = (Q, 2T , q0, δ,F) that

accepts L to give a deterministic Muller automaton A′ = (Q, 2T ′
, q′

0, δ
′, F ′) that

accepts L′ in order to do so. Intuitively, A′, upon reading each letter σ′ of α′

simulates what A would do upon reading the corresponding ϕ(σ′). We take

Q′ = Q × 2Q,

q′
0 = (q0, {}) and

δ′((q, Sprev), σ′) = (δ(q, ϕ(σ′)), Snew)

where Snew is the set of states traversed by A while reading ϕ(σ′) and going
from q to δ(q, ϕ(σ′)) along a path of length c. We have that

InfA(α) =
⋃

(q,S)∈InfA′ (α′)

S.

Thus the acceptance condition

F ′ ∈ F ′ ⇔

⎛
⎝ ⋃

(q,S)∈F ′
S

⎞
⎠ ∈ F .

This establishes property (2) and completes the proof of Lemma 5. �

Lemma 5 thus reduces (μ1,M1, T1,L1) to (μ1,M2, T2,L2), where M2 is invert-
ible, and whose only eigenvalue of unit modulus is simple and equal to 1. We
also have that the dimensions of sets in T2 are at most those in T . We get rid of
the eigenvalue 1, leaving ourselves with an update matrix M3 whose dimension
is equal to the dynamical dimension of the original stochastic matrix M . We
show that in doing so, the linear dimension of the resulting sets in T3 is less than
that of their counterparts in T2.

Lemma 6. Let M ∈ Q(k+�)×(k+�) have nonzero eigenvalues 1, λ1, . . . , λj, such
that the eigenvalue 1 is simple, has multiplicity �, and is the only eigenvalue
of modulus at least 1. Let μ ∈ Qk+�, and let T = {T1, . . . , Th} be a col-
lection of semialgebraic sets. We can compute n0 ∈ N, s ∈ Qk+�, a rank-k
matrix Q ∈ Q(k+�)×k, an invertible and non-degenerate matrix A ∈ Qk×k with
eigenvalues λ1, . . . , λk, a vector v ∈ Qk, and a collection of semialgebraic sets
T ′ = {T ′

1, . . . , T
′
h} such that the following hold.

1. For all n, Mnμ = s + QAnv.
2. The eigenvalues of A are λ1, . . . , λj. Moreover, for any i, y is a generalised

order-i eigenvector of A corresponding to λ 	= 0 if and only if Qy is a gener-
alised order-i eigenvector of M corresponding to λ.
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3. Let n ≥ n0. For every i, Mnμ ∈ Ti if and only if Anv ∈ T ′
i . If Ti has linear and

intrinsic dimensions d1, d2 respectively, then the corresponding dimensions of
T ′

i are at most d1 − 1, d2.

Proof. The proof of Lemma 4 applies mutatis mutandis to establish requirements
(1) and (2). In this case, P spans the eigenspace of the simple eigenvalue 1, and
we have MP = P and P ′Q = O. We choose s, v from the unique representation
of μ = s + Qv, where s is a linear combination of the columns of P .

Having established requirement (2), we deduce that the Euclidean norm
||Anv|| converges to 0 exponentially quickly. We use this observation in com-
puting n0, T ′ as required. Let U1, . . . , Uh be the smallest subspaces containing
T1, . . . , Th respectively. We compute ε ∈ Q such that for all i, if s /∈ Ui then
neither is any point x in the Euclidean ε-neighbourhood of s. We compute n0

such that for all n ≥ n0, ||Anv|| = ||Mnμ − s|| < ε.
For all i, we define T ′

i = {x ∈ Rk : s + Qx ∈ Ti ∧ ||x|| < ε}. Observe that
T ′

i is non-empty only if s ∈ Ui. It is also straightforward to adapt the reasoning
from the proof of Lemma 4(2) to conclude that for n ≥ n0, Mnμ ∈ Ti if and
only if Anv ∈ T ′

i and that the intrinsic dimension of each T ′
i is at most that of

the corresponding Ti. It remains to prove that if T ′
i is non-empty, then its linear

dimension is less than that of Ti.
Consider Ui. Since T ′

i is non-empty, we know s ∈ Ui. By definition of a
subspace, there exists a (k + � − d) × (k + �) matrix H of rank k + � − d such
that y ∈ Ui only if Hy = 0k+�−d. Furthermore, since s ∈ Ui, we have that
Hs = 0k+�−d. We shall now identify a subspace that contains T ′

i .
By definition, x ∈ T ′

i if and only if s + Qx ∈ Ti. Thus, x ∈ T ′
i only if

H · Qx = 0k+�−d. Now, recall that the columns of Q span W , the union of
eigenspaces of the eigenvalues λ1, . . . , λj , which is also the k-dimensional kernel
of the rank-� matrix P ′ ∈ Q�×(k+�). We know that s is an eigenvector of 1, and
is hence not in W . Thus, we have at least one row p′ of P ′ such that p′s 	= 0.
This row is thus necessarily linearly independent of the rows of H, for otherwise
Hs = 0k+�−d would imply p′s = 0. The fact that P ′Q = O by construction
guarantees that P ′ · Qx = 0�.

The above argument allows us to append P ′ to the rows of H, obtaining a
matrix G of rank at least k + � − d + 1 by virtue of its rows H, p′ being linearly
independent. We can assert a stronger claim: x ∈ T ′

i only if G ·Qx = 0k+2�−d+1.
By the rank-nullity theorem, it follows that Qx must lie in a vector space of
dimension d′ ≤ d − 1 that is contained in W , the span of the columns of Q.

Finally, we recall that Q has rank k: thus the linear map Q from Rk to W is
invertible via Q′. Thus, Qx ∈ span(v1, . . . , vd′) ⊆ W (if and) only if
x ∈ span(Q′v1, . . . , Q

′vd′).
This allows us to conclude that x ∈ T only if x is contained in a linear

subspace of dimension at most d − 1, and completes the proof of Lemma 6. �

Finally, Lemma 6 completes the chain of reductions from (μ,M, T ,L) to
(μ2 = v,M3 = A, T3,L3), where A is invertible and has dimensions equal to the
dynamical dimension of M . We have L3 = {β : α(0) · · · α(n0 − 1) · β ∈ L2},
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where α is the characteristic word of M2, μ1 with respect to T2. We also have
that the linear dimensions of sets in T2 are at less those of their correspondents
in T . This completes the proof of our decidability results.

4 Proofs of the Hardness Results

In this section, we prove Theorems 4 and 5, thus showing that our decidability
results are tight, i.e. that further breakthroughs would entail the decidability
of Skolem-5. Recall that a Markov chain is ergodic if its transition graph is
irreducible (i.e. strongly connected) and aperiodic. Equivalently, for its stochastic
matrix M there exists an n0 such that all entries of Mn0 are strictly positive. In
our hardness proofs, we shall construct M with n0 = 1.

4.1 First Hardness Result

We first show how to construct, given an arbitrary LDS (v,A), an ergodic Markov
chain (μ,M) that captures the dynamics of (v,A).

Corollary 1 (Of Proof of Lemma 6). Let s ∈ Qk+1 be a distribution
with strictly positive entries, A ∈ Qk×k and v ∈ Qk. We can compute an
ergodic Markov chain (μ,M) and constants η, ρ ∈ Q such that Mnμ = s +

ηρn

[
I

−1�
k

]
Anv for all n.

Proof. Choose Q from Lemma 6 to be
[

I
−1�

k

]
. Observe that s is linearly inde-

pendent of the columns of Q: indeed, we have 1�
k+1Q = 0�

k+1, but 1�
k+1s = 1.

Thus the matrix R =
[
s Q

]
is invertible. Moreover, we can easily check that its

inverse R−1 is of the form
[
1�

k+1

Q′

]
.

Now we choose η such that the magnitude of the largest entry of ηQv is less
than the smallest entry of s. We take μ = s + ηQv, and observe that all entries
of μ are positive, and moreover that 1�

k+1μ = 1, making μ a distribution. We
choose ρ to ensure that the magnitude of the largest entry of ρQAQ′ is smaller
than the smallest entry of s.

Now, we take

M = RDR−1 =
[
s Q

] [
1 0�

k

0k ρA

] [
1�

k+1

Q′

]
=

[
s Q

] [
1�

k+1

ρAQ′

]
= s · 1�

k+1 + ρQAQ′.

The choice of ρ ensures that each entry of M is positive, and it is moreover
easy to check that 1�

k+1M = 1�
k+1. This makes M a stochastic matrix. Since all

entries of M are positive, (μ,M) is ergodic. It is then straightforward to verify
that Mnμ = s + ηρnQAnv. �
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We mention that Corollary 1 generalises the result of [17]. We now prove
Theorem 4. Given an instance (v,A, T ,L) of the model-checking problem for
linear dynamical systems with T = {T1, . . . , Th} being a collection of homoge-
neous sets, we apply Corollary 1 to obtain μ,M , and consider Q′ from its proof.
We note that by homogeneity, for each i, Anv ∈ Ti if and only if ηρnAnv ∈ Ti.
We construct T ′ = {T ′

1, . . . , T
′
h} as T ′

i = {y : 1�
k+1(y − s) = 0 ∧ Q′(y − s) ∈ Ti}.

The first conjunct ensures that y − s is in the space spanned by the columns
of Q. The set T ′

i is s-homogeneous by construction, and it is straightforward to
check that Mnμ ∈ T ′

i if and only if ηρnAnv ∈ Ti if and only if Anv ∈ Ti. The
equivalent instance (μ,M, T ′,L′) is obtained by taking L′ to be the ω-regular
language obtained from L by simply renaming letters in 2T to their counterparts
in 2T ′

.

4.2 Second Hardness Result

In this section, we take a hard instance (A, v, h) of Skolem-5 and construct an
equivalent instance (μ,M, T ) of the reachability problem where (μ,M) is an
ergodic Markov chain and T is a semialgebraic target with intrinsic dimension
at most 2. We will need the following.

Corollary 2 (Of Proof of Lemma 6). Let s ∈ Qk+1 be a distribution with

strictly positive entries, B ∈ Qk×k, and v ∈ Qk. Write Q =
[

I
−1�

k

]
, and suppose

that every entry of Q−1BQ is less than every entry of s in magnitude. Then we
can compute an ergodic Markov chain (μ,M) and η ∈ Q>0 such that Mnμ =
s + ηQBnv for all n.

Proof. Same as the proof of Corollary 1, with the difference that ρA is replaced
with B, whose entries are already assumed to be sufficiently small. �

Let (A, v, h) be a hard instance of Skolem-5. We have to decide whether there
exists n such that un = 0, where un = h�Anv is a rational LRS. As discussed
in [9, Sec. 2.3], we can assume the eigenvalues of A are of the form λ, λ, γ, γ, ρ
and satisfy |λ| = |γ| > |ρ| > 0. By considering the sequences (h�(

A2
)n

v)∞
n=0

and (h�(
A2

)n(Av))∞
n=0 separately if necessary, we can further assume ρ > 0.

Since the eigenvalues are the roots of characteristic polynomial of A, we have
that |λ|4ρ = λλγγρ is rational. Furthermore, ρ must also be rational. To see
this, let σ be a Galois automorphism of the splitting field Q(λ, λ, γ, γ, ρ) of the
characteristic polynomial of A. We have that σ permutes λ, λ, γ, γ, ρ. Moreover,
λλ = γγ, and hence σ(λ)σ(λ) = σ(γ)σ(γ). If σ were to permute any of the
other eigenvalues to ρ, this equality would be violated. Thus, ρ is fixed by every
automorphism and hence is rational. We conclude that |λ|4 must also be rational.

Let s be a distribution with strictly positive entries, and

κ =
1
|ρ| · |ρ|4c

|λ|4c
∈ Q
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for c sufficiently large so the condition of Corollary 2 is met with B := κA. Then
the eigenvalues κρ, κλ of B satisfy (κ|ρ|)4c−1 = (κ|λ|)4c.

We will next construct an instance (v,B, T̃ ) of the model-checking problem
such that T̃ is a semialgebraic set of intrinsic dimension at most 2 and

h�Anv = 0 ⇔ Bnv ∈ T̃

for all n. Write r = |λ|, H = {x : h�x = 0}, and B = PJP−1, where J is in real
Jordan form. Without loss of generality, we can assume

J = diag(κrΛ, κrΓ, κρ)

where Λ and Γ are 2 × 2 rotation matrices.5 Write Pv as (v1, . . . , v5), d1 =√
v2
1 + v2

2 , and d2 =
√

v2
3 + v2

4 . We have

‖(κrΛ)n(v1, v2)‖ = d1 · (κr)n = d1 · ((κr)n/(4c−1))4c−1,

‖(κrΓ)n(v3, v4)‖ = d2 · (κr)n = d2 · ((κr)n/(4c−1))4c−1 and

v5 · (κρ)n = (κr)4cn/(4c−1)v5 = v5((κr)n/(4c−1))4c.

It follows that (JnPv)∞
n=0 is contained in the set S of all (x1, . . . , x5) ∈ Rd

satisfying the following equations:

(x2
1 + x2

2)d
2
2 = (x2

3 + x2
4)d

2
1 and

((x2
1 + x2

2)v
2
5)

4c = x4c−1
5 · v5d

8c
1 .

On the other hand, let x(t) =
(
1−t2

1+t2 , 2t
1+t2

)
, and recall that the unit circle can be

parametrised as {(−1, 0)}∪{x(t) : t ∈ R}. We have that S = S1 ∪· · ·∪S4, where

S1 = {(d1s4c−1 · x(t1), d2s
4c−1 · x(t2), v5s

4c) : s ≥ 0, t1, t2 ∈ R},

S2 = {(d1s4c−1 · (−1, 0), d2s
4c−1 · x(t2), v5s

4c) : s ≥ 0, t2 ∈ R},

S3 = {(d1s4c−1 · x(t1), d2s
4c−1 · (−1, 0), v5s

4c) : s ≥ 0, t1 ∈ R} and

S4 = {(d1s4c−1 · (−1, 0), d2s
4c−1 · (−1, 0), v5s

4c) : s ≥ 0}.

Each of S1, . . . , S4 is parametrised by a Zariski-continuous function. The domains
R>0×R2,R>0×R,R>0 are all irreducible, and have dimensions 3, 2, 2, 1, respec-
tively. Hence each Si is irreducible, and dim(S1) ≤ 3, dim(S2),dim(S3) ≤ 2, and
dim(S4) ≤ 1. It can also be shown that P · H, which is also irreducible, is not
contained in any Si and vice versa. Hence dim(P · H ∩ Si) ≤ 2 and therefore
dim(P · H ∩ S) ≤ 2. We can therefore define T̃ = H ∩ P−1S.

Applying Corollary 2, we compute an ergodic Markov chain (μ,M) and η ∈
Q>0 such that Mnμ = s + ηQBnv. Define T = s + ηQT̃ . Then dim(T ) ≤ 2, and

Mnμ ∈ T ⇔ Bnv ∈ T̃ ⇔ Anv ∈ H.

This completes the proof of Theorem 5.
5 This is easily seen: let vλ, vλ, vγ , vγ , vρ be eigenvectors of κA, and take the columns

of P to be (vλ + vλ), i(vλ − vλ), (vγ + vγ), i(vγ − vγ), vρ.
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5 Discussion

We conclude by offering perspective on our decidability results and techniques.
We observe that our reduction from Markov chains to ordinary linear dynamical
systems becomes more powerful as the difference between the order (number
of states) and the dynamical dimension of the Markov chain increases. Recall
that this difference is attributed to the multiplicity of the eigenvalues of the
underlying stochastic transition matrix M that have modulus 0 or 1.

Having the eigenvalue 0 with multiplicity � has a “dependency” effect: all
distributions M �μ,M �+1μ, . . . will satisfy � homogeneous linear constraints of
the form h1x1 + · · · + hkxk = 0, where xi is the probability of being in state i.

Eigenvalues of modulus 1 other than 1 itself are necessarily roots of unity,
and hence describe the “periodic” behaviour of the system. They occur if every
cycle in a bottom strongly connected component G of the graph has length
divisible by some c > 1: G can then be partitioned into G0, . . . , Gc−1 such that
for each i, all transitions starting in Gi end in Gi+1. Thus, the probability mass
that lands in G is also cycled between these partitions. By taking M c to be
the transition matrix, we turn each partition into a separate bottom strongly
connected component.

The eigenvalue 1 accounts for the “stationary” behaviour of the system, and
occurs as many times as there are bottom strongly connected components in
the graph of the transition system. This is intuitively because every bottom
strongly connected component G corresponds to a unique stationary distribution
μG which assigns nonzero probability to the states in G and zero probability to all
other states. A given initial distribution determines how the probability mass will
eventually be distributed between the bottom strongly connected components.
Furthermore, if these are aperiodic, then within each component G, the mass
that lands in G will inevitably distribute itself in proportion to μG

Our reduction extracts the dynamics of the stochastic system by doing
away with the redundancy caused by dependencies, partitioning periodicity into
phases, and subtracting the stationary behaviour. The sequence of vectors in the
resulting linear dynamical system converges to the origin exponentially quickly.
In practice:

1. Markov chains might have strong dependencies, be highly periodic, and have
several bottom strongly connected components. This could make the dynam-
ical dimension for the model-checking problem small.

2. The sets in T might not have the limiting distributions on their boundaries,
making the resulting sets in T ′ empty, and the resulting model-checking prob-
lem trivially decidable.

The optimistic practitioner would consider common systems and believe that
model checking Markov chains as distribution transformers ought to be easier
than arbitrary linear dynamical systems; while a skeptical theoretician would
recall ergodic Markov chains and expect that the problems are essentially equiv-
alent. By efficiently distilling the dynamics of Markov chains from their depen-
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dencies, periodic nature, and limiting behaviour and quantifying their respective
contributions, we formally reconcile these opposing intuitions.
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